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Abstract 

 

Structural Insights into Heterodimerization and Catalysis of the Human Cis- 

prenyltransferase “NgBR/DHDDS” Complex 

 

Ban Edani 

2021 

Cis-prenyltransferses (cis-PTases) constitute a family of enzymes involved in the 

synthesis of isoprenoid lipids required for various biological functions across all domains of life. 

The eukaryotic cis-PTase catalyzes the rate-limiting step in the synthesis of dolichyl phosphate, 

an indispensable glycosyl carrier lipid required for protein glycosylation in the lumen of 

endoplasmic reticulum. Based on enzyme composition, cis-PTases can be either homomeric or 

heteromeric enzymes. The human cis-PTase possesses a heteromeric configuration consisting of 

the two evolutionary related subunits: NgBR (dehydrodolichyl diphosphate synthase accessory 

subunit, first identified as a Nogo-B receptor) and DHDDS (dehydrodolichyl diphosphate 

synthase catalytic subunit). Recently, several mutations in both subunits have been reported to 

associate with various human diseases, collectively known as congenital disorders of 

glycosylation (CDG), including severe CDG type I, developmental and epileptic encephalopathy, 

and autosomal recessive retinitis pigmentosa. In addition, mutations on the NgBR subunit have 

been recently reported in patients suffering from early onset of Parkinson’s disease (EOPD).  

Despite its crucial role in the protein glycosylation process, the molecular mechanism of 

heteromeric cis-PTases remains poorly understood due to lack of structural-functional studies on 

these enzymes, in contrast to homodimeric cis-PTases which have been extensively studied. 

Therefore, in this dissertation, I illustrate the first crystal structure of a heteromeric, human cis-
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PTase NgBR/DHDDS complex solved at 2.3 Å. The structure revealed novel features that were 

not previously observed in homodimeric enzymes, including a new dimeric interface formed by a 

unique C-terminus in DHDDS and a novel N-terminal segment in DHDDS serving as a 

membrane sensor for lipid activation. In addition, the structure elucidated the molecular details 

associated with substrate binding, catalysis, and disease-causing mutations. Finally, the structure 

provided novel insights into the mechanism of product chain elongation, an interesting yet one of 

the most enigmatic topics on prenyl chain elongating enzymes. In summary, the crystal structure 

advances our understanding of the molecular mechanism of heteromeric cis-PTase enzymes.  
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CHAPTER 1: Introduction 

1.1  Isoprenoid biosynthesis 

Isoprenoids constitutes the largest family of naturally occurring compounds produced by 

living organisms. They serve myriad biological functions such as: quinones used in electron 

transport chain, sterols serving as a structural component of biological membranes and a 

precursor of steroid hormones, photosynthetic pigments (carotenoids, retinoids, and side chain of 

chlorophyll), in protein prenylation important for subcellular targeting, plant hormones including 

gibberellins and abscisic acid, plant terpenoids (mono-, di- and sesqui-terpenes), and polyprenols 

such as dolichols which are employed as sugar carrier lipids during protein glycosylation (1-6). 

Despite their diverse roles, the basic structure of all isoprenoids is formed by the condensation of 

two C5 precursors: isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate 

(DMAPP) (2). In most eukaryotes, archaea, and some eubacteria, IPP and DMAPP are 

synthesized via the mevalonate pathway (MVA), also known as the HMG-CoA reductase 

pathway (7). In contrast, most bacteria and chloroplasts of photosynthetic organisms utilize the 

methylerythritol phosphate (MEP) pathway to generate IPP and DMAPP (8).  

Linear isoprenoids are formed by the condensation of an allylic diphosphate substrate 

with certain number of IPP (homoallylic substrate) units, catalyzed by prenyl chain elongating 

enzymes known as prenyltransferases (6). The newly synthesized products vary in their chain 

length from C10 to C>10,000 (6, 9). With respect to the stereochemistry of the newly formed double 

bond of the product, prenyl-transferases are classified into two categories: trans-

prenyltransferases (trans-PTases) and cis-prenyltransferases (cis-PTases) (2, 10, 11). Although 

both enzyme groups utilize similar substrates, biochemical and biophysical characterization of 

these enzymes revealed major differences in terms of their primary amino acid sequence, three-
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dimensional (3D) structure, and molecular mechanism (6, 12, 13). In this work, however, I will 

focus on the structure and catalytic mechanism of cis-PTase enzymes.  

1.2  Cis-prenyltransferase: enzymatic reaction and classification 

cis-prenyltransferase (cis-PTase) plays a pivotal role in the synthesis of isoprenoids in the 

cis-configuration by catalyzing the sequential condensation of an allylic pyrophosphate primer 

with a variable number of  isopentenyl pyrophosphates (IPP, C5), resulting in the formation of a 

polyprenol pyrophosphate with cis-double bonds (6, 12, 14, 15). The most common type of cis-

PTase catalyzes a “head-to-tail” condensation whereby the newly formed double bond is 

between C1’ of the allylic substrate and C4 of the IPP molecule, thus generating linear 

isoprenoids (10, 16), (SI Appendix, Fig. S1). Recently, few studies have reported homologous of 

cis-PTase catalyzing an unusual “head-to-middle” condensation reaction in which a double bond 

is formed between C1’ of the allylic primer and C2 of the IPP substrate, resulting in the synthesis 

of branched isoprenoids (10, 17, 18). Therefore, isoprenoids are the most structurally diverse, 

naturally occurring compounds with myriad biological functions in all living organisms (2, 6, 

10). In eukaryotes, the cis-PTase localized to the endoplasmic reticulum (ER) is the first enzyme 

committed to dolichol phosphate (Dol-P) biosynthesis (15, 19-22), an obligate glycosyl carrier 

lipid crucial for protein N-glycosylation, O-mannosylation, C-mannosylation, and GPI anchor 

synthesis (2, 6, 23). Similarly, the bacterial cis-PTase, including the most common undecaprenol 

pyrophosphate synthase (UPPS), plays an essential role in maintaining cellular integrity by 

synthesizing UPP (11 C5), a carrier lipid for N-acetylglucosamine-N-acetylmuramate 

pentapeptide moiety required for bacterial cell wall synthesis (24, 25). Therefore, UPPS serves as 

a target for the development of more effective antibiotics (24, 26-28).  
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Based on enzyme composition, cis-PTases can be either homodimeric or heteromeric 

enzymes (2, 10). The classification can be further extended to include product chain length in 

which the majority of homodimeric enzymes synthesize short-chain (2-5 C5) or medium-chain 

(9-11 C5) products whereas heteromeric enzymes tend to synthesize long-chain (14-24 C5) or 

very-long-chain (> 2,000 C5) products (2, 6). Many organisms including bacteria, some archaea, 

plants, and some protozoa such as Giardia and Trypanosoma possess a homodimeric cis-PTase 

assembly (2, 14, 29-36). Heteromeric enzymes, on the other hand, can be found in yeast, 

mammals, fungi, slime molds and some archaea and plants; these enzymes are mainly involved 

in the biosynthesis of long-chain dolichols required for dolichol-dependent protein glycosylation 

(2, 37-39). The well-known heteromeric cis-PTase synthesizing extensively long isoprenoids is 

rubber synthase (40, 41). Recently, studies on natural rubber biosynthesis have gained 

considerably increased attention from an industrial standpoint due to its unique physical 

properties and the high demand for sustainable rubber resources. Clearly, cis-PTases are diverse 

group of enzymes that synthesize wide range of precursors vital across all domains of life.  

1.3  Evidence for the heteromeric organization of eukaryotic cis-PTase 

The first eukaryotic genes encoding the putative S.cerevisiae cis-PTase proteins RER2 

and SRT1 were identified two decades ago (15, 42, 43). Overexpressing either RER2 or SRT1 

gene suppresses the phenotype of a rer2 strain defective in yeast growth, protein sorting, cis-

PTase activity and protein glycosylation (15). Subsequently, sequence homology analysis 

resulted in the identification of a cDNA encoding the human dehydrodolichyl diphosphate 

synthase (DHDDS) subunit (20, 22). Similar to RER2 and SRT1, the human DHDDS 

complements growth defects, cis-PTase activity and restores normal protein glycosylation levels 

in the rer2 mutant strain (22). Although DHDDS has no predicted trans-membrane domains, it is 
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membrane-associated (22). Furthermore, overexpression of DHDDS in mammalian cells results 

in a modest increase in cis-PTase activity from isolated microsomal fractions, indicating the 

requirement of an additional cis-PTase subunit (22). NgBR was first identified in the Sessa lab as 

a receptor that binds the amino terminus of Nogo-B (or reticulon 4B), a protein that is highly 

abundant in endothelial cells and vascular smooth muscle cells and plays an important role in 

adhesion and chemotaxis of endothelial cells (44). Initial studies on the cellular role of NgBR 

demonstrated an interaction between the C-terminus of NgBR and Niemann-Pick type C2 

(NPC2), a lysosomal protein involved in the trafficking of LDL-derived cholesterol (45, 46). In 

addition, loss of NgBR using siRNA reduced the levels of NPC2 and induced accumulation of 

free cholesterol, a phenotype similar to NPC2 loss-of-function mutations (45). Furthermore, 

NgBR knockdown cells showed a remarkable decrease in cis-PTase activity, dolichol levels and 

protein N-glycosylation, suggesting a possible role in cis-PTase enzymatic function (46). Indeed, 

amino acid sequence analysis revealed a 44% sequence similarity between the C-terminus of 

NgBR and the homodimeric cis-PTase from M.luteus (46). Furthermore, co-immunoprecipitation 

studies established an interaction between the C-terminus of NgBR and DHDDS, indicating the 

presence of a heteromeric cis-PTase complex (46).  

Genetic and biochemical studies from the Sessa group provided an unequivocal evidence 

for the heteromeric organization of cis-PTase in yeast and human. Studies in yeast demonstrated 

that a triple deletion yeast strain from S.cerevisiae lacking its three cis-PTase components, 

including NUS1 (NgBR ortholog) and RER2 and SRT1 (DHDDS orthologs) was lethal, and 

survival of yeast cells was accomplished by expressing a homodimeric cis-PTase from G.lamblia 

(refer to method section for more details) (39). Similarly, viability of the triple deletion yeast 

strain was only possible by the co-expression of both NgBR and DHDDS but not individual 
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genes. These observations were further supported by a reverse-phase TLC analysis showing 

polyprenol formation occurring only in the presence of both cis-PTase components (39). In 

addition, in vitro-translation experiment combined with cis-PTase activity assay clearly 

demonstrated that only co-translation and not mixing of the two subunits reconstituted the 

activity of the complex (39). Subsequent work by other groups further bolstered the strict 

requirement of both subunits for cis-PTase activity and polyprenol synthesis in distantly related 

species. Using yeast two-hybrid screen and co-immunoprecipitation assays, Brasher et al.(37) 

demonstrated that a heteromeric cis-PTase from tomato required SICPT3 (DHDDS ortholog) and 

SICPTBP (NgBR ortholog) to complement growth defects and dolichol deficiency of yeast 

mutant lacking RER2 gene. Similar results were reported by Epping et al. (40) whereby the 

interaction of rubber synthase components TbCPT1 (DHDDS ortholog)/TbRTA (NgBR 

ortholog) from Dandelion was confirmed by co-immunoprecipitation experiments. Moreover, 

expressing individual subunits failed to support cellular growth in the S.cerevisiae triple deletion 

strain (40). Yet in another study by Qu et al. (41), the plant cis-PTase complex from Lettuce was 

shown to consist of CPT3 (DHDDS ortholog) and CPTL2 (NgBR ortholog) using a yeast two-

hybrid screen. In addition, only yeast microsomes containing CPT3/CPTL2 showed enhanced 

synthesis of cis-polyisoprenoids (41). Similar results were reported in a study by Kwon et al. 

(47) which demonstrated the requirement of both cis-PTase subunits CPT1 (DHDDS ortholog) 

and AtLEW1 (NgBR ortholog) in A.thaliana using yeast complementation and in-vitro activity 

assays. Recently, our group successfully isolated and biochemically characterized an archaeal, 

heteromeric cis-PTase from M.acetovorans, which consists of the two subunits MA3723 

(DHDDS ortholog) and MA4402 (NgBR ortholog) (9). Similar to previous findings, both 
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subunits were necessary for the survival of the triple deletion yeast strain and optimal cis-PTase 

activity (9).  

 1.4  The molecular mechanism of heteromeric cis-PTase remains elusive 

Our current mechanistic understanding of cis-PTase enzymes stems mainly from 

structural and biochemical studies on homodimeric enzymes which have been well characterized 

two decade ago. The first crystal structure reported for this enzyme group was from M.lutues 

UPP synthase (48). Subsequent crystal structures of other homodimeric cis-PTs revealed a 

similar structural fold in which each monomer consisted of six parallel β strands and seven α 

helices (28, 49-51). The enzymatic reaction takes place within a hydrophobic cavity composed of 

two α helices and two β strands (50, 52). Comprehensive structural and functional studies 

showed that most conserved residues involved in catalysis and substrate binding are located 

within the entrance of the cavity which is surrounded by positively charged residues to bind and 

stabilize the negatively charged pyrophosphate of the two substrates and product (50, 52, 53). In 

addition, previous fluorescence studies concerning the role of Mg2+ in substrate binding revealed 

that binding of the allylic substrate (i.e. FPP) is independent of Mg2+ while IPP binding only 

occurs in complex with Mg2+(50). A highly conserved Aspartic acid (Asp26 in E.coli UPPs) 

within the active site was shown to coordinate with Mg2+ and play an important role in catalysis 

as suggested by the 1000-fold reduction in kcat upon mutation to Alanine (54). The interior side 

of the cavity is surrounded by hydrophobic residues which can participate in binding the 

hydrophobic tail of the product; such assumption was supported by a crystal structure of E.coli 

UPPs in complex with Triton which is thought to mimic UPP, the product of the bacterial 

enzyme (52).  
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In contrast, the structure and molecular mechanism of heteromeric cis-PTase remains 

elusive due to their recent discovery. Identification of several heteromeric cis-PTs from different 

organisms revealed that DHDDS-like proteins retain most cis-PTase active site residues involved 

in catalysis and substrate binding (9). Nevertheless, purified DHDDS is only slightly active on its 

own (55). NgBR and its orthologs on the other hand seem to lack most of the functionally 

conserved residues except for a conserved C-terminal -RXG- motif, shared with homodimeric 

cis-PTases but not DHDDS orthologs (9). Both NgBR and DHDDS-like proteins retain the 

canonical dimeric interface region of homodimeric cis-PTase enzymes (9). Interestingly, NgBR 

harbors an N-terminal region that can bind to the ER membrane (46). Therefore, different roles 

have been assigned to NgBR-like proteins by various groups. A docking role was reported by 

Yamashita et al. (56), who recently described a three-component rubber synthase system from 

Hevea brasiliensis consisting of HRT1 (DHDDS ortholog), HRBP (NgBR ortholog) and a 

rubber elongation factor. Moreover, it was suggested in other studies that NgBR anchoring may 

activate DHDDS (57) or facilitate product release into the membrane (58). Although most NgBR 

orthologs are membrane anchored compared to the membrane-associated pattern of DHDDS, the 

anchoring role has been challenged by the following observations: First, a knockdown of NgBR 

showed no change in the relative abundance of DHDDS associated with isolated ER membrane 

fractions (46). Second, NgBR lacking its N-terminal domain (Δ85) still supports growth of a 

yeast triple strain when co-expressed with DHDDS (9). Lastly, a recently identified NgBR 

homolog from Archaea (MaUPPS-B) lacks the N-terminal domain containing the predicted 

membrane binding region yet was able to support cis-PTase activity and protein glycosylation 

(9). It is possible that the main role of NgBR is to stabilize the heteromeric complex; however, 
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recent functional studies from our group strongly suggest its additional role in cis-PTase 

enzymatic activity through its shared C-terminal -RXG- motif (9).  

1.5  Genetic disorders associated with cis-PTase loss-of-function mutations 

In the past few years, dolichol metabolism has received a considerable interest as more 

studies emerged demonstrating a clear relationship between defects in dolichol biosynthetic 

genes and numerous human diseases. More specifically, exome sequencing of patients with 

congenital disorders of glycosylation (CDG) type I has identified number of disease-causing 

mutations in both NgBR and DHDDS subunits (39, 59-63). A homozygous mutation (R290H) at 

the C-terminal -RXG- motif of NgBR was reported in a family of Roma origin (39). Individuals 

with this mutation exhibited a severe CDG type I phenotype with multi-organ symptoms 

including congenital scoliosis, refractory epilepsy, retinitis pigmentosa, microcephaly and severe 

neurological impairment (39). Biochemical characterization of R290H mutation by our group 

showed a marked reduction in cis-PTase activity as well as IPP binding with no influence on its 

interaction with DHDDS (9, 39). These data suggest a possible role for NgBR in catalysis and 

IPP binding through its C-terminal -RXG- motif (51, 64, 65). Another two homozygous 

mutations (K42E, T206A) in DHDDS were reported in individuals with a mild form of CDG 

whereby patients suffered from a nonsyndromic, autosomal recessive Retinitis Pigmentosa, 

commonly found among the Ashkenazi Jewish population (62, 63, 66). Interestingly, patients 

harboring either the NgBRR290H or DHDDSK42E homozygous mutations showed altered ratios of 

dolichol chain length in urine and plasma (39, 66). However, the physiological significance of 

this phenotype is still poorly understood. Yet another exome sequencing study recently reported 

several de novo heterozygous mutations in NgBR/DHDDS complex associated with neurological 

abnormalities in CDG. The symptoms lead to Developmental and Epileptic Encephalopathy 
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(DEE), a group of conditions characterized by re-occurrence of epilepsy and intellectual 

disability (ID) , electroencephalographic abnormalities and in few cases, early death (60, 67). 

Individuals carrying the de novo mutations displayed various neurological symptoms typical of 

DEE including epilepsy, seizures, tremors, ataxia and moderate to severe developmental delay 

(60). Moreover, micro-deletions within NgBR locus have been associated with pediatric epilepsy 

and congenital anomalies (68, 69). Finally, a recent exome sequencing study by Guo et.al, (70) 

identified de novo mutations in NgBR which might be relevant to Parkinson’s disease 

pathogenesis, although it is uncertain whether these mutations affect cis-PTase activity.  

1.6  NgBR regulation and cancer prognosis 

In recent years, there has been a growing number of studies describing the correlation 

between NgBR expression and tumorigenesis. In the area of breast cancer research, it was shown 

that NgBR expression levels were elevated in breast cancer cells in relation to normal, non-

transformed breast cells (71-73). More specifically, NgBR protein was highly expressed in 

estrogen receptor alpha (ERα)-positive/Her2-neggative breast cancer and was positively 

correlated with the expression of survivin, a well-known apoptosis inhibitor (72). In another 

study by Zhao et al. (74), NgBR knockdown was shown to reduce epithelial-mesenchymal 

transition (EMT), an essential process involved in breast cancer metastasis. Therefore, NgBR 

may play a role in the progression and metastasis of invasive ductal breast carcinoma. Several 

lines of evidence exist demonstrating an altered pattern of protein O- and N-glycosylation in 

cancer cells compared to normal cells (71, 75, 76). Given the essential role of NgBR as part of 

cis-PTase complex required for protein glycosylation, it might be reasonable to conclude that 

NgBR upregulation in tumorigenic cells occurs in response to the increasing demand for protein 

glycosylation. Moreover, it was previously shown that NgBR can interact with farnesylated Ras 
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and promote its accumulation to the plasma membrane, a crucial step required for the activation 

of epidermal growth factor (EGF) signaling pathway in breast cancer cells (77). In addition, 

NgBR overexpression was found to promote the activation of Ras-mediated EGF signaling, and 

Akt/ERK-mediated MDM2 phosphorylation, leading to the ubiquitination and degradation of 

p53 (78, 79). Such molecular mechanism is thought to explain the chemoresistance of ERα 

positive breast cancer cells to paclitaxel and tamoxifen (78, 79). A similar NgBR-Ras activation 

effect was observed in non-small cell carcinomas (NSCLC) cells (80, 81). According to these 

studies, NgBR knockdown was shown to inhibit EMT of NSCLC cells, whereas NgBR 

overexpression promoted Ras activation and its downstream MEK/ERK/Snail1 signaling 

pathway (81). Nevertheless, more studies are needed to fully illustrate whether NgBR-mediated 

Ras activation involves cis-PTase pathway or contribute to an independent role of NgBR in 

cancer progression and metastasis.  
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1.7  Thesis aims 

Dolichol plays a crucial role as a gylcosyl carrier lipid required for proper protein 

glycosylation. Nevertheless, the steps leading to its biosynthesis remain poorly characterized. 

Cis-prenyltransferase (cis-PTase) is the first enzyme committed to the de novo biosynthesis of 

dolichols in eukaryotes (15, 19, 22). Recent studies by our group and others have already 

confirmed the heteromeric organization of eukaryotic cis-PTase enzyme, which consists of 

NgBR and DHDDS subunits in humans (37, 39-41, 46). In line with the significance of protein 

glycosylation for proper cellular function, mutations in both NgBR and DHDDS subunits have 

been associated with various clinical symptoms, ranging in severity from the mild retinitis 

pigmentosa to the fatal cases of congenital disorder of glycosylation (CDG type I) (39, 59-63, 

70). Despite the growing clinical relevance of cis-PTase enzymes,  a thorough investigation of 

heteromeric cis-PTases has been lacking due to their recent discovery. Towards this end, my 

thesis sought to gain an insight into the molecular mechanism of heteromeric cis-PTases through 

a structural-functional approach.  

Thesis aim: Investigate the molecular mechanism of heteromeric cis-PTase enzymes through the 

utilization of x-ray crystallography 

To gain a mechanistic understanding of heteromeric cis-PTase enzymes, I will determine 

the atomic structure of the human NgBR/DHDDS complex using x-ray crystallography 

technique. The structure will help shed light on the molecular determinants governing: 1) the 

heteromeric assembly of the two distantly related NgBR and DHDDS subunits to form a 

functional enzymatic complex; 2) the similarities and differences between the active site of 

heteromeric and homodimeric cis-PTase enzymes; 3) the mechanism underlying NgBR and 

DHDDS-related human diseases; 4) the role of membrane binding in enzyme activation; 5) the 
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mechanism by which heteromeric cis-PTase enzymes synthesize longer-chain polyprenols 

compared to homodimeric enzymes. Therefore, the structural study proposed herein will provide 

the first biophysical evidence for the interaction between NgBR and DHDDS subunits and will 

uncover the role of NgBR in the overall catalytic mechanism of heteromeric cis-PTase enzymes.  
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CHAPTER 2: The Crystal Structure of Human cis-PTase (NgBR/DHDDS) Complex 

Reveals Novel Insights into the Molecular Mechanism of Heteromeric Enzymes 

2.1  Introduction 

Until now, all studies concerning the structure and catalytic mechanism of cis-PTase have 

been limited to homodimeric enzymes. In contrast, our mechanistic understanding of prenyl 

chain elongation by heteromeric enzymes remains elusive. Previous biochemical studies from 

our lab confirmed the heteromeric organization of the human cis-PTase, which consists of NgBR 

and DHDDS subunits (39, 46). Unlike homodimeric cis-PTases which synthesize short and 

medium-chain length products (e.g., E.coli UPPS; 11 isoprene units); human cis-PTase catalyzes 

the condensation of sixteen IPP units with a single farnesyl pyrophosphate (FPP) molecule, 

generating a long-chain polyprenol diphosphate (19 isoprene units) (SI appendix, Fig. S1) (2) . 

Once synthesized, the polyprenol diphosphate is then dephosphorylated by an unknown 

phosphatase, generating polyprenol. The α-isoprene unit of the polyprenol is subsequently 

reduced by an NADPH-dependent polyprenol reductase, resulting in the formation of dolichol. 

The last step involves phosphorylating the dolichol by a dolichol kinase to form dolichol 

phosphate, the glycosyl carrier lipid required for various types of protein glycosylation in the 

lumen of endoplasmic reticulum (2, 6, 23). The essential role of cis-PTase in dolichol synthesis 

was demonstrated using yeast, mice, and zebrafish as genetic models. Notably, a global knockout 

of NgBR in mice (39) and endothelial specific knockout of NgBR (82) leads to embryonic 

lethality due to defects in vascular development. Similarly, NgBR knockdown in zebrafish 

embryos shows defects in intersomitic vessel sprouting (83). In addition, deletion of yeast 

S.cerevisiae cis-PTase components including Rer2/Srt1(DHDDS orthologs) and Nus1 (NgBR 

ortholog) fails to support growth of yeast cells (30, 39). Moreover, in vitro studies using 
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endothelial-specific NgBR knockdown cells show a marked reduction in cell proliferation and an 

increase in apoptosis, mainly due to the hypoglycosylation of essential endothelial cell proteins 

such as VEGFR2 (82).  

Several lines of evidence exist supporting the requirement of both NgBR and DHDDS 

and their orthologs for a functional cis-PTase enzyme (9, 37, 39-41, 46, 47). Nevertheless, the 

specific contribution of each subunit to the overall catalytic mechanism is unclear. Intriguingly, 

DHDDS is a soluble protein yet localizes to the ER membrane (22). Additionally, DHDDS 

shares a high sequence homology (up to 50% sequence similarity) with homodimeric cis-PTases, 

thus retaining most active site residues involved in catalysis and substrate binding (9). In 

contrast, NgBR can be divided into two domains: An N-terminal domain which exhibits a 

membrane-binding region, and a C-terminal domain that seems to share a low sequence identity 

with homodimeric cis-PTases by lacking most active site residues (9, 44). However, our group 

has recently identified a conserved -RXG- motif at the very C-terminus of NgBR; the motif is 

shared with homodimeric cis-PTases but not DHDDS and its orthologs (9). A functional analysis 

of the C-terminal -RXG- motif revealed its critical role in catalysis and binding of the IPP 

substrate (9); thus, suggesting a catalytic role for the NgBR subunit. Recently, the structure of 

cis-PTase domain of Nus1 (NgBR ortholog from yeast) was reported (84); surprisingly, Nus1 

adapts a structural fold similar to that of homodimeric cis-PTase enzymes. Additionally, 

sequence alignment studies revealed both NgBR and DHDDS to maintain the canonical interface 

region commonly found in homodimeric enzymes (9). Nevertheless, a more thorough 

investigation is needed to elucidate the dimeric interaction and the real contribution of both 

subunits to the overall molecular mechanism of heteromeric cis-PTases. Towards this end, I 

developed a bacterial system for the co-expression and purification of the human NgBR/DHDDS 
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complex. Next, I successfully co-crystallized the heteromeric enzyme in complex with Mg2+ ion 

and IPP substrate at 2.3 Å. The structural-functional analysis unveiled novel features that were 

not previously predicted based on the structures of homodimeric enzymes. These features 

include a unique C-terminal domain on DHDDS that seems to contribute to the 

heterodimerization of the complex, a novel N-terminal membrane sensor on DHDDS that is 

critical for membrane activation, and a unique structural feature within the hydrophobic cavity of  

DHDDS that plays a role in product chain elongation. In addition, the structure confirmed the 

involvement of NgBR in the overall catalytic mechanism of cis-PTase and provided a 

mechanistic insight into the loss of function mutations associated with CDG. Therefore, 

NgBR/DHDDS complex structure sheds light on different molecular aspects of heteromeric cis-

PTase enzymes and provides a model for the product chain elongation mechanism.   
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2.2  Materials and Methods 

Materials 

 Unless otherwise stated, all reagents were of analytical grade and purchased from Sigma-

Aldrich, Thermo Fisher Scientific, and Zymo Research (Irvine, CA). Restriction enzymes were 

from New England Biolabs (Ipswich, MA). [1-14C] IPP (50 mCi/mmol) was purchased from 

American Radiolabeled Chemicals (St. Luis, MO). Reverse phase thin layer chromatography 

(RP18-HTLC) plates were from MilliporeSigma (cat# 1.51161.0001). Primary antibodies used in 

this study include Anti-HA High Affinity antibody (Roche, 11867423001) and Monoclonal anti-

Flag M2 antibody (Sigma, F3165). HiFi DNA Assembly method (NEBuilder®, NEB) was used 

to construct expression vectors and perform site-directed mutagenesis.  

 

Cloning and Purification of NgBR/DHDDS Complex 

To express His-SUMO-NgBR79-293 and untagged, full length DHDDS (1-333) in bacteria, 

His-SUMO and NgBR overlapping PCR fragments were first assembled into pRSF-DUET1 

vector cut with NdeI/XhoI restriction enzymes. DHDDS PCR fragment was then assembled into 

pRSF-DUET1-HIS-SUMO-NgBR cut with NcoI/NotI. The Recombinant NgBR/DHDDS 

complex was expressed in Escherichia coli Rosetta (DE3) cells (Novagen) and induced with 0.7 

mM IPTG (OD600 0.6) overnight at 18 ⁰C. Cells were harvested and then resuspended in lysis 

buffer containing 20 mM Tris-HCl pH 8.0, 500 mM NaCl, 20 mM imidazole, 10% glycerol, 

0.5% triton X-100 and 2 mM 2-Mercaptoethanol, cOmplete protease inhibitors (Roche), 

lysozyme (100 μg/ml) and DNase I (10 μg/ml). Three cycles of freeze/thaw were conducted 

using ethanol/dry ice bath and cells were sonicated in 50 ml falcon tube for 2 minutes total. The 

samples were clarified by centrifugation at 20,000 rpm for 1 hour at 4 ⁰C. Supernatant was then 
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applied to a 1 ml HisTrap (GE Healthcare) nickel affinity column, and the protein was eluted 

with 6 ml lysis buffer containing 400 mM imidazole. The sample was then applied to size 

exclusion column (Superdex 200, GE Healthcare) equilibrated with buffer containing (50 mM 

Tris-HCl pH 8.0, 150 mM NaCl, 1 mM MgCl2 and 2 mM TCEP). Fractions containing protein 

complex were collected and subjected to cleavage with SUMO protease overnight at 4⁰C to 

remove the His-SUMO tag. The cleaved protein was then re-applied to a HisTrap column and the 

flow-through was collected. Protein sample was then passed through another size exclusion 

column equilibrated with 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 2.5 mM MgCl2 and 2 mM 

TCEP. Fractions were collected and analyzed by 12% SDS-PAGE gel.  

 

Crystallization, Data Collection and Structural Determination 

The purified protein was concentrated to 3.2 mg/ml and incubated with 3.3 mM IPP 

(sigma) on ice for 2 hours. Crystallization screening was performed using the sitting-drop vapor 

diffusion method, and an initial hit was obtained from PEG screen (Hampton Research). 

Crystallization was optimized by grid screening and the best crystals were obtained by mixing 1 

μl protein solution with 1 μl reservoir solution consisting of 0.1 M Bicine (pH 8.5), 10% v/v 2-

propanol, 22% PEG 1500. Crystals appeared within 2 days and grew to maximum size within 

one week at room temperature. Crystals were cryoprotected with the reservoir solution 

supplemented with 20% glycerol and flash frozen in liquid nitrogen. Diffraction Data were 

collected on beamline 24-ID-E of the Advanced Photon Source at Argonne National Laboratory 

and processed using HKL2000 (85). Although individual reflections up to 2.2 Å resolution could 

be observed, after merging, CC1/2 quickly fell off beyond 2.3 Å. The structure of the complex 

was determined by molecular replacement and refined to 2.3 Å resolution using CCP4i 
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(supplementary Table 1) (86). The E. coli UPPs (PDB entry 1X06) and S. cerevisiae NUS1 

(PDB entry 6JCN) were used as search probes for the DHDDS and NgBR subunits, respectively. 

Model building were performed using Coot (87).  

cis-PTase activity of NgBR/DHDDS 

The steady state activity of purified NgBR/DHDDS complex was assayed as before with 

minor modifications (9). Briefly, a standard incubation mixture contained, in a final volume of 

25 μl, 100 μM [1-14C] IPP, 20μM FPP, 50 mM Tris-HCl pH 8.0, 1 mM MgCl2, 10 mM KF, 20 

mM 2-mercaptoethanol, 1 mg/ml BSA ,1 % Phosphatidylinositol and 100 ng of purified enzyme. 

The mixture was incubated for 1 hour at 37 ⁰C and product was extracted with 

chloroform:methanol (3:2), followed by washing three times with 1/5 volume of 10 mM EDTA 

in 0.9% NaCl.  In order to determine the chain length of the cis-PTase products, polyprenol 

diphosphates were chemically dephosphorylated by incubation of the lipids at 90° in 1 N HCl for 

1 hr. Dephosphorylated prenols were extracted three times with two volumes of hexane. The 

organic fraction was washed with 1/3 volume of water, hexane was evaporated under stream of 

nitrogen and   lipids were loaded onto HPTLC RP-18 precoated plates and run in acetone 

containing 50 mM H3PO4. The plates were exposed to film to visualize the products of IPP 

incorporation. As an internal and external standards Geranylgeraniol (Echelon Biosciences), 

Undecaprenol and Polyprenol 19 (Institute of Biochemistry and Biophysics, PAS 

the Collection of Polyprenols) and Prenols mixture (13-21) (Avanti Polar Lipids) were used. 

Prenol standards were visualized by exposing the TLC plate to iodine vapor.  

 

Limited Proteolysis  
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20 ul of 0.2 mg/ml of purified NgBR/DHDDS enzyme was incubated with 5 ul of a 

protease including thermolysin (Sigma),  proteinase k (Sigma) and trypsin (Sigma) at different 

concentrations (0.005, 0.01, 0.02, 0.04, 0.08, 0.16 mg/ml). The reaction mixture was incubated at 

room temperature for 30 minutes and stopped with SDS buffer containing 5.2 mM PMSF and 5.2 

mM EDTA. Samples were boiled for 5 minutes and analyzed by12% SDS-PAGE gel. 

 

Co-Immunoprecipitation  

HEK293T cell was transfected using lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s protocol and harvested 48 hrs after transfection. Cells were collected and lysed in 

IP buffer (IP buffer: 50mM HEPES, 150mM NaCl, 1mM EDTA, 1% Triton X-100, Complete 

Protease Inhibitors (Roche)). Lysates were cleared by centrifugation at 12000 rpm for 10 min 

and 10μl of anti-Flag M2 magnetic beads (Sigma) was used to pulldown the Flag-tagged protein 

from 0.5-1 mg of cell lysate. After incubation for 2 hours at 4˚C, magnetic beads were washed 

with IP buffer, resuspended in 2X Laemmli sample buffer and boiled for 5 min before western 

blot analysis. 

 

Yeast Complementation Assay 

For yeast complementation analysis of cis-PTase, S. cerevisiae strains KG405 

(nus1Δ rer2Δ srt1Δ), carrying the Glcis-PTase encoding gene on a plasmid with a URA3 marker 

was used (39). To phenotypically analyze human cis-PTase mutants, strain KG405 was 

transformed with vectors pKG-GW1 carrying DHDDS variants (leucine selection) and pKG-

GW2 carrying NgBR variants (methionine selection) in combination or empty vectors as 

negative control. Transformed yeast cells were grown overnight at 30 °C in synthetic defined 
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medium or lacking uracil, methionine, and leucine were streaked onto synthetic defined medium 

containing all amino acids, nucleotide supplements, and 1% (w/v) 5-FOA (Zymo Research) and 

onto YPD plates. The plates were incubated for up to 5 days at 30 °C. Colonies growing on the 

5-FOA plates were streaked on synthetic defined medium lacking uracil and incubated at 30 °C 

for 3 days to verify the loss of the pNEV-Glcis-PTase plasmid. Yeast strain KG405 and its 

derivative carrying NgBR/DHDDS complex were cultured in 2% (w/v) Bacto peptone and 1% 

(w/v) yeast extract supplemented with 2% glucose (w/v) (YPD). Synthetic minimal media were 

made of 0.67% (w/v) yeast nitrogen base and 2% (w/v) supplemented with auxotrophic 

requirements. For solid medium, agar (BD Biosciences, Sparks, MD) was added at a 2% (w/v) 

final concentration. Yeast cells were transformed using the Frozen-EZ yeast transformation II kit 

(Zymo Research). 

 

HPLC Analysis 

To estimate the chain length of dolichols produced by EKE deletion mutant, total lipids 

from 3 g of yeast cells grown overnight till late logarithmic phase of growth (OD 3-4) were 

extracted by the modified Folch method. Lipids extracted from yeast cells were hydrolyzed in 

hydrolytic solution containing toluene/7.5% KOH/95% ethanol (20:17:3, v/v/v) for 1h at 90°C. 

Nonsaponifiable lipids were then extracted four times with hexane, purified on silica gel 60 

columns using isocratic elution with 10% diethyl ether in hexane, evaporated to dryness in a 

stream of nitrogen and dissolved in isopropanol. Extracts were analyzed by HPLC using a 

Waters dual-pump HPLC device coupled with a Waters Photodiode Array Detector (spectrum 

range: 210 - 400 nm) and ZORBAX XDB-C18 (4.6 × 75 mm, 3.5 μm) reversed-phase column 

(Agilent, USA). Polyisoprenoids were eluted using the solvent mixtures A - methanol/water, 9:1 
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(v/v) and B - methanol/isopropanol/hexane, 2:1:1 (v/v/v) combined as follows from 0% B to 

75% B in 20 min, from 75% B to 90% B in 5 min, from 90% B to 100% B in 2 min, 100% B 

maintained for 11 min, then from 100% B to 0% B in 1min at a flow rate of 1.5 mL/min. The 

chain length and identity of lipids were confirmed by comparison with external standards of a 

polyprenol (Pren-10 – Pren-24) and dolichol (Dol-17 – Dol-23) mixtures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

2.3  Results 

2.3.1  The core catalytic domain of NgBR/DHDDS complex 

Previous SAXS analysis and circular dichroism studies by Holcomb et.al (88) showed a 

globularly folded protein when an NgBR construct devoid of its N-terminal region (1-78) was 

expressed and purified from bacterial cells. Accordingly, I co-expressed and purified a polyHis 

and SUMO-tagged NgBR (79-293) with full-length, untagged human DHDDS (1-333) using 

bacterial E.coli cells (Fig. 2.1A). The system yielded a highly pure, monodisperse protein in 

milligram quantities that are suitable for structural studies (Fig. 2.1B). Interestingly, upon careful 

examination of the size exclusion chromatogram, the protein complex seemed to elute at a 

volume that is higher than its expected molecular weight (~ 70 KDa). Further investigation using 

size-exclusion chromatography multi-angle light-scattering (SEC-MALS) revealed similar 

results, whereby the estimated molecular weight of the complex was ~ 120 KDa, corresponding 

to the size of a tetramer. Although only a dimeric form of the complex was crystallized (see 

below), it would be interesting to determine whether the higher oligomerization state of the 

protein complex observed in solution is an artifact of the purification strategy employed or has 

any physiological relevance. Next, I measured the enzymatic activity of the purified complex 

using radioactive [1-14C] IPP substrate and cold FPP at steady-state conditions. The truncated 

complex exhibited full enzymatic activity similar to that of the full-length protein complex 

previously purified from mammalian Expi 293 cells (9). Furthermore, previous work from our 

lab demonstrated the requirement of phospholipids such as phophotidylinositol (PI) to potently 

stimulate the activity of purified NgBR/DHDDS enzyme (9). Accordingly, measuring protein 

stimulation by PI showed no difference between the truncated and the full-length protein 

complex (Fig. 2.1C). These results further support the notion that the N-terminal domain of 
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NgBR, which harbors a predicted membrane-binding region, is not required for the  activity of 

the complex. Moreover, removing the N-terminal region of NgBR did not alter the range or 

relative abundance of the polyprenol pyrophosphate, the reaction product, when analyzed by 

reverse phase thin layer chromatography (see below). 
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Figure 2.1 The catalytic core domain of human cis-PTase. 

 

(A) Comparing the domain structure of NgBR, DHDDS and E.coli UPPS. The cis-PTase domain 

is colored yellow; N- and C-terminus of NgBR and DHDDS, gray; N-terminus of E.coli UPPS, 

blue. 

(B) Purification of NgBR/DHDDS complex. Left Panel: Coomassie-stained SDS/PAGE showing 

purification steps. Lane 1: uncleaved 6HIS-SUMO-NgBR/DHDDS complex, Lane 2: cleaved 

NgBR/DHDDS complex and SUMO, Lane 3: NgBR/DHDDS complex after removing SUMO. 

Right panel, Size exclusion chromatography profile of the purified complex after cleavage with 

SUMO protease. 

(C) Stimulation of cis-PTase activity of NgBR/DHDDS complex by phosphatidylinositol (PI). The 

values are means ±S.D. of eight independent measurements from two independent purifications. 
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2.3.2  Overall structure of the heteromeric complex 

To better understand the molecular mechanism of heteromeric cis-PTases, I sought to 

determine the structure of NgBR/DHDDS complex using x-ray crystallography. The complex 

was successfully crystallized at 2.3 Å, in the presence of Mg2+ and IPP substrate using the 

sitting-drop vapor diffusion method. The crystal belongs to the space group R32, and the 

asymmetric unit contains a single NgBR/DHDDS heterodimer. The structure was determined by 

molecular replacement using E.coli UPPS (PDB entry 1X06) and S.cerevisiae Nus1 (PDB entry 

6JCN) as search probes for DHDDS and NgBR, respectively (Fig 2.2A; SI appendix, Table S1) 

(50, 84). The structure revealed many unique features that were not previously observed in the 

search probes (SI appendix, Fig. S2-6). As shown in the structure, NgBR is composed of seven 

α-helices and six β-strands compared to nine α-helices and six β-strands in the DHDDS subunit. 

The superposition of DHDDS with E.coli UPPS structure showed Cα RMSD of 1.2 Å, and 1.8 Å 

for NgBR and Nus1 structures. Interestingly, DHDDS possesses a novel N-terminal region 

(residues 1-24) consisting of α-helix (α0) and a random coil, which extends into the hydrophobic 

tunnel of DHDDS. Additionally, the C-terminal domain of DHDDS encompasses a unique pair 

of long α-helices (residues 251-333); the two helices are stabilized against each other by a salt 

bridge formed between D273 and R306 as well as several interactions with residues from both 

subunits; thus, contributing to the heteromeric interface of the complex. Similarly, NgBR 

structure revealed a novel N-terminal α-helix (residues 82-93) and a C-terminal segment 

(residues 286-293) which contains the catalytically conserved -RXG- motif. The two outermost 

β-strands (βC and βC’) previously observed in the Nus1 structure are disordered (residues 230-

244; SI appendix, Fig. S4). Strikingly, the peptide segment following the β-strands forms a new 

helix (α4, residues 179-186) and partially covers the hydrophobic cavity between α2 and α3, 
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which was once proposed to constitute the binding site for farnesylated Ras (77). Furthermore, a 

major difference exists between the architecture of the hydrophobic cavity of NgBR and other 

cis-PTases. In DHDDS as well as other UPPS structures, the two helices (α-helix 2 and 3) 

forming the hydrophobic cavity, are organized in a parallel fashion, thereby allowing for the 

chain elongation process (SI appendix, Fig. S5). In NgBR, however, α-helix 3 is much shorter, 

and directly associates with α-helix 2, leading to the collapse of the hydrophobic cavity. Such 

unique feature might account for the inability of NgBR to participate in the chain elongation 

process.  

The crystal structure supports earlier notion that both NgBR and DHDDS subunits are 

required for enzymatic stability (39, 46). The dimeric interface of the complex resembles that of 

bacterial UPPS enzymes as well as yeast Nus1homodimer, burying an average of 2,029 Å2 

surface area (SI appendix, Fig. S7) (50, 84). In addition to the canonical interface region, the C-

terminus of DHDDS wraps around the protein complex and makes additional contacts with 

NgBR, further contributing to the overall stability of the complex. This observation is in contrast 

with a recent modeling study demonstrating the DHDDS’s C-terminal domain folding outside 

the core catalytic domain (55). To assess the nature of interaction between NgBR and DHDDS 

subunits, I conducted limited proteolysis studies on the purified complex using different types of 

proteases including thermolysin, proteinase k and trypsin. Under all conditions, a common theme 

was observed whereby NgBR cleavage occurred prior to that of DHDDS, thus supporting the 

stabilizing effect between these two subunits (Fig 2.2B; SI appendix, Fig. S8). To further test the 

heteromeric interface, co-immunoprecipitation experiments were conducted in HEK293T cells 

expressing the protein complex with several point mutations at the interface region. As shown in 

Fig 2.2C (and in SI appendix, Fig. S9), most of these mutations weakened binding between 
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NgBR and DHDDS, owing to their essential role in maintaining the integrity of the complex. 

Given the unique architecture of DHDDS’s C-terminal region observed in the structure, I sought 

to investigate the contribution of this region using a genetic approach. Briefly, a triple deletion 

yeast strain devoid from its cis-PTase components (rer2Δ, srt1Δ, nus1Δ) and expressing a 

homodimeric cis-PTase from G.lamblia (39) was transformed with a complex containing 

different DHDDS modification and evaluated for phenotypic growth. These modifications 

included two DHDDS truncations (Δ256, Δ289) where part of α7 and the entire α8 helix were 

deleted, and a triple mutant (R306A/F313A/L317A), predicted to disrupt packing of the two C-

terminal helices based on the structure (SI appendix, Fig. S3B). Both deletion mutants failed to 

support growth of yeast cells, whereas the triple mutant delayed growth (Fig 2.2D). Therefore, 

these data further support the essential role of DHDDS’s C-terminal region and roles out the 

possibility of its uniquely folded structure as an artifact of crystallization. 
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Figure 2.2 The overall structure of NgBR/DHDDS heterodimer. 

 

(A) Ribbon diagrams showing the front and back of the heteromeric complex. NgBR is colored in 

orange and DHDDS is colored in deep teal. Mg2+ ion is shown as a gray sphere, IPP molecules 

occupying S1 and S2 sites are shown in red and green, respectively. 

(B) Limited proteolysis of the core domain was performed by incubating the protein with 

increasing amounts of thermolysin (0.005, 0.01, 0.02, 0.04, 0.08, 0.16 mg/ml). Untreated  

protein sample is denoted as (U). In this gel, thermolysin co-migrates with the full-length DHDDS. 

(C) Co-immunoprecipitation of NgBR/DHDDS mutations introduced at the complex interface. 

HEK293T cells were co-transfected with NgBR-HA and Flag-DHDDS cDNAs; cells were  

lysed 48 hours post-transfection and immunoprecipitation performed using anti-flag magnetic 

beads. The lysate was analyzed by western blotting. 

(D) Characterization of cis-PTase mutants in the C-terminal region of DHDDS using yeast 

complementation assay. The nus1Δ rer2Δ srt1Δ deletion strain expressing G. lamblia cis-PTase 

from URA3 plasmid was co-transformed with MET15 bearing wildtype (WT) NgBR and the LEU2 

plasmid bearing either WT or mutant variants of DHDDS at the C-terminus. Three variants were 

analyzed including a triple mutation (3A) corresponding to R306A, F313, L317 and two DHDDS 
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truncation Δ256 and Δ289. The cells were streaked onto complete plates (YPD) or synthetic 

complete medium containing 1% FOA. The Ura3 protein, which is expressed from the URA3 

marker converts FOA to toxic 5-fluorouracil, forcing the cells to lose the G. lamblia cis-PTase 

plasmid. Cell growth was monitored over time to assess phenotypic differences. 
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2.3.3  The active site of NgBR/DHDDS complex 

Unlike homodimeric cis-PTases which possess two active sites, one per monomer (48-

51), heteromeric cis-PTase contains one active site, mainly located on the DHDDS subunit. As 

mentioned earlier, DHDDS harbors most critical residues involved in catalysis including the 

strictly conserved Asp acid (Asp 34 in DHDDS) as well as those required for binding of the 

allylic (i.e. FPP) and homoallylic (IPP) substrates, therefore resembling the active site of a 

homodimeric enzyme. Although the overall structural fold of NgBR, and its yeast homolog 

Nus1, is similar to that of DHDDS and members of the homodimeric cis-PTase family, they lack 

main catalytic residues and are unable to catalyze the reaction due to their distorted “active site”. 

However, our recent sequence alignment studies revealed the presence of a conserved -RXG- 

motif at the C-terminus of NgBR and homodimeric cis-PTases but not DHDDS and its orthologs 

(9). Moreover, kinetic studies on the purified WT and -RXG- motif mutants showed a clear 

effect on catalysis and substrate binding. Specifically, a functional analysis of R290H, a disease 

mutation associated with fetal CDG type I case, showed ~ 4-fold reduction in kcat and up to 2-

fold increase in Km for IPP (9). Additionally, substituting G292 with Ala reduced the enzymatic 

activity to a greater extent with kcat that is 10-fold lower than that of WT enzyme and Km for IPP 

that is 5-fold higher (9). Collectively, these results strongly support a functional role of NgBR in 

the overall catalytic mechanism.  

The previously reported crystal structure of Nus1homodimer could not resolve the C-

terminal -RXG- motif region (84). In contrast, our refined structure shows clear electron 

densities, allowing us to model the entire C-terminal region of NgBR, along with two IPP 

molecules: IPP1 molecule occupying the allylic substrate binding site S1, and IPP2 occupying 

the homoallylic binding site S2, as well as a bridging Mg2+ ion (Fig 2.3A; SI appendix, Fig. S2B, 
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S6 and S10). Strikingly, the C-terminus of NgBR traverses the dimeric interface which allows 

for the complementation of the active site (Fig 2.3B). As shown in the structure, the C-terminus 

makes number of unique interactions with the IPP substrate as well as residues from DHDDS 

subunit. The main chain amide group of Leu-291 and Gly-292 of the -RXG- motif forms 

hydrogen bonds with the β-phosphate group of the homoallylic IPP substrate, while the side 

chain of Arg-290 mainly interacts with a water molecule that coordinates with the Mg2+ ion. The 

presence of a Gly within the -RXG- motif is essential by allowing this peptide to make a tight 

turn over IPP2 and further stabilizes the turn through a Hydrogen bond formed with the 

conserved Arg-85 of DHDDS, which is involved in coordination with the pyrophosphate moiety 

of the allylic substrate. Therefore, the structure provides a mechanistic insight into the molecular 

role of the conserved -RXG- motif in conjunction with our previous functional studies.  

Notably, the architecture of the allylic S1 binding site is highly conserved within the cis-

PTase family (SI appendix, Fig. S11). Although the electron density corresponding to the 

hydrophobic tail of IPP1 was weak, we were confident in our modeling strategy employed 

whereby the prenyl tail extends into the hydrophobic tunnel to accommodate the elongated 

product (Fig 2.3A). In contrast to the S1 site, comparing S2 site of many crystal structures 

revealed some discrepancies, mainly concerning the arrangement of the C-terminal -RXG- motif 

(SI appendix, Fig. S12). In most cases, structures with a disordered -RXG- motif had poorer 

occupancy of the S2 site or misplaced pyrophosphate groups. In contrast, the S2 site in our 

current structure was occupied with the homoallylic IPP2 molecule and we were able to model it 

with great certainty. As shown in the structure, the pyrophosphate group of IPP2 is stabilized by 

number of interactions with DHDDS residues including the 3 highly conserved Arg residues 

(Arg-85, Arg-205, Arg-211), and a conserved Ser (Ser-213). The S2 site is sealed by the 
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extended -RXG- motif from NgBR, which makes additional contacts with the pyrophosphate 

moiety of IPP2 substrate. The S1 and S2 sites are bridged by the catalytically important Mg2+ ion 

required for hydrolysis of the allylic pyrophosphate group (50). The Mg2+ ion is coordinated by 

the pyrophosphate moieties of the two substrates, the strictly conserved Aspartic acid (Asp-34 in 

DHDDS) and two water molecules. Finally, previous work on homodimeric cis-PTases 

demonstrated the requirement of a base, most likely an Asparagine residue (Asn-74 in E.coli 

UPPS) to abstract a proton from C2 of IPP upon forming the new double bond (50, 89). 

Similarly, our structure shows Asn-82 in DHDDS subunit positioned within close proximity to 

C2 of IPP, thus serving the same proposed role during catalysis. Clearly, the structural 

similarities described above further suggest a common catalytic mechanism shared between 

homodimeric and heteromeric cis-PTase enzymes.  
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Figure 2.3 The active site of the NgBR/DHDDS complex. 

(A) Omit difference map, countered at 3.0 σ level, showing the two IPP molecules and Mg2+ ion 

bound at the active site. IPP1 is assigned to IPP molecule bound at S1 site, and IPP2 to that at S2 

site. The oxygen atoms are colored red and phosphorus atoms are colored orange. The carbon 

atoms of IPP1 are colored salmon and those of IPP2 are in green. 

(B) Detailed view of the -RXG- motif and the active site. The carbon atoms of NgBR -RXG- motif 

residues are colored orange and labeled, and those for DHDDS are colored cyan. Nitrogen atoms 

are colored blue and oxygen atoms are colored red. IPP1 and IPP2 are colored red and green, 

respectively. Mg2+ is shown as a gray sphere, and its co-ordination is indicated by the dashed lines. 

A coordinating water molecule is shown as red sphere.  

(C) The K42E retinitis pigmentosa mutation in DHDDS. A cartoon representation indicating the 

locations of Lys-42 and Glu-234 relative to the P-loop and bound substrates. DHDDS is colored 

in deep teal, IPP1 in red, IPP2 in green and Mg2+ is shown as a gray sphere.   
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2.3.4  Mapping disease mutations associated with the active site of NgBR/DHDDS complex 

Mutations on both NgBR and DHDDS subunits have been linked to various clinical 

phenotypes, yet the molecular mechanism underlying their pathogenicity remains unclear. 

Therefore, our solved structure provides the first mechanistic insight into these mutations. 

Notably, the majority of CDG-causing mutations cluster around the active site of the complex 

and are directly involved in catalysis and substrate binding (SI appendix, Fig. S13A). 

Specifically, DHDDS mutations R37H and R38H associated with DEE are localized within the 

S1 site; the two Arg residues make direct contact with the pyrophosphate moiety of IPP1 or the 

allylic substrate. Similarly, another DEE mutation, R211Q, localizes within the S2 site and is 

directly involved in binding the pyrophosphate group of IPP2 or the homoallylic substrate. 

Finally, the NgBR R290H mutation associated with severe CDG phenotype, is localized within 

the -RXG- motif whereby R290 makes direct interaction with a water molecule which 

coordinates with Mg2+ ion. In addition to the above mutations, the structure also allowed for a 

detailed analysis of the two mutations associated with retinitis pigmentosa, namely T206A and 

K4E2, located on the DHDDS subunit. Although uncharacterized biochemically, T206A could 

directly perturb the active site since the Thr hydroxyl group is involved in hydrogen bonding 

with the backbone amide and carbonyl of the highly conserved, and catalytically essential Asp-

34 (SI appendix, Fig. S13B, (65)). Unlike T206A, the homozygous K42E mutation, which 

affects ~ 17 % of Ashkenazi Jewish patients diagnosed with autosomal recessive retinitis 

pigmentosa (63, 90), does not directly interact with the substrate or active site residues. Previous 

predictions on the structural role of K42 residue were misleading since they were based on the 

crystal structure of UPPS enzymes. For instance, in the E.coli UPPS structure, K34, 

corresponding to K42 in DHDDS, is exposed to solvent and does not interact with any other 
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residue that could explain the mutation pathogenicity. However, our refined structure revealed a 

salt bridge formed between K42 and a highly conserved E234 (Fig 2.3C); this interaction is 

equivalent to that between W31 and D223 in E.coli UPPS. Therefore, K42E mutation will result 

in a repulsive effect that could perturb the short helix (α1) containing K42 residue. Since this 

helical region along with the proceeding P-loop are involved in FPP binding, this analysis further 

supports previous functional studies on K42E mutation which showed a reduction in Kcat and an 

increase in Km for FPP but not IPP substrate (9).  

In addition to the published mutations described above, our structure enabled for the 

characterization of series of de novo mutations on the DHDDS subunit, recently discovered by 

our collaborator Dr. Serena Galosi at Sapienza University of Rome. The mutations include: 

G35E, R37C, P233R, I135T, R205Q and S213N.These heterozygous mutations were identified 

by exome-sequencing of 20 patients suffering from various neurological  abnormalities such as: 

developmental delay; generalized tremor; epilepsy; myoclonic seizures; ataxia; mild to severe 

intellectual disability; parkinsonism; hallucinations and anxiety. Mapping these mutations on the 

structure revealed that the majority cluster around the active site of NgBR/DHDDS complex and 

are involved in substrate binding (SI appendix, Fig. S14A). The β-phosphate group of FPP 

substrate is hydrogen-bonded to the backbone amide of Gly35, which is localized on the P-loop, 

well established to be involved in FPP binding. Therefore, replacing Gly with Glu would result 

in steric clashes with nearby residues and hence perturb packing of the P-loop and might even 

disrupt the conformation of Arg38 on the proceeding α1 helix, which is also involved in FPP 

binding. In addition, the side chain of Arg37 is stabilized by a network of salt bridges with the β-

phosphate group of FPP, Glu89 on DHDDS and the main chain carboxylate group of Lys293 on 

the C-terminus of NgBR. Therefore, introducing an uncharged residue like cysteine at this 
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position could abolish the salt bridges with the β-phosphate group of FPP as well as the C-

terminus of NgBR (SI appendix, Fig. S14B). Similarly, the side chain of Arg205 forms salt 

bridges with the pyrophosphate group of IPP and replacement of Arg residue with Gln would 

eliminate these binding interactions (SI appendix, Fig. S14C). Although replacing Ser with Asn 

at position 213 can still maintain hydrogen bonding with the β-phosphate group of IPP, 

introducing a bulky side chain at this region would result in steric clashes with nearby residues, 

hence leading to a structural destabilization. While all residues mentioned above are directly 

involved in substrate binding, Pro233 and I135 are exception to this pattern. Pro233 is localized 

within a loop that connects βF with α7 and is involved in hydrophobic packing against Tyr39 on 

α1, which is involved in FPP binding (SI appendix, Fig. S14D). Therefore, replacing Pro with a 

charged residue like Arg would disrupt packing of α1 helix and hence binding to FPP substrate. 

I135 on the other hand is localized within α4 helix distal to the active site and it is unclear how a 

mutation at this position might interfere with cis-PTase enzymatic activity.  
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2.3.5  NgBR mutations and Parkinson’s disease 

A recent exome-sequencing study by Guo, et.al (70) has identified number of mutations 

on the NUS1 gene that were shown to contribute to the etiology of Parkinson’s disease. Most of 

the reported mutations (11 out of 15) occur within cis-PTase core domain of NgBR which is well 

resolved in our current structure (Fig 2.4A). Intriguingly, mapping these mutations onto the 

structure clearly revealed a scattered pattern that does not seem to affect dimerization or 

substrate binding. Next, I sought to measure the solvent accessible surface area of individual 

mutation residues to see if any pattern could emerge that may account for their pathogenicity. 

Again, no underlying pattern was observed as most residues (7 out of 11) were exposed to 

solvent (Fig 2.4D). Therefore, it is still unclear whether these mutations affect cis-PTase activity 

in vivo, or impact some other mechanism involving NgBR that is not related to dolichol 

synthesis.  

A more careful examination of the structural role played by PD mutations revealed that 

G91C could indirectly affect cis-PTase activity through the C-terminal -RXG- motif. Notably, 

Gly-91 is located on the NgBR N-terminal helix (α1) (highlighted in green, Fig 2.4A) and is 

close to lys-96, present at the end of the helix. The lys residue in turn, is involved in a network of 

hydrogen bonding with the backbone carbonyl of Tyr-284 and the side chain of Gln-289, thus 

stabilizing the -RXG- motif (Fig 2.4B). Given the critical position of Gly-91 in mediating 

contacts between helix α1 and the rest of the protein, replacement with Cys can be disruptive to 

the structure since it will interfere with the helical packing as well as interactions with the C-

terminal -RXG- motif through Lys-96. To further investigate the proposed role of Gly-91, I 

expressed and purified NgBRG91C/DHDDS mutant using the same expression/purification system 

employed for crystalizing studies . Next, I measured the steady-state activity of the WT and the 
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mutant in the presence of phosphatidylinositol. In agreement with its predicted role, G91C 

exhibited ~ 40% reduction in enzymatic activity compared to the WT enzyme (Fig 2.4C). These 

data are in line with previous observation that a splice variant of NgBR reducing its mRNA 

levels by 50% also increases PD risk (70). Furthermore, the loss of NUS1 gene in Drosophila 

reduced it climbing ability, dopamine levels, and number of dopaminergic neurons (70). 

Interestingly, dolichol accounts for ~ 14% of the dry weight of neuromelanin, a dark pigment 

presents at high concentration in dopaminergic neurons of the human substantia nigra (SN) (91, 

92), and a massive degeneration of the SN is considered one of the hallmarks of Parkinson’s 

disease. Nevertheless, further studies are needed to determine whether low dolichol levels can 

impact the normal glycosylation of certain proteins or may affect other functions that is 

independent of protein glycosylation. In summary, our structural and biochemical studies 

provide a novel insight into the role of dolichol biosynthesis in neurodegenerative diseases.   
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Figure 2.4 Missense NgBR mutations associated with Parkinson’s disease. 

 

(A) NgBR mutations related to Parkinson’s disease are shown as purple spheres and labeled. 

DHDDS is colored in gray and NgBR is colored in orange except for the N-terminal helix (α1) 

which is shown in green.  

(B) Detailed view showing the location of G91C disease mutant within NgBR colored orange 

except for α1 helix, shown in green. Gly-91 is involved in hydrophobic packing against Val-127. 

Lys-96 forms hydrogen bonds with Tyr-248 and Gln-289, which stabilize the C-terminal -RXG- 

motif.  

(C) cis-PTase activity was measured using purified wildtype and NgBR disease mutant, G91C. 

The mutant exhibits ~ 40% reduction in cis-PTase activity compared to  

wildtype enzyme. The values are the mean ±S.D. of three independent measurements. 

(D) The majority of the mutated residues is solvent-exposed. The solvent accessible surface area 

(Å2) was calculated using GETAREA server.  
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2.3.6  Regulation of cis-PTase activity by membrane binding 

Unlike the soluble UPPS enzymes, heteromeric cis-PTases are commonly found to be 

associated with a hydrophobic platform such as membrane bilayers, lipid droplets and rubber 

particles (46, 93, 94). The very N-terminus of NgBR (residues 1-56, not included in the 

structure) harbors two hydrophobic segments predicted to bind to the ER membrane. In addition, 

our refined structure revealed a unique N-terminal segment within the DHDDS subunit that is 

absent in the bacterial UPPS enzymes. The N-terminal region consists of a random coil (residues 

1-10) and a short α-helix (α0; residues 11-21). Intriguingly, the coil exhibits a unique 

conformation whereby its bulky Trp (W3) extends into the hydrophobic tunnel between the two 

helices, α2 and α3 (Fig 2.5A, left panel; Fig 2.5B); such conformation would be inadequate for 

product chain elongation during catalysis. Therefore, we hypothesize that a conformational 

change displacing the coil from the hydrophobic tunnel is essential for proper chain elongation 

(Fig 2.5A, right panel). A more detailed analysis of the short α0 helix revealed the presence of 

three hydrophobic residues (Trp-12,Phe-15, Ile-19) that are exposed to solvent. Furthermore, a 

sequence alignment analysis confirmed the conservation of this hydrophobic patch among 

DHDDS orthologs, suggesting a possible conserved role for α0 helix in membrane binding (Fig 

2.5C). In order to determine the functional consequences of such hydrophobic conservation, I 

expressed and purified a triple DHDDS mutant, whereby all three hydrophobic residues were 

substituted with Ala (W12A/F15A/I19A). The mutant displayed similar basal activity as the WT 

enzyme in the absence of phosphatidylinositol. However, the mutant was no longer potently 

stimulated with phosphatidylinositol (Fig 2.5D). Moreover, a TLC analysis of the reaction 

product revealed a difference in the length of the polyprenol formed by the triple mutant 

compared to WT enzyme. Instead of the dominant 19 isoprene units seen with the WT enzyme, 
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polyprenols as long as 22 isoprene units were formed as the dominant product by the triple 

mutant (Fig 2.5E). Taken together, we hypothesize that in addition to NgBR, DHDDS plays an 

essential role in membrane binding and activation through its N-terminal α0-helix, which acts as 

a membrane sensor. The binding is transient but sufficient to trigger a conformational change 

characterized by the displacement of the N-terminal coil; thereby unblocking the hydrophobic 

tunnel and destabilizing the enzyme: product complex to facilitates product release (see below).  
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Figure 2.5 DHDDS’s helix 0 functions as a membrane sensor. 

 

(A) A cartoon representation of DHDDS subunit colored in deep teal. The hydrophobic cavities of 

DHDDS before (left) and after (right) N-terminal loop deletion (residues 1-10) are shown in 

yellow. The N-terminal loop and 0 helix are shown in red; the side chains of the three exposed 

hydrophobic residues are shown and labeled. The hydrophobic cavity was generated using the 3V 

web server (95).  

(B) A cartoon representation of E.coli UPPs (PDB entry 1X06) monomer colored in purple. The 

hydrophobic cavity is shown in yellow. Leu-137 involved in chain length control in UPPS is 

located at the end of the cavity.  

(C) Sequence alignment showing the conservation of three hydrophobic amino acids at the N-

terminal helix 0 among DHDDS orthologs (highlighted in red). Conserved residues are  

highlighted in yellow. Proteins represented in this alignment are orthologs of human DHDDS cis-

PTase subunit as follows: hDHDDS (human, UniProtKB  Q86SQ9-1), XlDhdds (Xenopus 

laevis;  UniProtKB Q7ZYJ5), DrDhdds ( Danio rerio, UniProtKB Q6NXA2),  CeDHDDS 

(Caenorhabditis elegans, UniProtKB Q5FC21), ScRer2 (Saccharomyces cerevisiae, UniProtKB 

P35196), ScSrt1 (Saccharomyces cerevisiae, UniProtKB  Q03175), SpRer2 

(Schizosaccharomyces pombe, UniProtKB O14171), TrRER2 (Trichoderma reesei, UniProtKB - 

G0ZKV6), AfRer2 (Aspergillus fumigatus UniProtKB - Q4WQ28 ), SlCPT3 (Solanum 

lycopersicum, UniProtKB K7WCI9), AtCPT3 (Arabidopsis thaliana, UniProtKB Q8S2T1), 

AtCPT4 (Arabidopsis thaliana, UniProtKB Q8LAR7), AtCPT5 (Arabidopsis thaliana, 

UniProtKB Q8LED0) 
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(D) Phospholipid stimulation of wildtype and W12A/F15A/I19A triple mutant is shown. 

Stimulation was compared by measuring cis-PTase activity of purified wildtype and DHDDS triple 

mutant in the presence and absence of 1% phosphatidylinositol (PI). The values are the mean ±S.D. 

of five to eight independent measurements. 

(E) Reverse phase TLC separation of dephosphorylated products from cis-PTase activity of WT 

and DHDDS triple mutation (W12A/F15A/I19A) denoted as MUT. Numbers correspond to the 

dominant polyprenols in each sample are shown at the bottom of the plate. The position of the 

polyprenol standards is shown on the left.  
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2.3.7  The mechanism of product chain elongation  

While homodimeric cis-PTases generate a product with distinct chain length, heteromeric 

enzymes have the incredible ability of generating longer chain polyprenols characterized by a 

distribution pattern. As shown in Fig 2.5E, the human NgBR/DHDDS complex synthesizes C95 

polyprenol as the dominant product, along with varying amounts of other polyprenols that differ 

by one isoprene unit. The current model of product chain elongation by cis-PTases is based on 

number of structural and biochemical studies performed on homodimeric UPPS enzymes (6, 50, 

96, 97). According to these studies, the volume of the hydrophobic tunnel correlates well with 

the size of the synthesized product. However, our structural analysis of the NgBR/DHDDS 

complex suggests that this might not be the case for heteromeric enzymes. After manually 

removing the N-terminal coil which occludes the hydrophobic tunnel (Fig 2.5A), I used 3V 

server (95) to calculate the volume of the tunnel which turned out to be around 1,300 Å3. This 

volume is similar to that of E.coli UPPS (1,200 Å3) which synthesizes medium chain C55 

products (Fig 2.5B). Therefore, to accommodate longer-chain products, two scenarios are 

possible: the first involves a conformational change that would greatly expand the hydrophobic 

tunnel, and the second involves pushing the polyprenol chain out of the tunnel. In an attempt to 

rationalize the first model, we carefully examined the structure of the human complex to look for 

obvious differences that would allow for the synthesis of longer-chain products. Intriguingly, we 

were able to identify a stretch of 3 amino acids (Glu-107, lys-108, Glu-109) located at the middle 

of α3-helix of DHDDS. Multiple sequence alignment of other eukaryotic cis-PTases revealed the 

presence of a similar insertion on DHDDS orthologs, consisting of three to five amino acids (Fig 

2.6A). Although the presence of three extra residues creates a kink or a bulge in the α3 helix of 

DHDDS, based on our computational measurements, the insert does not seem to influence the 



45 
 

volume of the hydrophobic tunnel (Fig 2.5A; left panel and Fig 2.6C). To test whether the insert 

may contribute to the synthesis of longer-chain products, a construct harboring ΔEKE deletion 

on the DHDDS subunit was generated and transformed into the yeast triple deletion strain 

(rer2Δ, srt1Δ, nus1Δ) along with WT NgBR. HPLC analysis of the total lipids isolated from 

yeast cells revealed that the ΔEKE deletion strain synthesized shorter products (dominant: Dol-

17 (C85)) compared to Dol-20 (C100) generated by the WT enzyme (Fig 2.6B). Theoretically, 

deleting the insert within DHDDS would make the tunnel similar to that of UPPS enzymes. 

Nevertheless, the length of polyprenols generated by the mutant remained > C55. Furthermore, a 

product distribution pattern can still be observed. Taken together, these data suggest that the 

EKE insert at the α3 helix might not necessarily account for the longer chain product phenomena 

observed in heteromeric enzymes. Therefore, further structural studies involving a co-crystal 

with the reaction product are needed to better understand conformational changes taking place 

during chain elongation. Interestingly, a previous crystal structure of E.coli UPPS in complex 

with Triton X-100, a molecule that may mimic the reaction product, revealed a conformational 

change involving an upward movement of the α3-helix became less kinked  compared to the 

substrate-bounded form (52). Although this conformation has the potential to increase the size of 

the hydrophobic tunnel, the protein is unlikely to be in this state during product chain elongation 

process. This is true since a large movement of the α3-helix will misplace its N-terminal region, 

which is involved in binding the pyrophosphate moiety of the allylic substrate, hence interfering 

with subsequent elongation steps. Accordingly, the second model where part of the polyprenol 

chain exits the hydrophobic tunnel seems more plausible. In a previous mutagenesis experiment 

on the E.coli UPPS, Ko et al. (98) reported that replacement of L137, located at the bottom of the 

tunnel with Ala resulted in the formation of a range of products with C75 as the major product in 
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the absence of a detergent (Fig 2.5B). These data suggest that L137, equivalent to C148 in 

DHDDS, functions as the floor of the tunnel that could block further product elongation.  

A schematic diagram illustrating the second plausible model for the chain elongation 

process within the hydrophobic tunnel of DHDDS is shown in Fig 2.6D. According to this 

model, the polyprenol chain will continue to grow inside the tunnel until reaching ~ C65 or 13 

isoprene units (tunnel volume ~1300 Å3; each isoprene unit occupies ~ 100 Å3), after which the 

product exits the tunnel and becomes exposed to solvent, where it can grow indefinitely. Such 

model is in contrast with short and medium-chain homodimeric cis-PTase enzymes, in which the 

chain-elongation process is solely taking place inside the tunnel, hence is restricted by the size of 

the tunnel. If the product continues to grow beyond the walls of the tunnel, then it might be 

reasonable to assume that the stability of the enzyme: product complex will have a great impact 

on product size. Therefore, any interaction between the exposed portion of the hydrophobic 

polyprenol and its surrounding environment, including a detergent micelle, a membrane bilayer 

or a lipid droplet can be energetically unfavorable and will disrupt the enzyme: product complex, 

leading to product release. Indeed, previous studies on E.coli UPPS showed that L137A mutant 

failed to produce long-chain products in the presence of Triton X-100 (98). Similarly, purified 

NgBR/DHDDS complex tends to form shorter chain polyprenols in the presence of 

phospholipids and vice versa. Regarding the role of EKE insert within α3 helix, we hypothesize 

that it may stabilize the enzyme: product complex, perhaps by allowing a greater conformational 

flexibility to α3 helix and its surrounding region. In summary, our proposed model provides a 

plausible explanation for the synthesis of long-chain products. Additionally, the model attributes 

the changes in the environment surrounding the enzyme: product complex to the observed 

product distribution pattern that is unique to heteromeric cis-PTase enzymes.  
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Figure 2.6 Mechanism of chain elongation by heteromeric cis-PTases 

 

(A) Multiple amino acid sequence alignment comparing α3 helix between DHDDS orthologs and 

homodimeric cis-PTases. Highly conserved residues are highlighted in red and less conserved ones 

are shown in yellow. Region corresponding to DHDDS EKE insert is highlighted in blue; the 

region is missing in homodimeric enzymes and a gap is present instead. Proteins represented in 

this alignment are: single subunit cis-PTs: EcUPPS (Escherichia coli, UniProtKB P60472), 

MlDPPS (Micrococcus luteus, UniProtKB O82827), SaUPPS (Sulfolobus acidocaldarius, 

UniProtKB Q9HH76). Orthologues of human DHDDS cis-PTase subunit: hDHDDS (human, 

UniProtKB  Q86SQ9-1), XlDhdds (Xenopus laevis,  UniProtKB Q7ZYJ5), DrDhdds ( Danio 

rerio, UniProtKB Q6NXA2), CeDHDDS (Caenorhabditis elegans, UniProtKB Q5FC21), ScRer2 

(Saccharomyces cerevisiae, UniProtKB P35196), SpRer2 (Schizosaccharomyces pombe, 

UniProtKB O14171), SlCPT3 (Solanum lycopersicum, UniProtKB K7WCI9), AtCPT3 

(Arabidopsis thaliana, UniProtKB Q8S2T1), AtCPT4 (Arabidopsis thaliana, UniProtKB 

Q8LAR7), AtCPT5 (Arabidopsis thaliana, UniProtKB Q8LED0)  

(B) HPLC analysis of chain length of dolichol generated by WT and ΔEKE DHDDS mutant in 

yeast cells. The dolichol peaks were identified and labeled on top of the chromatogram. The WT 

cells yielded the main compound Dol-20 compared to Dol-17 in ΔEKE mutant. The chain length 

and identity of lipids were confirmed by comparison with external standards of a polyprenol (Pren-

10 – Pren-24) and dolichol (Dol-17 – Dol-23) mixtures.  

(C) Structural comparison between E. coli UPPS (PDB ID 1X06) monomer and human DHDDS 

subunit. The EKE insert within α3 helix of DHDDS creates a bigger bulge that may contribute to 

the stabilization of the enzyme:product complex during chain elongation. 
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(D) Schematic diagram illustrating the proposed chain elongation mechanism for cis-PTases. Red 

arrow indicates the direction of product elongation. Exposed hydrophobic isoprene units may 

increasingly destabilize the enzyme:product complex by interacting with detergent micells (blue) 

or lipid bilayers (grey). 
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2.4  Discussion and Future Direction 

Here, I show the first crystal structure of NgBR/DHDDS complex solved at 2.3 Å, which  

provides novel insights into the molecular mechanism of heteromeric cis-PTase enzymes. The 

structure reveals the heteromeric assembly of NgBR and DHDDS, mainly through a canonical 

cis-PTase interface region but also partially by a newly identified C-terminal region on the 

DHDDS subunit. In addition, the structure confirms NgBR role in the overall catalytic 

mechanism through its C-terminal -RXG- motif, which completes the active side to participate in 

catalysis and substrate binding. Furthermore, the newly identified N-terminal domain on 

DHDDS plays a key role in enzyme activation by membrane binding. Our studies also provide a 

plausible mechanism for product chain elongation by heteromeric enzymes that rationalize the 

length and distribution of the synthesized polyprenols. Finally, the structure provides a detailed 

analysis of various loss-of-function mutations associated with human diseases. Collectively, 

these results advance our current understanding of the dolichol biosynthesis pathway necessary 

for protein glycosylation.  

Shortly after the publication of our structural work presented herein, another research 

group independently demonstrated the successful crystallization of the human NgBR/DHDDS 

enzyme in complex with FPP and Mg2+ ion (99). The study revealed similar heteromeric 

assembly of the two subunits and further confirmed the unique architecture of DHDDS’s N-, and 

C-terminal regions observed in our structure. Additionally, similar to our findings, NgBR C-

terminal -RXG- motif traversed the dimeric interface to complete the active side of the DHDDS 

subunit and participate in substrate binding.  

The overall structural fold of the heteromeric NgBR/DHDDS complex resembles that of 

all known homodimeric cis-PTases, whereby each subunit consists of a β-sheet core surrounded 
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by α helices. Moreover, the heteromeric complex seems to maintain the canonical interface 

region commonly found in homomeric enzymes. To further support the heteromeric assembly of 

the two subunits, DHDDS evolved a unique C-terminal region, which adopts a “helix-turn-helix” 

organization. Sequence alignment analysis of multiple DHDDS orthologs revealed a poor 

conservation of their C-terminus domain. Therefore, the functional role of DHDDS’s C-terminus 

can only be deduced via structural studies. Our refined structure demonstrates the C-terminal 

helices of DHDDS to form multiple binding interactions with NgBR and within DHDDS, thus 

creating an additional interface that provides extra support for the heteromeric complex. This 

notion was further confirmed by our yeast complementation data, which clearly show the 

essential role of this region in maintaining the integrity of the protein complex.  

The structural similarity between the active site of NgBR/DHDDS complex and 

homodimeric cis-PTases suggest a conserved catalytic mechanism among this family of 

enzymes. The pyrophosphate group of the allylic and homoallylic substrates is stabilized by a 

network of interactions with several polar residues located at the entry of S1 and S2 sites, 

respectively. The prenyl tail of the substrates extends into a tunnel lined with multiple 

hydrophobic residues to bind and stabilize the allylic substrate and reaction intermediate during 

catalysis. A Mg2+ ion is coordinated by the catalytically conserved Asp-34, the pyrophosphate 

moiety of both substrates and three water molecules. In addition to these shared features, our 

data presented here provide the first structural evidence for the involvement of NgBR in the 

overall catalytic mechanism through its C-terminal -RXG- motif.  Consistent with this notion, 

mutations on the C-terminal -RXG- motif were previously shown to reduce the catalytic activity 

and IPP binding (9). Therefore, despite the low sequence similarity with cis-PTase, NgBR 

remarkably maintains a key structural feature shared with homodimeric enzymes, which serves 
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the same function. In addition, our current structure further corrects previous assumptions which 

limited the role of NgBR to stabilization of the heteromeric complex.  

Based on structural comparisons with short and medium-chain cis-PTases, long-chain, 

heteromeric cis-PTase enzymes were predicted to exhibit a large hydrophobic tunnel to 

accommodate the long-chain product. However, our refined structure and computational 

measurements clearly suggest that this might not be the case due to the similarity in the tunnel 

volume of DHDDS and that of medium-chain E.coli UPPS (1,300 for DHDDS vs. 1,200 for 

E.coli UPPS). Furthermore, deletion of the EKE insert at the α3 helix on DHDDS still produced 

a polyprenol that is > C55 as the dominant product along with additional polyprenols that differed 

by one isoprene unit, thus retaining the two key product features that are unique to heteromeric 

enzymes. Given these observations, we propose a plausible model for the mechanism of chain 

elongation by the long-chain NgBR/DHDDS protein complex (SI appendix, Fig.S15). The 

process starts with the binding of an allylic substrate (i.e. FPP) to the S1 site, followed by IPP-

Mg2+ complex at the S2 site. A transient membrane binding facilitated by the N-terminal α0 of 

DHDDS results in a conformational change that would displace the N-terminal coil from the 

hydrophobic tunnel to allow for the chain elongation process. Following several rounds of IPP 

condensations (~ 13 isoprene units), the hydrophobic tail of the product is pushed out of the 

tunnel thereby allowing the incorporation of additional isoprene units. The EKE insert at the α3 

helix may provide the appropriate flexibility as the product extends outside the tunnel. The 

resulting enzyme: product complex is destabilized by membrane binding, consequently leading 

to product release. To facilitate this process, the enzyme may undergo another conformational 

change through the α3 helix on DHDDS, which becomes less kinked to increase the size of the 

tunnel. Clearly, the model proposed herein suggests that subtle environmental changes can affect 
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the stability of the enzyme: product complex, leading to the observed product distribution in 

heteromeric enzymes. In the case of extensively long cis-PTases such as rubber synthase, 

additional players might provide incredible stability for the enzyme in its product-bounded form. 

This notion was previously supported by earlier studies on rubber synthase, demonstrating the 

requirement of other components including a rubber particle, a rubber elongation factor (REF), 

and several small stabilizing proteins (SRPP) (56).  

Given the essential role of protein glycosylation for various cellular functions, mutations 

on both NgBR and DHDDS subunits have been associated with serious human diseases. 

Determining the crystal structure of the complex allowed us to map and structurally analyze 

these mutations, many of which clustered around the active site region. An exception is the 

Parkinson’s disease mutations as most of them scatter throughout NgBR structure and do not 

seem to influence protein folding or dimerization. Therefore, the molecular mechanism 

underlying their etiology remains unclear. However, one Parkinson’s mutation, G91C, is located 

within the N-terminal helix of NgBR and seems to indirectly influence cis-PTase activity by 

disrupting the C-terminal -RXG- motif involved in catalysis and substrate binding. In addition, 

our structure provides the first insight into the molecular mechanism of K42E, the most 

commonly occurring mutation among Ashkenazi Jewish patients diagnosed with the autosomal 

recessive retinitis pigmentosa. We show that a mutation at this position disrupts a conserved salt 

bridge formed with Glu-233 and could perturb DHDDS’s α1 helix involved in FPP binding, 

consistent with our previous functional studies on the purified mutant (9). It is important to note 

that in most cases, the disease severity in patients harboring cis-PTase mutations correlates well 

with their genotype and their measured enzymatic activity. For instance, the homozygous R290H 

mutation associated with the severe, multi-systemic CDG type I, displayed only ~20% cis-PTase 
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activity when measured from patients’ fibroblasts as well as the purified mutant (9, 39). In 

contrast, heterozygous mutations associated with the less severe developmental and epileptic 

encephalopathy (DEE) displayed up to 60% activity in fibroblasts with purified mutants being up 

to ~10% active. An exception is the K42E mutation which results in a marked reduction in cis-

PTase activity (enzyme was ~15% active), yet patients with this homozygous mutation displayed 

a non-syndromic retinitis pigmentosa with no obvious defects in other tissues and organs. A 

recent genetic model of mice with a global knock-in of the homozygous K42E mutation showed 

a marked gliosis with no evidence of retinal degeneration or defective protein N-glycosylation in 

retinal tissues (100). Furthermore, selective ablation of DHHD in retinal tissues of mice showed 

a profound and rapid retinal degradation, again with no effect on protein N-glycosylation (101, 

102). In another genetic study using zebrafish as a  model, it was shown that a global knockdown 

of DHDDS resulted in the loss of photoreceptor outer segment and visual function (103). 

Collectively, these studies suggest that the pathology of retinitis pigmentosa might not be 

mediated by a defective protein glycosylation process and that it may involve other unknow 

functions of dolichols. As mentioned earlier, patients harboring the homozygous R290H also 

develop retinitis pigmentosa. Intriguingly, in both K42E and R290H patients, an aberrant 

dolichol ratio was observed whereby Dol-18 became the dominant polyprenol instead of Dol-19 

(39, 66). It is possible that toxic accumulation of these aberrant dolichols might cause a retinal 

damage. However, there is no current evidence demonstrating the precise effect of aberrant 

dolichol chain length on cellular functions. 

Clearly, the structural work presented in this dissertation is the first attempt in the field to 

gain an insight into molecular mechanism of heteromeric cis-PTases. The structure reveals many 

novel aspects regarding the heteromeric assembly of the two subunits and proposes a rational 
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model for the mechanism of chain elongation. Moreover, our structural-functional analysis of 

NgBR/DHDDS disease mutations provides a framework to better understand the molecular 

mechanism underlying their pathogenicity and might aid in the development of new therapeutic 

strategies that could delay the progression of some clinical symptoms associated with these 

mutations. Future work might involve a structural characterization of NgBR N-terminal region 

harboring the predicted membrane-binding domains to better understand its membrane topology. 

Previous work demonstrated the presence of a signal anchor consisting of the first 23 amino 

acids at the N-terminus of NgBR (45). Therefore, this region might serve as an important 

component in the selection mechanism for ER localization. To gain an insight into the structure 

of the N-terminus, one strategy might involve a reconstitution of the full length NgBR/DHDDS 

complex into nanodiscs with appropriate size and lipid composition, followed by a structural 

analysis using cryo-EM technique. Another important structural feature that demands further 

investigation is the newly identified N-terminal region of DHDDS. Results presented in this 

work suggest a possible conformational change induced by phospholipid binding; such a 

conformational change involves the displacement of the N-terminal coil containing a bulky Trp-

3. To further test this model, future studies might involve fluorescence binding experiment to 

monitor changes in fluorescence of Trp-3 upon adding phospholipids. An alternative approach 

might involve a hydrogen-deuterium exchange mass spectroscopy (HDX-MS) analysis in the 

presence and absence of phospholipids.  

In addition, our knowledge regarding regulation of cis-PTase activity is still limited 

despite its crucial role in protein glycosylation. Interestingly, recent studies revealed that some 

homodimeric cis-PTase enzymes can utilize dimethyl allyl pyrophosphate (DMAPP) as the 

homoallylic substrate to catalyze a head-to-middle condensation reaction, leading to the 
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formation of branched isoprenoids. Our preliminary data on the purified human complex showed 

that although the enzyme failed to use DMAPP as the homoallylic substrate to catalyze the 

reaction, a slight enhancement in cis-PTase activity was observed upon adding DMAPP at low 

concentrations in the presence of enzyme’s substrates. Recent work by Zhao et.al (77) suggested 

a possible binding site for a farnesylated Ras at the NgBR subunit. Accordingly, we hypothesize 

that this region might serve as an allosteric binding site for the regulation of enzymatic activity 

by small molecules. Therefore, one possible follow-up experiment might involve solving the 

crystal structure of NgBR/DHDDS in complex with DMAPP to better understand its role in 

enzyme activation. Besides allosteric activation, inhibiting cis-PTase activity could be another 

interesting field to explore due to the decent amount of work showing an altered NgBR 

expression in cancerous tissue, which might result in changes in cis-PTase activity. Moreover, 

the bacterial UPPS has been a common target for the development of new and effective 

antibacterial drugs. Nevertheless, one important issue that may halt the development of many of 

these drugs is their specificity in targeting the bacterial rather than the human enzyme. Therefore, 

with our newly solved structure, it might be possible to virtually screen thousands of compounds 

against the human enzyme which will narrow down the number of molecules with inhibitory 

effect and could potentially accelerate the development of hit molecules. In summary, the 

structural work presented in this dissertation is the first attempt in the field to decipher the 

molecular mechanism of a heteromeric cis-PTase enzyme and serves as a framework for future 

studies on the dolichol biosynthetic pathway.  
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SI APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. De novo synthesis of dolichol from FPP and IPP. 

 

Cis-PTase catalyzes the condensation of farnesyl pyrophosphate with multiple isopentenyl 

pyrophosphate molecules, resulting in the formation of polyprenol pyrophosphate. The 

condensation is followed by dephosphorylation and reduction to form dolichol, which is further 

phosphorylated by a dolichol kinase to yield dolichol phosphate, the main sugar carrier lipid during 

protein glycosylation.  
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Figure S2. Structural details of the NgBR subunit. 

 

(A) Ribbon diagram of NgBR/DHDDS complex; NgBR colored in orange and DHDDS in deep 

teal. The N-terminal helix of NgBR is colored in gray and the C-terminal loop in red. Secondary 

structure elements as well as N- and C-termini of NgBR are labeled on the structure.  

(B) 2Fo-Fc electron density map of the C-terminal -RXG- motif of NgBR contoured at 1.0 σ. The 

motif residues are indicated by the asterisks. 

(C) Partial amino acid sequence of NgBR subunit (residues 79-293) is aligned with partial 

sequence of yeast NUS1 subunit (residues 148-375). Numbers and secondary structure elements 

shown above the sequence correspond to that of NgBR. NUS1 secondary structure elements are 

shown in gray, below the sequence. Conserved residues are highlighted in yellow.  
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Figure S3. Structural details of the DHDDS subunit. 

 

(A) Ribbon diagram of NgBR/DHDDS complex; NgBR colored in orange, DHDDS in deep teal. 

The N-terminal region of DHDDS is colored red and the C-terminal helices are in gray. Secondary 

structure elements as well as N- and C-termini of NgBR are labeled on the structure.  

(B) 2Fo-Fc electron density map of the C-terminal helices of DHDDS contoured at 1.0 σ. Residues 

mutated in the yeast complementation experiment are labeled in red.  

(C) The full-length amino acid sequence of DHDDS subunit (residues 1-333) is aligned with full 

length E.coli UPPS (residues 1-253). Numbers and secondary structure elements shown above the 

sequence correspond to that of DHDDS. E.coli UPPS secondary structure elements are shown in 

gray, below the sequence. Conserved residues are highlighted in yellow. 
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Figure S4. Structural comparison of NgBR, Nus1 and UPPS. 

 

A ribbon diagram comparing the structure of (A) NgBR (orange) to that of (B) yeast Nus1 (Ruby, 

PDB ID 6JCN) and (C) UPPS (Purple, PDB ID 4H8E). NgBR possesses α4 helix, which differs 

from that of UPPS and is replaced by βC and βC’ in Nus1. An additional α1 helix is present in 

NgBR N-terminal region and is not observed in Nus1.  
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Figure S5. Active site comparison of NgBR, DHDDS and UPPS. 

 

A ribbon diagram highlighting the hydrophobic cavity of NgBR (orange), DHDDS (cyan) and 

UPPS (pink). NgBR exhibits a short α3 helix, which directly associates with α2 helix, leading to 

the collapse of the active site cavity. Such architecture may account for the inability of NgBR to 

catalyze the chain elongation process.  
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Figure S6. The final 2Fo-Fc map surrounding the bound ligands.  

 

The electron density is contoured at 1.0 σ level. The oxygen atoms are colored red and phosphorus 

atoms are colored orange. The carbon atoms of IPP1 are colored salmon and those of IPP2 are in 

green. DHDDS residues involved in catalysis and substrate binding are shown in cyan, while those 

of NgBR are shown in yellow. Magnesium ion is depicted as a gray sphere.  
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Figure S7. Comparison of different dimeric structures.  

 

(A) Ribbon diagram of the heteromeric complex is shown. NgBR is colored in orange, and 

DHDDS is colored in deep teal. The heteromeric structure is compared with those of yeast NUS1 

dimer (PDB 6JCN) colored in orange and E. coli UPPS (PDB 1X06) colored in deep teal. 

(B) NgBR (orange) is superimposed on yeast NUS1 (gray) (C  RMSD 1.8 Å). Wireframe diagram 

of Cα atoms is shown.  

(C) DHDDS (deep teal) is superimposed on E. coli UPPS (gray) (C  RMSD 1.2 Å).  
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Figure S8. Limited proteolysis of NgBR/DHDDS complex. 

 

Purified protein complex was incubated with increasing concentrations of proteinase k (A) or 

trypsin (B) (0.005, 0.01, 0.02, 0.04, 0.08, 0.16 mg/ml). Untreated protein sample is denoted as (U) 

and the location of proteinase k is indicated by the asterisks. The time course of degradation 

observed with both proteases is similar to that with thermolysin shown in fig.2B whereby NgBR 

cleavage occurs prior to DHDDS.  
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Figure S9. The dimeric interphase between NgBR and DHDDS.  

  

(A) A top view of the heteromeric complex. The dimeric interface has a surface area of 2,029 Å2. 

NgBR is colored in orange and DHDDS in deep teal. 

(B) The position of the NgBR mutations described in Fig. 2B. I200A, L226A, L230A, G252A, 

F253A and P255A are most disruptive to dimerization, which is consistent with their location 

within the canonical dimer interface. The side chains of Lys-197 and Asp-248 participate in 

hydrogen-bonding across the dimer interface. Ile-263 and Gly-292 participate in hydrophobic 

contacts across the interface. However, K197A, D248A, I263A and G292A have a relatively small 

effect, suggesting that these interactions do not contribute significantly to dimer stability. Based 

on the bacterial UPPS structure, Gln-180 was predicted to also fall within the dimer interface. 

However, as revealed by the new heteromeric structure, this residue is distal to the interface, which 

explains why Q180A has no effect on dimerization. The remaining four mutations affect residues 

that are near the interface but do not directly contact DHDDS. G196A alters the packing of the 

interfacial 5 helix and thus influences dimer stability indirectly. The other three mutations 

(P238A, K243A, L260A) have no effect on dimerization. 
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Figure S10. The complete binding interactions for IPP1 and IPP2.   

 

2D representations of the binding interactions for IPP1 (A) and IPP2 (B) are shown (1). Nitrogen 

atoms are colored blue, oxygen atoms in red, carbon atoms in black and water molecules in 

turquoise. Phosphorus atoms and bonds of both ligands are shown in purple and non-ligand bonds 

are shown in orange. All hydrogen bonds are depicted by green dashed lines and labeled for 

distance. 
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Figure S11. Structural comparison of the S1 site.   

 

The S1 site involved in the binding of allylic substrate is compared among different cis-PTases 

including human NgBR/DHDDS complex, cis-PTase from tomato, denoted as zFPS (PDB ID 

5HXP), S. aureus UPPS denoted as SaUPPS (PDB ID 4H8E) and isosesquilavandulyl diphosphate 

synthase denoted as ISLPPS (PDB ID 5XK6). Mg2+ ion is shown as gray sphere, conserved 

residues involved in binding of allylic pyrophosphate are colored in cyan and labeled, and 

hydrogen bonds are shown as black-dashed lines. Oxygen atoms are colored red, phosphorus atoms 

are in orange and nitrogen are in blue. The carbon atoms of the allylic substrate are shown in 

salmon and those for the homoallylic substrate are shown in green. His-51 in the human 

NgBR/DHDDS complex is sometimes replaced with tyrosine; in both cases, the side chain is 

involved in hydrogen bonding with α phosphate of the allylic substrate. His-50 in SaUPPS can 

also participate in hydrogen bonding if the imidazole ring is rotated 180 degrees. 
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Figure S12. Structural comparison of the S2 site.   

 

The S2 site involved in the binding of homoallylic substrate is compared among different cis-

PTases including human NgBR/DHDDS complex, cis-PTase from E.coli UPPS, denoted as 

EcUPPS (PDB ID 1X06), M. tuberculosis UPPS Rv2361c denoted as MlDPPS (PDB ID 6IME) 

and isosesquilavandulyl diphosphate synthase denoted as ISLPPS (PDB ID 5XK9). Mg2+ ion is 

shown as gray sphere, conserved C-terminal -RXG- residues from NgBR and other corresponding 

monomers are colored in yellow while those for DHDDS are in cyan. Hydrogen bonds are shown 

as black-dashed lines. Oxygen atoms are colored red, phosphorus atoms are in orange and nitrogen 

atoms are in blue. The carbon atoms of the allylic substrate are shown in salmon and those for the 

homoallylic substrate are shown in green. The disordered -RXG- motif in EcUPPS results in an 

incomplete active site and misplaced IPP phosphate. 
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Figure S13. Missense mutations associated with CDG.  

 

(A) CDG-causing NgBR and DHDDS mutations are indicated as purple spheres on the structure. 

NgBR is colored in orange and DHDDS in gray. The CDG mutations cluster around the active site 

of the complex. In DHDDS, those include: Arg-37, Arg-38, Lys-42, Thr-206, and Arg-211. In 

NgBR, Arg-290 is part of the conserved C-terminal -RXG- motif. 

(B) The side chain of Thr-206 is involved in hydrogen bonding (shown as dashed lines) with the 

backbone amide and carbonyl of Asp-34. The carbon atoms are colored deep teal, nitrogen atoms 

colored blue and oxygen atoms colored red. IPP1 colored red, IPP2 colored green and the Mg2+ is 

shown as a gray sphere.   
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Figure S14. De novo DHDDS mutations associated with neurodegenerative disorder 

(A) DHDDS mutations are indicated as purple spheres on the structure. NgBR is colored in orange 

and DHDDS in gray. Most of the mutations cluster around the active site of the complex, including 

S213N, R211Q, R205Q, G35E, P233R and R37H/C. An exception is I135T, which is distal to the 

active site.  

(B) The side chain of R37 is involved in a network of interactions with the pyrophosphate moiety 

of the allylic substrate, the side chain of a conserved E89 on DHDDS, and the main chain amide 

of K293 from NgBR C-terminal region. The carbon atoms are colored deep teal, nitrogen atoms 

colored blue and oxygen atoms colored red. IPP1 colored red, IPP2 colored green and the Mg2+ is 

shown as a gray sphere.   

(C) Side chains of R205, R211 and S213 are depicted at the S2 site, and are involved in salt 

bridging and hydrogen bonding with the pyrophosphate group of IPP substrate. Replacement of 

Arg residues with Gln will eliminate these salt bridges and thus weaken IPP binding. Substituting 

Ser with Asn might result in steric clashes with nearby residues, thereby destabilizing the structure.  
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(D) Ribbon diagram showing the side chain of P233 is involved in hydrophobic packing against 

Y39, which is located at α1 helix known to harbor residues important for FPP binding. A P233R 

mutation will disrupt such packing interaction and may destabilize α1 helix.  
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Figure S15. Plausible catalytic mechanism of the human NgBR/DHDDS complex 

The synthesis of polyprenol pyrophosphate is initiated with the binding of FPP to the empty S1 

site, followed by binding of Mg2+-IPP complex to the S2 site. Two conformational changes might 

occur at this point: the first involves the α3 helix, which becomes more kinked to enhance 

hydrophobic interactions with the substrates. A second conformational change might involve a 

transient membrane binding facilitated by DHDDS α0 helix which will displace its N-terminal coil 

from the hydrophobic cavity between α2 and α3, rendering it accessible for chain elongation. After 

several rounds of condensations (~13 isoprene units incorporated), the product is extended outside 

the tunnel, thereby allowing the condensation of 6 more isoprene units. As the product becomes 

exposed, interaction with ER membrane will further destabilize the enzyme : product complex, 

hence facilitating product release. At this stage, another conformational change involving α3 helix 

might occur, and allow the release of the newly synthesized polyprenol pyrophosphate.  
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Table S1. Crystallographic statistics. The NgBR/DHDDS heterodimer was crystallized in 

space group R32. 

 

Data Collection  

Wavelength, Å 0.979 

Cell Dimensions, Å a=b=185.7, c=113.4 
aResolution (Å) 40-2.3 (2.38-2.30)  

Redundancy 14.7 (4.5) 

Completeness (%) 95.0 (74.5) 

<I>/<σ> 17.4 (0.9) 

CC1/2 0.997 (0.473) 
a,bRpim 0.036 (0.549) 

Refinement    

Unique reflections 29,756 

Number of Atoms 4,036 

    Protein 3,901 

    Ligand 29 

    Solvent 106 
cRwork/Rfree 0.212/0.255 

Mean B-value (Å2) 78.8 

    Protein 79.0 

    Ligand 66.5 

    Solvent 75.2 

r.m.s. deviations  
    Bond lengths (Å) 0.004 

    Bond angles (°) 1.133 
dRamachandran (f, a, o) 96%, 4%, 0% 

PDB accession code 6W2L 
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