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Abstract 

 

Mechanistic Insights Into the Roles and Activities of Polymerases in 

Host and Viral Replication 

 

Vincent Nghi Lam Duong 

2021 

 Polymerases are vital enzymes in the continuation of life, responsible for the 

replication of genetic material and the conversion of genetic information to necessary 

products. A large subset of these polymerases is dedicated to the high-fidelity replication 

and repair of DNA in the cell cycle of organisms. In addition, viruses utilize polymerases 

in order to produce DNA or RNA used to synthesize products for virion assembly. With 

such an important role, polymerases have been a focus in many therapeutic studies of 

cancer and antiviral treatments. This dissertation focuses on three different polymerases, 

PrimPol, human immunodeficiency virus (HIV) reverse transcriptase (RT), and DNA 

polymerase α (Polα). The goal of this work was to understand their overall mechanisms 

and roles not only in the context of replication and repair, but also in antiviral therapies. 

 HIV treatment, typically referred to as highly active antiretroviral therapy 

(HAART), consists of drugs that target various enzymes important for viral life cycle. A 

major fraction of these compounds, which target RT, can be classified into nucleoside 

(NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs). 

 One prevailing issue with NRTIs is that administration of these drugs may cause 

off-target toxicity within patients, affecting adherence to treatment regimens. This off-

target toxicity can be attributed to the incorporation of NRTIs by host polymerases, such 

as the mitochondrial polymerase γ (Polγ). To this end, I investigated the possibility of 

PrimPol, a recently characterized polymerase, in mediating the mitochondrial toxicity 
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effects seen in HIV+ patients taking tenofovir (TFV)-containing treatments. Using gel-

based kinetic assays, I validated that the active metabolite form of tenofovir is a substrate 

for PrimPol. Cellular-based assays using overexpression and knockdown PrimPol renal 

cells suggests that PrimPol likely plays a protective role against tenofovir-induced toxicity 

through its repriming activity, despite the in vitro incorporation evidence. Given this 

potential role of PrimPol in TFV toxicity, I biochemically assessed a PrimPol active site 

mutant in an HIV+ patient taking TFV. The mutant appears to have drastically reduced 

polymerase activity and complete loss of priming activity, which may predispose this 

patient to TFV toxicity. 

 With NNRTIs, there are continuous development efforts to improve 

pharmacokinetic properties and combat drug resistance. To this end, a series of 2-naphthyl 

phenyl ether compounds were developed to target the Y181C mutation of RT. 

Interestingly, early structures of RT with these class of compounds showed two different 

binding modes that affected potency against the mutant. By solving structures of 2-

naphthyl phenyl ether derivatives with WT and Y181C RT, we determined that the 

compounds that interact with W229 retain potency against the mutant. These studies will 

be important to consider in the development process of next generation NNRTIs.  

 Polα, in complex with Primase, is similar to PrimPol by possessing the ability to 

carry out de novo synthesis of nucleic acid primers. The primary role of the Polα-Pri 

complex in the primosome is to produce Okazaki fragments during DNA replication in a 

coordinated manner. Where primase initiates the primer with ribonucleotides, Polα 

continues the initial primer with deoxyribonucleotides. Interestingly, recent evidence 

shows that after replication mutations are left over from Polα, which is low-fidelity and 
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lacks a proofreading mechanism. To gain insight on Polα’s activity during replication, we 

solved the structure of Polα with two replication-like substrates (Polα:dNTP:RNA/DNA or 

DNA/DNA) and kinetically characterized its activity with these substrates. We observed 

that with the RNA/DNA structure, a kink in n-4 sugar on the RNA primer correlated to a 

decrease in activity of the enzyme. Our kinetic characterization also revealed that with the 

DNA/DNA strand, Polα had increased incorporation efficiency but lower processivity. Our 

studies provide evidence of how different nucleotide substrates may regulate polymerase 

activity during replication. 

Taken together, the studies of three different polymerases presented here provide a 

mechanistic and functional understanding of these polymerases in diseases and potential 

treatments. Ultimately, these findings will contribute to the development of therapies in 

diseases where polymerases play a vital role. 
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Chapter 1. Introduction 

Chapter 1.1 Overview of polymerases in replication and repair  

DNA polymerases are the vital enzymes within the cell, responsible for proper 

maintenance of the genome during DNA replication, repair, recombination, and lesion 

bypass.1,2 In eukaryotes, DNA polymerase α (Polα) was the first major polymerase 

discovered in 1957.3 More than a decade later and thereafter Pols β, γ, δ, and ε were 

discovered and characterized.4-7 Together with Polα, these five polymerases can be deemed 

as “classical” polymerases due to the importance of their roles within the cell and their 

indispensability.2 In the last two decades, additional polymerases have been discovered 

that are involved in other processes, which will be briefly mentioned below (Table 1.1). 

Polα-Primase (Polα-Pri) is the primary complex responsible for Okazaki fragment 

synthesis.8 Primase initiates de novo synthesis on a DNA template using ribonucleotide 

triphosphates (rNTPs or NTPs) for approximately 10 nucleotides, followed by polymerase 

switching to Polα, which continues synthesis for about 20-30 deoxyribonucleotides 

(dNTPs).9 Due to the nature of leading and lagging strand replication, the necessity of Polα 

is more apparent with lagging strand replication due to the increased amount of origin firing 

needed.10 Canonically, Polδ is the primary polymerase for processive lagging strand 

synthesis and Polε for leading strand synthesis.11-14 Unlike Polα, Pols δ and ε possess an 

exonuclease domain that allows for a proofreading mechanism.15 In combination with 

additional factors that increase processivity such as proliferating cell nuclear antigen 

(PCNA), Pols δ and ε are able to carry out processive, high-fidelity nucleotide 

incorporation.16,17 
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Polβ characterization studies have demonstrated its role in base excision repair (BER) 

with its polymerase and deoxyribose phosphate (dRP) lyase activities.4,18 BER allows the 

cells to combat lesions and apurinic/apyrimidinic (AP) sites that arise due to cellular and 

exogenous agents that significantly cause damage to DNA.19 The importance of Polβ has 

been underscored by mouse experiments where knockout of the gene leads to embryonic 

lethality.20  

Polγ has long been thought to be the sole polymerase in the mitochondria, responsible 

for replication, repair, and recombination.5,21-23 Biochemical assays have revealed that the 

holoenzyme possesses polymerase, 3’->5’ exonuclease, and dRP lyase activities that 

support these functions within the mitochondria.24,25 With its exonuclease capability and 

accessory subunits, Polγ unsurprisingly has high-fidelity and processive activity.26 Polγ has 

been a topic of discussion regarding nucleoside analog inhibitors, in which off-target 

effects have led to mitochondrial toxicity, as discussed in section 1.5.27,28  

In the past decade, the identification of another polymerase within the mitochondria 

challenged the existing idea that Polγ was solely responsible for mitochondrial DNA 

(mtDNA) maintenance. Unlike other polymerases discussed herein, PrimPol does not 

belong in the overarching DNA polymerases families but in the archaeo-eukaryotic 

primase (AEP) superfamily.29,30 Biochemical characterization of PrimPol revealed the 

highly versatile nature of PrimPol, possessing polymerase, primase with both dNTPs and 

rNTPs, translesion synthesis (TLS), template scrunching, and terminal transferase 

activities.31 Despite all of these activities however, further cellular studies have suggested 

that the primary role of PrimPol is repriming downstream of stalled replication forks.32-35  
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There are polymerases dedicated to replication across DNA lesions, also known as 

TLS polymerases. Examples of these lesions include abasic sites, cyclobutene pyrimidine 

dimers (CPDs), and 8-oxoguanine adducts (8-oxoG).36,37 Interestingly, these polymerases 

are typically low-fidelity. The explanation for this activity is likely being able to use a 

variety of damaged DNA substrates as a trade-off. In this sense, the cell risks the chance 

for mutagenesis in exchange for undisrupted DNA replication and cell survival. In humans, 

key TLS polymerases include Pols η, ι κ, REV3 (ζ), and REV1.2,37 

Other polymerases have been characterized aside from those involved in high-fidelity 

replication or TLS. Polθ plays a role in theta-mediated end joining which is a double-strand 

break (DSB) repair mechanism.38 Polλ has proposed roles in non-homologous end joining 

(NHEJ), another DSB repair pathway, as well as BER.39 Similar to Polλ, Polµ plays a role 

in NHEJ but additional evidence also shows a role for Polµ in V(D)J recombination.40  

Although not a eukaryotic polymerase, human immunodeficiency virus (HIV) reverse 

transcriptase (RT) is a significant family member of the DNA polymerase enzymes. RT is 

the overall enzyme responsible for the conversion of its single stranded RNA genome into 

double stranded DNA that is able to be integrated within the host genome.41 Two activities 

enable RT to do this: polymerase activity using either a RNA or DNA template, and an 

RNaseH domain that allows RT to degrade RNA on an RNA/DNA duplex. Due to the 

necessity of RT in viral replication, therapeutic efforts have led scientists to target the 

enzyme as a means of reducing viral load, as discussed in section 1.3.42  
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Pol Functional tasks 

α Initiator pol 

β Base excision repair pol 

γ Mitochondrial replication pol 

δ Main pol at lagging strand 

ε Main pol at leading strand 

ζ Non-redundant developmental pol 

η Xeroderma pigmentosum variant pol 

θ Repair of interstrand cross-links 

ι Meiosis pol 

κ Deletion and base substitution pol 

λ Repair in meiosis 

µ Terminal deoxynucleotide transferase homology, V(D)J recombination 

Table 1.1 Table of human polymerases. Table of polymerases discussed here and 

proposed or validated functions. Modified from Hübscher et al. Annual Review of 

Biochemistry (2002).2 
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Chapter 1.2 Conservation of structure and mechanisms of polymerases 

 Polymerases, while conserved in a number of aspects, can be separated into families 

based on sequence and structural homology: families A, B, C, X, and Y.2 While these 

differences exist, one of these conserved aspects include the overall structure of 

polymerases. Seminal work from Tom Steitz described polymerases as having a right-hand 

structure, with thumb, fingers, and palm domains.43 The primary roles of the palm domain 

are to carry out the phosphoryl transfer reaction of nucleotide incorporation, the fingers 

domain to interact with the incoming nucleotide and template, and the thumb domain to 

play a role in positioning and potentially processivity.43 While the palm domain is 

conserved across the families, the fingers and thumbs domain are diverse. Based on the 

primary sequence, there are conserved regions in polymerases numbered I-VI. These 

regions are responsible for important functions of these polymerases, such as harboring the 

important catalytic triad of aspartic or glutamic acids required for polymerase activity.2,43,44  

 Addition of a dNTP into a growing strand requires the 3’-OH of the strand to attack 

the α-phosphate of the incoming nucleotide.45 The carboxylate side chains of these amino 

acids are crucial for recruiting two divalent metal ions required for catalysis and binding 

of the incoming nucleotide, typically Mg2+. An aspartate near the 3’-OH group is proposed 

to act as a base, taking a proton from the group and making it a stronger nucleophile. The 

activated nucleophile then attacks the α-phosphate of the incoming dNTP, with the 

transition state stabilized by a metal ion. The intermediate is then resolved by the release 

of pyrophosphate (PPi, formerly the β- and γ- phosphate of the dNTP) which is stabilized 

by the metal ion.  
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 The utilization of steady state and pre-steady state kinetic techniques enabled a 

detailed evaluation of the kinetic scheme of polymerases.45-47 First, the enzyme binds, in a 

sequential manner, the DNA and then the incoming dNTP. The presence of a rate limiting 

step prior to nucleotide incorporation was suggested through thio-analogue studies and 

spectroscopic experiments using 2-aminopurine. Once the incoming dNTP is incorporated 

into the growing strand, a subsequent conformational change allows for release of 

pyrophosphate. The enzyme can then translocate for another addition of a dNTP or 

dissociate from the DNA substrate. 

 Key pre-steady state experiments using rapid chemical quench or stopped-flow 

instruments have been utilized to characterize polymerases are burst and single turnover 

experiments (Figure 1.1).45,48-50 Burst experiments with polymerases are done where the 

primer/template strand are in slight excess of the enzyme, and single turnover experiments 

with enzyme in greater excess over primer/template. A number of polymerases, when 

assessed under burst experiment conditions, display a biphasic kinetic profile of a rapid 

product formation followed by a rate-limiting step.51 The initial fast step corresponds to a 

fast, chemical step while the slower, steady-state rate corresponds to product release. If a 

burst phase is observed with the polymerase, the amplitude of the burst is indicative of the 

active site concentration with the assumption that one polymerase is able to catalyze one 

nucleotide incorporation event. Single turnover experiments are conducted so that all the 

enzyme present in the reaction undergoes only one incorporation event and cycling does 

not occur due to limited primer/template availability. This experiment gives a clearer 

assessment of the rapid chemical step. Conducting these experiments with various dNTP 

concentrations, then plotting the rates versus [dNTP] provides two variables: kpol and Kd. 
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The variable kpol is defined as the maximal rate of incorporation of the polymerase, and the 

Kd as the apparent binding constant for the incoming nucleotide. Dividing these two 

variables yields the incorporation efficiency, kpol/Kd, which is a useful convention for 

comparing the catalytic activities of different polymerases and nucleotide substrates 

Structural studies have correlated the conformational changes mentioned above to 

movements in the fingers domain as a result of dNTP binding and an induced fit mechanism 

to allow for phosphoryl transfer. Several experiments with polymerases such as T7, Taq, 

RT, and Polβ demonstrate that when a dNTP is bound, the fingers move like a hinge 

towards the palm domain.52 The purpose of the “open” and “closed” conformations may 

be a mechanism of checking the geometry of the base pairing in the active site to preclude 

mismatches from occurring. If a mismatch occurs, then the polymerase may switch to the 

open conformation and release the mismatch. High-fidelity polymerases may use this 

mechanism in addition to 3’->5’ exonuclease activity to achieve consistent, correct base-

pairing.53 

 It is important to note that while these structural and mechanistic findings apply to 

a large number of studied polymerases, there are exceptions. We will discuss an example 

in Chapter 5 regarding the mechanism of Polα. 
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Figure 1.1 General mechanism of polymerases. A general overview for the binding 

events and catalytic steps in nucleotide incorporation of polymerases. Step 1. The 

polymerase binds a DNA substrate. Step 2. An incoming nucleotide binds after DNA. Step 

3. A conformational change shift prior to catalysis may induce the polymerase into an 

optimal position for chemistry. Step 4. Phosphoryl transfer by nucleophilic attack of the 

3’OH of the primer strand on the α-phosphate of the incoming nucleotide. Step 5. 

Relaxation of the polymerase to release products. Step 6. Release of pyrophosphate. Step 

7. Translocation to incorporate another nucleotide for processive activity. Step 8. Release 

of DNA for low processivity polymerases. Reprinted with permission from Berdis, AJ. 

Chem Rev. (2009). Copyright 2009. ACS Publications.45  
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Chapter 1.3 DNA replication and polymerases as druggable targets 

 DNA replication is an absolute need for viability and survival of organisms from 

viruses to humans. Targeting DNA replication is a viable strategy to treat 

hyperproliferative conditions, such as in the case of cancer or viral infection where active 

DNA replication is prioritized.54,55 A number of strategies have been developed to inhibit 

DNA replication for therapeutic purposes. One strategy is the usage of DNA damaging 

agents to permanently affect the overall integrity of the DNA so that nucleic acid enzymes 

may not recognize the substrate or act as efficiently.56 One common medication is cisplatin, 

which is used as a chemotherapeutic agent. A second strategy is to target enzymes involved 

in DNA replication such as topoisomerase, which is responsible for the unwinding of DNA 

during replication. Another chemotherapy drug that targets topoisomerase is etoposide, 

which eventually causes dsDNA breaks.57 A third strategy to indirectly target DNA 

replication is to reduce the available pool of dNTPs within the cell.58 Antimetabolite drugs 

such as methotrexate function by inhibiting enzymes in the pathway responsible for the 

production of dNTPs. In the case of methotrexate, dihydrofolate reductase (DHFR) is 

inhibited. Lastly, one strategy to inhibit DNA replication is to target the enzymes 

responsible for the catalysis of replication, which is the topic of the work presented herein. 

Given their direct roles in viral replication and cell division, polymerases have been 

explored as potential targets for therapy in antiviral medication and cancer treatments. 

Nucleoside analogue compounds are a mainstay in antiviral treatments due to the 

dependency of viruses on polymerases to replicate or reverse transcribe their genetic 

material. Key antivirals have been developed to treat HIV, Hepatitis B and C, and Ebola.59 

Nucleoside analogue drugs function by mimicking the natural nucleotide substrates 
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(dNTPs or rNTPs) and will be further discussed in section 1.4 using HIV RT as a case 

study.  

 Nucleoside analogues have also been developed for the treatment of cancers due to 

unrestrained DNA replication.60 One difference between nucleoside analogues for antiviral 

versus cancer treatment is that chemotherapeutic agents such as fludarabine or gemcitabine 

have modified sugars that allow them to also act as antimetabolites by targeting enzymes 

such as ribonucleotide reductase.55 Other drugs, like cytarabine, have been developed to 

inhibit both DNA and RNA polymerases to affect replication and transcription 

simultaneously.  

 One prevailing issue with chemotherapeutic treatments is that they are non-

discriminatory and may affect non-tumor cells, leading to toxicity and severe patient side 

effects.54,55 This effect applies to the examples mentioned above, including the polymerase-

inhibiting nucleoside analogues. Despite the increased dependency of cancer cells on 

replication, the dosing of these nucleoside compounds must still be closely monitored to 

manage toxic effects. Thus, there have been efforts to look for polymerase inhibitors that 

may have an improved safety profile. One example includes dehydroaltenusin, a non-

nucleoside Polα inhibitor.61 
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Chapter 1.4 Inhibitors of Reverse Transcriptase 

 HIV RT is the polymerase responsible for the conversion of the viral RNA genome 

to DNA. RT is a heterodimer consisting of a 66 and 51 kDa subunit (p66 and p51).62 The 

p66 subunit is the functional subunit containing the polymerase active site and RNaseH 

domain.63,64 The p51 acts as a scaffolding subunit primarily to maintain the active form of 

RT, while enhancement of other functions such as tRNA primer binding, primer/template 

loading, and strand displacement have been suggested.65 In addition to targeting other 

machinery such as the viral integrase or protease, antiviral compounds targeting RT have 

been developed for lifelong treatment of HIV.  

 There are two classes of RT inhibitors: nucleoside reverse transcriptase inhibitors 

(NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs). NRTIs the primary 

components of antiretroviral therapy (ART), being the first class of HIV compounds to 

gain regulatory approval with the usage of zidovudine in the late 1980s. NRTIs are 

nucleotide analogues that compete with natural nucleotides and function as chain-

terminators. NRTIs lack a 3’-OH group that is necessary for the nucleophilic attack of the 

α-phosphate of the incoming nucleotide. The current eight FDA-approved NRTIs are 

zidovudine (AZT-TP), didanosine (ddl), zalcitabine (ddCTP), stavudine (d4T-TP), 

lamivudine ((-)-3TC-TP), abacavir (ABC), tenofovir (TFV-DP), and emtricitabine ((-)-

FTC-TP) (Figure 1.2).  

 NNRTIs are allosteric inhibitors that bind in a largely hydrophobic site 

approximately 10 Å from the active site (Figure 1.3).66 Interestingly, in comparison of 

unliganded to ligand-bound RT, the NNRTI binding pocket is unobservable if the 

compound is not present.67 The mechanism of inhibition of NNRTIs is proposed to be the 
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induction of conformational changes that affect the positioning of catalytic residues in the 

active site upon binding.68 First generation NNRTIs include nevirapine, delavirdine, and 

efavirenz, and second generation compounds include etravirine and rilpivirine.69 

Numerous structural studies have enabled structure-guided drug design of next generation 

NNRTIs. Novel NNRTIs are desired due to suboptimal pharmacokinetic properties in early 

generation compounds. In addition, the development of resistance of RT to NNRTIs is a 

prevalent issue, and creating drugs that are effective against common resistant mutations 

with a higher genetic barrier to resistance is desired. We will discuss our efforts in 

understanding a potential new class of NNRTIs in Chapter 4.  
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Figure 1.2 Current FDA approved NRTIs. Structures of the nucleoside reverse 

transcriptase inhibitors (NRTIs) that function by mimicking natural nucleotide substrates. 

(Green box) AZT, ddI, ddC, and ABC were previously demonstrated to be incorporated by 

PrimPol.  
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Figure 1.3 Structure of HIV RT and NNRTI binding pocket. Overall structure of the 

viral reverse transcriptase (RT). Left. RT exists as a heterodimer with a catalytic p66 

subunit (color) and a scaffolding p51 subunit (gray). RT resembles a right hand with a palm 

(green), fingers (red), and thumb (cyan) domain. A connector region (yellow) connects the 

polymerase domain with the RNase H domain (orange). Right. The allosteric binding 

pocket for non-nucleoside reverse transcriptase inhibitors only appears in the presence of 

compound approximately 10 Å away (nevirapine, an NNRTI in magenta) from the active 

site (cyan). PDB: 3V81, Das et al. Nat Struct Mol Biol (2012).70  
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Chapter 1.5 Off-target toxicity of antiviral nucleoside analogues 

 While the introduction of AZT as one of the first HIV therapeutics was a significant 

step in treating HIV, it did not take long for the observation of negative side effects due to 

nucleoside analogue treatment. A connection was made that the myopathies, lactic 

acidosis, hepatic steatosis, and pancreatitis caused by NRTIs were similar to the effects 

observed in mitochondrial diseases.71-73 With attention drawn to the mitochondria and the 

fundamental knowledge that nucleoside analogues could target host polymerases, the Polγ 

hypothesis was proposed. 

 The initial hypothesis was first supported with evidence showing direct inhibition 

of Polγ and concomitant depletion of mtDNA.74 The hypothesis was further developed, 

suggesting the inhibition of the polymerase results in mtDNA depletion and accumulation 

of truncated mtDNA products.75 The human mtDNA genome is approximately 17 kb, 

encoding 22 tRNAs, 2 rRNAs, and 13 proteins that are involved in oxidative 

phosphorylation. Thus, depleting mtDNA is linked to reducing levels of important 

metabolic enzymes, leading to pathologies similarly observed in other mitochondrial 

pathologies. Additional evidence suggests that other factors may play a role in NRTI-

associated toxicity, such as oxidative damage to mtDNA due to free radical generation due 

to impaired electron transport chain processes.72,73  

 Although the Polγ hypothesis has been the prevailing explanation for NRTI-

induced toxicity, there have been discrepancies between the inhibition of Polγ in vitro and 

clinical side effects.27,76 One example is the case of tenofovir, where early clinical trials 

did not observe significant negative effects. However, case reports and observational 

studies soon demonstrated that there were cases of impartial or complete Fanconi 
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syndrome, a disorder of the renal proximal tubule and decline of kidney function.77 This 

discrepancy between biochemical and clinical findings suggest that there are alterative 

mechanisms for NRTI-induced toxicity. 

PrimPol, encoded by the CCDC111 gene, is a 67 kDa polymerase that was 

identified through in silico analyses as a potential member of the AEP family.29,30 PrimPol 

and its homologues consist of two conserved domains: an N-terminal AEP domain 

containing the active site, and a C-terminal zinc finger (ZnF) domain. PrimPol is unique to 

other eukaryotic polymerases in that it contains both polymerase and primase activities 

(Figure 1.4). Characterization of PrimPol revealed that PrimPol is able to replicate across 

lesions like 8-oxo-G in addition to normal 5’->3’ polymerase activity. The ability for 

PrimPol to prime using dNTPs or NTPs is dependent on the presence of the ZnF domain. 

Studies have established PrimPol is able to reprime downstream of chain terminators, R-

loops, and G-quadruplexes.31-35 One structure of PrimPol has been solved, revealing that 

PrimPol does not resemble the canonical right-hand structure that describes many of the 

characterized polymerases.78 As such, one interesting feature of PrimPol is that few 

contacts are observed in the primer strand. The lack of contacts in the primer/template may 

explain the low-fidelity nature of PrimPol with an error rate of approximately 1x10-4.79 

Contributing to this high error rate is the lack of an exonuclease domain that other 

replicative polymerases possess. In addition, PrimPol is a fairly low processive enzyme, 

incorporating 1-4 nucleotides per binding event.35 Cellular knockout studies provide 

evidence that PrimPol acts as a DNA damage tolerance polymerase.29,30,33,80 

Given evidence that PrimPol is localized in mitochondria and potentially plays a 

vital role in DNA damage tolerance mechanisms, emphasizing the importance of PrimPol 
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in mitochondrial genome maintenance.29 Thus, our lab has explored the possibility that 

PrimPol could mediate NRTI-associated toxicity. Previous work in our lab demonstrated 

the ability of PrimPol to incorporate AZT, ddI, ddC, and ABC in vitro (Figure 1.2).81 

However, with the prevalent use of tenofovir as a standard component of ART, we aimed 

to assess the potential for PrimPol to mediate tenofovir-associated toxicity in Chapter 2 

and 3. 
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Figure 1.4 Activities of PrimPol. PrimPol is able to prime using its zinc finger (ZnF) 

domain, using either dNTPs or NTPs. PrimPol also has general and translesion synthesis 

(TLS) polymerase capabilities, at a low fidelity and low processivity. PrimPol is also able 

to bypass lesions through a template scrunching mechanism that results in deletions. 

Reprinted with permission Guilliam et al. Genes (2017).31  
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Chapter 1.6 Thesis objectives 

 There is strong evidence that polymerases are some of the most important enzymes 

to life. Polymerases are directly responsible for the maintenance of the genome in 

eukaryotes, prokaryotes, and viruses. In both viral and cancer treatments, targeting 

polymerases are viable treatment strategies. In order to develop therapeutics in diseases 

that target polymerases or are derived from polymerase activity, we must understand the 

mechanistic underpinnings of the processes at hand. In this dissertation, I will present 

experiments spanning three different polymerases, which exemplifies the prominent role 

of polymerases in various therapeutic endeavors. The goal of this work is to understand the 

role and mechanism of polymerases involved in the treatment of HIV and cancer. 

 

Discerning the role of PrimPol in NRTI-derived toxicity 

 Adverse effects due to the administration of NRTIs are attributed to the off-target 

incorporation of NRTIs by Polγ. Inhibiting Polγ, the primary replicative polymerase in the 

mitochondria, leads to mitochondrial toxicity which may manifest as myopathy, lactic 

acidosis, or liver failure. These side effects greatly affect patient adherence to ART, 

necessitating the need to develop NRTIs that are not substrates for host polymerases. 

Tenofovir is a common NRTI in which cases of nephrotoxicity have been reported. 

Interestingly, there is a discrepancy between the toxicity observed in the clinic and in vitro 

data suggesting TFV is a weak substrate for Polγ. This raised the question if there were 

other polymerases within the mitochondria that could lead to toxicity with antiviral 

treatment. 
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Initial work in our lab validated the incorporation of four NRTIs by PrimPol, a 

recently discovered polymerase in the mitochondria, in vitro. However, due to the 

prevalence of tenofovir in preferred combination therapies and observed mitochondrial 

toxicity primarily in the kidney, we desired to understand the interactions of tenofovir with 

PrimPol. In Chapter 2, we assessed the potential for PrimPol to incorporate the active form 

of tenofovir (TFV-DP) in vitro. With the knowledge that PrimPol is able to reprime 

downstream of stalled replication forks, we proposed a model where PrimPol could either 

1) mediate TFV-induced toxicity by incorporating TFV, or 2) protect against toxicity by 

repriming downstream of chain termination events caused by TFV. Using a cellular system, 

we assessed this model to discern the role of PrimPol in TFV-induced toxicity. 

Previous work proposed that a Polγ mutation could predispose an HIV+ patient to 

toxic side effects by affecting how well the host polymerase is able to discriminate between 

NRTIs and natural nucleotides. Taking this possibility into account, we identified the 

D114N active site PrimPol mutation in an HIV+ patient experiencing mitochondrial 

toxicity under a tenofovir-based treatment. In Chapter 3, we biochemically and kinetically 

assessed the effects of the mutation on PrimPol and propose implications for possessing 

the mutation in the context of antiviral therapy.  

 

Understanding the mechanism of a novel class of NNRTIs for RT 

 In efforts to design NNRTIs that target drug resistant mutations with improved 

pharmacological properties, the Anderson and Jorgensen lab at Yale have developed 

NNRTIs through structure-guided drug design. Initial characterization of the 2-naphthyl 

phenyl ether compounds revealed that the series of compounds could be distinguished into 
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two groups by efficacy against the common Y181C drug resistant mutation. In chapter 4, 

we structurally characterize a set of 2-naphthyl phenyl ether compounds with WT and 

Y181C RT to understand the discrepancy of inhibitory activity against Y181C. 

Understanding the mechanism of inhibition of these compounds will aid in the 

development of potent NNRTIs. 

 

Distinguishing the effects of replication substrates on Polα activity 

 During replication, Polα is part of the primosome, a coordinated system of moving 

parts that allow for efficient Okazaki fragment synthesis and subsequent high-fidelity 

elongation. There are examples of this precise coordination: the primase accessory subunit 

regulates the length of the initial hybrid RNA/DNA duplex synthesized by the primase 

active site. Due to the low-fidelity of Polα, the primosome should limit the number of 

nucleotides Polα can incorporate onto the newly synthesized Okazaki fragment. 

Interestingly, there is evidence that after replication mutagenic DNA is left over from Polα 

activity, suggesting this coordination and regulation may be imperfect. If Polα activity is 

unrestrained, then incorrect incorporation could potentially lead to harmful mutations and 

tumor formation. While there are mechanisms to induce Polα switching to the higher 

fidelity replicative pols δ and ε, we investigated whether different nucleic acid substrates 

could act as an additional intrinsic regulation mechanism to limit Polα activity. In Chapter 

5, we biochemically assessed the activity of Polα on two substrates that it encounters during 

replication. Revealing the effects of relevant nucleic acid substrates on Polα further 

progresses our understanding of replication and potential associated disease mechanisms. 
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Chapter 2. Delineating the role of PrimPol in TFV-mediated toxicity 

This chapter is an excerpt from: 

Duong VN, Zhou L, Martínez-Jiménez MI, He L, Cosme M, Blanco L, Paintsil E, 

Anderson KS. Identifying the role of PrimPol in TDF-induced toxicity and implications 

of its loss of function mutation in an HIV+ patient. Sci Rep. 2020 Jun 9;10(1):9343. doi: 

10.1038/s41598-020-66153-z. PMID: 32518272; PMCID: PMC7283272. 

 

2.1 Introduction 

Human immunodeficiency virus (HIV) treatment and chemoprophylaxis regimens 

commonly consist of one or more nucleoside reverse transcriptase inhibitors (NRTIs) that 

target the HIV-1 reverse transcriptase enzyme. NRTIs are nucleoside analogs that lack a 

3′-OH, thus acting as chain terminators of viral replication once incorporated by HIV 

reverse transcriptase (RT). Since the approval of zidovudine (AZT) in 1987, NRTIs have 

become the backbone of antiretroviral therapy (ART); the advent of ART has led to 

sustained HIV viral suppression, dramatic decrease in HIV-associated morbidity, and 

mortality.82,83 Thus, contemporary NRTI-based regimens have significantly contributed to 

the health of HIV+ individuals allowing them to have near-normal or normal life 

expectancies as the general population in the absence of a cure for HIV.82,84-86 

NRTI toxicity has widely been attributed to off-target inhibition of the primary 

polymerase responsible for mitochondrial genome replication, DNA Polymerase gamma 

(Polγ), sometimes termed the Polγ hypothesis.27,73,87 Particularly with earlier generation 

NRTIs, these off-target effects could lead to lactic acidosis, lipodystrophy, peripheral 

neuropathies, cardiomyopathies, skeletal muscle myopathies, and pancytopenia.88-90 

However, there are discrepancies between the degree of in vitro inhibition of Polγ and the 

observed clinical toxicity of certain NRTIs. For instance, the NRTI tenofovir disoproxil 
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fumarate (TDF), a prodrug of tenofovir, is among the least toxic inhibitors of Polγ as 

determined by in vitro assays, however, there are reports of mitochondrial dysfunction and 

toxicity by TDF in the renal proximal tubules of the kidneys of HIV-infected 

individuals.77,91,92 Mechanistic studies have shown that Polγ incorporates the natural dATP 

substrate much more efficiently and selects against the active tenofovir diphosphate (TFV-

DP) metabolite leading to a very favorable in vitro discrimination factor, suggesting that 

the Polγ hypothesis cannot fully explain the proposed mitochondrial toxicity caused by 

TDF.93,94 These discrepancies may be explained by factors such as differences in 

metabolism, binding affinity and rate of incorporation of the respective NRTIs by Polγ, 

ineffective exonuclease removal, and the role of additional host cell polymerases.95-97 

PrimPol is the most recent enzyme involved in DNA replication that has been 

observed to be localized to the mitochondria apart from Polγ.29,30,34,98,99 Characterization 

of PrimPol has revealed that it is a DNA and RNA primase as well as a DNA-dependent 

translesion synthesis polymerase.29,30 Further evidence has implicated that the primary role 

of PrimPol in vivo is repriming stalled replication forks by hydroxyurea (HU) or UV 

light33,34, rising from G-quadruplexes32, R-loops100, or chain-terminating nucleotides.33 We 

have previously confirmed that PrimPol is able to incorporate a subset of NRTIs, 

establishing a potential role of PrimPol in NRTI-induced mitochondrial toxicity.81 

Taking into consideration the repriming capabilities of PrimPol and the potential 

for off-target incorporation of NRTIs by host polymerases, we began by addressing the 

broader question of whether PrimPol may directly contribute to NRTI-induced 

mitochondrial toxicity with a focus on TDF. We validated that PrimPol was able to 

incorporate the active form of tenofovir (TVF-DP) in vitro, albeit with a relatively low 
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efficiency. Then we generated PrimPol overexpression and knockdown renal proximal 

tubular epithelial cells (RPTECs) to assess mitochondrial toxicity and respiration when the 

cells were treated with TDF. Under our experimental conditions, we propose that PrimPol 

plays a protective role against NRTI-induced toxicity. 

 

2.2 Materials and Methods 

Protein Purification of WT, AA354 PrimPol 

PrimPol WT and AA354 (truncated protein without the zinc finger) was purified 

following a modified protocol of 81. The pET28a-PRIMPOL expression vector was 

transformed into E. coli BL21(DE3)-pRIL cells. For 1 L of LB + kanamycin, 10 mL of 

overnight culture was added for protein production. Cells were grown at 37 °C until the 

OD600 0.6, at which point the flasks were chilled at 4 °C, PrimPol induced with 1 mM 

IPTG, and allowed to induce overnight at 19 °C (approximately 16 hours). Cells were 

harvested at 12,000 × g for 15 min at 4 °C, and the pellet flash frozen in liquid nitrogen and 

stored at −80 °C. For every 1.5 g of pellet, 5–10 mL of lysis buffer (Buffer A: 50 mM Tris-

HCl pH 8, 1 M NaCl, 10 mM Imidazole, 10% v/v glycerol, EDTA-free protease inhibitor, 

0.5 mM TCEP, 0.1% Triton X-100). The suspension of cells was lysed by passing the cells 

through a high-pressure homogenizer (Emulsiflex) 2–3 times. The lysate was centrifuged 

at 28,000 × g for 1 hour at 4 °C. The supernatant was loaded onto a 5 mL HisTrap FF crude 

column equilibrated in Buffer A and washed with buffer A after protein loading until the 

A280 was stabilized. The column was then equilibrated with buffer B (Buffer B: 50 mM 

Tris-HCl pH 8, 50 mM NaCl, 10% v/v glycerol, 0.5 mM TCEP) to reduce the salt 

concentration. The column was washed with 5 CV 95% Buffer B and 5% Buffer C (Buffer 
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C: 50 mM Tris-HCl pH 8, 50 mM NaCl, 600 mM imidazole, 10% v/v glycerol, 0.5 mM 

TCEP) or until A280 was stabilized. The protein was then eluted by a 0–100% gradient of 

buffer B and buffer C, separating the elution into 0.5 mL fractions across 5 column volumes 

(25 mL). The fractions were resolved by 4–20% Tris-glycine gel in SDS and proteins 

stained by Coomassie blue staining. The cleanest fractions were pooled and TEV protease 

was added to the pooled fractions (1:10 TEV:total protein w/w). The solution was dialyzed 

with buffer D (Buffer D: 50 mM Tris-HCl pH 8.0, 300 mM NaCl, 10% (v/v) glycerol, 

0.5 mM TCEP) overnight at 4 °C using 25 kD dialysis membrane tubing. The protein was 

loaded onto a 5 mL HisTrap FF column equilibrated in Buffer B. Buffer B was used to 

wash the column until the A280 was stabilized. 5% buffer C was used to wash the column 

and then a 0–100% gradient of Buffer B and Buffer C was used in the same manner as the 

previous column. Because the His-tag was cleaved with TEV protease, PrimPol eluted in 

the 5% imidazole wash, although we did observe the presence of cleaved PrimPol in the 

0–100% gradient fractions. The clean fractions were pooled, concentrated, and buffer 

exchanged to about 0.5–2 mL into buffer E (Buffer E: 50 mM Tris-HCl pH 7.5, 300 mM 

NaCl, 5% (v/v) glycerol, 0.5 mM TCEP) using a 10 K centrifugal filter. The protein was 

then separated using a Superdex 200 Increase 10/300 size exclusion column using Buffer 

E. Clean fractions were pooled, concentrated, aliquoted, and flash frozen and stored at 

−80 °C. 

Oligonucleotide labeling and annealing 

In general, primer oligonucleotides were labeled at the 5′ end with [γ−32P]ATP and 

T4-PNK with the provided reaction buffer for 30–45 minutes at 37 °C. The reaction was 

then stopped by heat shock for 5 minutes at 70–95 °C. For the primase assays, the labeled 
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oligos and unlabeled template were mixed at a 1:2 ratio in 50 mM Tris-HCl pH 7.5, 

300 mM NaCl and heated for 10 minutes at 80 °C, and slowly cooled down to room 

temperature. In all other kinetic assays, primer and template were mixed in a 1:1.1 ratio in 

10 mM Bis-Tris Propane, pH 7.0, 300 mM NaCl and annealed by heating to 90 °C for 

5 minutes, 55 °C for 15 minutes, and 37 °C for 10 minutes. 

Burst and single turnover kinetics 

Kinetic assays to measure the activity of WT PrimPol were based on the single 

incorporation of dCTP on a radiolabeled DNA primer: 

(5′-GCCTCGCAGCCGTCCAACCAACT-3′) annealed to a DNA template: 

(5′-GGACGGCATTGGATCGAGGTTGAGTTGGTTGGACGGCTGCGAGGC-3′). 

Burst and single turnover kinetics were conducted as previously done, with 

modifications to the protocol noted below81. All kinetics assays were carried out using 

reaction buffer (10 mM Bis-Tris Propane, pH 7.0, 300 mM NaCl) as reported previously. 

Briefly, PrimPol was incubated with the primer:template and mixed with dCTP and 10 mM 

MnCl2 before quenching with 0.5 M EDTA. Products were collected in a tube with 

formamide dye [0.1% bromophenol blue (w/v), 0.1% xylene cyanol (w/v)] and separated 

by denaturing urea PAGE. The radiolabeled products were visualized by the Molecular 

Imager FX phosphorimager (Bio-Rad) and quantified by Quantity One, version 4.6.9 (Bio-

Rad). 

In the case of measuring the kinetics of wild-type PrimPol, pre-steady state kinetic 

assays were performed using the RQF-3 rapid chemical quench apparatus (KinTek) at 

room temperature. For burst reactions, final concentrations of 10 µM WT PrimPol was 

incubated with 30 µM annealed primer:template before mixing with 200 µM dCTP and 
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10 mM MnCl2 at 37 °C. The [product] was plotted against time and the data points were fit 

to a burst equation, [product] = A(1− e−kt) + A(kss) (t), where A is the burst phase amplitude, 

kobs is the observed single exponential rate, kss is the steady-state rate, and t is the time. 

For single turnover experiments, final concentrations of 10 µM WT PrimPol was 

mixed with 300 nM primer:template and mixed with 0–300 µM dCTP and 10 mM MnCl2. 

The single data points were fit to a single turnover equation, [product] = A(1−e−kt), where 

A is amplitude and kobs is the observed single exponential rate, and t is the time using 

Kaleidagraph. The rates were then plotted against [dCTP] used and fit to a quadratic 

equation, [dNTP] = 0.5 (Kd + [dNTP] + [kpol])− 0.5|(Kd + [dNTP] + [kpol])2 − 4[dNTP] 

[kpol]|1/2, in order to extract the kpol, the maximal rate of incorporation, Kd, the apparent 

binding constant for the incoming nucleotide, and kpol/Kd, the overall efficiency for 

nucleotide incorporation.81 In both the burst and single turnover experiments, the values 

represent the fit estimate for the parameter ± one standard deviation. 

For tenofovir diphosphate incorporation assays, the 3′-end of the primers were 

varied, D20A and D45:  

5′-GCCTCGCAGCCGTCCAACCX1–3′, where X1 is A, C, G, or T.  

The corresponding annealed oligo templates were: 

 5′-GGACGGCATTGGATCGAGGTTGAGTX2GGTTGGACGGCTGCGAGGC-3′, 

where X2 is the natural base pair to X1. Initial experiments used 200 µM TFV-DP under 

single turnover conditions, monitoring TFV-DP incorporation at 0, 2, 5, 30, 60, and 

120 minutes. Then experiments were done under single turnover conditions using 0–

1000 µM TFV-DP, and control dATP experiments used 0–100 µM. Kd curves were 

generated from each of these rates using a quadratic equation to estimate the kpol and Kd. 
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In the case of TFV-DP, the rates did not vary with [TFV-DP], so kpol was calculated by 

taking the average of all rates. The amplitude, however, did vary with TFV-DP 

concentration, so the Kd was calculated by plotting the amplitudes against [TFV-DP]. 

Confirmation experiments to validate the preceding nucleotide preference used a 

different oligo: D21A and D36: 

5′-TCAGGTCCCTGTTCGGGCGCX1–3′ and  

5′-TCTCTAGCAGTX2GCGCCCGAACAGGGACCTGAAAGC-3′,  

using 200 µM TFV-DP under single turnover experiments at 0, 2, 5, 30, 60, and 

120 minutes. Additional experiments to observe if the preference was present with the zinc-

finger knockout (amino acids 1–354) used 10 µM PrimPol1–354 and the D20A:D45 

substrates at 0, 2, 5, 30, 60, and 120 minutes. Additional experiments were carried out to 

observe the preference effects using 200 µM d4T-TP, (−)-3TC-TP, or (−)-FTC-TP. For 

d4T-TP incorporation experiments, D22T:D45 was used:  

5′-GCCTCGCAGCCGTCCAACCAAX1–3′ and  

5′- GGACGGCATTGGATCGAGGTTGAX2TTGGTTGGACGGCTGCGAGGC.  

For (−)-3TC-TP and (−)-FTC-TP experiments, D23C:D45 was used:  

5′-GCCTCGCAGCCGTCCAACCAACX1–3′ and  

5′-GGACGGCATTGGATCGAGGTTGX2GTTGGTTGGACGGCTGCGAGGC-3′.  

The reactions were quenched for these experiments at 0, 30 seconds, 1, 3, 10, 30, and 

120 minutes. 

Cell culture maintenance and reagents 

Immortalized renal proximal tubular epithelial cells (RPTECs) stably transfected 

with the OAT1 receptor were acquired from ATCC. RPTECs were maintained in 
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DMEM:F-12 (containing 2.5 mM L-glutamine, 15 mM HEPES, 0.5 mM sodium pyruvate, 

and 1200 mg/L sodium bicarbonate) supplemented with 0.3 µg/mL puromycin, 100 µg/mL 

G418, 25 ng/mL PGE1, 3 pg/mL triiodothyronine, 25 ng/mL hydrocortisone, 10 ng/mL 

hEGF, 3.5 ug/mL ascorbic acid, ten-fold diluted ITS-G (10x stock), and 5% HI-FBS. After 

transduction with lentivirus containing PrimPol shRNA or overexpression plasmids, 200 

µg/mL hygromycin was supplemented to the media. Cells were passaged every 3 days by 

a 1:10 split. 

Cell line transfection and transduction 

HEK293T cells were cultured in DMEM with high glucose supplemented with 10% 

FBS and transfected with plasmids containing dR8.91, VsV-G, and a third with either the 

shRNA knockdown (pLKO.1) or overexpression construct (pLenti). Briefly, HEK293Ts 

were seeded to 70–80% confluency and allowed to adhere to a 6-well plate. A ratio of 

1:0.1:1 (0.75 µg dR8.01, 75 ng VsV-G, 0.750 µg pLKO.1/pLenti) were combined in a tube. 

Approximately 1 mL of Serum-free DMEM was mixed with 4.7 µg PEI (3:1 PEI:total 

DNA ratio) and incubated at room temperature for 5 minutes. The media:PEI mixture was 

added dropwise to the three-plasmid solution and incubated for 15 minutes at room 

temperature. The final mixture was then added to HEK293T cells. After 24 hours, the 

media was replaced with complete growth media for RPTECs (DMEM/F12). After another 

24 hours, the media containing the lentivirus was aliquoted into 1 mL volumes and flash 

frozen and stored at −80 °C until use. 

For transduction of RPTECs, 6-well plates were plated to approximately 40–50% 

confluency on the day of transduction. The virus was thawed and added to the adherent 

cells at 37 °C overnight. In some cases, the virus was diluted 2-fold with complete growth 
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media. The media was replaced the next day with complete growth media for 24 hours at 

37 °C. The following day, the media was replaced with selection growth media containing 

200 µg/mL hygromycin. After seven days, the cells were immunoblotted for the 

overexpression or knockdown of PrimPol to confirm successful transduction. 

Cell counting 

6-well plates were seeded with 50,000 cells and allowed to adhere. On the second 

and fourth days, cells were trypsinized using 0.25% trypsin-EDTA and counted using 

trypan blue and the Countess II Automated Cell Counter (ThermoFisher). The cell counts 

were plotted against time after seeding. Each well containing cells was counted three times 

and each cell type consisted of three biological replicates. 

Immunoblotting 

TRAP1, PrimPol, or Chk1 levels in response to TDF treatment were measured 

through immunoblotting. 6-well plates were plated with 100,000 cells and allowed to 

adhere overnight. After treating RPTECs with 30 µM TDF for TRAP1 for 3 days or 1–60 

µM TDF for 5 days for PrimPol, cells were harvested by washing with cold PBS two times 

followed by the addition of RIPA buffer supplemented with protease inhibitor (Roche) and 

cell scraping. Cells were incubated at 4 °C on a tube shaker for 30 minutes and centrifuged 

at 18,000xg for 10 minutes at 4 °C. The supernatant was collected and protein levels were 

measured through the BCA assay to normalize total protein loading. 10–30 µg of total 

protein were loaded onto a 4–20% Tris-Glycine gel and run in SDS buffer at 200V for 35 

minutes. The loaded protein was transferred to a nitrocellulose membrane using the iBlot2 

transfer system. The membrane was blocked with 5% milk for one hour, incubated with 

primary antibody overnight at 4 °C (1:1000 rabbit anti-TRAP1, 1:1000 rabbit anti-Chk1, 
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1:1000 rabbit anti-GAPDH, 1:500 rabbit anti-PrimPol), washed with 1x TBST three times 

for 5 minutes each, incubated with secondary antibody (anti-rabbit IGG, HRP-linked 

1:1000) for 1 hour at room temperature, and washed with 1x TBST three times for 5 

minutes each. The membranes were exposed to enhanced chemiluminescence reagent for 

TRAP1, Chk1, and GAPDH or SuperSignal West Femto Maximum Sensitivity Substrate 

for PrimPol for 1 minute. The membranes were then exposed to film for 5 seconds to 5 

minutes and developed. Blots were quantified using ImageJ. In order to normalize across 

blots, the TRAP1/GAPDH or PrimPol/GAPDH levels of the treatment conditions were 

further normalized to the untreated control for each cell line, n = 3. Significance was 

determined by one-way ANOVA using GraphPad Prism. *p < 0.05, **p < 0.01, and 

***p < 0.001. 

Cell proliferation assays 

5000 cells were plated into 96-well plates and allowed to adhere overnight. On the 

next day, 30 µM tenofovir disoproxil fumarate (TDF), 100 µM abacavir (ABC), or 20 µM 

efavirenz in complete media was used to replace the media. On the third day of treatment, 

the media was replaced with fresh media with TDF. On the fifth day, a solution of 6 mM 

MTT in PBS was diluted to 1 mM in growth media and 100 µL of the solution was added 

to each well. After 3 hours of incubation at 37 °C, 150 µL of stop solution was added to 

each well (10% H2O v/v, 4% NP-40 v/v, 0.34% concentrated HCl v/v in isopropanol). The 

plates were protected from light and were shaken overnight at room temperature. The well 

solutions were resuspended by pipetting and absorbances were read at 590 nm. The 

absorbances were then subtracted from the background (no cells) and then normalized to 

the untreated cells. For each biological replicate (one 96-well plate), six technical replicates 
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were done (6 wells in each plate). Significance was determined by one-way ANOVA using 

GraphPad Prism, n = 3. *p < 0.05, **p < 0.01, and ***p < 0.001. 

mtDNA quantification 

100000 cells were seeded into 6-well plates and allowed to adhere overnight. The 

cells were then treated with 30 µM TDF for 5 days, with replacement of media on the third 

day. On the fifth day, the cells were detached with 0.25% trypsin-EDTA for 5 minutes and 

pelleted at 150xg for 5 minutes. The pellet was resuspended with PBS and pelleted an 

additional two times and stored at −80 °C until lysis for DNA harvesting. Total DNA was 

then isolated from the cells using the Qiagen DNeasy Blood & Tissue Kit, lysing the cells 

by adding PBS and vortexing for at least 30 seconds. The DNA concentrations were 

quantified spectrophotometrically and then diluted to 3 ng/µL with sterile H2O. 

Quantification of mtDNA was followed using a qPCR-based method according to101. Each 

well in a 96-well plate contained 25 µL of reaction mixture: 2 µL of 3 ng/µL DNA (6 ng 

total), 2 µL of 400 nM qPCR primer pair (32 nM final), 12.5 µL of SYBR Green Master 

Mix, and 8.5 µL of nuclease-free water. The qPCR primer pairs target either the 

mitochondrial tRNA-Leu(UUR) gene or the nuclear B2-microglobulin gene. The qPCR 

reaction mixtures were heated to 95 °C for 3 minutes, then went through 50 cycles of 95 °C 

for 10 seconds and 60° for 30 seconds (reading the RFU at the end of each cycle using the 

SYBR channel), and finally 95 °C for 10 seconds, and then ramping up from 65 °C to 95 °C 

in 0.5° increments every 5 seconds (reading the RFU at every 5 seconds). After obtaining 

the CT values for both mtDNA and nucDNA from the Bio-Rad CFX Manager software, 

the relative amount of mitochondrial DNA content was calculated by 2 ×2ΔCT, where ΔCT is 

nucDNA CT – mtDNA CT. The relative mtDNA content values were then normalized to 
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the untreated control. For each biological replicate (one qPCR plate), three technical 

replicates were done (three wells in the plate). Significance was determined by one-way 

ANOVA using GraphPad Prism, n = 3. *p < 0.05, **p < 0.01, and ***p < 0.001. 

Mitochondrial respiration rate measurements 

The respiration rate of the RPTECs were determined using the Agilent Seahorse 

XF-96 Extracellular Flux 374 Analyzer. The RPTECs were seeded in 96-well microplates 

at 35,000 cells per well and allowed to adhere overnight. The following day the cells were 

treated with either 30 µM TDF or in complete media for 2 days. One hour before plate 

reading, the media was switched to a media without bicarbonate or phenol red, 1 mM 

pyruvate, 2 mM glutamine, 10 mM glucose, 30 µM TDF and allowed to incubate at 37 °C 

without CO2. The drug injection ports were filled with oligomycin (Port A, final 1.5 µM), 

FCCP (Port B, final 2.0 uM), and rotenone/antimycin A (Port C, final 0.5 uM). Respiration 

was measured three times before the first drug injection and after each drug injection to 

allow for reading stabilization. The exception was that six measurements were taken after 

oligomycin injection. Each biological replicate (one 96-well plate) contained 6 technical 

replicates. Oxygen consumption rates were obtained through the Wave software (Agilent). 

In order to calculate the basal respiration, M13 (first measurement after rotenone/antimycin 

A injection) was subtracted from M3 (measurement immediately before oligomycin 

injection). Proton leak was measured by subtracting M13 from M9 (last measurement after 

oligomycin injection). ATP-linked respiration was calculated by subtracting the proton 

leak from basal respiration. Maximal respiration was calculated by subtracting M13 from 

M10 (first measurement after FCCP injection). The spare reverse capacity was calculated 

by subtracting the basal respiration from the maximal respiration. The coupling efficiency 
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was calculated by diving the ATP-linked respiration by the basal respiration and 

multiplying by 100. The cell respiratory control ratio was calculated by dividing the 

maximal respiration by the proton leak. Lastly, the ATP-linked and maximal respiration 

ratio was calculated by diving the ATP-linked ratio by the maximal respiration. The values 

were averaged over separate experiments, n = 3. Significance was determined by one-way 

ANOVA using GraphPad Prism *p < 0.05, **p < 0.01, and ***p < 0.001. 

 

2.3 Results 

PrimPol has low efficiency of tenofovir diphosphate incorporation 

The current study is focused on defining potential mechanisms of NRTI-mediated 

nephrotoxicity in HIV+ patients who are taking tenofovir-containing antiretroviral drug 

regimens. Since TDF has been shown to only be a weak inhibitor of mitochondrial Polγ94, 

we examined a potential role of PrimPol, a primase-polymerase, found to have significant 

levels of expression in the kidney.29 

A role of PrimPol is to reprime downstream of stalled replication forks, which may 

arise due to depletion in dNTPs, thymine-dimers formation by UV, G-quadruplexes, R-

loops, or chain-terminating nucleotides, during both nuclear and mitochondrial DNA 

replication.32-34,100,102 Thus, in the context of the mitochondrial toxicity associated with 

NRTI-based therapies, PrimPol can have a protecting role by repriming and rescuing 

replication forks that were stalled due to NRTI incorporation by Polγ (Fig. 2.1A, left). 

Alternatively, PrimPol could directly contribute to NRTIs-associated toxicity, taking into 

consideration these nucleotide analogues could also be valid substrates for PrimPol that 

could conceivably block its primase/polymerase activity (Fig. 2.1A, right). In this event, 
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PrimPol could increase toxicity via chain termination, by the synthesis of abortive primers 

and the consequent inability to rescue stalled forks. Our previous work has confirmed the 

incorporation of select NRTIs by PrimPol as ddATP or CBV-TP, the active metabolites of 

didanosine (ddI) and abacavir (ABC), with discrimination values in the efficiency of the 

incorporation (efficiencydNTP/efficiencyNRTI) from 3 to 102-fold.81 In the current study, we 

investigated the likelihood that tenofovir could be utilized as a substrate by PrimPol during 

elongation, taking into consideration that there is a rising, unexplained renal toxicity in 

patients taking TDF-based ART. 

We tested the incorporation of the active form of TDF, tenofovir-diphosphate 

(TFV-DP), compared to the natural nucleotide dATP, using a defined labeled 

primer/template. In light of recent findings with other polymerases, indicating that the 

nucleotide directly adjacent to the incorporation site (n-1) may plausibly affect substrate 

binding103, we used 4 variants of the primer/template, differing in the base pair (N:X) 

forming the primer-terminus (Fig. 2.1B). We currently term these substrates as PreA, PreC, 

PreG, and PreT, corresponding to a dA, dC, dG, and dT in the n-1 position of the primer. 

In conducting these biochemical assays, we observed that PrimPol can incorporate TFV-

DP differently on these substrates, showing more efficient kinetics of incorporation in favor 

of PreT (Figs. 2.1C, D, and 2.2A). We validated these results with a different pair of primer 

and template, demonstrating that this effect is primarily due to the n-1 nucleotide 

(Figs. 2.2B). Furthermore, we also observed that this effect persists when the zinc finger 

domain of PrimPol is absent, which suggests that active site interactions in the polymerase 

domain may be able to explain the preceding nucleotide preference (Figs. 2.2C). Testing 
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other active triphosphate NRTIs that PrimPol incorporates, d4T, (−)-3TC, and (−)-FTC, 

shows that this effect is unique to tenofovir (Figs. 2.2D). 

As a control to determine if this preceding nucleotide preference is unique to 

tenofovir or also shared with the natural nucleoside substrate, we generated full Kd curves 

through single-turnover kinetics for TFV-DP and dATP incorporation by PrimPol with all 

four preceding nucleotide variations in the template (Table 2.1, Fig. 2.3A-F). The 

efficiency of TFV-DP incorporation as a function of the preceding nucleotide was PreT> 

PreA> PreG ~ PreC, with a 10-fold variation between PreT and PreC. However, 

considering this preference effect with natural dATP incorporation shows a difference of 

only about 2-fold. This observation implies that the insertion of TFV-DP is facilitated 

somehow by a thymine base at the primer-terminus. However, even in this favored context 

the insertion of the TFV-DP is 2 × 104-fold lower than the insertion of the dATP 

counterpart. In comparison to previously determined incorporation efficiencies of other 

NRTIs, TFV-DP incorporation is weaker, being incorporated approximately three 

magnitudes less efficiently than CBV-TP (Table 2.2).81 

Lastly, we addressed the possibility that TFV-DP could hinder the priming activity 

of PrimPol. We assessed the ability of TFV-DP to compete with ATP during dimer 

formation on a 3′-T20GTCAGACAGCAT29-5′ substrate. Even at concentrations of TFV-

DP in excess of ATP, dimer formation was not disrupted (Fig. 2.4A). Next, we examined 

the ability of TFV-DP to interrupt primer elongation using various templates and substrates 

(Fig. 2.4B). Extremely high concentrations of TFV-DP were able to reduce the primer 

length of the products to a greater extent when competing against ATP compared to dATP. 

This is likely because PrimPol prefers to utilize dATP when elongating primers. We also 
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observe that TFV-DP is able to modestly reduce the length of products when dATP is in 

either the 3′ site, or 5′ site. Together, the weak interference of priming activity and modest 

efficiency of NRTI incorporation suggests that PrimPol would likely be a lesser contributor 

to TDF toxicity. 
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Figure 2.1. PrimPol modestly incorporates tenofovir-diphosphate in vitro with a preceding 

nucleotide preference.  

A) Diagram depicting the potential roles of PrimPol in NRTI-associated toxicity. The left 

panel demonstrates the ability of PrimPol to alleviate toxicity by repriming downstream of 

a chain-terminated strand. In the right panel, PrimPol can mediate toxicity by incorporating 

NRTIs and thus stalling replication. Alternatively, the incorporation of NRTIs could 

prevent the ability of PrimPol to rescue replication by terminating priming. B) 

Experimental reaction set-up to demonstrate tenofovir-diphosphate incorporation by 

PrimPol. Generally, a radiolabeled dsDNA substrate with a template dT in the next 

incorporation position is extended by either dATP or TFV-DP. The n-1 nucleotide and its 

complimentary base was varied (referred to as PreA, PreC, PreG, PreT) to show the effect 

on efficiency of nucleotide incorporation. C) Denaturing PAGE of the TFV-DP 

incorporation reaction with varying nucleotides in the position preceding incorporation. 

The lower band is the initial substrate and the upper band is the TFV-DP-incorporated 

DNA. D) Graphical representation of the reaction shown in C).  
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Figure 2.2. The preceding nucleotide preference is replicable in other sequences, occurs 

without the zinc finger, and is unique to TFV-DP. 

A) Statistical significance of the estimated rates for TFV-DP incorporation in Fig. 1C and 

1D using the one-way ANOVA test, **** = p<0.0001. B) Denaturing PAGE showing the 

preceding nucleotide preference for TFV-DP incorporation by PrimPol is present for two 

independent primer/template sequences, D20A/D45 (left two gels) and D21/D36 (right two 

gels). In both cases, PreA TFV-DP incorporation is favored over PreC. C) The preceding 

nucleotide preference also occurs with the isolated polymerase domain of PrimPol (amino 

acids 1-354) using the D20A/D45 primer/template. D) The preceding nucleotide 

preference was tested using different NRTIs, d4T (dT analog, D22T/D45, top), (-)-3TC 

(dC analog, D23C/D45, middle), and (-)-FTC (dC analog, D23C/D45, bottom). In all cases 

there was not a strong preceding nucleotide preference, demonstrating that the effect 

observed with TFV-DP is unique in the NRTIs tested. 
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Table 2.1. Summary of TFV-DP and dATP incorporation by WT PrimPol dependent on 

the preceding nucleotide in the primer strand. 

Pre-steady state kinetic parameters for both TFV-dP and dATP incorporation by WT 

PrimPol at at 37°C were determined by fitting the time course data to the following single 

exponential equation: [product] = A(1− e−kobst), where A is amplitude and kobs is the 

observed single exponential rate, and t is the time. In the case of dATP incorporation, the 

single exponential rates were then plotted against each concentration of [dNTP] using a 

quadratic equation in order to extract the kpol, the maximal rate of incorporation, Kd, the 

apparent binding constant for the incoming nucleotide, and kpol/Kd, the overall efficiency 

for nucleotide incorporation. In the case of TFV-DP, the kpol was independent of [dNTP] 

the amplitude was plotted against [dNTP] and fit to the quadratic equation to determine the 

Kd value. The errors represent the standard error values of the parameters that corresponds 

to a confidence level of 68.3%, or to one standard deviation.  

 

TFV-DP kpol (s-1) Kd (µM) 
Inc. Eff. 

kpol/Kd (s-1 µM-1) 

Fold-
difference to 

PreC 

PreA 0.0016 ± 0.0003 85.6 ± 8.3 1.8 x 10-5 2.4 

PreC 0.0013 ± 0.0002 172.3 ± 15.3 7.6 x 10-6 1 

PreG 0.0014 ± 0.0005 138.1 ± 43.7 1.0 x 10-5 1.3 

PreT 0.0037 ± 0.001 45.0 ± 13.7 8.2 x 10-5 10.8  

dATP     

PreA 1.3 ± 0.06 0.7 ± 0.3 1.9 2.7 

PreC 3.2 ± 0.2 4.6 ± 1.3 0.7 1 

PreG 0.6 ± 0.03 0.7 ± 0.2 0.9 1.3 

PreT 4.6 ± 0.3 2.9 ± 0.9 1.6 2.3 
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Figure 2.3. Determining the kinetic parameters of TFV-DP and dATP incorporation by 

WT PrimPol dependent on the preceding nucleotide in the primer strand (see Table 1). 

In the case of TFV-DP incorporation by PrimPol, the amplitude of product formation 

varied with TFV-DP concentration. A-D) The kinetic parameters of TFV-DP incorporation 

by PrimPol were calculated by plotting the amplitude of single turnover experiments with 

PrimPol and TFV-DP against the concentrations of TFV-DP used. The Kd was determined 

by the concentration at half of the amplitude max. E) The similar rates across TFV-DP 

concentrations were averaged to determine the kpol. F) The kpol and Kd of dATP 

incorporation by PrimPol was determined by plotting the rates of each single turnover 

experiment against the concentration of TFV-DP used in each experiment.  
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Table 2.2. Comparison of incorporation efficiencies of NRTIs by PrimPol. 

Values for TFV-DP incorporation by PrimPol under optimal conditions (preceding 

dT in the primer) are compared to the incorporation efficiency values of other 

NRTIs by PrimPol. The errors represent the standard error values of the 

parameters that corresponds to a confidence level of 68.3%, or to one standard 

deviation. aValues obtained from Ref. 81 

 

 

 

 

 

 

 

 

 

 

NRTI kpol (s-1) Kd (µM) 
Inc. Eff. 

kpol/Kd (s-1 µM-1) 

TFV-DP 0.0037 ± 0.001 45.0 ± 13.7 8.2 x 10-5 

ddATPa 0.0138 ± 0.0008 15 ± 3 9.0 x 10-4 

AZT-TPa 0.0040 ± 0.0008 38 ± 6 1.0 x 10-4 

ddCTPa 0.033 ± 0.002 18 ± 4 2.0 x 10-3 

CBV-TPa 0.013 ± 0.002 ~1 1.3 x 10-2 
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Figure 2.4. TFV-DP is able to reduce the product length of primers during elongation but 

unable to inhibit dimer formation. 

A) Dimer formation during primer initiation by PrimPol was monitored in various 

concentrations of TFV-DP. TFV-DP did not compete with ATP even at excess 

concentrations. B) The interference of TFV-DP in primer elongation by PrimPol was 

monitored. Using a 3’-GTCT-5’ and a 3’-GCTC-5’ substrate, TFV-DP was added at 

different concentrations in competition with dATP or ATP. 
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Respiratory capacity is ablated by reducing PrimPol levels 

Because PrimPol was able to incorporate TFV-DP in vitro, although with a low 

efficiency, the role of PrimPol either mediating or protecting against mitochondrial toxicity 

remained uncertain. We predicted that PrimPol overexpression or knockdown cell lines 

could address the role of PrimPol in tenofovir-associated toxicity. If PrimPol had a 

protective effect against tenofovir toxicity, then the overexpression cell lines would fare 

better compared to the knockdown strains. Conversely, if PrimPol actively incorporates 

tenofovir and stalls replication, then the knockdown cell line would exhibit less phenotypes 

related to toxicity when treated with tenofovir. Due to the presence of tenofovir-caused 

nephrotoxicity in the renal proximal tubules of the kidney, we generated stable cell lines 

with overexpressed wild-type PrimPol or knocked-down levels of PrimPol using 

immortalized renal proximal tubular epithelial cells (RPTECs) (Fig. 2.5A).104 

Tenofovir treatment of cells can affect metabolism and reduce the respiratory 

capability of the mitochondria. Tenofovir is able to downregulate TRAP1, a regulator of 

glycolysis, which is accompanied by changes in cellular respiration.105 As a first approach, 

we monitored TRAP1 levels through immunoblotting after treatment with tenofovir 

disoproxil fumarate (TDF) for 3 days to observe the potential of varying levels of TRAP1 

as an indicator of corresponding changes in metabolism (Fig. 2.5B, C). We observed a 

downward trend in TRAP1 protein levels in both the scrambled and shRNA knockdown 

cell lines, but not in the overexpression strain. This result prompted us to further assess the 

potential of PrimPol to resist or enhance the effects of tenofovir treatment on metabolism 

through cellular respiration measurements using the Seahorse XF Analyzer (Fig. 2.5D).106 
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Upon treatment with tenofovir, we observed a universal reduction in basal 

respiration and maximal respiration (Fig. 2.6A, B). Interestingly, even in the untreated 

controls, the shRNA knockdown RPTECs showed a lower maximal respiration rate 

compared to both scrambled and overexpression cell lines, which is recapitulated in the 

TDF treatment conditions. Consequently, there was a sharp reduction in the spare 

respiratory capacity, or the ability of the cell to respond to respiratory needs which may 

arise in stress conditions (Fig. 2.6C). In order to control for effects of respiration based on 

changes in cell number, we calculated the internally normalized parameters of ATP-linked 

respiration/maximal respiration, cell respiratory control ratio, and coupling efficiency 

(Fig. 2.6D-F). Of the three internally normalized parameters, the ATP-linked respiration to 

maximal respiration ratio displayed a downward shift with the treatment of TDF, and is 

thus the appropriate parameter to compare cell strains (Fig. 2.6D). Although there were 

significant decreases in basal and maximal respiration and spare respiratory capacity with 

the shRNA knockdown strains, the difference in the ATP-linked-respiration to maximal 

respiration ratio was absent, which suggests that the differences in cellular respiration were 

due primarily to decreases in cell count. 
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Figure 2.5. TRAP1 as an indicator of affected metabolism in PrimPol knockdown 

RPTECs. 

A) Western blotting of PrimPol of the scrambled, wild-type PrimPol overexpression, and 

shRNA knockdown renal proximal tubule epithelial cell lines. B) Immunoblotting of 

TRAP1 in RPTECs after treatment of 30 µM TDF for 3 days. The lanes for each treatment 

represent a technical replicate, n=3. C) Quantified relative amounts of TRAP1 levels across 

3 biological replicates. The normalized levels of TRAP1 to GAPDH were compared for 

each cell strain to the untreated control. The shRNA and scrambled cell lines show a 

downward, but statistically nonsignificant (one-way ANOVA), trend of TRAP1 levels 

compared to the PrimPol overexpression strain. D) Seahorse XF Analyzer MitoStress assay 

schematic to measure parameters related to mitochondrial respiration. 
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Figure 2.6. PrimPol knockdown RPTECs display reduced mitochondrial fitness and 

hypersensitivity to TDF treatment.  

Scrambled, PrimPol overexpression, and shRNA knockdown strains of RPTECs were 

treated with 30 µM TDF for 3 days and oxygen consumption rate was monitored (A-F). 

The spare respiratory capacity, C), was calculated by subtracting the basal respiration from 

the maximal respiration. Internally normalized parameters were calculated to control for 

cell number (D-F). For toxicity experiments, RPTECs were treated with 30 µM TDF and 

parameters related to toxicity were measured after 5 days. G) Cell proliferation was 

measured through the MTT assay. Absorbances of the treatment conditions were 

normalized to the untreated control. H) Relative mtDNA content was quantified by qPCR 

and the treatment conditions were normalized to the mtDNA content of the untreated 

control. I) Scrambled cells were treated with varying concentrations of TDF for 5 days and 

then immunoblotted for PrimPol. J) The relative amounts of PrimPol at 60 µM in I) were 

quantified relative to the untreated control. Significance was determined by one-way 

ANOVA, n = 3. * = p<0.05, ** = p<0.01, and *** = p<0.001. 
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PrimPol knockdown cells display increased sensitivity to tenofovir 

In addition to examining the cellular respiration, it is essential to understand if 

PrimPol contributes to or alleviates mitochondrial toxicity in the context of tenofovir 

treatment. Cellular proliferation assays were utilized with the knowledge from the 

respiration experiments that suggested that the knockdown cell lines may be more sensitive 

to TDF treatment. After treatment of TDF for 5 days, cellular proliferation was monitored 

via the MTT assay and absorbances were normalized to untreated cells (Fig. 2.6G). 

Although a decrease in proliferation was observed in the overexpression cell lines 

compared to the scrambled strain, the shRNA knockdown RPTECs experienced a greater 

reduction in proliferation compared to both scrambled and overexpression cells. The 

apparent sensitivity of the shRNA knockdown cells to TDF treatment compared to the other 

cell lines corroborates our respiration data (Fig. 2.6A-D and 2.7A), implying that the 

reduction in cell number contributed to the decreased respiration. Altered mtDNA copy 

number is an additional phenotype related to NRTI-associated toxicity.72,73,107 After cells 

were treated with TDF for 5 days, the relative mtDNA content was quantified using qPCR 

and normalized to untreated cells. In both the scrambled and overexpression cell lines, the 

amount of mtDNA was increased compared to the untreated cells (Figs. 2.6H). In contrast, 

the PrimPol shRNA knockdown cells experienced a decrease in mtDNA compared to the 

untreated control, which may be an indicator of toxicity. 

To validate our results, we observed the effect of the NRTI abacavir and efavirenz, 

a non-nucleoside reverse transcriptase inhibitor (NNRTI) on the proliferation of the 

RPTEC strains. In the case of abacavir, we expected that we would observe a similar 

decrease in proliferation in the knockdown strains. However, because abacavir is 
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incorporated by PrimPol to a greater extent than tenofovir, the possibility that higher levels 

of PrimPol could mediate toxicity remained a possibility. We observed similar results to 

when the cells were treated with TDF in the proliferation assays, suggesting that PrimPol 

plays a protective role even in the case of ABC treatment (Fig. 2.7B). To confirm that our 

results are specific to NRTIs, we replicated the assays in the presence of efavirenz and 

observed no difference in proliferation between our overexpression and knockdown cell 

lines (Fig. 2.7C). 

Consolidating both the cellular respiration and toxicity analyses provide the 

impression that the primary role of PrimPol in NRTI-associated toxicity is repriming 

downstream of chain-terminated nucleotides and preventing stalled replication forks. 

Given this putative role, we hypothesized that the cells may upregulate PrimPol levels in 

response to TDF treatment as a protective measure. Surprisingly, our findings were 

contrary to our predictions in that, under high doses of TDF (60 µM), we observed a 

downregulation of PrimPol protein levels in RPTECs that was similarly observed with Polγ 

(Fig. 2.6I, J).105 Recently, it was shown that PrimPol is upregulated by the activation of the 

ATR pathway108, perhaps through interactions with RPA.109,110 It has also been previously 

described that NRTIs are able to downregulate Chk1, which is downstream of ATR. Thus, 

TDF treatment may concurrently downregulate Chk1 and PrimPol. Indeed, 

immunoblotting for Chk1 also shows a decrease of protein levels under high dosing of TDF 

(Fig. 2.6I) and that Chk1 downregulation is associated with PrimPol downregulation. 

Although the full mechanism to which PrimPol and Polγ is downregulated with treatment 

of high concentrations of TDF is unclear, it is possible that decreased amounts of these 

proteins may contribute to manifestation of toxicity. 



50 
 

 

Figure 2.7. Modulating PrimPol does not affect cell viability and validating the effects of 

PrimPol levels on NRTI-caused toxicity. 

A) Cells were seeded in 6-well plate at a low density and then counted after 2 and 4 days, 

n=3. B) The PrimPol RPTEC strains were treated with abacavir over 5 days and cellular 

proliferation was monitored using the MTT assay, n=3. C) As a control, the cells were 

treated with efavirenz, an NNRTI, over 5 days and the MTT assay was used to assess the 

toxicity, n=3. Significance was determined by one-way ANOVA, * = p<0.05, ** = p<0.01, 

and *** = p<0.001. 
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2.4 Discussion 

Nucleotide sequence context can influence NRTI incorporation by PrimPol and other 

polymerases 

Upon testing the “preceding nucleotide” effect on TFV-DP incorporation by 

PrimPol, we did not expect the striking differences observed. Although there are numerous 

examples of enzymes with nucleic acid sequence preferences111-113, whether the current 

observations might extend to other polymerases requires further investigation. Possible 

explanations for this effect may be due to additional binding interactions of TFV-DP with 

PreT, or the PreT dsDNA substrate may have an altered nucleic acid structure114 that may 

affect the active site conformation and subsequently TFV-DP incorporation that may be 

related to the acyclic nature of the chemical structure.115 Determining the ternary structure 

of PrimPol:dsDNA:TFV-DP would be valuable to reveal the mechanism behind this 

nucleotide preference. 

Understanding the biochemical and structural mechanism(s) underlying such a 

preference for inserting TFV-DP next to a thymine at the primer terminus could prove to 

be useful in drug design efforts.116 For example, if a nucleoside analog inhibitor was being 

developed as an antiviral therapy, an important consideration would be avoidance of off-

target effects for host polymerases such as Polγ. Based upon our findings of the influence 

of sequence specificity this assessment should be carried out using a variety of DNA 

substrates. While we have confirmed the preceding nucleotide effect in the specific case of 

PrimPol and TFV-DP, it may be crucial to extend these experiments to other NRTIs and 

the respective target and host polymerases. In our experiments, we were able to observe 

discrimination differences up to 10-fold with different nucleotides in the n-1 position 
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(Table 2.1). Thus, it is highly likely that NRTI discrimination values in the current 

literature may be under- or overestimated. Assessing the potential for sequence effects on 

NRTI incorporation by Polγ would be essential to provide more accurate estimates of the 

contribution of the enzyme to NRTI-associated toxicity. 

We speculate that our observations may arise from the acyclic nature of tenofovir 

compared to other NRTIs. We assessed the potential for other NRTIs to display sequence 

dependence effects but only observed a significant difference in incorporation with 

different preceding nucleotides when using tenofovir. Interestingly, we observed faster 

incorporation of tenofovir with dT or dA in the n-1 position compared to dC and dG. It is 

possible that an A-T base pair enhances tenofovir incorporation compared to a G-C base 

pair. Solving the complexes of PrimPol with tenofovir and these duplex substrates will 

allow us to understand how the atypical structure of tenofovir and base-pairing may affect 

its incorporation efficiency. 

PrimPol plays a key role in protection against tenofovir-associated toxicity 

In the present study, we addressed the possibility that PrimPol can alleviate 

tenofovir-associated toxicity. In light of our cellular experiments, we propose that the 

benefits of the repriming ability outweigh any possible toxicity due to tenofovir 

incorporation by PrimPol. One caveat to our experimental setup was that the RPTECs were 

treated with TDF for a short amount of time (3–5 days). However, if nephrotoxicity arises 

in patients after steady, low, long-term exposure to antiretroviral therapies, then the 

possibility that PrimPol could incorporate tenofovir at a low level over years of treatment 

still exists. Thus, it would be desirable to recapitulate our assays under longer treatment 

periods of TDF to more appropriately mirror a clinical situation. 
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Intriguingly, we observed decreased amounts of PrimPol when cells were treated 

with a high amount of TDF. A previous study demonstrated that treating cells with a high 

amount of TFV decreased the protein levels of Polγ and the authors suggest that the 

downregulation of Polγ may lead to toxicity.105 While it is unknown if PrimPol and Polγ 

cause toxicity through downregulation or are downregulated as a result of toxicity, PrimPol 

appears to be regulated by a similar pathway as Polγ. In light of recent findings showing 

that PrimPol is regulated in part by the ATR pathway, we also determined that PrimPol 

regulation by TDF is associated with Chk1 regulation. Our current findings support these 

previous studies and suggest a potential pathway to investigate to determine the mechanism 

of regulation of PrimPol by tenofovir. It will also be of value to examine the levels of Polγ 

and PrimPol in our cohort of patients to identify any changes in proteins level that may 

stem from long-term exposure to NRTIs in antiviral therapy. 
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Chapter 3. Biochemical investigation of the PrimPol D114N active site 

mutation identified in a HIV+ patient with mitochondrial toxicity 
 

This chapter is an excerpt from: 

Duong VN, Zhou L, Martínez-Jiménez MI, He L, Cosme M, Blanco L, Paintsil E, 

Anderson KS. Identifying the role of PrimPol in TDF-induced toxicity and implications 

of its loss of function mutation in an HIV+ patient. Sci Rep. 2020 Jun 9;10(1):9343. doi: 

10.1038/s41598-020-66153-z. PMID: 32518272; PMCID: PMC7283272. 

 

3.1 Introduction 

In the previous chapter, our cell culture experiments suggest that PrimPol plays a 

protective role against TDF-toxicity, perhaps through repriming catalytic activity. The 

possible involvement of mitochondrial polymerases in toxicity could be magnified by 

mutations in PrimPol or Polγ that impair catalytic function. In fact, prior studies from our 

lab identified a Polγ R953C mutant in an HIV+ patient, which may predispose the patient 

to NRTI-induced mitochondrial toxicity by altering the ability of Polγ to discriminate 

between natural nucleotides and NRTI nucleotides.117 We postulated that if variants of 

PrimPol that impair the function of PrimPol existed in individuals, then these mutations 

could predispose these individuals to possible NRTI-induced toxicity. 

Based upon the earlier finding that a mutation in Polγ may predispose patients on 

NRTI-regimens, we sought to identify possible mutations in the PRIMPOL gene in a 

cohort of HIV+ patients experiencing mitochondrial toxicity under tenofovir-containing 

antiretroviral drug regimens. We identified an HIV+ patient in this cohort who had a 

D114N active site mutation in PrimPol. In the current study, we characterized the effects 

of D114N PrimPol mutation at the molecular level and found that this amino acid 

substitution substantially impairs the primase and polymerase catalytic activities. 
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Taking into consideration of our results in chapter 2 that PrimPol plays a protective 

role against NRTI-induced toxicity, we surmise that the presence of inactivating mutations 

in PrimPol such as D114N might contribute to the mitochondrial toxicity associated renal 

toxicity in some patients on TDF-based ART. 

 

3.2 Materials and Methods 

Protein Purification of D114N and ZnF PrimPol 

 D114N and the isolated zinc finger domain of PrimPol were purified identically to 

the WT and AA354 constructs detailed in Chapter 2. 

Oligonucleotide labeling and annealing 

 Oligonucleotide labeling and annealing were done identically as detailed in 

Chapter 2. 

Burst and single turnover kinetics 

Kinetic assays to measure the activity of D114N PrimPol were done with identical 

conditions and oligos as detailed in Chapter 2, with exceptions. Reactions for the 

comparison of D114N to WT were done at room temperature due to relative protein 

instability at 37 °C. In addition, the incorporation of the D114N variant was slow enough 

to allow for manual mixing reactions to be employed rather than rapid chemical quench 

flow methodology.  

Study participants and procedures 

Study participants were enrolled at the Yale-New Haven Hospital from April 2011 

to March 2013. The details of the study design for this cohort have been described 

previously.118 In brief, for this PrimPol sub-study, cases (n = 13) comprised HIV-infected 
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individuals on ART for at least 12 months with clinical and/or laboratory toxicities 

associated with mitochondrial toxicity. Cases were matched by age, sex, and race/ethnicity 

to HIV-negative controls (n = 19). All participants gave their written informed consent 

before participation in the study. The study protocol was approved by the Institutional 

Review Board of the Yale School of Medicine and all the research was performed in 

accordance to the relevant guidelines and regulations. 

At study enrollment, participants answered a brief survey comprised of 

demographic characteristics and past medical history. Medical records of HIV-infected 

participants were reviewed, and disease characteristics and laboratory data (complete blood 

count, serum chemistries, liver function test, lipid profile, urinalysis, HIV RNA copy 

number, and CD4 + T-cell count) were extracted. Each participant gave about 20 ml of 

venous blood at the time of enrollment. Peripheral blood mononuclear cells (PBMCs) were 

isolated from whole blood within 2 hours of collection using Ficoll gradient (Ficoll-

Hypaque; ICN) as described previously. Aliquots of PBMCs were stored at −80 °C until 

DNA extraction for the experiments. 

DNA extraction and sequencing 

Genomic DNA was extracted from PBMCs using TRIzol Reagent (Invitrogen, 

Carlsbad, CA, Cat.No.15596026) according to the manufacturer’s instructions. This sub-

study included only study participants with sufficient archived DNA for the analysis (cases, 

n = 13, and controls, n = 19). Conversed active site and zinc finger coding exons were 

amplified with target specific primers: 

3th exon forward primer: 5′-TGGGCAACAGAGCTGACTC-3′,  

3th exon reverse primer: 5′-GAAAAACTTGAGTTGGCCATT-3′;  
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5th exon forward primer: 5′-TAAGATGCGGTGTGTGGAGA-3′,  

5th exon reverse primer: 5′-CGGTCTGATGGAGAAAGCTG-3′;  

9th exon forward primer: 5′-GTGAATAAAGATGGCATTAAAGGAGG-3′,  

9th exon reverse primer: 5′-ATTTTTAAAACAAAATAGTTTTCATATTCGCAAC-3′.  

All primers were synthesized from Keck biotechnology resource laboratory of Yale 

university. PCR products were collected using QIAquick gel extraction kit 

(Qiagen,Germany, Cat.No.28704) according to the manufacturer’s instructions. Samples 

were sent to Keck biotechnology resource laboratory of Yale university for further 

sequencing. SnapGene Viewer was used for sequence alignment. 

Site-directed Mutagenesis of D114N and D114A 

The wild-type construct was previously subcloned into a pet28a vector.81 A TEV-

cleavage site was introduced using the megaprimer method to replace the FKBP12 protein 

in an N-terminal His-tag-TEV-FKBP12 expression construct.119 Site directed mutagenesis 

to introduce the D114N mutation was carried out using the New England Biolabs Q5 Site-

Directed Mutagenesis Kit using the forward and reverse primers:  

5′-GTGTGCAAGCTTTATTTTAACTTGGAATTTAACAAACC-3′ and  

5′-GGTTTGTTAAATTCCAAGTTAAAATAAAGCTTGCACAC-3′.  

The PCR products were transformed into E. coli XL10-Gold cells and then the isolated 

plasmid DNA was sequenced to confirm successful cloning or mutagenesis. 

The plasmid pET16::CCDC111 containing the gene coding for WT PrimPol was 

used as template to generate the D114A mutation by the QuikChange Site-Directed 

Mutagenesis protocol (Stratagene). Oligonucleotides used to introduce the mutation were 

synthesized by Sigma Aldrich (St Louis, MO, USA): D114A-sense:  
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5′ GTGCAAGCTTTATTTTGCTTTGGAATTTAACAAACCTGCCAACCC 3′ 

and D114A-antisense: 

5′ GGGTTGGCAGGTTTGTTAAATTCCAAAGCAAAATAAAGCTTGCAC 3′. 

The specific D114A mutation and the absence of other mutations in the PRIMPOL gene 

was confirmed by sequencing the recombinant plasmid that was kept in E. coli DH5α. 

Protein Purification of D114A PrimPol 

Note that the protocol for D114A varies slightly to the WT and D114N purification 

as described in these current methods. PrimPol D114A protein expression and purification 

was performed identically to the WT PrimPol29 in E. coli BL21(DE3)-pRIL cells were 

transformed with the expression plasmid pET16::CCDC111-D114A. An overnight culture 

(50 ml) was incubated at 37 °C and used to inoculate 2 L of LB + ampicillin and 

chloramphenicol. Cells were grown at 30 °C up to O.D.600 0.8, and then PrimPol 

production was induced with 1 mM IPTG (Ref. 367–93–1, Sigma Aldrich, St Louis, MO, 

USA) for 2,5 h. Cells were harvested at 12,000 g for 5 min at 4 °C, and the resulting 

bacterial pellet (≈3 g/L) was frozen at −20 °C. Approximately 6 g of cells were resuspended 

in 100 mL lysis buffer (Buffer A: 50 mM Tris-HCl pH 8, 1 M NaCl, 10% glycerol, 1 mM 

PMSF, 2 mM β-mercaptoethanol, 10 mM imidazole and 400 mM AcNH4) and lysed by 

10 min sonication pulses. The lysate was centrifuged at 27,000 g for 30 min at 4 °C to 

remove cell debris. Supernatant was incubated in batch with 2 mL HisPur Ni-NTA Resin 

(Ref. 88222; Thermo Scientific, Waltham, MA, USA) during 2 h at 4 °C. Resin was washed 

in batch with Buffer A and packed into a column. The resin was washed with 40 CV 

(column volume) of Buffer A containing 20 mM imidazole. Then washed with Buffer B 

(50 mM Tris-HCl pH 8, 10% glycerol, 1 mM PMSF, 2 mM β-mercaptoethanol) and 1 M 
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NaCl, and later on with Buffer B and 50 mM NaCl. Finally, the protein was eluted with 

buffer B supplemented with 50 mM NaCl and 200 mM imidazole. Fractions containing 

PrimPol were loaded in a Heparin Sepharose 6 Fast Flow (Ref. 17–0998 from GE 

Healthcare, Chicago, IL, USA), washed with 10 CV of Buffer B with 50 mM NaCl, then 

with 10 CV of Buffer B with 100 mM NaCl, and finally eluted with Buffer B and 1 M 

NaCl. Fractions containing 99% pure PrimPol were dialysed in a Slide-A-Lyzer Dialysis 

Cassette (Ref. 66380 from Thermo Scientific, Waltham, MA, USA) against Buffer C 

(25 mM Tris-HCl pH 8, 50% glycerol, 500 mM NaCl and 1 mM DTT) for at least 2 h at 

4 °C and stored at −20 °C. 

Full extension polymerase assay on a specific primer:template molecule 

Full extension of a specific sequence substrate used a primer:  

5′-CTGCAGCTGATGCGC-3′ and template:  

5′ -GTACCCGGGGATCCGTACGGCGCATCAGCTGCAG-3′  

(in a 1:2 ratio). Reaction mixtures (in 20 µL) contained Buffer R [50 mM Tris–HCl pH 7.5, 

40 mM NaCl, 2.5% (w/v) glycerol, 1 mM DTT, 0.1 mg/mL BSA, 1 mM MnCl2], 2.5 nM 

[γ-32P]-labeled primer:template, 200 nM purified PrimPol and dNTPs (1, 10 100 µM). 

Reactions were incubated during 30 min at 30 °C, and stopped by adding 8 μL of 

formamide loading buffer, then loaded onto 8 M urea-containing 20% polyacrylamide 

sequencing gels of 30 cm long and run 2 h at 30 W. Following denaturing electrophoresis, 

primer extension was detected by autoradiography using AGFA CP-BU NEW Healthcare 

NV Medical X-RAY films blue (Ref. EWPKK, Mortsel, Belgium) and developed by a 

Kodak X-OMAT 2000 Processor (Rochester, NY, USA). 

Primase assay using M13mp18 template 
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Single-stranded M13mp18 DNA (5 nM) was used as template to assess priming 

activity of PrimPol (400 nM) in the presence of indicated dNTPs (10 µM) and 16 nM [α-

32P]dGTP (250 µCi; 3000 Ci/mmol). Reaction mixtures (20 µL) in Buffer R, were 

incubated 30 min at 30 °C then stopped by adding 8 μL of formamide loading buffer, and 

loaded onto 8 M urea-containing 20% polyacrylamide sequencing gels (60 cm) and run 2 

h at 50 W. After electrophoresis, products were detected by autoradiography using AGFA 

CP-BU NEW Healthcare NV Medical X-RAY films blue (Ref. EWPKK, Mortsel, 

Belgium) and developed by a Kodak X-OMAT 2000 Processor (Rochester, NY, USA). 

Primase assay on specific oligonucleotide templates 

Primase assays were carried out using the following unlabeled ssDNA oligonucleotides as 

templates: 3′-(T)20GTCC(T)36–5′ or 3′-(T)20GTCAGACAGCA(T)29–5′. The reaction 

mixture (20 µL) in Buffer R contained 1 µM ssDNA template, 400 nM PrimPol, 16 nM [γ-

32P]ATP or [α-32P]dGTP and indicated dNTPs at 10 µM. Dimer synthesis experiment was 

measured using ATP as a 5′nucleotide (1, 10, 100 µM). Pre-made 3PAGT primer (10 µM) 

(synthesized by IDT, Coralville, IA, USA) was used to measure the elongation capacity of 

PrimPol variants. After an incubation time of 30 min at 30 °C, reactions were stopped 

adding 8 μL of formamide loading buffer. Synthesized primers were resolved in a 8 M 

urea-containing 20% polyacrylamide sequencing gels (60 cm) and run 2 h at 50 W. After 

electrophoresis, products were detected by autoradiography using AGFA CP-BU NEW 

Healthcare NV Medical X-RAY films blue (Ref. EWPKK, Mortsel, Belgium) and 

developed by a Kodak X-OMAT 2000 Processor (Rochester, NY, USA). 

Electrophoretic mobility shift assay (EMSA) 
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 5% polyacrylamide gels were cast and prerun at 150V in 0.5x tris-borate-EDTA 

(TBE) buffer for at least an hour at 4°C. Various total concentrations of WT or D114N (0-

15 µM final) PrimPol were mixed with 3 nM primer:template substrate and incubated at 

room temperature for 40 minutes. Ficoll was added to a final percentage of 2% (wt/vol) 

and samples were loaded onto the polyacrylamide gel. Samples were run at 150V for 33 

minutes at 4°C, with the gel cassette surrounded by ice. Reactions were visualized by 

phosphorimaging (Molecular Imager FX; Bio-Rad) 

Differential scanning fluorimetry (Thermal shift assay) 

The thermal shift assay was carried out using SYPRO orange dye to monitor protein 

unfolding. 5 µM PrimPol WT, D114N, AA354, or ZnF alone or in combination with each 

other, were mixed with additional combinations of 5 µM dsDNA (D20A/D45), and 10 µM 

MgCl2 or MnCl2 in 50 mM Tris pH 7.5, 300 mM NaCl, 0.5 µM TCEP, 5% glycerol, and a 

final concentration of 5x SYPRO orange dye in a 96-well PCR plate. The plates were 

placed in a BioRad CFX connect real time system and held at 4 °C for 5 minutes, then 

raised to 95 °C by 0.5 °C steps every 30 seconds. At each 30 second step, the relative 

fluorescence units were measured using the FAM channel. The derivatives of the melting 

curves were obtained from the Bio-Rad CFX Manager software and plotted against 

temperature. Each qPCR plate contained three (combined zinc finger and polymerase) or 

six (full length protein) technical replicates and to determine the melting temperatures, 

each value was averaged and the standard deviation was calculated. For the full length 

PrimPol thermal shift assays, two biological replicates were conducted. 
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3.3 Results 

Identifying the D114N PrimPol mutation in an HIV+ patient with mitochondrial 

toxicity 

Our previous studies identified a Polγ mutation in an HIV+ patient that appeared to 

confer an increased susceptibility to mitochondrial-associated toxicity due to NRTI-based 

antiretroviral therapy, in particular, 3TC (lamivudine).117 We sought to identify possible 

mutations in the PRIMPOL gene in a cohort of HIV+ patients with ART-induced 

mitochondrial toxicity. The current PrimPol study is a subanalysis of mitochondrial 

toxicity study that enrolled participants at the Yale-New Haven Hospital from April 2011 

to March 2013. The details of the study design for this cohort have been described 

previously.118 In brief, for this PrimPol sub-study, cases (n = 13) comprised HIV-infected 

individuals on ART for at least 12 months with clinical and/or laboratory toxicities 

associated with mitochondrial toxicity. Cases were matched by age, sex, and race/ethnicity 

to HIV-negative controls (n = 19). All participants gave their written informed consent 

before participation in the study. The study protocol was approved by the Institutional 

Review Board of the Yale School of Medicine and all the research was performed in 

accordance to the relevant guidelines and regulations. 

The demographic and HIV disease characteristics of study participants are 

illustrated in Fig. 3.1A. Archived peripheral blood mononuclear cells (PBMCs) of the 

participants were used for sequencing of PRIMPOL (also named as Ccdc111). At 

enrollment CD4 counts, viral load, and duration of exposure to NRTI-containing therapies 

were extracted from their medical records. Upon Sanger sequencing of the conserved active 

site and zinc finger domain regions of PRIMPOL of the cohort, we observed heterogeneity 



63 
 

within the genomic sequence of a patient compared to healthy individuals (Fig. 3.1B, C). 

We concluded that this patient, referred to as individual 001, possesses a heterozygous 

g.340 transition mutation to a.340, translating into a D114N mutation at the protein level. 

Protein sequence alignment of PrimPol across different species and other individuals in the 

cohort emphasize the conservation of D114 (Fig. 3.1D). Given the importance of D114 as 

a key residue in the catalytic triad of PrimPol that coordinates a divalent metal ion 

(Fig. 3.1E)78,120, we hypothesized that D114N is a hindering mutation that impairs the 

overall activity of PrimPol in individual 001. 
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Figure 3.1. Identification of the D114N active site mutation in an HIV-positive patient 

experiencing nephrotoxicity. 

A) Patient data table of a cohort of 13 HIV-infected patients experiencing toxicity under a 

tenofovir-containing therapy compared to 19 HIV-uninfected patients. a. n = 13, b. n = 19, 

c. NA, not applicable. B) Sanger sequencing results of the PrimPol gene in a healthy control 

and a C) HIV-infected individual 001 showing a heterozygous mutation of g.340->a.340 

resulting in a D114N mutation in the protein. D) Protein sequence alignment of HIV patient 

001 compared to the PrimPol gene of various species and to other patients in the cohort 

study. E) Active site of the PrimPol crystal structure demonstrating the role of D114 as a 

catalytic residue (yellow) that coordinates a divalent metal ion (green). PDB: 5L2X, 

Rechkoblit, O, et al. Sci Adv (2016). 
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The PrimPol D114N mutation is deficient in primase activity 

With mounting evidence of the role of PrimPol as primarily a repriming 

enzyme31,34,35,102,121, we first examined the ability of PrimPol to synthesize primers, using 

a M13 ssDNA template to validate our hypothesis that the D114N mutation would hinder 

PrimPol catalysis (Fig. 3.2A). In comparison to wild-type PrimPol, we did not observe 

nascent primer production with the mutant in a heterogeneous sequence context. We then 

assessed D114N activity in a single template context [3′(T20)-GTCAGACAGCA-(T29)5′] 

by providing [γ-32P]ATP and the indicated dNTPs, to test sequentially the ability to initiate 

and elongate primers (Fig. 3.2B). Again, we observed a complete lack of primer initiation 

and the subsequent elongation by the D114N mutant, which parallels the null activity of a 

more drastic change of Asp114 to alanine (D114A in Fig. 2B120; Calvo et al., 2019). Next, 

to boost the formation of the initial dimer, we provided higher concentrations of the rate 

limiting nucleotide ATP and [α-32P]dGTP, on the template sequence 3′(T20)-GTCA-(T36)5′ 

(Fig. 3.2C). Even in the presence of high concentrations of the 5′ ATP nucleotide 

(100 µM), we failed to observe dimer formation using the D114N mutant protein. Although 

D114N PrimPol cannot form the initial dinucleotide for primer synthesis, it may retain the 

ability to elongate preexisting primers. To test that, we supplied the reaction with a 

synthetic 3-mer primer with a 5′-triphosphate, (3pAGT), which has previously been 

demonstrated to be important for the binding of PrimPol to the initiated primer.122 In these 

conditions, extension of the primer was efficiently carried out by wild type PrimPol but not 

by the D114N mutant (Fig. 3.2D). Lastly, we examined the conventional DNA polymerase 

activity of the D114N PrimPol mutant, by using a mature 5′ radiolabeled ssDNA 15-mer 

(which is a valid primer despite the lack of the 5′ triphosphate) annealed to a ssDNA 34-
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mer. Although we observed a prominent reduction in polymerase activity, D114N still 

retained some ability to incorporate dNTPs onto a primer (Fig. 3.2E). Even taking into 

consideration that the D114N mutant incorporates nucleotides to lesser degree compared 

to wild-type, the residual catalytic activity was surprising in contrast to the complete loss 

of primase function. 
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Figure 3.2. The PrimPol D114N mutation is deficient in primase activity.  

A) WT, D114N, or D114A PrimPol and Pol γ are mixed with the M13 ssDNA plasmid. In 

the event that PrimPol primes the plasmid, Pol γ is able to extend the mature primer. The 

D114N mutant cannot form mature primers for Polγ extension. B) The initiation and 

elongation of primers by PrimPol alone with limiting 5’ nucleotide. The D114N mutation 

is unable to initiate a primer compared to WT. C) Dimer synthesis of PrimPol. Using the 

preferred priming sequence of 5’-GTCA-3’, the D114N PrimPol is unable to form the 

dinucleotide for primer initiation. D) PrimPol extension of a supplied primer. The ability 

of the D114N mutant to extend a supplied primer with a 3’-triphosphate was assayed. 

Compared to the WT, the D114N mutant is unable to utilize the supplied 3’-triphosphate 

primer as a substrate. E) Full elongation by PrimPol under standard polymerase conditions. 

When supplied with all dNTPs and a radiolabeled 15-mer annealed to a templating DNA, 

the WT is able to fully elongate the primer while the D114N mutant is able to catalyze a 

limited number of insertions.  
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The D114N mutation retains catalytic activity but drastically reduces the kinetics of 

polymerization 

In order to further probe the magnitude of the hindering D114N mutation on 

catalytic activity, we measured the kinetics of natural nucleotide incorporation under pre-

steady-state burst and single-turnover conditions to compare the mutant and wild-type 

proteins. Under burst conditions where the DNA substrate is in slight excess of protein, 

there have been many examples of DNA polymerases exhibiting biphasic kinetics.123-125 

These kinetic observations indicate that in the overall kinetic mechanism of catalysis, 

product release of the DNA from the protein is slower in relation to the chemical catalysis 

of incorporation. We previously established that PrimPol exhibits a burst phase81, and we 

observed that the D114N mutation displayed similar biphasic kinetics (Fig. 3.3A, B). 

Compared to wild type, the burst rate of the mutant was approximately 60-fold slower, and 

the linear steady-state rate approximately 20-fold slower (Table 3.1). 

To further examine the catalytic mechanism, we carried out single turnover 

experiments to calculate the kpol, the maximal rate of incorporation, Kd, the apparent 

binding affinity of the incoming nucleotide, and kpol/Kd, the overall incorporation 

efficiency (Fig. 3.3C, D). Single-turnover experiments provide a clearer comparison of the 

chemical catalysis steps that may be obscured by the linear phase under burst conditions. 

Importantly, the binding of the incoming nucleotide may also be compromised because the 

D114N mutant could potentially affect divalent metal coordination, which may appear as 

a change in the Kd. Overall, we saw a 100-fold decrease in the overall incorporation 

efficiency (kpol/Kd) with the mutant (Table 3.1). Examining the individual kinetic 

parameters that define the incorporation efficiency revealed that this 100-fold difference 



69 
 

was reflected solely in the kpol, while the Kd for the incoming nucleotide remained nearly 

identical between the mutant and wild-type proteins. This drop of kpol in D114N during 

polymerization activity explains perfectly its incapacity of primer synthesis. 
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Figure 3.3. Kinetic and biochemical characterization of the PrimPol D114N mutation. 

A) Pre-steady state burst kinetics of WT and B) D114N PrimPol. The concentration of a 

23-mer annealed to a 45-mer (DNA:DNA) was held in slight excess to protein and the 

incorporation of dCTP was plotted against time and fit to a burst equation. C) Kd curves of 

WT and D) D114N mutant PrimPol. Rates of dCTP incorporation were measured under 

single-turnover conditions where PrimPol is in excess of DNA:DNA and plotted against 

varying concentrations of incoming dCTP. E) Electrophoretic mobility shift assays of WT 

and F) D114N PrimPol with radiolabeled dsDNA substrates in the presence of Mn2+ where 

the upper bands correspond to the formation of the PrimPol:DNA complex. G) Comparison 

of the stability of WT and D114N PrimPol by a thermal shift assay using SYPRO orange. 

The derivative of the melting curves were plotted and the local minima correspond to 

melting temperatures of the protein. 
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Burst 

 kss (s-1) kburst (s-1)  

WT 
9.9 x 10-3 ± 4.8 x 

10-3 
1.5 x 10-1 ± 6.8 x 10-2 

 

D114N 
4.7 x 10-4 ± 1.1 x 

10-4 
2.5 x 10-3 ± 5.6 x 10-4 

 

Single Turnover 

 Kd  μ   kpol (s-1) kpol/Kd  μ -1 s-1) 

WT 19.7 ± 7.5 4.2 x 10-1 ± 4.2 x 10-2 2.1 x 10-2 

D114N 23.9 ± 8.7 4.2 x 10-3 ± 4.2 x 10-4 1.8 x 10-4 

 

Table 3.1. Summary of pre-steady state kinetics of wild-type (WT) and D114N PrimPol. 

Burst pre-steady state kinetic parameters for both WT and D114N PrimPol at at 25°C were 

determined by fitting the time course data to the burst equation: 

  ( )( )  ( )1  k t

ssproduct A e obs A k t−= − +
, where A is the burst phase amplitude, kobs is the 

observed single exponential rate, kss is the steady-state rate, and t is the time.  

Single turnover kinetic parameters were determined by fitting the time course data with the 

following single exponential equation: 
  )1(  k tproduct A e obs−= −

, where A is amplitude 

and kobs is the observed single exponential rate, and t is the time. The single exponential 

rates were then plotted against each concentration of [dNTP] using a quadratic equation in 

order to extract the kpol, the maximal rate of incorporation, Kd, the apparent binding 

constant for the incoming nucleotide, and kpol/Kd, the overall efficiency for nucleotide 

incorporation. The errors represent the standard error values of the parameters that 

corresponds to a confidence level of 68.3%, or to one standard deviation. 
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DNA binding ability and protein stability are hindered by the D114N mutation 

We predicted that the D114N mutation was unlikely to have significant effects on 

DNA binding or overall structure, as described for a catalytically inactive mutation 

(D114A) of the same residue120; however, it could not be discounted that the change of 

Asp114 to Asn could have a significant effect on the stability of the whole protein, as 

described in other studies on PrimPol mutants.126 

The binding of wild-type and mutant proteins to a template/primer DNA was 

compared through electrophoretic shift mobility assays (EMSAs). While the wild-type 

protein exhibited a similar DNA binding affinity to that described in previous work, a 

striking reduction in the DNA-binding capabilities of the mutant was evident (Fig. 3.3E, 

F). Taking into consideration that DNA binding and correct positioning of the template 

DNA is a prerequisite for nucleotide incorporation activity and that EMSAs may be unable 

to detect weak binding complexes127, we concluded that the D114N mutation diminished 

the DNA binding affinity of the protein but did not completely attenuate it. The reduction 

in activity or dsDNA binding may stem from the importance of Asp114 as a catalytic residue 

or a contributor to key interactions that coordinate with the DNA or stabilize the protein. 

In order to examine the latter effects of the mutation, we utilized differential scanning 

fluorimetry (DSF)128,129 to observe changes in the melting temperatures of the wild-type 

and mutant proteins as shown in Fig. 3.3. In comparison of the melting temperatures of 

wild-type to D114N PrimPol in the presence of dsDNA and Mn2+, we observed the 

presence of two melting temperatures in the wild-type protein and one in the mutant 

(Fig. 3.3G). The presence of the 47.17 °C ± 0.26 melting peak in the wild-type compared 

to the singular 40.17 °C ± 0.26 with D114N PrimPol appeared to indicate that the D114N 
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mutation caused some instability within the protein (Table 3.2). In addition, due to the 

proximity of the melting temperature of the mutant to physiological temperature (37 °C), 

we conducted our kinetic assays at 25 °C. 

We further analyzed if the two peaks found in wild-type PrimPol correspond to the 

polymerase domain (AA354) and the zinc finger domain (ZnF).35 We conducted the 

thermal shift assay with the isolated polymerase domain, the zinc finger domain, or their 

combination in the presence of either Mg2+ or Mn2+ (Fig. 3.4A, B). The lower melting 

temperature peak appears to correspond to the ZnF and the more stable peak to the 

polymerase domain (Table 3.2). Taking this information into account in reference to the 

D114N mutant, the absence of the higher temperature minimum may represent the 

destabilization of the polymerase domain. Interestingly, further characterization 

demonstrates that both WT and D114N PrimPol were slightly more stable in the presence 

of Mg2+ than Mn2+ (Fig. 3.4C, D). Moreover, addition of dsDNA stabilized the wild-type 

PrimPol and Mn2+ complex, possibly by stabilizing the polymerase domain, while there 

was no effect on the Mg2+ complex (Fig. 3.4E, F). The dsDNA stabilization effect was 

notably absent in the mutant, which may be reflective of the reduced ability of the mutant 

to bind dsDNA as observed in the EMSAs in Fig. 3.3F (Fig. 3.4G, H). 
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Table 3.2. Melting temperatures of WT and D114N PrimPol dependent on the presence of 

Mg2+ or Mn2+
 and DNA. 

WT or D114N PrimPol (5 µM) was mixed with either MgCl2 or MnCl2 (10 µM) and 

dsDNA (5 µM) and the unfolding of the protein was monitored through fluorescence by 

SYPRO orange. The derivatives of the relative fluorescence units were plotted against 

temperature, the local minima identified, and the corresponding temperatures were 

recorded. Numbers are shown as the mean ± SD. For experiment 1A and 1B, n=6, and for 

experiment 2, n=3. 

  

Exp. 
1A 

WT + 
Mg2+ 

WT + 
Mn2+ 

D114N 
+ Mg2+ 

D114N 
+ Mn2+ 

WT + 
Mg2+ 
+ 
DNA 

WT + 
Mn2+ 
+ 
DNA 

D114N 
+ Mg2+ 
+ DNA 

D114N 
+ Mn2+ 
+ DNA 

  

Min 
1 

40.08 
± 0.20 

36.08 
± 
0.20 

42.83 
± 0.26 

38.67 
± 0.26 

40.00 
± 
0.00 

37.83 
± 
0.41 

42.58 
± 0.20 

40.17 
± 0.26 

  

Min 
2 

48.83 
± 0.26 

47.83 
± 
0.41 

  
48.92 
± 
0.20 

47.17 
± 
0.26 

    

           

Exp. 
1B 

WT + 
Mg2+ 

WT + 
Mn2+ 

D114N 
+ Mg2+ 

D114N 
+ Mn2+ 

WT + 
Mg2+ 
+ 
DNA 

WT + 
Mn2+ 
+ 
DNA 

D114N 
+ Mg2+ 
+ DNA 

D114N 
+ Mn2+ 
+ DNA 

  

Min 
1 

39.92 
± 0.20 

36.25 
± 
0.27 

42.75 
± 0.27 

38.75 
± 0.27 

40.42 
± 
0.20 

38.00 
± 
0.55 

42.67 
± 0.26 

40.00 
± 0.00 

  

Min 
2 

48.83 
± 0.26 

47.83 
± 
0.41 

  
48.92 
± 
0.20 

47.17 
± 
0.26 

    

           

Exp. 
2 

1-354 
+ Mg2+ 

1-
354 
+ 
Mn2+ 

ZnF + 
Mg2+ 

ZnF + 
Mn2+ 

1-
354 
+ 
Mg2+ 
+ 
DNA 

1-354 
+ 
Mn2+ 
+ 
DNA 

ZnF + 
Mg2+ + 
DNA 

ZnF + 
Mn2+ + 
DNA 

1-354 
+ ZnF 
+ Mg2+ 

+ DNA 

1-354 + 
ZnF + 
Mn2+ + 
DNA 

Min 
1 

47.33 
±0.29 

47.33 
± 
0.29 

35.50 
± 0.00 

33.50 
± 0.00 

47.17 
± 
0.29 

47.33 
± 
0.29 

36.00 
± 0.00 

34.00 
± 0.00 

38.67 
± 0.58 

38.50 ± 
0.71 

Min 
2 

        
35.15 
± 0.00 

34.94 ± 
0.29  
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Figure 3.4. Thermal shift assay of WT and D114N PrimPol dependent on the presence of 

Mg2+ or Mn2+
 and DNA (see Fig. 4G). 

WT or D114N PrimPol (5 µM) was mixed with either MgCl2 or MnCl2 (10 µM) and 

dsDNA (5 µM) and the unfolding of the protein was monitored through fluorescence by 

SYPRO orange (A-H). A) Comparison of the polymerase domain (1-354) alone, zinc finger 

domain alone, and a stoichiometric mixture of both complexes in the presence of DNA 

with either Mg2+ or B) Mn2+. C) Comparison of the melting temperatures with Mg2+ to 

Mn2+
 present without DNA of WT or D) D114N PrimPol. E) Observing the effects of the 

presence of DNA on the melting temperature of WT PrimPol with either Mg2+ or F) Mn2+. 

G) Observing the effects of the presence of DNA on the melting temperature of D114N 

PrimPol with either Mg2+ or H) Mn2+. 
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3.4 Discussion 

Structural basis for the loss of primase activity but residual polymerase activity in 

D114N PrimPol 

It is vital to understand how mutations present in individuals may contribute to 

disease or in this particular case, how PrimPol mutations could influence the phenotype 

predisposing towards mitochondrial toxicity. Biochemical studies investigating how 

PrimPol variants function at a molecular level is beneficial not only in considering 

treatment options and strategies in patients, but also contributes to the basic mechanistic 

understanding of the enzyme. This study is the first to identify a PrimPol mutation in an 

individual in the context of HIV ART: a single G to A transition in the PrimPol gene 

implicated an Asp to Asn mutation at amino acid position 114. Asp114 is part of the 

invariant motif A (DxE), and is one of the 3 catalytic carboxylates forming the active site 

of AEP-like enzymes as PrimPols.29,99 Mutation of any of these residues to alanine 

abolishes PrimPol activities.120 Like the other two carboxylates, Asp114 is involved in metal 

coordination at the active site, which is critical for nucleotide incorporation. 

Our initial hypothesis was that the D114N mutation would similarly compromise 

both primase and polymerase catalytic activities. However, we were surprised that PrimPol 

mutant D114N was able to retain some polymerase activity, but completely lacked primase 

activity. Some remaining activity can be explained as the substitution of a charged residue 

as Asp114 to Asn is more conservative than its change to a hydrophobic Ala. Kinetic 

analysis of the D114N mutant in DNA polymerase assays indicated a strong reduction in 

the kpol which suggests a deficient metal coordination at the active site, which compromises 

(but still allows) nucleotide incorporation. Interestingly, we observed that a change in Kd 
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is not observed with the Asn mutant. We had predicted that loss of the metal B ion in the 

active site would affect the Kd for the incoming nucleotide, since the metal ion is partially 

responsible for binding the phosphate moieties of the incoming nucleotide. This evidence 

contradicts our hypothesis that metal coordination is altered in the mutant. It is possible 

that the mutant is able to coordinate the metal to allow binding of the incoming nucleotide, 

but the optimal geometry of the active site may be altered to decrease the rate of catalysis. 

On the other hand, a similar drop of kpol in PrimPol D114N provokes a more 

dramatic consequence for dimer formation to start primer synthesis. This could be 

explained by the stricter and perhaps specific metal coordination required for binding the 

two initiating nucleotides. The crystal structure of PrimPol in priming mode with two 

catalytically competent metal ions would be critical in understanding the nuances of 

PrimPol activity when compared to the current structure.78 

The extensive comparison of wild-type and D114N PrimPol through the thermal 

shift assay also revealed interesting phenomena. Although Mn2+ has been demonstrated to 

be crucial for priming activity, we observed that PrimPol tended to be more stable in the 

presence of Mg2+. Assuming that PrimPol may utilize either Mg2+ or Mn2+ in the cell120,130, 

the stabilization/destabilization effect may favor a particular mode for PrimPol. In 

agreement with this idea, a recent paper131 demonstrated that in the presence of Mn2+, a 

conformational transition step from non-productive to productive PrimPol:DNA 

complexes limits the enzymatic turnover, whereas, in the presence of Mg2+, the chemical 

step becomes rate limiting. The appearance of two melting minima for wild-type PrimPol, 

which correspond to the ZnF and the catalytic polymerase domain, may also aid in 

understanding the primase mechanism of PrimPol. Because there are two distinct peaks for 
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each domain, it is possible that the two domains may be able to function somewhat 

independently from one another at a structural level. It is worth mentioning that PrimPol 

lacking the ZnF is polymerase competent but is not able to start primer synthesis.34,35 The 

lack of two melting temperature minima for D114N PrimPol reveals that the mutation 

destabilizes the polymerase domain. Interestingly, analysis of the Y89D mutation in 

PrimPol shows a similar destabilization.126 To discern whether the single amino acid 

mutation causes the destabilization of the catalytic domain, or if coordination of a metal 

divalent ion assists in stabilization of the protein would require further study. 

It is noteworthy that the patient identified with the D114N PrimPol mutation was 

heterozygous for the mutation. It may be interesting to determine if partially reducing the 

total amount of functional PrimPol is substantial enough to predispose a patient to off-

target toxicity, considering the knockdown of PrimPol in our cell lines was highly efficient. 

In addition, because many factors could contribute to the complex toxicity caused by 

NRTIs, it is difficult to attribute this patient’s toxicity solely to this active site mutation. 

The potential for other polymerases or other molecules involved in oxidative stress or 

maintaining dNTP pools to contribute to mitochondrial toxicity may explain why we do 

not observe other mutations in PrimPol in our patient cohort.95 
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Chapter 4. Structural investigation of 2-naphthyl phenyl ether 

compounds that target HIV replication 
 

This chapter is an excerpt from: 

Duong VN, Ippolito JA, Chan AH, Lee WG, Spasov KA, Jorgensen WL, Anderson KS. 

Structural investigation of 2-naphthyl phenyl ether inhibitors bound to WT and Y181C 

reverse transcriptase highlights key features of the NNRTI binding site. Protein Sci. 2020 

Jul 8;29(9):1902–10. doi: 10.1002/pro.3910. Epub ahead of print. PMID: 32643196; 

PMCID: PMC7454559. 

 

4.1 Introduction 

Human immunodeficiency virus (HIV) is a worldwide health issue, with 37.9 

million people infected as of 2018.132 Untreated HIV leads to acquired immunodeficiency 

syndrome (AIDS), rendering the infected person susceptible as a host to other deadly 

diseases. Although there is not a cure for HIV, life-long drug-based therapies exist to 

suppress the virus to prevent progression of HIV into AIDS. Highly active anti-retroviral 

therapy (HAART) is a combination therapy consisting of various drugs that target different 

stages of the HIV-1 infection life cycle, improving the quality of life and life expectancy 

of patients.86,133,134 Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are vital 

components of HAART that target HIV-1 reverse transcriptase (RT), which is responsible 

for the production of viral DNA.41,135 Unlike nucleoside reverse transcriptase inhibitors 

(NRTIs) that act as replication chain terminators, NNRTIs inhibit RT activity by binding 

an allosteric site approximately 10 Å from the active site mediated through a 

conformational change that alters the rate limiting step in chemical catalysis.66,68,136  

HIV-1 is highly mutable and drug-resistant strains have emerged because RT is 

error-prone, necessitating the need to develop next generation drugs that remain efficacious 
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in the rise of resistance.137,138 One such mutation is Y181C in the allosteric pocket of RT, 

which has been demonstrated to reduce the potency of first-generation NNRTIs such as 

nevirapine or delavirdine.139-141 To this end, second generation NNRTIs such as etravirine 

(ETV)  and rilpivirine (RPV) were developed that are effective against WT and an array of 

resistance-associated mutations.135,142 Even with the improved second generation of 

compounds, further development of NNRTIs is needed as compounds such as ETV and 

RPV have poor pharmacological properties and the development of resistant mutations 

have been reported.143-146 

In our previous work, we identified a set of catechol diether compounds with a 7-

cyano-2-naphthyl substituent (2-naphthyl phenyl ethers) as potential drug candidates 

through computational modeling using the BOMB and MCPRO programs.147,148 After 

biochemical and structural characterization, we observed that our synthesized compounds 

demonstrated two distinct binding modes signified by the orientation of the 2-naphthyl ring 

(Figure 4.1). The nitrile group of our parent compound (Figure 4.1A) projects toward Y181 

while the nitrile of a derivative compound (Figure 4.1B) projects towards W229, likely due 

to a 1-position substitution. Interestingly, compound 1 has an EC50 of 22 and 2600 nM to 

WT and Y181C respectively, while compound 2, containing 1-methyl and 4-chloro 

substituents has an EC50 of 6.2 and 58 nM (Table 4.1). We hypothesized that the differences 

observed in Y181C EC50 values are determined by whether the 2-naphthyl ether largely 

interacts with W229 or Y181. 

 In this study, we have solved the crystal structures of Y181C RT in complex with 

a series of 2-naphthyl phenyl ether compounds (Figure 4.2, compounds 1 and 2) and 

compare them to wild type structures. These structures explain the mechanism by which 
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certain 2-naphthyl ethers may overcome the prevalent Y181C RT mutation. In addition, 

we solved structures of RT with derivatives of the parent compound (Compounds 3-6) to 

improve efficacy against the Y181C mutation, based on our previous results. Our structural 

analysis highlights key interactions that should be considered in the development of 2-

naphthyl ethers and future NNRTIs that combat drug resistant mutants of HIV-1 while 

maintaining optimal pharmacokinetic properties. 
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Figure 4.1. Structures of compound 1 and 2 with WT RT. 

Crystal structures of compound 1 (a) colored in yellow and compound 2 (b) colored in 

magenta in complex with to WT RT. (c) Chemical structures of compounds 1 and 2. 
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Compound WT Y181C K103N/Y181C 

1a 22 2600 4000 

2 a 6.2 58 280 

3 a 7.8 60 890 

4 a 1.9 28 410 

5 a 18 900 1200 

6 23 2100 1700 

 

Table 4.1. Inhibitory Activity (EC50, nM) for HIV-1 in MT-2 Cell Assays. 

aSee ref. 148 
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Figure 4.2. Chemical structures of 2-naphthyl phenyl ether compounds. 

Chemical structures of Compounds 1-6. 
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4.2 Materials and Methods 

Expression, Purification, and Crystallization 

WT and Y181C RT was expressed, purified, and crystallized as described previously from 

a plasmid obtained from Stephen Hughes, Paul Boyer, and Andrea Ferris expressed in 

expressed in E. coli BL21(DE3) pLysS cells.124,149,150 

Data collection, processing, and structure determination and refinement 

Apo crystals used for inhibitor soaking were grown by hanging drop vaporization 

in 50 mM imidazole or HEPES (pH 6.5-7.0), 16–20% (wt/vol) PEG 8000, 100 mM 

ammonium sulfate, 15 mM magnesium sulfate, and 5 mM spermine with an initial protein 

concentration of 10 mg/mL.  Inhibitor was added to final concentration of 0.5 mM to drops 

containing suitable crystals for overnight soaking.  Crystals of the WT:3 complex were 

obtained by cocrystallization, in which 20 mg/mL of protein was first incubated with 0.5 

mM inhibitor on ice for 1 h before crystallization.  Cocrystals of WT:3 were then grown in 

50 mM MES pH 6.0, 14% (wt/vol) PEG 8000, 100 mM ammonium sulfate, 15 mM 

magnesium sulfate, and 5 mM spermine.  For cryoprotection, all crystals were transferred 

to a solution containing 27% (vol/vol) ethylene glycol and 0.5 mM inhibitor before being 

flash frozen in liquid nitrogen.  X-ray diffraction data sets on frozen crystals were collected 

at the Advanced Photon Source on NE-CAT beam line 24-ID-E.  Data sets were processed 

with either HKL2000151 or XDS.152  Phases were determined by molecular replacement 

with the program PHASER153 using the previously solved structure PDB 5TER148 as the 

initial search model.  All model building into electron density was performed with 

COOT154 and the structures were refined using Phenix Refine. 155155 For each refinement, 

5% of all reflections were omitted and used for the calculation of Rfree. Successive rounds 
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of simulated annealing, XYZ coordinate, and individual B-factor refinement were 

performed until acceptable R factors, geometry statistics, and Ramachandran statistics 

were achieved.  Data collection, diffraction, and refinement statistics can be found in Table 

4.2.  Iterative build, composite omit electron density maps shown in Figure 4.3 were 

calculated using Phenix Autobuild.156 All atomic coordinates and structure factors and have 

been deposited in the Protein Data Bank with PDB ID codes 6X47, 6X49, 6X4A, 6X4B, 

6X4C, 6X4D, 6X4E, and 6X4F. All figures were prepared by PYMOL. Crystallography 

programs were compiled by SBGrid.157 

MTT Cellular Viability Assays 

A tetrazolium-based colorimetric assay was used to determine the in vitro anti-HIV-

1 activity of compounds in MT-2 cells as described previously.158 
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Table 4.2. Crystallographic statistics table.  

 

  

WT:1 Y181C:1 Y181C:2 WT:3 WT:4 WT:5 WT:6 Y181C:6

PDB Code 6X47 6X49 6X4A 6X4B 6X4C 6X4D 6X4E 6X4F

Data collection

X-Ray Source APS 24ID-E APS 24ID-E APS 24ID-E APS 24ID-E APS 24ID-E APS 24ID-E APS 24ID-E APS 24ID-E

Wavelength, Å 0.97915 0.97915 0.97915 0.97915 0.97915 0.97915 0.97915 0.97915

Space Group C2 C2 C2 C2 C2 C2 C2 C2

Cell dimensions

a, b, c (Å) 163.06, 74.11, 108.43 162.14, 73.99, 107.86     161.77, 73.98, 107.90    221.25, 67.40   102.91    162.19, 74.11, 108.36    162.74, 74.27, 108.73    162.73, 74.08, 108.39  162.00, 73.71, 108.48  

α, β, γ (˚)  90, 99.48, 90  90, 99.34, 90  90, 100.05, 90  90, 107.77, 90  90, 100.13, 90  90, 100.02, 90  90, 99.93, 90  90, 100.01, 90 

Resolution (Å) 50 - 2.75 (2.80-2.75) 50 - 2.75 (2.80-2.75) 50 - 2.53 (2.57-2.53) 50 - 2.50 (2.54-2.50) 50 - 2.85 (2.90-2.85) 50 - 2.65 (2.71-2.65) 50 - 2.60 (2.66-2.60) 50 - 2.72 (2.78-2.72)

R merge 0.071 (0.538) 0.074 (0.477) 0.056 (0.508) 0.089 (0.520) 0.057 (0.517) 0.054 (0.595) 0.054 (0.614) 0.060 (0.610)

I  / σI 31.3 (3.5) 35.7 (3.7) 34.9 (3.4) 27.8 (3.2) 32.3 (3.3) 19.0 (2.2) 20.2 (2.4) 16.1 (2.3)

Completeness (%) 99.3 (99.2) 99.8 (100.0) 99.7 (99.6) 99.9 (100.0) 99.8 (99.7) 99.7 (99.9) 99.7 (99.6) 99.5 (99.9)

Redundancy 3.4 (3.5) 3.7 (3.7) 3.7 (3.7) 3.8 (3.8) 3.7 (3.8) 3.7 (3.8) 3.7 (3.8) 3.7 (3.6)

Refinement

Resolution (Å) 43.4 - 2.77 43.3 - 2.75 38.3 - 2.54 41.4 - 2.50 43.2 - 2.86 43.4 - 2.65 43.3 - 2.60 43.1 - 2.72

No. reflections 32,413 33,075 41,528 50,154 29,301 37,292 39,236 33,958

R work / R free 0.2340, 0.2671 0.2283, 0.2509 0.2317, 0.2685 0.2252, 0.2591 0.2201, 0.2584 0.2236, 0.2582 0.2263, 0.2594 0.2225, 0.2518

No. atoms

Protein 7718 7672 7732 7708 7692 7734 7734 7730

Inhibitor 30 30 32 32 33 35 36 36

Ion 0 5 10 21 0 10 15 5

Water 0 7 44 44 0 71 27 53

B -factors

Protein 78.35 82.1 73.76 56.01 82.93 62.61 59.93 64.14

Inhibitor 69.26 62.96 60.09 51.6 71.07 52.45 50.07 60.67

Ion 116.85 98.89 81.21 90.82 87.1 104.98

Water 56.63 54.65 48 44.59 38.27 49.05

R.m.s deviations

Bond lengths (Å) 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002

Bond angles (˚) 0.64 0.61 0.61 0.68 0.63 0.48 0.5 0.5

Ramachandran

Favored (%) 97.44 97.23 96.7 97.3 97.1 96.8 97.3 97.2

Allowed (%) 2.56 2.77 3.3 2.7 2.9 3.2 2.7 2.8

Outliers (%) 0 0 0 0 0 0 0 0
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Figure 4.3. A –weighted 2mFo -Fc electron density maps. 

RT-inhibitor complexes determined for this study superimposed upon final refined 

structures (protein in green, inhibitor in yellow). The maps are contoured at 1.0 . 

Coordinates for the compounds were omitted from the model for the calculation of 

iterative-build omit maps from the initial structure factors 
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4.3 Results 

To deduce the structural consequences that result in the pronounced differences in 

activity between WT and Y181C RT observed for the 2-naphthyl phenyl ethers, we have 

determined the structures of compounds 1, 2, and 6 (Fig. 4.2) bound to the Y181C mutant 

of RT using x-ray crystallography (Fig. 4.4).  We have also solved the crystal structures of 

compounds 3, 4, 5, and 6 bound to WT RT to examine the effects that various ring 

substitutions have on the binding of the 2-naphthyl scaffold (Fig. 4.5).  Additionally, we 

have redetermined the structure of 1 bound to WT RT to a higher resolution than the 

structure reported previously148 for a more accurate comparison with the Y181C RT:1 

complex structure presented here.  Crystal structures were solved to resolutions of 2.50 Å 

– 2.86 Å and refined to final Free R-factors between 0.2509 and 0.2685 and displayed good 

stereochemical and geometry statistics (Table 4.2).  All structures have been deposited into 

the PDB.  Calculated 2Fo-Fc and Fo-Fc omit electron density maps allowed for 

unambiguous modelling of inhibitors in both WT and Y181C protein structures (Figure 

4.3). Consistent with previously reported structures of NNRTI complexes, no significant 

changes in the overall structure of RT were observed in either the WT or Y181C structures.  

The structure of compound 1 bound to Y181C RT shows 1 binds in a similar 

conformation as it does in WT RT.  The cyano group of the naphthyl ring projects over 

Y181 and away from W229.  As seen in the superposition with the WT structure, when 

bound to Y181C RT, both the naphthyl and catechol rings of 1 move 1.4 Å towards the 

empty space created by the vacated Y181 side chain (Figure 4.4A).  As a result of this shift, 

the naphthyl ring of 1 moves further away from W229 compared to its position in WT RT.  

Interestingly, the side chain of Y188 in the mutant compensates for this movement by 
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turning towards C181 along with compound 1.  This compensatory movement allows Y188 

to re-optimize its stacking interaction with the displaced 1 in the Y181C RT mutant.  

Likewise, compound 2 binds to the Y181C mutant in the same overall conformation 

previously observed in WT RT, in which the cyano group of the naphthyl ring points 

toward the W229 side chain.148 However, unlike compound 1, the superposition of the WT 

and mutant structures clearly shows the binding of compound 2 is identical in both WT and 

Y181C RT (Figure 4.4B). This suggests that the interaction with W229, which results 

primarily from the different conformation of the 2-naphthyl ring of 2, contributes much 

more to the binding of this compound than it does for compound 1.  

The structures of 2-naphthyl ether analogs 3 and 4 bound to WT RT have also been 

determined.  The superposition of these structures with the compound 2 complex show all 

three compounds bind to WT RT very similarly (Figure 4.6). The fluorine substitution at 

the 4-position in 3 and the methyl group substitution on 4 make no impact on binding 

conformation of the 2-naphthyl ring compared to 2, nor do they significantly alter activity 

of the compounds against either WT or mutant HIV (Table 4.1).148 The nearly identical 

bound conformations of 2, 3, and 4 most likely result from the shared methyl group 

substitution at the 1-position of the naphthyl ring which severely restricts the 

conformational freedom of the 2-naphthyl compounds.148 The increased activity measured 

for 4 may result from the addition of the fluorine on the catechol ring as seen in other 

classes of catechol diether inhibitors.159,160  

A series of 2-naphthyl compounds containing larger substitutions off the naphthyl 

4-position have been previously reported.148 For our current analysis, we have determined 

the structures of two examples from this series, 5 and 6, bound to WT RT.  The 
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superpositions of the structures of 5 and 6 with 2 show the ligands bind similarly (Figures 

4.5A, B). The 4-cyclopropyl group of 5 and 4-methyl ester group of 6 both bind within a 

small pocket surrounded by residues P95, Y181, and Y188 of RT.  Interestingly, these three 

residues all shift from their relative positions in the compound 2 bound structure (Figure 

4.5A, 4.5B).  Whereas P95 and Y188 move away from the bulky 4-position substituents, 

Y181 moves toward the substituent to assist in forming the sub-pocket that accommodates 

the cyclopropyl and methyl ester groups. In addition to these protein residue 

rearrangements, the 2-naphthyl rings of 5 and 6 must also slightly shift toward F227, away 

from P95 and Y181, to create room for the 4-position groups of each compound.  Within 

its position in the P95 pocket, the methyl ester group of compound 6 is unable to form any 

hydrogen bonds with the protein.  Furthermore, the superposition of 6 bound to Y181C RT 

with that of the WT structure shows the binding of the compound is nearly identical in both 

structures (Figure 4.5C).  The large methyl ester group off the 4-positon continues to point 

towards P95 and does not move toward the empty space created by the missing tyrosine in 

the Y181C RT mutant. 
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Figure 4.4. Superposition of 2-naphthyl compounds with WT and Y181C RT. 

(a) Superposition of 1 bound to WT RT (1 in lilac, protein in green) and Y181C RT (1 in 

yellow, protein in pink) (b) Superposition of 2 bound to WT RT (2 in lilac, protein in green) 

and Y181C RT (2 in yellow, protein in pink). 
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Figure 4.5. Structures of 2-naphthyl compounds with large substitutions on the 4-position. 

(a) Superposition of 5 bound to WT RT (5 in yellow, protein in pink) with 2 bound to WT 

RT (2 in lilac, protein in green). (b) Superposition of 6 bound to WT RT (6 in yellow, 

protein in pink) with 2 bound to WT RT (2 in lilac, protein in green). (c) Superposition of 

6 bound to WT RT (1 in lilac, protein in green) and Y181C RT (1 in yellow, protein in 

pink). (d) Superposition of bound structures of 5 (pink), and 6 (yellow) with the structure 

of the WT:1 complex (1 in lilac, protein in green). 
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Figure 4.6. Structures of 2-naphthyl compounds with small substitutions on 

the 4-position. 
(a) Superposition of 3 bound to WT RT (3 in yellow, protein in pink) with 2 bound to WT 

RT (2 in lilac, protein in green). (b) Superposition of 4 bound to WT RT (4 in yellow, 

protein in pink) with 2 bound to WT RT (2 in lilac, protein in green). 
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4.4 Discussion 

The 2-naphthyl phenyl ethers represent a promising class of NNRTIs that have been 

shown to have 1 – 10 nM potencies against WT HIV strains.148 However, initial analogs 

from this class, such as those presented here, showed weaker activity against clinical HIV 

strains that contain the Y181C RT mutant.  Whereas compound 2 displays a 10-fold 

decrease in activity between WT and Y181C strains, compounds 1 and 6 show up to 500- 

to 1000-fold diminished activity.  The structures determined here provide insight into the 

structural basis that result in these reduced activities in the presence of the Y181C mutation 

in the NNRTI binding pocket. 

Compounds 1 and 2 have previously been shown to bind WT RT with different 

conformations of the 2-naphthyl ring dependent upon the substitution at the naphthyl 1-

position.  When the 1-position is substituted with a methyl group as in compound 2, the 2-

naphthyl ring prefers to bind with a conformation such that the cyano group projects 

towards the vicinity of W229.  Since this binding conformation takes advantage of a greater 

interaction between the naphthyl group and W229, it has been previously postulated that 

compound 2 would show less of an impact when Y181 is substituted by cysteine.148  The 

structure of 2 bound to Y181C RT reported here does indeed reveal the interaction with 

W229 to be substantial enough to maintain compound 2 in its WT position even in the 

absence of Y181.  In contrast, we show the position of compound 1 to be significantly 

altered in the presence of the Y181C mutation, and given the larger role Y181 plays in the 

binding of 1 to WT RT, this result is not unexpected.  In the absence of Y181, the catechol 

and 2-naphthyl rings of 1 shift toward C181 and away from W229.  Whereas the interaction 

made by 1 with W229 is already suboptimal in WT RT, it becomes even less optimal in 
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the presence of C181, as the naphthyl ring of 1 is displaced further away from W229 in 

order to occupy the space created by the vacated Y181.  Thus, compound 1 loses key 

contacts with both W229 as well as the absent Y181 in the Y181C RT mutant.  Although 

Y188 slightly compensates for this loss by rotating toward the shifted naphthyl ring of 1 in 

the mutant, the activity of 1 still diminishes 1000-fold against Y181C HIV strain.  In 

comparison, compound 2 only loses interaction with Y181 and not W229 in the Y181C 

mutant and as a result, displays only a 10-fold decrease in activity against the mutant strain.  

Four additional 2‐naphthyl analogs that did not have a substitution at the 1‐positon were 

also previously examined, and they similarly show 46‐163‐fold worse activities against the 

variant HIV strain.148 

The 2-naphthyl analogs that contain larger substituents off the naphthyl ring 4-

position were initially designed with the expectation that the larger groups would occupy 

a portion of the space created in the Y181C mutant and have improved potency against 

mutant HIV strains.  The initial compounds, however, were less active against both WT 

and variant HIV strains compared to the parent compound that possesses only a methyl 

group substitution at the 4-position148.  The structural rearrangement of residues P95, Y181, 

and Y188 that are necessitated to accommodate the larger 4-position groups most likely 

incurs an entropic penalty that results in the decreased activity exhibited by these 

compounds.  Furthermore, in the presence of the Y181C mutation, the bulky group of 6 

maintains its WT-bound conformation and does not move toward the vacated space of 

Y181. This inflexibility may explain why these compounds do not fare better against HIV 

variants as initially hypothesized. In the case of compound 6, the methyl ester group is 

unable to form any hydrogen bonds with the surrounding residues, and the resulting 
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desolvation penalty may further contribute to its weaker activity.  Interestingly, the 

superposition of the 5 and 6 structures with the structure of 1 shows the cyclopropyl and 

methyl ester substituents to occupy the same space as that of the 2-naphthyl ring of 1 

(Figure 4.5D). The poorer activities displayed by both the 4-position substituted analogs 

and 1 against WT HIV (Table 4.1) suggest that the P95 sub-pocket can be a difficult region 

of the NNRTI binding site to target successfully in design studies.   

Although the initially designed set of 2-naphthyl compounds containing large 4-

position substituents described here did not show improved activity against either WT or 

mutant HIV strains, subsequent analogs have been successfully utilized in the design of 

covalent inhibitors against Y181C RT.158  These compounds contain either an α-halo amide 

or acrylamide group off the naphthyl 4-position that act as an electrophilic warhead, and 

they provide an interesting comparison to the 4-position substituted examples presented 

here.  Upon binding to WT RT, the catechol ring of these warhead-containing compounds 

shifts away from Y181 by 1.2 Å to provide room for the large acrylamide group from the 

4-position, much like what is observed in the structures of 5 and 6 RT complexes.  As a 

result, these warhead-containing 2-naphthyls similarly display a 100-fold decrease in 

activity against WT HIV compared to compound 1. However, the electrophilic functional 

groups contained in these compounds have been shown to covalently modify the C181 side 

chain and irreversibly inhibit activity of the resistant Y181C RT mutant.158 This special 

feature allows these 4-substituted 2-naphthyl inhibitors to retain their activity against 

Y181C mutant strains.  Whereas placing bulky groups off the 4-position that look to solely 

replace the vacated Y181 residue may not be sufficient to overcome Y181C resistance, 
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success can be achieved by instead utilizing functional groups at this position that are 

capable of reacting with the substituted C181 side chain. 

Based on the structural results presented here, the interaction between NNRTI 

compounds with W229 appears to be a major driving force for overcoming Y181C RT 

strains.  Compound 1 does not interact as strongly with W229 in WT RT (Figure 4.7A) and 

displays a 1000-fold reduction of activity against Y181C RT.  In comparison, compound 2 

interacts much more strongly with W229 (Figure 4.7B) and only shows a 10-fold reduction 

against the mutant strain. Furthermore, a compound from the 1-naphthyl class of catechol 

diethers, which has been shown to make an even more extended edge to face interaction 

with W229 than that observed for compound 2 (Figure 4.7C)160, displays only a 3-fold 

reduction in activity against Y181C HIV.159 This comparison suggests that the more a 

compound interacts with W229 within the NNRTI binding site, the more likely it will have 

the ability to overcome the Y181C resistance mutation in HIV.  Given that W229 does not 

appear to be a very mobile residue when comparing the many RT structures solved and 

that W229 mutations that yield resistance have yet to be identified in the clinic further 

suggest that targeting W229 in drug design studies may lead to the discovery of more 

efficacious NNRTI drugs. 
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Figure 4.7. Space filling models of 2-naphthyl compounds. 

Depicting the interactions between compounds 1 (a, 1 in yellow), 2 (b, in lilac), and a 1-

naphthyl analog (c, in pink, PDB code: 6OE3) and Y181 and W229 (in green). 
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Chapter 5. Distinguishing the activity of Polα with two replication 

substrates 
 

This chapter is an excerpt from: 

Baranovskiy AG, Duong VN, Babayeva ND, Zhang Y, Pavlov YI, Anderson KS, Tahirov 

TH. Activity and fidelity of human DNA polymerase α depend on primer structure. J Biol 

Chem. 2018 May 4;293(18):6824-6843. doi: 10.1074/jbc.RA117.001074. Epub 2018 Mar 

19. PMID: 29555682; PMCID: PMC5936803. 
 

5.1 Introduction 

Three DNA polymerases are required for genome replication in eukaryotes: DNA 

polymerase α (Polα), Polε, and Polδ.161 All of them belong to the B-family and fulfill the 

different tasks. Polε synthesizes most of the leading strand, Polδ is mainly involved in 

synthesis of the lagging strand, and Polα generates the primers for both polymerases.162,163 

Polα alone cannot synthesize DNA primers de novo and relies on RNA primers created by 

primase. Polα works in a tight complex with primase, called the primosome.164,165 

Synthesis of the chimeric RNA–DNA primers by the primosome is highly coordinated by 

autoregulation through the alternating activation/inhibition of two catalytic centers, which 

is mediated by the C-terminal domain of the primase accessory subunit.166 Relatively low 

fidelity of Polα, which does not possess a proofreading activity, results in mutational hot 

spots predominantly on the lagging strand.167 In addition to the established role of 

primosome in nuclear replication, it is involved in formation of hybrid DNA:RNA duplexes 

in the cytosol, which are important for regulation of the type I interferon response.168 Polα 

is a direct target of an anti-tumor toxin CD437, an attractive anti-cancer lead molecule, 

which induces apoptosis selectively in cancer cells.169 
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Human Polα (hPolα) is composed of two polypeptides: the catalytic subunit (p180) 

and the accessory B-subunit (p70), with calculated molecular masses of 166 and 66 kDa, 

respectively. p180 contains two domains, the catalytic (residues 338–1250) and the C-

terminal (Polα CTD, residues 1266–1462) domains, which are flexibly connected by a 15-

residue-long linker.166 The catalytic domain possesses DNA-polymerizing activity but has 

no proofreading exonuclease activity, in contrast to other replicative DNA Pols, δ and ε.170 

Polα CTD connects the catalytic domain with p70 and primase and contains two conserved 

zinc-binding modules, where each zinc ion is coordinated by four cysteines.166,171,172 The 

N terminus of p180 (residues 1–337) is predicted to be poorly folded and does not 

participate in primer synthesis. The structural information for this region is limited to a 

small peptide in the catalytic subunit of yeast Polα (yPolα; residues 140–147) that interacts 

with the replisome.173 

In this chapter, we use structural and kinetic approaches to analyze hPolα 

interaction with the template:primer and dNTP and the effect of the primer structure on 

hPolα catalysis, processivity, and fidelity. Understanding these interactions will give us 

insight into the mechanism of Polα replication. 
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5.2 Materials and Methods 

Protein expression and purification 

Cloning, expression, and purification to homogeneity of p180core (residues 335–1257), 

which contains the catalytic domain of hPolα, have been described elsewhere.174 Peak 

fractions obtained from Heparin HP HiTrap column (GE Healthcare) were combined and 

dialyzed to the buffer specific for each application (see below). 

Crystallization 

DNA:RNA and DNA:DNA duplexes were obtained at 0.2 mM concentration by annealing 

at 43 °C for 30 min (after heating at 70 °C for 1 min) in buffer containing 10 mM Tris-

HCl, pH 7.9, and 70 mM KCl. In the case of DNA:RNA duplex, the sequences for DNA 

template and RNA primer were 5′-ATTACTATAGGCGCTCCAGGC (the region 

complementary to a primer is underlined) and 5′-rGrCrCrUrGrGrArGrCrG/ddC/, 

respectively (/ddC/is a dideoxycytidine, which prevents polymerization during 

crystallization). In the case of DNA:DNA duplex, the template and primer were 5′-

ATAGGCGCTCCAGGC and 5′-GCCTGGAGCG/ddC/, respectively. Dialyzed protein 

sample (15 μM p180core) was diluted 1.5-fold with dialysis buffer (10 mM Tris-HCl, pH 

7.7, 100 mM KCl, 1% glycerol, and 1 mM DTT) containing 36 μM template:primer, 3.6 

mM MgCl2, and 12 mM dCTP. The ternary complex was concentrated 10-fold and flash-

frozen in liquid nitrogen. Before crystallization experiments, the aliquots of 

protein/template:primer/dCTP solutions were defrosted and centrifuged to remove the 

precipitate, and the sample monodispersity was verified with the dynamic light scattering. 

The screening of crystallization conditions was performed with the sitting-drop vapor 

diffusion method at 295 K by mixing 1 μl of ternary complex solution with 1 μl of reservoir 
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solution. Initial screen solutions producing tiny crystals were optimized to produce well-

shaped crystals at 295 K with reservoir solutions containing 0.8 mM zinc sulfate, 8.8% 

(v/v) PEG MME 550, and 50 mM MES, pH 6.5, for p180core/DNA:RNA/dCTP and 0.8 

mM cobalt chloride, 2 mM tris(2-carboxyethyl) phosphine (TCEP), pH 7.5, 250 mM 1,6-

hexanediol, and 50 mM sodium acetate, pH 4.6, for p180core/DNA:DNA/dCTP. 

Data collection 

For data collection, each crystal was soaked in cryoprotectant solution (100 mM potassium 

chloride, 0.8 mM zinc sulfate, 1.1 mM magnesium chloride, 15% (v/v) PEG MME 550, 

15% (v/v) ethylene glycol, and 50 mM MES, pH 6.5, for p180core/DNA:RNA/dCTP 

crystals, and 0.8 mM cobalt chloride, 2 mM TCEP, pH 7.5, 230 mM 1,6-hexanediol, 26% 

(v/v) ethylene glycol, and 50 mM sodium acetate, pH 4.6, for p180core-DNA:DNA-dCTP 

crystals) for a few seconds, scooped in a nylon-fiber loop, and flash-cooled in a dry 

nitrogen stream at 100 K. All initial diffraction data were obtained on a Rigaku R-AXIS 

IV imaging plate using Osmic VariMaxTM HR mirror-focused CuKα radiation from a 

Rigaku FR-E rotating anode operated at 45 kV and 45 mA. Complete diffraction data sets 

were collected using synchrotron X-rays on the Argonne National Laboratory Advanced 

Photon source beamline 24-ID-E using ADSC Quantum 315 detector. All intensity data 

were indexed, integrated, and scaled with DENZO and SCALEPACK from the HKL-2000 

program package.151 The crystals of p180core/DNA:RNA/dCTP belong to trigonal space 

group P3221 and diffract up to 2.2 Å resolution, and the crystals of 

p180core/DNA:DNA/dCTP belong to tetragonal space group P42211 and diffract up to 

2.95 Å resolution. Both crystals contained only one copy of the ternary complex in the 
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asymmetric unit. The crystal parameters and data-processing statistics are summarized 

in Table 5.1. 

Crystal structure determination 

Initial phases for p180core/DNA:RNA/dCTP structure were determined by the 

molecular replacement method using the coordinates of backbone atoms of the yeast Polδ 

catalytic core derived from its ternary complex with template:primer and dCTP (PDB 

code 3IAY) as a search model. The positions of magnesium and zinc ions were determined 

using an anomalous difference Fourier map. Molecular replacement and initial automated 

model rebuilding with Phenix155 revealed over 70% of correctly built protein structure. The 

model building was continued and completed manually with Turbo-Frodo, and the 

structure was refined using standard protocols of CNS version 1.1.175 After the addition of 

solvent molecules, the model was refined at 2.2 Å resolution to an Rcryst of 21% and 

an Rfree of 23.9%. The structured region of protein starts with Glu338 and ends with Thr1244. 

The electron density maps were poor or were missing also for the internal regions 674–

677, 809–833, and 883–895; therefore, these regions were excluded from the structure. 

The p180core/DNA:DNA/dCTP structure was determined by the molecular 

replacement method using the coordinates of p180core in the complex with DNA:RNA 

and aphidicolin (PDB code 5Q5V) as a search model. The model was adjusted manually 

with Turbo-Frodo. The positions of magnesium and cobalt ions were determined using an 

anomalous difference Fourier map. The structure was refined at 2.95 Å resolution using 

standard protocols of CNS version 1.1175to an Rcryst of 25.9% and an Rfree of 30.1%. The 

traceable electron density starts with Glu338 and ends with Val1248. The regions 674–677, 

810–833, and 883–895 with missing electron density were excluded from the model. The 



105 
 

electron density was relatively weak for the portion of the thumb closer to the thumb tip, 

especially for residues 1137–1154, indicating their partial disorder and/or elevated 

mobility. 

The refinement statistics for both structures are summarized in 5.1. The figures 

containing molecular structures were prepared with the PyMOL Molecular Graphics 

System (version 1.8, Schrödinger, LLC). 

Pre-steady-state kinetic assays 

Pre-steady-state kinetic assays were performed using the RQF-3 rapid chemical 

quench apparatus (KinTek) at 37 °C. All kinetics assays were carried out using reaction 

buffer. Polα was incubated with template:primer and rapidly mixed with dNTPs before 

quenching with 0.5 M EDTA. Products were collected in a tube with formamide dye (0.1% 

bromphenol blue (w/v), 0.1% xylene cyanol (w/v)) and separated by denaturing urea 

PAGE. The radiolabeled products were visualized by the Molecular Imager FX phosphor 

imager (Bio-Rad) and quantified by Quantity One, version 4.6.9 (Bio-Rad). 

For optimal separation of RNA primer-elongated products, a modified denaturing 

urea PAGE protocol was employed. A solution of acrylamide mix was made with the 

addition of 10% formamide (19% acrylamide, 1% bisacrylamide, 10% formamide, 

7 M urea, 1× TBE buffer (pH 8.3)). The acrylamide polymerization reaction was initiated 

with 0.05% ammonium persulfate and 0.1% TEMED. Before loading the gel with sample, 

the gel was run at 3000 V for at least 2 h to allow the gel to heat up. The elongated products 

containing equal parts of quenched product and formamide dye were then loaded onto the 

gel (<10 μl) and allowed to run for ∼6 h. 

Burst incorporation kinetics 
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Burst incorporation kinetics were conducted with final concentrations of excess 

template:primer (9 μM) to Polα (3 μM). To ensure that binding of the incoming nucleotide 

was not rate-limiting, a high concentration of dATP (200 μM) was used in the 

polymerization reaction. The reaction products were quantified, and the concentration of 

product was plotted against time and fit to both a linear and a burst equation, [product] = 

A(1-e-kt) + ksst, where A is the burst phase amplitude corresponding to the active site 

concentration, kobs is the observed rate, kss is the steady-state rate, and t is the time. In the 

event of misincorporation after a correct incorporation, 500 μM dATP was used to ensure 

nucleotide saturation. 

Single- and double-nucleotide incorporation assays 

Single- and double-nucleotide incorporation assays were performed with final 

concentrations of excess Polα (3 μM) to template:primer (100 nM). In the case of single-

nucleotide incorporation assays, the concentration of dATP was varied (1–300 μM). For 

each experiment at a particular dATP concentration, the concentration of product was 

plotted against time and fit to a single-exponential equation, [product] = A(1-e-kt), 

where A is the amplitude, kobs is the observed rate for the incorporation of the incoming 

dNTP, and t is the time. The kobs was then plotted against dATP concentration and then fit 

to a quadratic equation to obtain the Kd, the apparent binding constant for the incoming 

nucleotide for the Polα/template:primer binary complex, and kpol, the maximum rate of 

nucleotide incorporation. 

In the case of double-nucleotide incorporation assays, Polα first incorporates a 

dATP followed by a subsequent dTTP incorporation. The concentration of dATP was held 

constant at saturating amounts based on single-turnover experiments (100 μM for DNA 
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primer and 300 μM for RNA primer), and the concentration of dTTP was varied (1–300 

μM). The data were fit using KinTek Global Explorer176 to provide an estimate for 

the Kd and kpol for the second incorporation event. 

Processivity assays 

Processive polymerization assays were performed under similar single-turnover 

conditions as the single- and double-nucleotide incorporation assays with final 

concentrations of excess Polα (3 μM) to template:primer (100 nM). The 

Polα/template:primer complex was mixed with saturating concentrations of all dNTPs (240 

μM each) to allow for complete extension of the primer substrate. The processivity data 

were modeled in KinTek Global Explorer to determine the kpol and koff, the rate of 

dissociation of the template:primer substrate from Polα, for each incorporation event. 

In fitting the data to the models, the following assumptions were made: 1) all 

incorporation events were irreversible, 2) the Kd and kpol values obtained from the single-

incorporation experiments were manually fixed for the first incorporation in the double-

incorporation modeling, 3) the kon values for template:primer binding to Polα were 

assumed to be the same, disregarding primer length differences. 

Data analysis and kinetic models 

Analysis of the radiolabeled products through the phosphor imager provides raw 

data in count values. For each time point, the counts of each band present were summed to 

calculate the total amount of counts and subsequently the percentage of each product length 

present. These values were then normalized to add up to 100% and then converted into 

concentration amounts based on the total amount of nucleic acid substrate used in the assay. 
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The KinTek Global Explorer program requires user-inputted models to fit kinetic 

data for the estimation of rates (Fig. 5.1)176,177. Briefly, the data from double-incorporation 

assays were fit to a two-step mechanism of dNTP binding followed by incorporation that 

was modified to account for two incorporations. The processivity data were fit using a 

model that allows for binding or dissociation of each DNA product and combines the dNTP 

binding and incorporation event into one rate. 
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Figure 5.1. Kinetic models utilized to fit kinetic data in KinTek Global Explorer for the 

estimation of rates.  

Various models were employed to fit the different kinetic experiments, using Polα to 

extend a DNA or RNA primer. For the double incorporation assays, a two-step mechanism 

was utilized, where the binding of the incoming dNTP is followed by incorporation of the 

dNTP to elongate the strand. In the processivity modeling, a model where the primer could 

either elongate or dissociate from Polα at each primer length was utilized.   
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5.3 Results 

Interaction of human Polα with DNA:DNA and RNA:DNA double helices 

The structures of the p180 core of hPolα with DNA:RNA (PDB: 4QCL) or 

DNA:DNA (PDB: 6AS7) and dCTP were solved (Table 5.1). Due to potential crystal 

packing effects seen in the DNA:DNA ternary structure, in order to compare the two 

substrates the binary complex of DNA:DNA (closed form, PDB: 5IUD) was overlapped 

with the RNA:DNA structure. Binding of a hybrid duplex results in potential steric 

hindrance between Arg1081 and the 2′-OH of the P4 ribose (Fig 5.2A) and in a local change 

of RNA conformation (Fig 5.2B), which includes the unusual syn-conformation of 

P4 (torsion angle χ = −70.3°), 2′-endo pucker of its ribose, and unstacking between the 

bases of P4 and P5. This bending of the RNA primer was also observed in the 

yPolα/DNA:RNA/dGTP complex.178 It is notable that the orientation of the P3 phosphate 

in the RNA primer is more favorable for hydrogen bonding with Arg1082 and Arg702, 

compared with the P3 phosphate of the DNA primer. The same position of Arg1081 analog 

in ternary complexes of yeast Pols δ and ε indicates a common mechanism of RNA sensing 

in replicative DNA polymerases. 

Polα does not exhibit typical polymerase burst kinetics 

A pre-steady-state burst experiment was performed to provide insight into the 

relative rates of DNA polymerization steps in the kinetic mechanism of Polα. It has been 

frequently observed that under burst conditions (slight excess of template:primer over 

enzyme), many polymerases exhibit biphasic kinetics.123-125 This biphasic pattern indicates 

that in the overall mechanism, the release of products is rate-limiting and slow compared 

with steps governing chemical catalysis. p180core (3 μM) was incubated with either a 15-
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nucleotide DNA (D15) or RNA primer (R15) annealed to a 25-nucleotide DNA template 

(T25; 9 μM) to allow for the formation of the binary complex (Fig 5.3A). The preincubated 

solution was rapidly mixed with dATP (200 μM) using an RQF-3 rapid chemical quench 

apparatus. When the concentrations of products were plotted versus reaction time, an 

apparent biphasic curve was not observed but rather a linear formation of product for the 

elongation of both the DNA (kss = 104.3 ± 3.1 s−1) and RNA (kss = 31.7 ± 1.7 s−1) primer 

substrates (Fig. 5.3B, C). Therefore, it appears that the Polα catalytic core does not exhibit 

typical biphasic kinetics observed in reactions with main replicative polymerases, Polδ and 

Polε.179,180 This kinetic behavior indicates that for Polα, the rate of product release is equal 

to or faster than the rate of chemistry.  

Polα incorporates the first and second nucleotides into a DNA primer more efficiently 

than into an RNA 

Single-nucleotide incorporation experiments were done under single-turnover 

conditions (excess Polα over template:primer) to quantify the maximal rate of 

catalysis, kpol, and the apparent binding constant for the incoming nucleotide, Kd. p180core 

(3 μM) was incubated with a template:primer (100 nM) and rapidly mixed with varying 

concentrations of dATP (1–300 μM) under rapid chemical quench conditions (Fig. 5.2D). 

For the DNA primer substrate, the kpol is 33.8 ± 3.7 s−1, the Kd is 9.2 ± 3.4 μM, and the 

incorporation efficiency (kpol/Kd) is 3.7 μM−1 s−1 (Table 5.2). For the RNA primer substrate, 

the kpol, Kd, and kpol/Kd values are 48.0 ± 2.7 s−1, 62.2 ± 10.4 μM, and 0.8 μM−1 s−1, 

respectively. It appears that Polα incorporates a nucleotide more efficiently to a DNA 

primer by approximately a factor of 4.5. Strikingly, this discrepancy is primarily due to 

differences in the Kd for the incoming nucleotide.  
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 Experiments were conducted to examine whether subsequent incorporations to a 

DNA primer were more efficient as compared with an RNA primer after the initial dNTP 

incorporation event. During the second incorporation, a 3′-hydroxyl of 

deoxyribonucleotide attacks the α-phosphate of incoming dNTP in both the DNA and RNA 

primer extension assays. Double-incorporation assays were conducted to estimate the 

kinetic parameters of a subsequent incorporation after the first incorporation. Experiments 

were designed to observe a dATP followed by a dTTP incorporation under single-turnover 

conditions. Preincubated solutions of p180core (3 μM) and template:primer (100 nM) were 

mixed with a solution containing both dATP and dTTP. Because the kinetic parameters of 

the second incorporation were desired, concentrations of dATP were held at saturating 

amounts (100 μM for DNA primer and 300 μM for RNA, based on single-incorporation 

experiments), and concentrations of dTTP were varied from 1 to 300 μM (Fig. 5.4A). 

 The appearance of the second incorporation product is complex due to its 

dependence on the first product being made; product concentration cannot simply be fit to 

a single-exponential curve like the single-incorporation assays. Thus, the KinTek Global 

Explorer program176 was utilized to fit the data and provide an estimate for 

the kpol and Kd of the dTTP incorporation (Fig. 5.5). For the second incorporation to a DNA 

primer, the kpol is estimated to be 65.8 s−1, and the Kd is 5.4 μM. The estimates for the RNA 

second incorporation are kpol = 23.1 s−1 and Kd = 13.4 μM. This leads to incorporation 

efficiencies of 10.4 and 1.7 μm−1 s−1 in favor of DNA primer extension (Table 5.3). This 

6-fold difference in incorporation efficiency for DNA versus RNA for sequential dNTPs is 

comparable with the single-incorporation results. Contrary to the single-incorporation 

experiments, a major difference in kpol values is observed in the double-incorporation 
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experiments. We hypothesize that the ∼3-fold difference in kpol values may stem from the 

primer bending at P4 in the hybrid duplex. The altered helix structure possibly affects the 

rate of any step in subsequent incorporations after the initial incorporation, such as 

translocation or necessary protein conformational changes. The reason for 

similar kpol values during the first incorporation is the preformation of the 

enzyme/template:primer complex before the incorporation reaction is initiated. 

Comparison of Polα processivity on DNA:DNA and DNA:RNA duplexes 

A processivity experiment was employed to examine multiple rounds of dNTP 

incorporation and look at the full extension of the primers and determine whether the rates 

of each incorporation were different over time between DNA and RNA primers. This 

analysis observes the kpol for each incorporation event as well as koff, which characterizes 

the dissociation rate of the Polα/template:primer complex. The assay was conducted under 

single-turnover conditions and saturating concentrations (240 μM) of all dNTPs (Fig. 5.4B, 

C). The products were plotted against time and fit to a processive mechanism using KinTek 

Global Explorer (Fig. 5.4D, E; for visual clarity, only the first five incorporations are 

shown). The kpol and koff values for the first seven incorporations are shown in Table 5.4. 

Although this experiment provides only estimates of these rates, it is clear that there is a 

higher average kpol for the second to fourth incorporations during DNA primer extension, 

with an average value of 26.8 s−1 compared with 12.0 s−1 for RNA. As was shown above, 

the first incorporation does not show the real kpol values due to preformation of 

Polα/template:primer complex; that is why it was omitted from averaging. 

 Interestingly, we observe an increase in the rate of incorporation after the fourth 

incorporation into the RNA primer, with an average kpol for the fifth to seventh 
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incorporations of 24.4 s−1, which is similar to the value obtained on a DNA primer (22.2 

s−1). This is particularly interesting in light of our structural results pertaining to the kink 

at P4 in the hybrid duplex structure. This observation can be explained in structural terms 

by the fact that after four incorporations, the rigid and conserved DNA-binding cleft of 

Polα no longer makes contacts with the ribonucleotides in the hybrid duplex. This increase 

in kpol agrees with our previous experiments demonstrating that DNA primer elongation is 

more efficient. Furthermore, to confirm that the increase from 12.0 to 24.4 s−1 after the 

fourth incorporation is significant, we simulated how the time course of processive 

elongation of an RNA primer would change if the fourth incorporation rate was modified 

to match the rate observed in the DNA experiment (Fig. 5.4E, dotted lines). Changing 8.3 

s−1 to 19.3 s−1 results in a drastically different product distribution. The most prominent 

effects are the decreased accumulation of R18 and faster production of R20 because the rate 

of R19 formation is no longer significantly rate-limiting. 

 Additionally, the processivity of a polymerase can be qualitatively assessed by 

inspection of separated products on a gel. Comparing the processivity gels from Polα (Fig. 

5.4B, C) and T7 DNA polymerase123, the striking difference is the presence of primers that 

have not been fully extended with dNTPs at later points in the experimental time course. 

Through our experiments, it is observed that there is a significant population of primers 

that have been only singly elongated (D16) at later time points even when the final product 

is finally produced (D25). In contrast, once T7 DNA polymerase incorporates a dNTP into 

a primer, it continues to incorporate nucleotides into the same primer. In the direction of 

increasing time, the pattern on the gel for the Polα can be described as extending a ladder 

upward, whereas T7 can be described as shifting a ladder upward. Processivity experiments 
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have also been done with Polε180, and the pattern of processive polymerization is similar 

to Polα. Although Polε is considered more processive than Polα, the striking difference 

between T7 and the former polymerases highlights the highly variable kinetic 

characteristics of polymerases. 

Pre-steady state experiments demonstrate the low fidelity activity of Polα 

 Initial burst experiments, performed on a broad time scale to establish the relative 

rate of dNTP incorporation by the p180core, revealed that Polα incorporates an incorrect 

dNTP at a notable rate (Fig. 5.6). This is illustrated at later time points by the appearance 

of a second band that corresponds to a dATP incorporation across from a template adenine. 

This observation was unexpected due to the prevalence of misincorporation within a time 

frame relatively close to correct incorporation. Although previous studies181,182 have 

indicated that Polα is a low-fidelity polymerase, to the best of our knowledge, this is the 

first direct observation of significant Polα misincorporation in a millisecond time scale. 

These results further emphasize the benefits of utilizing a pre-steady-state kinetic approach. 
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Table 5.1. Data collection and refinement statistics. 

Crystal 
p180core/DNA:RNA/dCTP 

(PDB ID: 4QCL) 

p180core/DNA:DNA/dCTP 

(PDB ID: 6AS7) 

Data collection   

Space group P 3221 P 42212 

Cell dimensions   

    a = b, c (Å) 140.76, 181.32 151.81, 113.3 

Resolution (Å) 40 – 2.2 (2.24 – 2.2)a 50 – 2.95 (3 – 2.95) 

Rmerge 0.055 (0.531) 0.072 (0.47) 

I/I 19.76 (1.9) 18.2 (2.2) 

Completeness (%) 91 (81) 99.6 (99.3) 

Unique reflections 95874 (4196) 28565 (1406) 

Redundancy 2.7 (1.9) 9.6 (5.5) 

   

Refinement   

Resolution (Å) 29.51 – 2.2 (2.34 – 2.2) 46.2 – 2.95 (3.13 – 2.95) 

Number of reflections   

    Working set 88726 (12002) 26970 (4410) 

    Test set 4683 (643) 1380 (209) 

Rwork /Rfree 0.21/0.239 (0.388/0.404) 0.259/0.301 (0.38/0.402) 

Number of atoms   

    Protein 6947 6996 

    DNA and RNA 496 487 

    Ligands/ions 48/5 28/4 

    Water 414 1 

Mean B-factors (Å2) 51.1 57.6 

R.m.s deviations   

    Bond lengths (Å)  0.007 0.01 

    Bond angles (º) 1.3 1.6 

Ramachandran plot 

(%) 

  

    Core 89.7 82.1 

    Allowed 9.7 16.8 

    Generously allowed 0.5 1.0 

    Disallowed 0.1 0.1 

a Numbers in parentheses refer to highest-resolution shell. 



117 
 

 

Figure 5.2. RNA primer bending.  

A, primer conformation in the complexes of hPolα with DNA:RNA and DNA:DNA. The 

p180core/DNA:RNA/dCTP and p180core/DNA:DNA complexes (PDB 

codes 4QCL and 5IUD, respectively) were aligned with RMSD of 0.5 Å using the palm 

and thumb. In the complex containing DNA:DNA, the carbons of a DNA primer and amino 

acids are colored gray and green, respectively. In the complexes containing RNA or DNA 

primer, amino acids are represented as sticks or lines, respectively. The modeled ribose 

with the 3′-endo pucker was superimposed on the P4 sugar of the DNA primer and has the 

same position of carbons (colored yellow) except C2. The arrow depicts the difference in 

position of P4 2′-OH in the RNA primer and the modeled ribose. Pink dashed 

lines and double arrows depict H-bonds and distances between atoms, respectively. B, 

overall view of RNA primer in the complex p180core/DNA:RNA/dCTP. 
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Figure 5.3. Single-incorporation kinetics of hPolα. 

A, sequence of template:primers used for transient kinetic assays. B and C, burst kinetics 

assay on DNA and RNA primers, respectively. p180core (3 μm) was incubated with 

radiolabeled DNA (B) or RNA (C) primer (9 μm) annealed to a DNA template and rapidly 

mixed with dATP (200 μm). Product formation was plotted versus time, and a linear 

equation was fit to the data (red dashed line). D, single-nucleotide incorporation assay. 

p180core (3 μm) was incubated with radiolabeled DNA or RNA primer (100 nm) annealed 

to a DNA template and rapidly mixed with various concentrations of dATP (1–300 μm). 

Product formation was plotted versus time and fit to a single-exponential equation to obtain 

the observed rates of product formation. The rates were plotted against concentration of 

dATP and fit to a hyperbolic equation for both DNA primer (blue) and RNA primer (red) 

elongation to obtain Kd and kpol values. 
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Table 5.2. Incorporation efficiencies of dATP from single incorporation assays. 

Primer kpol (s
-1) Kd (μM) Efficiency (μM-1 s-1)a 

DNA 33.8 ± 3.7 9.2 ± 3.4 3.7 

RNA 48.0 ± 2.7 62.2 ± 10.4 0.8 

aEfficiency values are calculated by dividing kpol by Kd 
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Fig 5.4. Sequential incorporation modeling of hPolα kinetics.  

A, a representative gel of the elongation of the DNA primer substrate in the presence of 

100 μM dATP and 2 μM dTTP. The n band represents the 15-mer primer; n + 1, the primer 

elongated by dATP across template dT; n + 2, the primer elongated first by dATP followed 

by dTTP across template dA. p180core (3 μM) was incubated with radiolabeled DNA 

template:primer (100 nM) and rapidly mixed with saturating concentrations of dATP (100 

μM) and various concentrations of dTTP (1–100 μM). B, the time course of DNA primer 

elongation. p180core (3 μM) was incubated with radiolabeled DNA template:primer (100 

nM) and rapidly mixed with saturating concentrations of dNTPs (240 μM). C, time course 

of RNA primer elongation. D, processivity modeling for DNA primer elongation. Product 

formation was plotted versus time, and the incorporations were fit to a processive kinetic 

model using KinTek Global Explorer to provide estimates of the kpol and koff values. The 

first five incorporations are shown. The red line represents the unelongated primer (15-

mer). The inset shows a zoomed in view of the third through fifth incorporations. E, 

processivity modeling for RNA primer elongation. The dashed line shown in 

the inset represents the model if the rate of the fourth incorporation of the RNA assay was 

simulated to be identical to the rate of the fourth incorporation from the DNA processivity 

assay. 
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Fig 5.5. Kinetic modeling of a dATP and subsequent dTTP incorporation into a primer by 

Polα.  

A, Modeling data for double incorporation into a DNA primer. Product formation was 

plotted versus time and the data were fit simultaneously to a kinetic model using KinTek 

Global Explorer to provide estimates of the Kd and kpol values for dTTP incorporation 

into a DNA primer. The red line corresponds to the unelongated primer (n), the blue 

corresponds to the dATP elongated primer (n + 1), and the green corresponds to the primer 

elongated by dATP and dTTP (n + 2). B, Modeling data for double incorporation into an 

RNA primer. 
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Table 5.3. Incorporation efficiencies of dTTP from double incorporation assays. 

Primer kpol (s-1) Kd (μM) Efficiency (μM-1 s-1)a 

DNA 65.8 ± 11.6 5.4b 12.2 

RNA 23.1 ± 3.5 13.4b 1.7 

aEfficiency values are calculated by dividing kpol by Kd. 
bKd values estimated from kinetic modeling do not provide error measurements. 
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Table 5.4. Kinetic parameters from processivity assays. 

Incorporation 
kpol (s-1) koff (s-1) 

DNA RNA DNA RNA 

1st 14.0 ± 0.9 14.1 ± 0.7 4.5 ± 1.2 4.5 ± 0.8 

2nd 49.9 ± 7.1 16.2 ± 1.1 11.0 ± 3.6 4.0 ± 0.8 

3rd 11.2 ± 1.3 11.4 ± 1.0 4.2 ± 1.6 2.1 ± 0.7 

4th 19.3 ± 4.5 8.3 ± 1.0 5.8 ± 3.7 0.9 ± 0.8 

5th 38.0 ± 16.8 28.1 ± 8.9 6.5 ± 7.6 1.8 ± 2.5 

6th 14.6 ± 4.8 20.6 ± 6.2 2.4 ± 3.8 1.8 ± 2.5 

7th 14.1 ± 7.4 24.6 ± 9.9 1.2 ± 5.0 2.0 ± 3.4 

Average (2nd – 4th) 26.8 12.0 7.0 2.3 

Average (5th – 7th) 22.2 24.4 3.4 1.9 
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Figure 5.6. Polα displays misincorporation on a rapid time scale.  

p180core (3 μM) was incubated with radiolabeled DNA template:primer substrate (10 μM) 

and rapidly mixed with saturating dATP (500 μM). The gel shows the elongation of the 

DNA primer in the presence of only dATP. The n + 1 band corresponds to a correct 

incorporation of dATP across from the templating dT. The n + 2 band corresponds to a 

misincorporation of dATP across from a templating dA. The sequence shows where the 

incoming dATP is incorporated onto the substrate. 
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5.4 Discussion 

 Interestingly, a number of DNA polymerases exhibit burst phase kinetics. The 

presence of a burst implies that product release is the rate limiting step for a polymerase. 

In the case of Polα, a burst was not observed, making it a unique case among many 

characterized polymerases. The fast product release may have implications for its activity; 

if fast product release is correlated to koff rate, it may be beneficial for Polα to readily 

release DNA in the context of high misincorporation rates.  

In this study, we solved the first B-family polymerase ternary structure in the open 

conformation. We posit that this may be due to weak interactions of the fingers in the closed 

form. One potential consequence of this is that the overall step of nucleotide incorporation 

could be rate limited if the fingers domain is not stable in the closed conformation, which 

is a prerequisite for catalysis. This could potentially explain the lack of a burst phase. 

 We have also observed a major difference between the RNA:DNA and DNA:DNA 

structures of Polα: the RNA primer has a kink in the 4th nucleotide from the 3’ end. In 

addition, processivity experiments showed that the first four nucleotide incorporations on 

an RNA:DNA substrate are slower compared to latter incorporations, implying that the 

overall structure of the nucleic acid could affect the activity of Polα and may possibly act 

as a “sensing” mechanism. Our single turnover experiments also corroborated our 

processivity assays, demonstrating that overall, incorporation on a DNA:DNA substrate is 

more efficient. The processivity assays also showed that our estimated koff rates for the 

DNA:DNA substrate were higher, in the absence of other replication factors. Thus, there 

is evidence that the identity of the nucleic acid strand could regulate the incorporation of 

Polα. 
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Further experiments should be done with additional subunits added to the p180 

core, as additional factors may affect kinetic activity. Thus, it would be interesting to add 

the accessory subunit, primase subunits, or other replication proteins and conduct the burst 

experiment again. 

 As mentioned previously, Polα has a significant contribution to the mutation rate in 

vivo, despite the fact that only 1.5% of Polα-synthesized DNA has been shown to be 

retained in the mature genome. It is astounding that a replication enzyme would display 

significant misincorporation on a millisecond timescale. While other low-fidelity 

polymerases exist, having this activity may be beneficial for evolutionary purposes. Further 

work must be done to understand why nucleotides incorporated by Polα are not completely 

removed during Okazaki fragment maturation. 
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Chapter 6. Conclusions 

Polymerases continue to play a major role on the therapeutic stage of modern antiviral 

and chemotherapeutic drugs. It is unsurprising that the first FDA approved COVID-19 

treatment, remdesivir, targets the viral RNA-dependent RNA polymerase, given the rich 

history of nucleoside analogues as antiviral compounds.183,184 With such a vital role in 

replication, polymerases play a crucial role in viral reproduction and hyperproliferative 

conditions like cancer. In order to develop drugs that target these polymerases or 

understand diseases that arise from dysfunctional polymerase activity, we must closely 

examine how these polymerases function at a molecular level. To this end, this dissertation 

examined three different polymerases from a mechanistic and therapeutic perspective. 

In Chapter 2, we first examined the role of a novel mitochondrial polymerase, PrimPol, 

in TFV-derived toxicity. Tenofovir is one of the most prominent HIV drugs, being a 

component of Truvada (or PrEP). Although initial clinical trials did not demonstrate a 

severe cause for concern in terms of safety, clinical cases thereafter showed mitochondrial 

toxicity in a set of HIV+ patients that manifested in the kidneys. In addition, TFV did not 

appear to significantly inhibit Polγ at an in vitro level, challenging the prevailing 

hypothesis that the major replicative polymerase could cause off-target toxicity. We 

hypothesized the PrimPol could mediate TFV-toxicity by incorporating the drug into 

mtDNA. Using gel-based kinetic assays, we showed that PrimPol could use TFV as a 

substrate, albeit at a low incorporation efficiency. Interestingly, we observed a sequence-

dependent effect for TFV incorporation that we are further investigating through 

crystallography. Despite showing in vitro incorporation of TFV, we conducted cellular 

based assays which showed that PrimPol likely plays a protective role against TFV-derived 
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toxicity. One explanation for this is the ability of PrimPol to reprime downstream of stalled 

replication forks. 

 In Chapter 3, we extended our study conducted in chapter 2. Previous work in our 

lab showed that a mutation in Polγ affected how well the polymerase could discriminate 

between NRTIs and natural nucleotides. This set the precedent that mutations in host 

polymerases could play a role in NRTI-derived toxicity. This study was the impetus for 

our efforts looking at mutations of PrimPol in HIV+ patients taking tenofovir with 

mitochondrial toxicity. If PrimPol protects cells against NRTI-toxicity, then loss-of-

function mutants may predispose patients against these off-target effects. In our study, we 

identified the D114N active site mutant in one of our patients. Further biochemical analysis 

showed complete loss of primase activity and ablated polymerase activity, likely due to 

overall protein stability and weakened binding to substrates. 

In Chapter 4, we sought to understand a discrepancy in the binding mode and efficacy 

against the Y181C mutant of a class of NNRTIs, the 2-naphthyl phenyl ether compounds. 

There is a need to continue developing NNRTIs, as pharmacological properties can be 

improved and the potential of drug resistance to current generation compounds is a threat. 

Our structural work using crystallography revealed that a subset of these 2-naphthyl 

compounds bind in a conformation that takes advantage of interactions with an immutable 

W229. These compounds retain efficacy against the common Y181C mutation compared 

to 2-naphthyl ethers that bind in an alternative mode. We will take these interactions into 

consideration in our continued efforts to develop improved NNRTIs. 

In Chapter 5, we desired to dissect the mechanism of Polα replication using two 

replication substrates. It is somewhat surprising that Polα incorporates nucleotides with 
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low fidelity. This could cause concern if nucleotides inserted into the genome by Polα 

remain after Okazaki fragment maturation. In fact, recent sequencing efforts have shown 

that approximately 1.5% of DNA after replication has been synthesized by Polα. In order 

to fully understand how Polα may contribute to potential disease by misincorporation, we 

quantitatively assessed its activity on two substrates it encounters during replication: a 

RNA/DNA and DNA/DNA duplex. Structures of Polα with both substrates revealed a kink 

in the RNA/DNA duplex, revealing a possible “sensing” mechanism that is dependent on 

the overall architecture of the duplex substrate. Our kinetic analysis revealed that 

incorporation (kpol/Kd) on a DNA/DNA substrate is more efficient compared to RNA/DNA, 

although Polα is more likely to dissociate (koff) from the DNA/DNA as well. We also 

provided the first pre-steady state analysis of Polα, revealing that Polα does not exhibit a 

burst, unlike most polymerases. Our initial burst experiments also revealed the astounding 

rate of misincorporation of Polα on a millisecond timescale, reinforcing the notion that it 

is a low fidelity enzyme. Further studies will need to be done to understand how other 

replication factors and proteins affect Polα activity.  

In conclusion, these functional and mechanistic studies will contribute to our 

understanding of the role of polymerases in viral infections and diseases derived from 

polymerase dysfunction. In furthering our knowledge of these interactions, we can then 

develop appropriate therapeutics for these diseases. 
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