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Abstract 

Regulation of MEK Signaling and Inhibitor Sensitivity in Melanoma 
 

Eunice Cho 

2021 

Melanoma, the deadliest form of skin cancer, is characterized by aberrant 

hyperactivation of the ERK mitogen-activated protein kinase signaling pathway. Genetic lesions 

in the core components of the RAS-RAF-MEK-ERK protein kinase cascade as well as its 

upstream regulators are key features of melanoma progression and drug resistance. MEK, the 

central kinase within the cascade, is constitutively activated by many upstream oncogenic 

events and is an important drug target. MEK inhibition in combination with BRAF inhibition is the 

standard of care for treating BRAFV600E melanoma. However, not all BRAFV600E melanomas 

respond to these inhibitors, and those that do respond eventually acquire resistance. To better 

understand mechanisms of MEK inhibitor susceptibility and MEK regulation in BRAFV600E 

melanoma, I performed a loss-of-function screen to identify kinases and phosphatases that 

modulate sensitivity to two clinical MEK1/2 inhibitors. In this screen, I identified PPP6C, the 

catalytic subunit of protein phosphatase 6 (PP6), as a factor promoting sensitivity to MEK 

inhibition. I established PPP6C as a major MEK phosphatase in cells exhibiting oncogenic ERK 

pathway activation. Recruitment of MEK to PPP6C occurs through an interaction with its 

associated regulatory subunits. Loss of PPP6C causes hyperphosphorylation of MEK at both 

activating and crosstalk phosphorylation sites, promoting signaling through the ERK pathway 

and decreasing sensitivity to the growth inhibitory effects of MEK inhibitors.  

Consistent with its role in regulating ERK signaling, PPP6C is frequently mutated in 

melanoma, as is MEK1.  I found that recurrent melanoma-associated PPP6C mutations cause 

MEK hyperphosphorylation and ERK signaling hyperactivation when expressed in cells. 

Recurrent MEK1 mutations all promote MEK1 kinase activity but are activated by different 

mechanisms of action. The elevated MEK activity associated with PPP6C mutations or MEK1 

mutations suggests that they promote disease by a common mechanism: activating the core 

oncogenic pathway driving melanoma. 

Collectively, our studies identify novel modulators of susceptibility to ERK pathway 
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targeted cancer therapies, including PPP6C, a key negative regulator of ERK signaling, and 

cancer-associated mutations that influence ERK signaling activation. 
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CHAPTER 1: INTRODUCTION 

1.1 ERK MAPK Signaling  

The extracellular signal-regulated kinase (ERK) mitogen activated protein kinase 

(MAPK) signaling cascade regulates essential cellular functions in response to growth 

factors and cytokines in many cell types1-3. This pathway is canonically activated through 

receptor tyrosine kinases (RTK) activation of RAS GTPases (NRAS, KRAS, and HRAS), 

which directly bind and activate RAF kinases (BRAF, CRAF, and ARAF) (Figure 1.1A). 

Activated RAF kinases dimerize to phosphorylate and activate MEK1/2, which 

phosphorylate and activate ERK1/2. ERK1/2 phosphorylate substrates that act as 

effectors mediating the functional output of the pathway. With hundreds of target 

phosphorylation sites on cytoplasmic and nuclear substrates, ERK signaling mediates a 

diverse range of responses which includes cell differentiation, survival, proliferation, 

growth, migration, and metabolism. Specific cellular responses are determined by tightly 

regulated mechanisms: signal duration and intensity, cell-type specific substrate 

expression, scaffold proteins, and localization of cascade components. Further 

regulation is provided by the greater complex signaling network surrounding the ERK 

signaling cascade which includes feedback regulation mechanisms and crosstalk with 

peripheral pathways such as the PI3K-AKT pathway3-5 (Figure 1.1A). Deregulation of the 

pathway, primarily through mutations or amplification of genes, leads to various disease 

states, namely cancer. 

 

1.1.1 Oncogenic ERK MAPK Signaling  

Because the ERK signaling pathway has the highest frequency of alterations 

across all cancer types, the ERK pathway is one of the most extensively studied signaling 

pathways6,7. Constitutive activation of ERK signaling in these cancers not only can lead 

to uncontrolled cell proliferation and survival, but also tumor invasion, metastasis, and 

angiogenesis. Activating genetic mutations in RAS and RAF are the most prevalent. RAS 
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mutations occur in 19% of all cancers, primarily at codons 12, 13, or 61 and favor the 

GTP-bound, active state of RAS8. The V600E mutation in BRAF is by far the dominant 

BRAF mutation, making up 95% of all BRAF mutations9,10. V600K, V600D and V600R 

mutations occur but at a much lower frequencies11. The substitution of a larger charged 

residue for V600 on the BRAF activation loop, destabilizes V600 interactions that 

maintain the DFG motif in an inactive conformation and presumably mimics 

conformational changes promoted by activation loop phosphorylation at T59912. 

Recurrent non-V600 BRAF mutations, though not as common, occur at higher 

frequencies in some cancer types such as lung cancers where ~50% of BRAF mutations 

are non-V600 mutations13,14. Non-V600 BRAF mutations are activated by different 

mechanisms and consequently exhibit different drug sensitivities15,16. More recently, 

loss-of-function mutations in Neurofibromin 1 (NF1), a GTPase activating protein (GAP) 

that downregulates RAS activity, have been appreciated as driver mutations in lung 

adenocarcinoma, melanoma, and glioma17-19. NF1-mutations in melanoma commonly co-

occur with mutations in pathway-related genes like RASA2, another GAP that 

downregulates RAS activity, and SOS1, a guanine nucleotide exchange factor (GEF) that 

promotes RAS activation18. Activating mutations in MEK and ERK occur at low 

frequencies in head and neck cancer, lung squamous cell carcinoma, cervical 

carcinoma, colorectal cancer, and melanoma7,18,19. Many of the less common ERK 

pathway mutations are acquired resistance mechanisms that emerge as secondary 

pathway mutations to overcome pathway suppression by ERK pathway inhibitors, 

described in detail below.  

 The hallmarks of cancer described by Hanahan and Weinberg are the key cellular 

capabilities required for tumor development and progression20. Constitutive activation of 

the ERK MAPK pathway provides signaling to support several of these hallmark 

capabilities. Examining the normal functions of ERK signaling provides insights into how 

ERK signaling contributes to tumorigenesis. For example, one key role of the ERK 
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pathway in cell proliferation is controlling the G1 to S phase transition in the cell cycle. 

Continuous or repetitive pulses of ERK pathway activation results in progression of cells 

from G1 to S phase, initiating the growth factor independent phase of cell cycle 

progression21-23. ERK phosphorylates the ETS family of transcription factors, including 

ELK1, which induce the expression of transcription factors JUN, FOS, and MYC, which 

regulate early G1 phase and late G1 phase genes for irreversible S phase entry. ERK 

pathway activation provides pro-survival signals by inhibiting pro-apoptotic factors (BIM, 

BAD, BIK) through direct phosphorylation by ERK or downstream kinases and also by 

stimulating antiapoptotic proteins23-27 (MCL-1). Constitutive oncogenic ERK signaling, 

through these normally highly regulated functions, can sustain proliferative signaling and 

resist cell death for tumor growth. Other less defined potential mechanisms of ERK 

signaling in cancer include the promotion of the Warburg effect for deregulated cellular 

metabolism28,29 and regulation of matrix metalloproteinases MMP-2 and MMP-9 to 

activate invasion and metastasis30-32. Many potential physiological mechanisms by which 

ERK signaling influences tumorigenesis have been investigated and described in great 

detail.  The pleiotropic nature of oncogenic ERK signaling underscores why the ERK 

signaling pathway is the most frequently altered in melanoma. 

 

1.1.2 Genetic Landscape of Driver Mutations in Melanoma 

With the advancement of high-throughput genomic sequencing technology and 

large-scale initiatives in tumor characterization of melanoma patient cohorts, the full 

range of somatic mutations observed in melanoma have been recorded for hundreds of 

melanoma tumors18,19,33-37. These genomic landscape studies confirmed the prevalence 

of ERK pathway mutations in melanoma and classified the disease into 4 genomic 

subtypes based on the driver mutation present in the ERK pathway7,18,19 (Figure 1.1B). 

The largest subtype (~50%) includes tumors harboring BRAF mutations. Three 

additional subtypes—NRAS mutant (~25%), NF1 mutant (~15%), and “triple wild-type” 
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make up the remaining 50% of melanomas (Figure 1.2). BRAF, NRAS, and NF1 mutations 

occur largely mutually exclusively.  

While BRAF, NRAS, and NF1 are thought to be the major genes driving melanoma 

progression, their individual mutation alone is insufficient for malignant transformation of 

melanocytic nevi38. Additional mutations must occur in conjunction with these driver 

mutations to promote transformation. However, because melanoma has a high somatic 

mutational burden, identifying driver mutations from inconsequential passenger 

mutations is challenging, especially with the abundance of sequencing datasets for 

melanoma tumors available. Thus far, mutational frequency is the main criterion used to 

predict potential driver genes. This approach to driver gene discovery not only overlooks 

infrequently occurring driver mutations, but also does not offer insight into the functional 

or mechanistic consequences of mutations. Because extensive studies are required to 

fully understand how identified mutations drive oncogenesis, the rate at which genomic 

datasets are generated far exceeds their analysis for oncogene or tumor suppressor 

functions. For example, TP53, CDKN2A, KIT, RAC1, and PTEN are frequently mutated 

genes whose oncogenic functions have been well elucidated in the context of 

melanoma18,33-35 (Figure 1.2). Conversely, PPP6C, ARID2, IDH1, KMT2C, and DDX3X are 

also significant frequently mutated genes whose contributions to melanoma progression 

have not been thoroughly investigated. While some of these potential clinically important 

therapeutic targets are implicated in known oncogenic pathways, others have yet 

unclear associations with oncogenic signaling. Establishing how these secondary driver 

mutations alter oncogenic signaling can aid in predicting disease  progression and drug 

response, leading to the further advancement of precision medicine. 

 

1.2 Pathway Inhibitors in Melanoma  

 Targeted therapeutic approaches have been a major breakthrough for treating 

melanoma patients and for personalized medicine. The development of ERK pathway  
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Figure 1.1 Normal and Oncogenic ERK MAP Kinase Pathway 

(A) Simplified schematic of the ERK MAPK signaling pathway (yellow) and PI3K-AKT 
signaling pathway (orange). Blue lines indicate cross-talk between pathways. Red lines 
indicate negative feedback via ERK. 

(B) Major oncogenic ERK MAPK pathway mutations (red) and clinical pathway inhibitors. 
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Figure 1.2 Mutational Frequencies of Genes in Melanoma 

List of selected mutated genes in patient samples from non-redundant melanoma and 
cutaneous melanoma studies in cBioPortal39,40. ERK MAPK pathway genes are in red. 
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inhibitors (MAPKi) was motivated by the growing appreciation of oncogenic ERK 

signaling activation in melanoma (Figure 1.1B). In the clinic, inhibitors targeting core 

components of the ERK signaling pathway results in improved response rates and 

prolonged progression free survival. The efficacy of these inhibitors has shifted first line 

therapy options away from chemotherapy to targeted therapy for BRAFV600E melanoma. 

While many of the MAPKi described below have revolutionized cancer treatment, there 

is still much to be done for longer progression-free survival or curative responses.  

 

1.2.1 BRAF Inhibitors (BRAFi) 

The discovery of the prevalence of BRAFV600E mutations and the establishment of 

constitutive ERK signaling in the majority of melanomas identified BRAF as a key driver 

gene and favorable therapeutic target9,10,41 . siRNA and shRNA knockdown of BRAF 

result in loss of MEK and ERK phosphorylation and the induction of cell cycle arrest and 

death in BRAFV600E melanoma cell lines and xenograft models41-43, confirming the critical 

role of BRAFV600E in melanoma tumor growth and validating BRAFV600E as a drug target. 

Small molecule ATP competitive inhibitors for BRAF have been developed and used as 

research tools and investigated for clinical intervention. Sorafenib (BAY43-09006), a 

multitarget kinase inhibitor with a wide spectrum of cellular targets, was initially 

investigated in various melanoma clinical trials due to its activity against BRAFV600E. 

However, its nonselective inhibition of various RTKs as well as CRAF and wild-type BRAF 

makes it difficult to interpret which targets promote antitumor activity. In clinical trials, 

sorafenib monotherapy and combination therapy have largely resulted in insufficient 

benefit for melanoma patients44-49. More selective BRAF inhibitors (BRAFi) have been 

successful in the clinic. Vemurafenib (PLX4032), like its precursor PLX4720, was 

developed using a structure guided discovery approach to preferentially inhibit the 

mutant form of BRAF50,51. This selectivity for BRAFV600E induces cell death in BRAFV600E 

cells and tumor regression in BRAFV600E tumor xenograft models43,52,53. Vemurafenib has 
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had dramatic results in BRAFV600E melanoma patients, producing impressive rapid 

response rates and progression free survival with minimal treatment-related toxicity51,54-

57. Vemurafenib was the first FDA approved BRAFi. Dabrafenib and encorafenib are also 

approved BRAFi shown to have similar efficacies in melanoma patients58-60. Despite the 

rapid response and early clinical benefits to BRAFi treatment, advanced metastatic 

melanoma patients acquire resistance shortly after starting BRAFi treatment, with median 

time to disease progression of 5-7 months55-57,61. Mechanisms of resistance and 

strategies to combat resistance are discussed below.  

 While the described BRAFi inhibit ERK signaling in BRAFV600E cells, they 

unexpectedly enhance ERK signaling in wild-type BRAF cells, promoting cell growth and 

proliferation62-64. This paradoxical ERK activation is caused by BRAFi binding to one 

protomer of a BRAF/CRAF heterodimer or homodimer followed by transactivation of the 

drug-free RAF molecule. In the context of BRAFV600E cells, BRAF exists as an active 

monomer, minimizing transactivation of dimers. In the context of RAS mutations, 

increased wild-type BRAF expression, or increased upstream receptor activation, the 

increased signaling activity promotes RAF dimerization for transactivation upon BRAFi 

binding. In patients, paradoxical ERK activation can induce cutaneous squamous cell 

carcinoma and keratoacanthoma tumors commonly harboring RAS mutations54,65,66. 

Thus, depending on the genomic and signaling context, BRAFi can have inhibitory or 

activating effects on ERK signaling, underscoring the importance of genotyping or 

mutational profiling of tumors for patient selection.  

The next generation of BRAFi, known as “paradox breakers”, have been 

developed to address the issue of paradoxical ERK activation67. PLX7904 and PLX8396 

inhibit both monomeric BRAFV600E and dimeric wild-type BRAF, as well as non-V600E 

mutant forms of BRAF. PLX8396 has shown greater efficacy in inhibiting ERK signaling 

and inducing apoptosis in wild-type BRAF, BRAFV600E, or BRAF splice-variant expressing 

melanoma cell lines, xenografts, and patient derived explant models68. Ongoing phase 
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I/IIA clinical trials thus far show promising results and a more favorable safety profile for 

the use of PLX8394 in patients with advanced solid tumors69.  

 

1.2.2 MEK Inhibitors (MEKi) 

MEK inhibitors (MEKi) were the first inhibitors of the MAPK pathway developed 

and originally intended to be in vitro research tools for dissecting the MAPK signal 

transduction pathway70,71. The development of MEKi for the treatment of cancer was 

motivated by MEK’s position as a bottleneck for ERK signaling, integrating upstream 

oncogenic signaling from overactive RAS, RAFs, and RTKs, where the majority of 

pathway activating mutations and mechanisms occur, to activate ERK (Figure 1.1B). 

Unlike most kinase inhibitors, MEKi are highly selective, allosteric, non-ATP competitive 

inhibitors. Improving on the poor bioavailability, potency, and tolerability of early MEKi 

research compounds, several newer MEKi are FDA approved or are being investigated 

in ongoing clinical trials72,73. Trametinib (GSK1120212), the first FDA approved MEKi, 

inhibits phosphorylation of MEK by RAF, attenuating ERK signaling and inducing cell 

death in BRAFV600E melanoma cells and xenografts74. Although trametinib monotherapy 

improved overall survival rates and progression free survival of BRAFV600E mutant 

melanoma patients compared to conventional chemotherapy75,76, it did not show 

improvement over BRAFi treatment. This may partially be due to dose-limiting toxicity 

because MEKi target MEK in all cells and not a specific mutant form found in only cancer 

cells as with BRAFV600E.  

The emergence of MAPK re-activation as the primary mechanism of BRAFi 

resistance (described in 1.3) led to proposing MEK inhibition as a strategy to combat 

BRAFi resistance through targeting the immediate downstream effector of BRAF77,78. As 

anticipated, MEKi in combination with BRAFi does show improvement over BRAFi 

monotherapy61,79,80. The therapeutic effect of the combination therapy is synergistic while 

reducing the toxicity with either alone81,82. As a first line therapy, 72.3% of patients were 
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free of disease progression at 6 months with BRAFi and MEKi versus only 55.4% with 

BRAFi alone. Trametinib/dabrafenib, binimetinib/encorafenib, and 

cobimetinib/vemurafenib, all FDA approved MEKi/BRAFi treatment options for BRAFV600E 

melanoma, result in improved median time to progression from ~7.3 months with BRAFi 

monotherapy to ~11.9 months83. As adjuvant therapy in patients with resected stage III 

BRAFV600E melanoma, MEKi/BRAFi combination therapy prolongs survival without relapse 

or distant metastasis, resulting in 52% of patients without relapse at 5 years compared 

to 36% of patients with placebo84. MEKi/BRAFi combinations are the current standard of 

care for advanced BRAFV600E melanoma85. While the combination delays the emergence 

of drug resistance, as evidenced by the significantly improved progression free survival, 

resistance through similar mechanisms as BRAFi monotherapy resistance remains a 

critical obstacle in the use of targeted therapy. 

MEKi are in on-going preclinical and clinical investigation for combinatorial 

treatment with other targeted therapies and immunotherapies73,86. Novel MEKi treatment 

combinations are expected to benefit the treatment of different melanoma genetic 

subtypes and other cancer types. 

 

1.2.3 ERK inhibitors (ERKi) 

 The major mechanisms of resistance to MEKi/BRAFi combination and 

monotherapy reactivate MAPK signaling87-89 (Figure 1.3). Inhibition downstream of the 

majority of these resistance mechanisms (Figure 1.2) at ERK was proposed to overcome 

or further delay resistance. Additionally, ERK inhibitors (ERKi) have the potential to be 

rational treatment options for BRAFi-resistant BRAFV600E melanoma and other cancers 

driven by MAPK activity but insensitive to BRAF and MEK inhibition.  

In preclinical studies, selective ATP-competitive ERKi reduce the strong 

reactivation of ERK signaling in MEKi/BRAFi resistant cells and inhibit cell growth and 

proliferation in cells and mouse xenograft models90-96. These inhibitors also have 
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antitumor activity against some wild-type BRAF and NRAS mutant cell lines in addition 

to most MEKi/BRAFi sensitive BRAFV600E cells, suggesting potential therapeutic response 

in additional patient genetic subtypes. Of the numerous ERKi under investigation in early 

clinical trials97,98, Ulixertinib (BVD-523) is the most promising, having shown partial 

responses in NRAS mutant, BRAFV600E and wild-type BRAF solid tumors, including 

melanomas99. Partial responses were also observed with the ERKi MK-8353 and 

Ravoxertinib (GDC-0994) in melanoma96 and other BRAFV600E tumors100. The mentioned 

clinical studies demonstrate early efficacy as well as acceptable safety profiles but more 

clinical trial data is necessary for a complete assessment of the clinical benefits of ERKi 

as monotherapies and combination therapies. Ongoing clinical trials are investigating 

ERKi in combination with MEKi, chemotherapies, CDK4/6 inhibitors, and anti-PD-1 

immunotherapies97,98. 

 

1.3 Melanoma Targeted Therapy Resistance 

 The use of MAPK pathway inhibitors in the clinic has significantly improved the 

treatment of melanoma and patient outcomes. Unfortunately, the rapid responses to 

BRAFi and MEKi are almost invariably short-lived due to the development of acquired 

resistance80. Of the BRAFV600E melanoma patient population, 10-20% of patients do not 

have any initial response due to intrinsic resistance. Additionally, the heterogeneity of 

tumor resistance mechanisms complicate how resistance is addressed. Not only is there 

resistance heterogeneity between patients, there are often multiple mechanisms of 

resistance within a patient or even a single tumor101. 

 

1.3.1 ERK MAPK Pathway Reactivation 

 Analyses of tumors with acquired resistance to BRAFi and/or MEKi have identified 

reactivation of the MAPK signaling pathway as the major driver of resistance87,101-104. 

Mechanisms underlying pathway reactivation are diverse but usually involve pathway 
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components (Figure 1.3). Resistance mechanisms involving alterations in BRAFV600E and 

NRAS are the most common. BRAFV600E amplification and alternative splicing are found 

in 8-30% and 13-29% of post-treatment progressive melanoma tumors, respectively101-

106. Activating mutations in NRAS are found in 8-23% of progressive tumors101-104,107,108. 

Activating mutations in KRAS are less common, occurring in 2-7% of progressive 

tumors101,104. MEK mutations occur in 3-20% of progressive tumors89,101-104,107. The 

frequency of BRAF amplification and MEK2 mutations are significantly higher in 

MEKi/BRAFi combination therapy resistance than in BRAFi monotherapy resistance89, 

suggesting these mechanisms cause the substantially greater reactivation of ERK 

signaling characteristic of combination therapy resistance. This is not surprising given 

resistance to kinase inhibitors is often associated with secondary mutations to the target 

gene. Upregulation of receptor tyrosine kinases, NF1 loss, CRAF overexpression, and 

COT (MAP3K8) upregulation are less common MAPK reactivation mechanisms 

observed in BRAFi and/or MEKi resistant tumors87,88,102,108,109.  

 Strategies to overcome MAPK reactivation-mediated resistance such as the 

implementation of intrapathway dual inhibition by BRAFi and MEKi combinations have 

only delayed the time to acquired resistance, as detailed above. While early indications 

suggest ERKi will combat resistance from MAPK reactivation, ERKi resistance 

mechanisms have not yet been identified or thoroughly investigated. Although many 

ERK1 and ERK2 mutations have been identified in mutagenesis screens for drug 

resistance110-114, ERK mutations are rare in cancers. The ERK2 E320K mutation, which 

has been observed in 27 squamous cell carcinoma patients, elevates ERK pathway 

activation in cells and confers resistance to BRAFi and MEKi but not ERKi112,113. The 

number and heterogeneity of MAPKi resistance mechanisms for MAPK reactivation 

identified thus far suggests resistance is expected to remain a major clinical challenge.  
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Figure 1.3 MAPK Reactivation Mechanisms for MAPKi Resistance  
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1.3.2 PI3K-AKT Pathway Activation 
 
 ERK MAPK signaling remains inhibited in 20-30% of BRAFi and MEKi resistant 

tumors indicating the activation of alternative cell growth and survival pathways for 

resistance88,101,102. While upregulation of or activating mutations in RTKs can be a MAPK 

reactivation mechanism, it can also activate other survival pathways peripheral to the 

ERK signaling pathway for resistance. The upregulated RTKs EGFR, PDGFR, MET, and 

IGF-1R activate both the PI3K-AKT pathway and the ERK MAPK pathway108,115. The PI3K-

AKT pathway is the second core resistance pathway identified for BRAFi and MEKi 

resistance in BRAFV600E melanoma. The PI3K-AKT pathway, another central signaling 

pathway for regulating essential cellular pathways, is activated in many cancers through 

various genetic and epigenetic alterations116,117. In this pathway, activated RTKs and G 

protein-coupled receptors (GPCR) activate phosphatidylinositol 3’-kinase (PI3K), which 

phosphorylates and converts the plasma membrane lipid PIP2 to PIP3 (Figure 1.1A). PIP3 

recruits AKT and PDK1 to the cell membrane where PDK1 phosphorylates and activates 

AKT. Downstream effectors of AKT regulate cell proliferation and cell survival. In 

melanoma, PI3K-AKT signaling has been implicated in both intrinsic and acquired 

resistance118,119. Genetic alterations in the PI3K-AKT pathway can precede or succeed 

MAPKi resistance. Generally, MAPKi resistant cells either have high basal levels of 

activated AKT or increased AKT activation in response to MAPKi91. 

The most commonly detected PI3K-AKT pathway alterations in melanoma are 

copy number loss or loss-of-function mutations of PTEN, a negative regulator of the PI3K-

AKT pathway and established tumor suppressor (Figure 1.1A, 1.2). PTEN loss is 

detected in 8-20% of melanoma tumors and often co-occur with BRAFV600E 

mutations37,120,121. These PTEN alterations are found in pretreatment and/or post-

treatment progressive tumors. Although higher PTEN expression levels are associated 

with BRAFi responders, PTEN expression levels are not predictive of MAPKi 

response107,119. Mechanistically, PTEN loss mediates inhibitor resistance by suppressing 
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BIM-mediated apoptosis119. Furthermore, ERK signaling inhibition in PTEN null cells 

activates AKT signaling. This is all consistent with the decreased clinical benefit of BRAFi 

treatment for BRAFV600E melanoma patients with PTEN loss compared to BRAFV600E 

melanoma patients with wild-type PTEN. 

Other alterations within the pathway include mutations in PIK3CA, the catalytic 

subunit of PI3K and an established oncogene, and AKT, which are detected in 2-6% and 

1-2% of melanoma18,33,122, respectively. Mutations in PHLPP1, PIK3R1, and PIK3R2, 

negative regulators of the pathway, are rare (<2%) in melanoma but have been observed 

in MAPKi resistant progressive tumors101,117. Identical pathway mutations have been 

observed in other cancer types and shown to activate oncogenic signaling. Although 

there are limited studies, PI3K-AKT mutations present in MEKi/BRAFi combination 

resistant tumors were present pre-treatment as well89,123, suggesting the PI3K-AKT 

pathway may potentially have a more limited role in resistance to dual MAPK pathway 

inhibitor treatment. 

PI3K-AKT pathway alterations elicit MAPKi resistance in a complex and context-

dependent manner. These alterations occur independently and co-occur with MAPK 

activation or reactivation. Crosstalk between the two pathways likely influence how 

resistance is mediated (Figure 1.1A). Preclinical studies have demonstrated the added 

benefit and synergistic inhibition of combining PI3K inhibitors with MAPKi124,125. PI3K-AKT 

pathway inhibition can delay resistance to MEKi in BRAFV600E melanoma126. In clinical 

trials investigating pan-PI3K inhibitors with BRAFi or MEKi in BRAFV600E patients, poor 

tolerability was a major limitation127-130. Similarly, MAPKi in combination with AKT 

inhibitors showed poor tolerability and limited efficacy. 

 

1.3.3 Other Pathways in MAPKi Resistance 

 Beyond activation of the two major oncogenic signaling pathways, MAPKi 

resistance can involve other known oncogenic signaling pathways. Signal transducer 
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and activator of transcription (STAT) proteins are a family of transcription factors that 

when phosphorylated dimerize and translocate to the nucleus where they activate gene 

transcription. STAT3 is an oncogene131,132 constitutively activated in several cancers 

including melanoma133. STAT3 oncogenic function comes from its regulation of 

apoptosis inhibitors, inducers of angiogenesis, and cell cycle regulators. STAT3 is 

activated by interleukin-6 (IL-6) family cytokine receptor associated Janus Kinases 

(JAKs) as well as EGFR-activated SRC-family kinases (SFK). BRAFV600E melanoma cells 

with acquired BRAFi resistance have elevated EGFR activating phosphorylation and 

decreased EGFR negative regulatory phosphorylation accompanied by activating 

phosphorylation of its downstream effector AKT134. Consequently, phosphorylation of 

SFKs and STAT is elevated in BRAFi resistant cells, which were found to be sensitive to 

pan-SFK inhibitors and a STAT3 dimerization inhibitor. Alternatively, a subset of 

BRAFV600E cells with intrinsic resistance to BRAFi have increased autocrine IL-6 secretion 

which activates the JAK-STAT3 pathway135 to overcome ERKi signaling inhibition. 

Combining JAK inhibition with MEK inhibition suppresses STAT3 phosphorylation and 

can overcome resistance. STAT3 silencing or inhibition also overcomes acquired 

resistance and can restore BRAFi sensitivity in BRAFV600E melanoma cells136,137.  

p12-activated kinases (PAKs) become activated in cells with acquired BRAFi and 

MEKi/BRAFi resistance138. For BRAFi monotherapy resistance, phosphorylation of CRAF 

and MEK by PAKs are another mechanism for ERK MAPK reactivation. For MEKi/BRAFi 

combination resistance, PAKs activate JNK, which activates downstream targets shared 

with ERK such as ELK1, JUN, and FOS. In the context of MEKi/BRAFi resistance, PAKs 

also regulates β-catenin phosphorylation, activates mTOR signaling, and inhibits 

apoptotic signaling to mediate MAPKi drug resistance.  

 

1.3.4 Identifying Novel Resistance Mechanisms  

Numerous screening strategies have been used to identify genetic dependencies 
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for MAPKi sensitivity and novel therapeutic targets. The advantage of these exploratory 

and unbiased genetic approaches is their potential to discover unexpected pathways 

involved in MAPKi resistance as well as synthetic lethal interactions that can be exploited 

in melanoma treatment. These newly identified vulnerabilities may inform biomarker-

based patient selection for MAPKi treatment. 

Pooled screening strategies model intratumor heterogeneity and the clonal 

evolution of cancer for emergence of resistance. Screens investigating MAPKi response 

in melanoma have confirmed known resistance pathways. For example, a high 

throughput functional screen expressed ~600 kinases or kinase related open reading 

frames (ORFs) in BRAFi sensitive BRAFV600E melanoma cell line to identify ORFs that 

confer resistance to BRAFi139. This systemic gain-of-function screen identified COT and 

CRAF as top candidate kinases that mediate BRAFi resistance. Establishing COT-

dependent mechanisms of MAPK reactivation, this study proposed dual intrapathway 

inhibition with RAF/MEK inhibition and RAF/COT inhibition combinations, substantiating 

the use of BRAFi and MEKi combinations in the clinic. Elevated COT expression has 

been detected in BRAFi resistant tumors (Figure 1.3). A large-scale RNA interference 

(RNAi) screen identified functional loss of NF1 as a mediator of BRAFi resistance in 

BRAFV600E melanoma, which was confirmed by the NF1 mutations present in BRAFi 

resistant tumors109. An insertional mutagenesis screen in a BRAFV600E melanoma mouse 

model identified the PI3K-AKT signaling pathway as a mediator of BRAFi resistance140.  

With the advancement of screening techniques and enrichment analysis and the 

increased availability of sgRNA and shRNA libraries, recent genetic screens have 

identified novel vulnerabilities in MAPKi resistance. Large-scale CRISPR screens in 

BRAFi resistant BRAFV600E melanoma cells and subsequent pathway enrichment analysis 

discovered a novel class of cell cycle genes (CDK6, CCND1, PSMB1, and RRM2), not 

previously linked BRAFi resistance, enriched within the 314 genes whose depletion 

sensitized cells to BRAFi141. Further characterization established that the depletion of 
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CDK6 and its regulator ETV5 restores MAPKi sensitivity. Although there are ongoing 

clinical studies investigating MAPKi and pan CDK4/6 inhibitor combinations142,143, the 

authors establish that the inhibition of CDK6, and not other CDKs, synergizes with BRAFi. 

Interestingly, CDK6 expression and up-regulation of genes functionally connected to 

CDK6 are associated with poor survival in BRAFi-treated melanoma patients. 

 In an epigenome-wide shRNA screen, knockdown of BOP1, HAT1, ING5, and 

KDM4C conferred resistance to BRAFi in a BRAFV600E mutant melanoma cell line144. The 

authors focused on Block of proliferation 1 (BOP1), which they propose downregulates 

DUSP4/6 and results in MAPK reactivation for BRAFi resistance. Analysis of paired 

melanoma patient samples before and after BRAFi treatment showed BOP1 down 

regulation in progressive tumors. Similarly, HAT1 was found to reactivate the MAPK 

pathway, and 63% of progressive tumors showed reduced HAT1 expression compared 

to patient matched MAPKi treatment naive tumors145.  

These large-scale pooled screening strategies are complicated by off-target 

effects, varying knockdown efficiencies, library complexity, selection of bioinformatic 

pipelines, and scalability for appropriate library coverage. For example, a genome-wide 

shRNA screen identified CUL3, a key protein in E3 ubiquitin ligase complexes, as a 

driver of MAPKi resistance146. However, 7 of the 9 candidate drivers identified in this 

screen did not recapitulate MAPKi resistance in validation studies. Overall, the 

described functional genetic screens were able to identify verifiable genes and 

pathways that modulate MAPKi sensitivity. Validation studies demonstrate the ability of 

these candidate therapeutic targets to overcome MAPKi resistance. More importantly, 

analysis of target gene expression in patient tumors and patient response rates 

underscore the clinical relevance of the findings from genetic screens. 

 

1.4 PPP6C in Melanoma 

 The work in this dissertation describes the identification of PPP6C as a key 
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regulator of ERK signaling in melanoma. PPP6C is a conserved essential serine-

threonine metallophosphatase related to the catalytic subunit of PP2A147. PPP6C 

functions within heterotrimeric PP6 holoenzymes consisting of a Sit4-associated protein 

(SAPS) domain regulatory subunit (PPP6R1, PPP6R2 or PPP6R3) that mediates substrate 

recruitment and an ankyrin repeat (ANKRD28, ANKRD44 or ANKRD52) subunit that may 

serve a scaffolding role148,149 (Figure 1.4A). The presence of multiple regulatory and 

scaffolding subunits defines nine potential PP6 complexes that collectively participate in 

a variety of cellular processes. 

 

1.4.1 Established PP6 Functions 

As an essential protein ubiquitously expressed in mammalian tissues, PPP6C has roles 

in key cellular functions including cell cycle progression150-152, the DNA damage 

response150,153-155, autophagy156, miRNA processing157, inflammatory response158,159, and 

antiviral immunity160. Despite the scope and diversity of signaling roles described, our 

current understanding of PPP6C functions is limited, especially when considering the 

number of PPP6C studies compared to that of its extensively studied close relative PP2A. 

Because PP2A was the first PP2A family phosphatase purified and characterized, many 

PP2A studies use okadaic acid, a pan-PP2A family phosphatase inhibitor, as a PP2A 

inhibitor and report that its biological effects are attributed to PP2A inhibition. Okadaic 

acid inhibits PP2A, PP4, and PP6 with nearly identical potency. These studies are 

reporting on the effects of collective inhibition of all three of these phosphatases and 

likely incorrectly assigning PP6 functions to PP2A. 

PPP6C has well-established roles in cell cycle progression. PP6 regulation of 

chromosome segregation and spindle assembly in mitosis is highly conserved in 

eukaryotes, from yeast to humans152,162,163. PPP6C or PPP6R1/2/3 loss results in defective 

chromosome segregation in anaphase and fragmented nuclei in telophase. PPP6C and 

PPP6Rs associate with mitotic spindles along with its substrates164. Aurora A, an  
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Figure 1.4 PPP6C Mutations in Melanoma 
(A) PP6 heterotrimeric complexes 
(B) Frequencies of mutations in BRAF, NRAS, and NF1 co-occurring with PPP6C in 

melanoma. Data are from nonoverlapping melanoma studies in cBioportal39,40 
(C) Frequencies of PPP6C mutations reported in melanomas. Data are from nonoverlapping 

melanoma studies in cBioportal39,40 
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Figure 1.5 PPP6C residues mutated in melanoma mapped onto the structure of the PP2A 
catalytic subunit  

(A) Recurrently mutated PPP6C residues His55 and Arg264 are shown in cyan in stick 
representation modeled onto the crystal structure of PPP2CA161 (PDB: 2IAE). Catalytic 
metal ions are shown as pink spheres.  

(B) Arg264 maps to the interface of the PP2A catalytic subunit (blue) and the PP2A 
regulatory B56γ1 subunit (orange).  
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essential mitotic kinase, localizes to spindle poles and centromeres during mitosis upon 

associating with its binding partner TPX2. PP6 recognizes and dephosphorylates Aurora 

A-TPX2 complexes, inactivating Aurora A152. DNA-PK, a regulator of mitosis and DNA 

damage repair, localizes to centrosomes, spindles, and the midbody during mitosis. PP6 

dephosphorylation of DNA-PK during mitosis mediates mitotic exit and cytokinesis.  A 

broad phosphoproteomics study aimed to identify PP6-regulated phosphorylation 

events during mitosis confirmed PP6 regulation of chromosome segregation and spindle 

formation in protein network and pathway analysis of increased phosphorylation events 

upon PPP6C depletion165. PP6 was also found to mediate chromosome condensation, in 

part through direct dephosphorylation of the condensin 1 subunit NCAPG to activate 

condensin-1151,165. Other than in mitosis, PP6 has been reported to have roles in other 

phases of the cell cycle including the G1/S transition166,167 and S phase progression168,169 

as well as meiosis170,171. 

In DNA damage response signaling, PP6 is involved in both non-homologous end 

joining repair (NHEJ) and homology-directed repair (HDR), the two processes that fix 

DNA double-strand breaks (DSBs). Ionizing radiation (IR), which causes DSBs, induces 

the expression of PP6 subunits in cells172,173. Conversely, PP6 depletion sensitizes cells 

to IR, marked by increased phosphorylation of g-H2AX164,174,175. PPP6R1 targets PP6 to 

DNA-PK for dephosphorylation and activation of DNA-PK in NHEJ150,153,164,174,175. There is 

also evidence for DNA-PK recruitment of PP6 for dephosphorylation of g-H2AX to repair 

DSBs resulting from IR via NHEJ164. Similarly, PPP6C is recruited to DSB sites to 

dephosphorylate g-H2AX to repair DSB resulting from replication blockage via HDR155.  

 PP6 negatively regulates the canonical nuclear factor-kB (NF-kB) pathway, which 

is essential for immune and inflammatory responses. Proinflammatory cytokines like 

tumor necrosis factor-a (TNF-a) and interleukin-1b (IL-1b) stimulate TGF-b-activated 

kinase 1 (TAK1) autophosphorylation and activation, which activates IkB kinase (IKK) for 
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phosphorylation of IkBe and activation of NF-kB signaling176. PP6 associates with and 

dephosphorylates TAK1, inhibiting its activity and therefore negatively regulating its 

downstream pathways, the NF-kB pathway and MAPK signaling pathways158,177. PPP6C 

and PP6 regulatory subunits also associate with IkBe, which binds and inhibits NF-kB by 

trapping it in the cytoplasm149,178. PPP6R1 targets PPP6C to IkBe to dephosphorylate and 

protect IkBe from degradation, limiting NF-kB activity. Loss of PP6 subunits results in 

enhanced NF-kB pathway activation by TNF-a or IL-1b149,158,159,179. Other roles of PP6 in 

immune signaling include involvement in lymphocyte development and 

homeostasis159,180,181. PP6 loss impairs the development of CD4+, CD8+, and 

CD4+/CD8+ T cell populations and results in T cells more prone to differentiation and 

production of cytokines159. This likely occurs through PP6 dephosphorylation and 

regulation of the transcription factor Bcl11b, an essential factor for T-cell development181. 

In antiviral immune signaling, PPP6C in complex with WHIP and TRIM14 to 

dephosphorylate RIG-1 to promote production of type 1 interferons (IFN-1)160. 

Many large-scale proteomics studies and screens have implicated PP6 in other 

signaling pathways and cellular functions. In some cases, the relevant PP6 substrates 

have been identified, such as Argonaute 2 (AGO-2) in miRNA-mediated silencing 

pathway157 or ASK3 in osmotic stress response182. However, the precise roles or 

mechanisms of PP6 involvement in other signaling pathways are largely unknown or 

poorly understood, for example, its regulation of pre-mRNA splicing183 or the Hippo 

pathway184. The diversity of PP6 substrates and functions is unsurprising, given the 

hundreds of known substrates for PP2A. PP6 involvement in many pathways is consistent 

with its ubiquitous expression and its categorization as a “common essential” gene, or 

gene that is essential to cell growth and survival across a large panel of cell lines (739), 

in the Cancer Dependency Map Project185-187. 
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1.4.2 PPP6C Mutations in Melanoma 

PPP6C mutations are found across multiple cancer types but are most common 

in melanoma and other skin cancers, where they are thought to contribute to tumor 

development18,33,37,188. Somatic PPP6C mutations have been detected in 6-9% of 

malignant melanomas (Figure 1.2), generally co-occurring with BRAF and NRAS 

mutations18,19,33 (Figure 1.4B). The majority of these melanoma-associated mutations are 

missense mutations and often occur with loss of heterozygosity33,34,189. Of melanoma 

patient tumors with both mutational and copy number profiling data, 33 of 54 (61%) 

mutations occurred with shallow or heterozygous deletions39,40. PPP6C mutations are 

distributed throughout the primary sequence but recurrently cluster to highly conserved 

regions in or near the catalytic cleft, with R264C being the most common mutation189 

(Figure 1.4C). The clustering of PP6C mutations, and specifically the high recurrence of 

the PPP6C R264C point mutation, are suggestive of activating mutations, as seen with 

classical oncogenes. However, prior analysis of recurrent and non-recurrent PPP6C 

mutations indicate that all of them, to varying degrees, reduce catalytic activity189,190. 

Copy number loss and loss-of-function mutations indicate PPP6C likely functions as a 

tumor suppressor. Potential signaling mechanisms for known oncogenic mutations in 

melanoma have been explored and are detailed below.  

 Based on where recurrent mutations map to on the structure of the PP2A catalytic 

subunit, the mutations likely have varying consequences on PP6 activity and signaling. 

The His55 residue coordinates a critical catalytic metal ion (Figure 1.5A). Loss of this 

coordination from the recurrent H55Y mutation would be expected to render PPP6C 

catalytically inactive. Arg264 is located at an interface of the PP2A catalytic subunit and 

one of its regulatory subunits (Figure 1.5B) Instead of causing the loss of intrinsic 

phosphatase activity of the catalytic subunit, the R264C mutation may disrupt PP6 

holoenzyme assembly, possibly altering the composition of PP6 heterotrimers in cells. 

By promoting or disrupting the association of PPP6C with specific regulatory subunits, 
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mutations can alter substrate specificity and shift signaling outputs. This is the case with 

a recurrent cancer-associated mutation in a PP2A scaffolding subunit, which has been 

found to disrupt interactions with some regulatory B subunits and not others to activate 

the ERK signaling pathway191. Because PPP6C is an essential gene, complete loss of 

PPP6C function would not be tolerated by most cells. Some melanoma-associated 

mutations may spare essential functions of PP6 for survival and only disrupt tumor 

suppressive functions. 

One of the major environmental risk factors for melanoma development is 

ultraviolet radiation (UVR) from sun exposure192. Cytosine to thymidine (guanine to 

adenosine) mutations (C > T), especially in dipyrimidine contexts, are signature of UVR-

radiation-induced genetic changes. PPP6C mutations predominantly occur in sun-

exposed tumors34. The overwhelming majority of PPP6C missense mutations including 

all recurrent mutations are C > T transitions, likely attributed to mismatch repair of UV-

induced DNA damage. The R264C mutation is a cytosine to thymidine transition at a 

dipyrimidine site. While the majority of established activating MAPK pathway mutations 

(e.g., BRAFV600E, NRASQ61L/R) in melanoma do not appear to be due to direct UV-induced 

damage, PPP6C mutations are presumably generated by UVR mutagenesis and 

contribute to UVR-induced melanomagenesis. This is consistent with the belief that 

PPP6C mutations are early events in the development of melanoma189. Mutations in 

tumors before BRAFi therapy harbor a predominance of C > T transitions compared to 

mutations in progressive tumors, which have a relative reduction in C >T transitions and 

increase in other transitions101.  UVR-damage-induced PPP6C mutations potentially 

contribute to the transformation of melanocytic nevi with BRAF and NRAS mutations into 

melanoma. 

 

1.4.3 A Tumor Suppressor Role for PPP6C in Melanoma  

PPP6C is thought to be a tumor suppressor in melanoma18,19,33,37,188, yet our 
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understanding of how it modulates cancer relevant pathways is limited. Partly due to the 

lack of overtly cancer-relevant known PP6 substrates, it is unclear which substrates or 

pathways provide the molecular basis for the occurrence of melanoma-associated 

PPP6C mutations. Biochemical studies characterizing melanoma-associated PPP6C 

mutants found some mutations disrupt holoenzyme assembly and decrease PPP6C 

stability156,189,190. However, this was not the case for all mutants investigated, suggesting 

heterogeneity in functional and signaling consequences of PPP6C mutations. 

Most studies of PPP6C in melanoma have focused on its regulation of Aurora A in 

mitotic spindle assembly and chromosome segregation152,190. Melanoma-associated 

PPP6C mutations impair its ability to dephosphorylate and inactivate Aurora A, resulting 

in genomic instability, DNA damage, and micronucleation are early events contributing 

to cancer progression189,190. Expression of the PPP6C H114Y mutant, which has been 

observed twice in melanoma, in cells increases Aurora-A activity and disrupts chromatin 

and mitotic spindle organization190. The resultant mitotic spindle defects lead to 

chromosome instability and therefore DNA-damage and micronucleation. This 

chromosome instability, a hallmark and driver of cancer, suggests a role for PPP6C driver 

mutations in melanoma. Characterization of 12 other PPP6C mutants found 5 mutations 

increase Aurora A activation, 4 of which disrupts binding to the PPP6R3 subunit189. A 

subset of PPP6C mutations sensitize cells to Aurora A inhibitors independently of their 

effect on Aurora A activation. 

Work characterizing melanoma-associated PPP6C mutations is limited and 

inconsistent. Aside from the described studies of PPP6C mutants, PPP6C loss has been 

investigated for roles in tumorigenesis. Loss of PPP6C promotes oncogenic RAS driven 

tumors in mouse keratinocytes179,193 and in drosophila194. Further work is required for 

better understanding of the molecular mechanisms underlying the role of PPP6C 

mutations in melanoma. As studies point to distinct consequences of different PPP6C 
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mutations, the progress in identifying diverse functions of PP6 suggest the involvement 

of several mechanisms. 

 

1.5 Statement of Purpose 

The incidence of malignant melanoma has been rapidly increasing worldwide with 

a 270% increase over the past 30 years in the United States195. Despite important 

advances in understanding the aberrant signaling pathways driving melanoma 

tumorigenesis, current treatment options, including targeted therapies and 

immunotherapies, rarely yield complete responses. With increasing knowledge of tumor 

heterogeneity and drug resistance mechanisms, it is clear that the oncogenic signaling 

network in melanoma is highly complex and has yet to be comprehensively understood. 

A more complete understanding of these signaling networks is necessary to develop 

more efficacious and durable therapeutic strategies.  

Broadly, the purpose of this dissertation is to further advance our understanding 

of ERK MAPK signaling regulation and its deregulation in melanoma. The work described 

within this dissertation primarily focuses on MEK1/2, examining MEK regulation, 

response to MEK inhibition, and melanoma-associated mutations that alter MEK activity. 

PPP6C is identified in shRNA screens designed to identify novel modulators of MEKi 

response in BRAFV600E melanoma. Through comprehensive biochemical and cellular 

studies investigating the mechanism of PPP6C regulation of ERK signaling, PPP6C is 

established as a MEK phosphatase and therefore influences sensitivity to MAPKi. These 

findings support previous predictions of a tumor suppressor role for PPP6C in 

melanoma. Beyond the identification of a novel MEK phosphatase, melanoma-

associated PPP6C and MEK1 mutations are characterized to better understand how 

these mutations alter oncogenic signaling and potentially contribute to melanoma 

progression and MAPKi response. 

This dissertation further sheds light onto the complex regulatory mechanisms of 
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the ERK signaling network in melanoma involved in MEK and BRAF inhibitor response 

and identifies a novel role for PPP6C in a key oncogenic signaling pathway. By 

contributing to a more comprehensive understanding of the molecular mechanisms 

underlying MEK and BRAF inhibitor response, this work provides insight into the 

therapeutic limitations of targeted therapies. 
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CHAPTER 2: POOLED SHRNA SCREENS TO IDENTIFY GENES MEDIATING MEK 
INHIBITOR RESPONSE 
 
2.1 Introduction 

 The RAF-MEK-ERK mitogen-activated protein kinase (MAPK) signaling cascade 

regulates essential cellular processes including cell proliferation, differentiation, and 

survival23. Deregulation of ERK signaling, typically through mutations in core pathway 

components or upstream regulators, is among the most frequent driver events in human 

cancer196. Malignant melanoma in particular is dependent upon hyperactivated ERK 

signaling. The dependence of melanomas on the ERK pathway fueled the development 

and approval of selective BRAF inhibitors (BRAFi) and MEK inhibitors (MEKi) with clinical 

efficacy in treating tumors harboring BRAFV600E mutations197. Unfortunately, responses to 

BRAFi and MEKi are almost invariably short-lived due to the development of acquired 

resistance80. While resistance to these agents can involve activation of alternative cell 

growth and survival pathways, it most commonly occurs through reactivation of the ERK 

pathway despite the continued presence of inhibitor198. Mechanisms underlying ERK 

pathway reactivation include acquisition of RAS or MEK mutations, BRAF amplification 

or alternative splicing, disruption of negative feedback regulation, and induction of 

receptor tyrosine kinases101-104. Understanding how tumor cells become resistant to 

BRAFi and MEKi can suggest additional therapeutic targets and thus contribute to the 

development of durable and more generally applicable cancer treatments. In addition, 

investigations into mechanisms of inhibitor resistance have provided insight into the 

basic wiring of the ERK pathway and how it participates in larger signaling networks.  

 Functional genetic screening strategies have been effective discovery tools for 

identifying new drug targets and biomarkers for drug response. The two technologies 

used in pooled loss-of-function screens, CRISPR and RNAi, yield robust and reliable 

results assessing large numbers of genes, even at genome-wide scale, simultaneously. 

shRNA screens were initially limited by noise due to off-target effects and inefficient gene 
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silencing. With the rapid development of CRISPR/Cas9 technology, which has a very 

low-incidence of off-target effects199,200, CRISPR-based screening has quickly gained 

popularity and become the dominant genomic screening technology, seeming to 

outperform RNAi-based screening in terms of noise and consistency201. Increasing 

redundancy in shRNA libraries and use of validated shRNA for efficient knockdown has 

improved the reproducibility of shRNA screens. Parallel comparison of CRISPR and 

shRNA screens have demonstrated similar precision in detecting essential genes 

depending on the sgRNA and shRNA libraries used201,202.  

The choice of CRISPR or shRNA systems for a functional screen should depend 

on the research question or intended application of screen results with careful 

consideration of the limitations of each technology. For example, in the case of drug 

target discovery, knockdown in shRNA screens better mimics the inhibition of a target 

by a drug. shRNA screen results are representative of hypomorphic phenotypes. The 

knockdown of genes by shRNA demonstrates the phenotypic effects of partial losses-

of-gene function depending on the knockdown efficiency of the specific shRNA hairpin. 

Another complicating factor is slow protein degradation or the discrepancy between 

mRNA transcript levels and protein levels, which would prevent loss-of-function 

phenotypes. CRISPR screen results are representative of true null phenotypes. The 

phenotypes resulting from complete knockout are not obscured by the effects from low 

levels of remaining protein expression from incomplete knockdown. This allows for high 

sensitivity from stronger phenotypes in CRISPR screens. However, this also makes it 

difficult to study the complexity of essential genes. The lethality of the knockout of these 

genes overpowers any non-survival-related functions. 

These differences in shRNA and CRISPR screens likely contribute to their ability 

to detect distinct groups of genes related to specific cellular processes202. For example, 

gene sets related to RNA polymerase and the Mediator complex, which functions as a 

transcriptional co-activator, are found in shRNA screens but not CRISPR screens, 
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presumably because shRNA knockdown depends on continued transcription of the 

shRNA unlike with sgRNAs. In the case of some other gene sets unique to one type of 

screen, the cellular functions or signaling mechanisms governing this exclusivity are 

unclear. 

Cell viability-based loss-of-function genetic screens can yield information on 

negative genetic selection and/or positive genetic selection in response to a given 

selection pressure such as an inhibitor. Negatively selected genes identify genes that 

when silenced gives cells a disadvantage in the conditions being studied. When 

interpreting screen results, the shRNA or sgRNA sequences targeting these genes are 

depleted from the cell population over the course of the screen. Negative selection is 

used to identify genes essential for survival or proliferation in the context of a given 

selection pressure, providing insight into synthetic lethal dependencies and context-

specific genetic vulnerabilities. Genes identified under negative selection from drug 

treatment represent potential drug targets for combinatorial therapeutic strategies. 

Because negatively selected genes also include essential genes, understanding which 

genes are specific to the added selection pressure requires comparison to appropriate 

control conditions. Positively selected genes identify genes that when silenced gives 

cells a growth or survival advantage. The shRNA or sgRNA sequences targeting these 

genes are enriched in the cell population over the course of the screen These genes 

confer sensitivity to the selection pressure when expressed and therefore provide insight 

into potential mechanisms of drug resistance. 

The emergence of BRAFi resistance in melanoma has prompted several genetic 

screens investigating BRAFi susceptibility. When comparing results from similar 

screens, whether they use the same inhibitor or the same cell line, there is often a 

divergence in genes-of-interest outside of essential genes due to the many variables 

involved in these large-scale screens, including context dependency of genetic 

interactions, library size and complexity, and inhibitor treatment conditions, just to name 



 32 

a few202. COT, CDK6, BOP1, HAT1, and CUL3 have all been identified as mediators of 

BRAFi resistance in BRAFV600E melanoma in different screens139,141,144,146, demonstrating 

that similar screens are able to identify unique physiologically relevant hits and produce 

non-redundant information.  

BRAFi and MEKi combinations are the current standard of care for BRAFV600E 

melanoma but are limited by the onset of inhibitor resistance. While both BRAFi and MEKi 

block the same pathway, mechanisms involved in BRAFi and MEKi response and 

resistance in cells may differ as suggested by the longer progression-free survival with 

combination therapy and the additional increase in response rate to BRAFi upon 

acquiring MEKi resistance in BRAF melanoma patients in studies investigating treatment 

schedules203. MEK and BRAFV600E are individually regulated and exhibit different 

susceptibility to ERK pathway negative feedback and therefore can be limited by target-

specific resistance in addition to pathway-specific resistance. 

Functional genetic screens with MEKi have focused on RAS-driven cancers 

because of the limited efficacy of MAPKi in RAS mutant cancers204-207. Finding synthetic 

lethal interactions in the context of inhibited RAS effector pathways, such as the ERK 

signaling pathway, for combination therapeutic development is the major approach to 

treat the MAPKi-resistant majority population of RAS mutant cancers. With the FDA-

approved use of MEKi in BRAFV600E melanoma, genetic screens investigating MEKi 

response in BRAFV600E melanoma can provide a better understanding of the specific 

genetic vulnerabilities of BRAFV600E melanoma in MEKi response. 

 

2.1.1 MEKi Sensitivity Screen Design 

To identify genes involved in modulating the response to MEKi, we performed a 

pooled shRNA screen in two BRAFV600E melanoma cell lines (Figure 2.1). We used a 

custom-made lentiviral library of 7,649 shRNAs targeting 817 genes encoding annotated 

protein and lipid kinases and phosphatases. This library targets genes encoding 



 33 

theoretically druggable proteins. These proteins are able to bind drug-like molecules 

and in the case of many kinases have specific chemical inhibitors readily available for 

studies exploring combinatorial effects with MEKi. After transduction with the shRNA 

library, we harvested a portion of the cells for a start time reference sample (T0) and 

divided the remaining cells into 5 populations, which were subsequently treated with 

either vehicle control or one of two concentrations of the clinical MEKi trametinib and 

selumetinib. MEKi concentrations were chosen to flank the approximate IC50 for inhibition 

of cell growth. Cells were propagated through 10 population doublings (T1-T10). The 

change in abundance of each shRNA under each growth condition was then determined 

by next-generation sequencing (Illumina HiSeq) following PCR amplification from 

genomic DNA preparations of cells collected at T0 and T10. We used RNAi gene 

enrichment ranking (RIGER) analysis208 to rank genes based on the depletion or 

enrichment of their shRNAs in the screen.  

“Depleted genes”, which are genes whose hairpins are depleted from MEKi-

treated cell populations over the course of the screen, will also be referred to as “drop-

out hits”. These negatively selected genes sensitize cells to MEK inhibition when 

knocked down. Not only do these drop-out hits offer insight into the signaling involved in 

MEKi response, they also represent potential drug targets for combinatorial therapy with 

MEKi. “Enriched genes”, which are genes whose hairpins are enriched in MEKi-treated 

cell populations, will also be referred to as “drop-in hits”. Downregulation or loss of these 

positively selected genes render the cells less sensitive to MEK inhibition. Similar to 

drop-out hits, these genes provide insight into MEKi response signaling but can also 

suggest potential drug resistance mechanisms and biomarkers for patient selection. 

 

2.2 Results 

2.2.1 501mel screens  

Studies have described a largely cytostatic effect or growth delay with MEKi in 
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melanoma, both in cell culture and xenografts199,209-211. Tumor growth inhibition but not 

tumor regression in mouse xenograft models199,211 translates to mostly stable disease 

and some partial responses to trametinib monotherapy in patients for improved 

progression-free and overall survival76,212. We selected 501mel cells, a BRAFV600E 

melanoma cell line that exhibits cytostatic responses to MEKi, hoping to gain insight into 

the signaling limiting MEK inhibition to cytostatic effects as opposed to cytotoxic effects 

in melanoma. High and low MEKi concentrations were selected to flank the IC50 for 

inhibition of cell growth (1 nM trametinib, 3.3 nM trametinib, 33 nM selumetinib, and 100 

nM selumetinib). To assess the performance of both screen replicates, we evaluated the 

mean coverage of mapped reads per each shRNA which was 12,551 in the first replicate 

and 15,364 in the second replicate. This is well above the recommended read depth of 

1,000 reads per shRNA for accurate hit identification.  As expected for a BRAFV600E cell 

line, all 6 hairpins targeting BRAF in the shRNA library are depleted from all populations 

over time, providing an internal control for the screen (Figure 2.2). 

To identify enriched genes of interest, I selected the top 50 ranking genes (top 

6.1%) from RIGER analysis of each MEKi condition and removed overlapping top-

ranking genes from the no drug condition. The overlap of enriched genes between MEKi 

conditions for each screen replicate was used to generate a list of drop-in genes of 

interest (Figure 2.3). Of these MEKi specific hits, Protein Phosphatase 6 Catalytic subunit 

(PPP6C), is the top ranked gene in 5 of 8 MEKi conditions across the two screen 

replicates and scored within the top 20 genes in all drug conditions (Figure 2.4). The 

hairpins targeting PPP6C are the most consistently enriched in the presence of MEKi 

and are generally depleted from the untreated culture (Figure 2.3, 2.5). These results 

suggest that PPP6C is required both for optimal cell growth and for a maximal cytostatic 

response to MEKi. Other potential drop-in genes of interest include Protein Phosphatase 

1 Regulatory Subunit 12A (PPP1R12A or MYPT1), Phospholipid Phosphatase Related 3 

(LPPR3), and Inositol Polyphosphate-4-Phosphatase Type 1A (INPP4A), all of which are  
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Figure 2.1 Schematic of the pooled shRNA MEKi sensitivity screen. 
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Figure 2.2 BRAF shRNA hairpins are depleted from all cell populations  

Changes in all shRNA hairpins shown as log2(T10/T0) from most depleted to most enriched 
for each drug condition. Bars representing shRNA hairpins targeting BRAF are shown in 
blue. All others are shown in grey.  
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Figure 2.3 Top enriched genes for each drug condition from two replicates of the 501mel screen.  

(A) Venn diagrams of top 50 enriched genes for each drug condition.  
(B) The most consistently enriched genes across MEKi conditions. Colored boxes indicate 

the genes ranked in the top 50 enriched genes by RIGER for that drug condition not 
found in the DMSO control condition.  
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Figure 2.4 501mel Screen Rankings of Drop-in hits 

The top 20 ranked enriched genes for each condition for 501mel screen replicates. 
PPP6C rankings are highlighted. 
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Figure 2.5 PPP6C shRNA hairpins are enriched in MEKi conditions 

(A) Rankings for each of the 6 PPP6C hairpins out of the 7,649 shRNAs in the library are 
listed for each drug condition.  

(B) Changes in all shRNA hairpins shown as log2(T10/T0) from most depleted to most enriched 
for each drug condition. Bars representing shRNA hairpins targeting PPP6C are shown 
in red. All others are shown in grey.  
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Figure 2.6 Top depleted genes for each drug condition from two replicates of the 501mel screen. 

(A) Venn diagrams of top 50 depleted genes for each drug condition.  
(B) The most consistently depleted genes across MEKi conditions. Colored boxes indicate 

the genes ranked in the top 50 depleted genes by RIGER for that drug condition not 
found in the DMSO control condition.  
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ranked as top drop-in hits in ³ 5 of the 8 MEKi conditions (Figure 2.3, 2.4). 

No genes are top drop-out hits in all 8 MEKi conditions across both screen 

replicates (Figure 2.6A). Of note, CRAF (RAF1) is ranked as a top gene in 3 MEKi 

conditions (Figure 2.6B). This is consistent with its role activating the ERK signaling 

pathway through the phosphorylation of MEK. CRAF upregulation is a known MAPKi 

resistance mechanism (Figure 1.3). ITK, DSTYK, PTPN9, and CHEK1 are top drop-out 

hits in ³ 5 of the 8 MEKi conditions (Figure 2.6B). ITK, interleukin-2-inducible T-cell 

kinase, is a top ranked gene in the 2 low MEKi concentrations (1nM trametinib and 33nM 

selumetinib) of the first screen replicate and all 4 MEKi conditions of the second screen 

replicate. 

 

2.2.2 Yugen8 Screens  

 We selected a patient derived BRAFV600E melanoma cell line, Yugen8, for our next 

set of MEKi screens. Compared to 501mel cells, Yugen8 cells are more sensitive to MEKi 

and exhibit cytotoxic responses. The MEKi IC50 flanking concentrations selected for 

these screens were 0.03 nM trametinib, 0.1 nM trametinib, 8 nM selumetinib, and 25 nM 

selumetinib. The mean coverage of mapped reads per each shRNA was 11,376 in the 

first replicate and 21,405 in the second replicate.  

The top ranked genes in the Yugen8 screens were not as consistent between the 

two screen replicates as they were in the 501mel screens (Figures 2.7, 2.8). Of the drop-

in hits, Kinase Suppressor of Ras1 (KSR1) was the most consistent, ranking in the top 

50 genes in all 4 MEKi conditions of one screen replicate (Figure 2.7B). However, it is 

not ranked in any MEKi conditions in the other replicate. Other drop-in hits only rank in 

3 or fewer of the 8 MEKi conditions. Of the drop-out hits, Diacylglycerol Kinase Epsilon 

(DGKE) and Nuclear Receptor Binding Protein 1 (NRBP1) are both ranked as top drop-

in hits in 5 of the 8 MEKi conditions (Figure 2.8B). Six other genes are top ranked in 4 of 

the 8 MEKi conditions.  
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Figure 2.7 Top enriched genes for each drug condition from two replicates of the Yugen8 screen.  
(A) Venn diagrams of top 50 enriched genes for each drug condition.  
(B) The most consistently enriched genes across MEKi conditions. Colored boxes indicate 

the genes ranked in the top 50 enriched genes by RIGER for that drug condition not 
found in the DMSO control condition.  
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Figure 2.8 Top depleted genes for each drug condition from two replicates of the Yugen8 screen.  

(A) Venn diagrams of top 50 depleted genes for each drug condition.  
(B) The most consistently depleted genes across MEKi conditions. Colored boxes indicate 

the genes ranked in the top 50 depleted genes by RIGER for that drug condition not 
found in the DMSO control condition.  
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Figure 2.9 Top ranked genes from all screens.  
(A) The most consistent drop-in genes across MEKi conditions. Colored circles indicate 

the genes ranked in the top 50 enriched genes by RIGER for that drug condition not 
found in the DMSO control condition.  

(B) The most consistent drop-out genes across MEKi conditions. Colored circles indicate 
the genes ranked in the top 50 depleted genes by RIGER for that drug condition not 
found in the DMSO control condition.  
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2.2.3 Validation of Screen Hits  

PPP6C Validation 

The most consistent hit among shRNA screens with the 501mel cell line and the 

patient-derived Yugen8 cell line is PPP6C (Figure 2.9A). PPP6C ranks as a top gene in 

10 MEKi conditions of 16 total MEKi conditions across both replicate screens of both cell 

lines. 

To confirm a role for PPP6C as a factor modulating sensitivity to MEKi, 501mel 

cells were transduced with non-targeting control shRNA (shCTRL) or one of two 

independent shRNAs (shPPP6C-1, shPPP6C-2) that efficiently decrease PPP6C 

expression. PPP6C knockdown caused modest but consistent rightward shifts to MEKi 

dose responses curves, increasing IC50 values for growth inhibition by trametinib and 

selumetinib (Figure 2.10A). In clonogenic assays, cells transduced with control shRNA 

exhibited dose-dependent growth inhibition by both MEKi as anticipated (Figure 2.10B). 

PPP6C knockdown alone substantially decreased cell growth, yet this growth defect was 

partially reversed in the presence of low concentrations of MEKi. To further verify that 

PPP6C regulates ERK signaling, we generated clonal PPP6C knockout 501mel lines by 

CRISPR/Cas9-mediated gene disruption (Figure 2.11). Notably, we were unable to 

expand PPP6C-/- clones unless we supplemented the growth media with a low 

concentration of the MEKi trametinib. PPP6C knockout clones also exhibited decreased 

sensitivity to MEKi but with more pronounced rightward shifts to MEKi dose responses 

curves (Figure 2.12A). Also consistent with PPP6C knockdown, PPP6C knockout 

decreased cell growth in clonogenic assays which is reversible with similar as well as 

higher concentrations of trametinib (Figure 2.12B). These observations verify that PPP6C 

silencing renders 501mel cells less sensitive to the cytostatic effects of MEKi.  

The results in these validation studies are consistent with the behavior of PPP6C 

shRNA hairpins in the 501mel screens, demonstrating the capability of these shRNA 

screens to identify a verifiable positive modulator of MEKi response. Additional work  
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Figure 2.10 shRNA knockdown of PPP6C reduces cell growth and MEKi sensitivity 

(A) 501mel cell lines stably expressing control shRNA (shCTRL) or PPP6C-targeting shRNA 
(shPPP6C-1, shPPP6C-2) were treated for 72 hours with increasing concentrations of 
trametinib or selumetinib. Cell viability was detected by alamarBlue reagent and 
normalized to a no drug control for each cell line. Dose response curves for shCTRL 
(black), shPPP6C-1 (dark blue), and shPPP6C-2 (light blue) are shown. MEKi IC50 values 
and 95% confidence intervals are listed in the table. 

(B) shCTRL, shPPP6C-1, and shPPP6C-2 expressing 501mel cells were cultured in DMSO 
or the indicated concentration of trametinib or selumetinib for 2 weeks in colony forming 
assays. Colonies were stained with crystal violet. Clonogenic growth was analyzed by 
ColonyArea in ImageJ. Quantification was normalized to PPP6C+/+, no drug. Mean values 
± SD are shown, n = 3. 
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Figure 2.11 PPP6C CRISPR/Cas9 knockout cell lines  
Sanger sequencing chromatograms for PPP6C+/+ and PPP6C-/- clonal 501mel cell lines 
generated by CRISPR/Cas9. Immunoblot confirming PPP6C loss in PPP6C-/- 501mel cell 
lines is shown. 
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Figure 2.12 CRISPR/Cas-9 mediated knockout of PPP6C reduces cell growth and MEKi 
sensitivity 

(A) PPP6C+/+ and PPP6C-/- 501mel cells were treated for 72 hours with increasing 
concentrations of trametinib or selumetinib. Cell viability was detected by alamarBlue 
reagent and normalized to a no drug control for each cell line. MEKi IC50 values and 95% 
confidence intervals are listed in the table. 

(B) PPP6C+/+ and PPP6C-/- 501mel cells were cultured in media containing DMSO or the 
indicated concentration of trametinib for 2 weeks in colony forming assays. Colonies 
were stained with crystal violet. Clonogenic growth was analyzed by ColonyArea in 
ImageJ and normalized to PPP6C+/+, no drug. Mean values ± SD are shown, n = 3. 
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Figure 2.13 ITK inhibition sensitizes cells to MEKi 

501mel cells were treated for 72 hours with increasing concentrations of trametinib with 
(blue) or without (black) 1uM ibrutinib. Cell viability was detected by alamarBlue reagent 
and normalized to a no drug control for each cell line. IC50 values and 95% confidence 
intervals are listed in the table, n = 2. 
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describing a role for PPP6C in ERK signaling and MAPKi response is reported in Chapter 

3 of this dissertation. 

 

ITK Validation 

ITK is one of 3 genes that are top enriched genes in 8 MEKi conditions across all 

four screens (Figure 2.9B). ITK is normally considered an immune cell-specific protein 

but has been found to be aberrantly expressed in metastatic melanoma213. In T-cell 

receptor (TCR) signaling, ITK is a downstream effector of TCR stimulation and mediates 

the activation of ERK214,215. The identification of ITK as a drop-out hit suggests inhibition 

of ITK may potentiate the cytostatic or cytotoxic effects of MEK inhibition in cells. Ibrutinib 

is a clinical inhibitor of BTK, but also potently inhibits ITK and other tyrosine kinases. To 

investigate ITK as a sensitizer to MEK inhibition, 501mel cells were treated with Ibrutinib 

in combination with trametinib in pilot assays. The addition of 1uM ibrutinib shifts 

trametinib dose response curves to the left, decreasing the IC50 value by 3-fold for growth 

inhibition by trametinib (Figure 2.13). Ibrutinib made cells more sensitive to the cytostatic 

effects of trametinib, but it did not sensitize them to potential cytotoxic effects in 501mel 

cells.  The sensitization to MEK inhibition may be mediated by the inhibition of Ibrutinib’s 

many targets Additional work is necessary to investigate and optimize MEKi and ITK 

inhibitor concentrations for use in combination as well as to elucidate a specific 

mechanism for this effect. These preliminary experiments confirm ITK loss or inhibition 

promotes MEKi response as seen in our screens. 

 

2.3 Discussion 

We demonstrate the identification of modulators of MEKi sensitivity using a loss-

of-function screening strategy in BRAFV600E melanoma cells. Our screens generated an 

abundance of information including insight into potential drug targets, previously 

unappreciated signaling factors regulating the ERK signaling pathway, and candidate 
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genes identified in similar functional genetic screens investigating MAPKi response.  

The use of the top 50 ranked genes to select hits only considers the top 6.1% of 

genes targeted by our shRNA library. This cutoff is stringent and likely results in the 

exclusion or lower ranking of relevant genes. Although a less conservative cutoff may 

allow for the identification of more candidate genes, we were able to validate the top 

drop-in and drop-out genes identified in our screens.  

PPP6C is a clear gene of interest, given its top rankings in the majority of MEKi 

concentrations. In validation studies, PPP6C knockdown with shRNA and knockout with 

CRISPR/Cas9-mediated gene disruption decreased sensitivity of 501mel cells to MEKi. 

PPP6C knockdown and knockout cells exhibit impaired growth and proliferation 

compared to control cells which is partially reversed with MEKi treatment. This behavior 

mirrors what we observed in our screens where PPP6C hairpins were depleted from drug 

free cell populations but enriched in MEKi-treated cell populations. Our comprehensive 

investigation of PPP6C in ERK signaling in melanoma is described in the next chapter. 

ITK, the top drop-out hit, is known to activate the ERK signaling pathway 

specifically in TCR signaling but has not been investigated in other signaling contexts. 

The expression of ITK in benign melanocytic lineage cells is low as expected but is 

unexpectedly highly elevated in metastatic melanoma tissue samples213. ITK inhibition in 

a BRAFV600E melanoma mouse model and a panel of melanoma cell lines, decreases cell 

proliferation and migration. In a T lymphocyte cell line, treatment with several ITK 

inhibitors inhibit MEK phosphorylation to varying degrees216. We demonstrate combining 

a ITK inhibitor with a MEKi has a stronger cytostatic effect in BRAFV600E melanoma cells 

compared to MEKi alone. Our findings in combination with other indications of ITK 

involvement in ERK signaling or melanoma progression support the additional 

exploration of ITK in these roles. 

 Cursory review of other top ranked genes suggests potentially interesting 

involvement of these candidate genes in MAPKi response or melanoma signaling. KSR1, 
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the top enriched gene in the Yugen8 screens (Figure 2.7B), is an interesting hit 

considering its role as a scaffold for the ERK signaling pathway. KSR1 enhances ERK1/2 

signaling activation by binding ERK pathway components and regulating the efficiency 

of their interactions217. Recently solved crystal structures and functional studies show 

trametinib binds MEK-KSR complexes promoting MEK engagement of KSR1/2 and 

disrupting MEK activating interactions with RAFs218. This unexpected involvement of KSR 

in the mechanism of action for MEKi is supported by our identification of KSR1 as a drop-

in hit. The loss of KSR1-MEK complexes with KSR1 knockdown likely hampers the ability 

of MEKi to bind and inhibit MEK. 

A mutation in DSTYK, a top drop-out hit in our screens (Figure 2.9B), has been 

shown to activate ERK signaling to promote cell migration and invasion, which is 

inhibited with MEKi treatment219. DSTYK is upregulated in metastatic melanoma cell 

lines220 and metastatic colorectal cancer tumor samples221. DSTYK loss inhibits FGF-

stimulated ERK phosphorylation in human embryonic kidney cells (HEK)222. This is all in 

line with a potential role for DSTYK in positively regulating ERK signaling or inhibiting 

MAPKi response.  

  INPP4B, a top ranked drop-in gene (Figure 2.9A), has been described to have 

tumor suppressor functions in breast cancer and melanoma through its role as a 

negative regulator of PI3K-AKT signaling223-225. INPP4B expression is reduced in 

melanoma tumor samples compared to nevi and expression levels are only moderately 

correlate with AKT activation. The impact of INPP4B on the ERK signaling pathway or 

MAPKi response has not been explored, but a role for INPP4B in regulating both PI3K-

AKT signaling and ERK signaling is possible either independently or through crosstalk 

between the pathways.  

These speculations for possible roles for these genes-of-interest in modulating 

MAPKi sensitivity or melanoma progression are premature given the need for additional 

studies to validate their identification in our screens. The identification of these genes 
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may be due to off-target effects of shRNAs or other variables effecting the accuracy of 

these screens. However, our follow-up investigation into PPP6C and its involvement in 

ERK signaling establish PPP6C as a previously unknown MEK phosphatase (Chapter 3).  
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CHAPTER 3: PPP6C REGULATION OF ERK SIGNALING IN MELANOMA 

3.1 Introduction 

Because proper control of the ERK pathway is important to normal physiology, 

the core cascade is positioned within a complex network involving extensive feedback 

and crosstalk regulation23. By counteracting regulatory phosphorylation events, protein 

phosphatases play key roles in controlling the magnitude and duration of ERK signaling, 

and their dysregulation can contribute to disease and influence inhibitor sensitivity. For 

example, ERK signaling induces expression of dual-specificity MAPK phosphatases 

(DUSPs), which dephosphorylate and inactivate ERK226. Disruption of this negative 

feedback loop through deletion or downregulation of ERK-selective DUSPs has been 

reported in some tumors and is associated with more advanced disease and poor 

patient prognosis227-230. Protein phosphatases also have important roles in positively 

regulating ERK signaling. For example, the tyrosine phosphatase SHP2 is important for 

relaying signals from receptor tyrosine kinases to RAS GTPases, and SHP2 inhibitors are 

currently in development as cancer therapeutics231. In addition, the MRAS-SHOC2-PP1 

complex dephosphorylates an inhibitory site on RAF and mediates ERK pathway 

reactivation induced by MEKi in KRAS mutant pancreatic and lung cancers206,232. 

Germline gain-of-function mutations in SHP2, MRAS and SHOC2 are a cause of 

developmental disorders termed RASopathies that are characterized by hyperactive 

ERK signaling233. Protein phosphatase 2A (PP2A) can promote ERK signaling by 

dephosphorylating inhibitory feedback phosphorylation sites on RAF and the ERK 

pathway scaffold KSR1234. While these phosphatases regulating RAS, RAF and ERK 

have established roles in normal and pathological signaling, less is known about 

phosphatases regulating MEK, the central component of the cascade. PP2A was initially 

identified as a MEK phosphatase in vitro and in non-transformed monkey kidney CV-1 

cells235,236. However, other studies have suggested that PP2A restrains oncogenic MAPK 

signaling primarily through direct dephosphorylation of ERK237.  
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We identified PPP6C as a gene modulating the response of BRAFV600E melanoma 

cell lines to MEKi in shRNA screens investigating MEKi sensitivity (Chapter 2, Figure 

2.9A). Loss of PPP6C appears to decrease sensitivity to the MEKi trametinib and 

selumetinib. Presumptive loss-of-function melanoma-associated mutations in PPP6C has 

piqued interest in PPP6C potentially having a key role in melanoma. However, the 

specific substrates of PPP6C that contribute to melanoma have not been fully elucidated, 

although hyperphosphorylation of Aurora A due to PPP6C loss been proposed as an 

early event in melanoma formation189,190. Interestingly, PPP6C has not previously been 

identified as a regulator of ERK signaling. In this chapter, we establish PPP6C as a MEK 

phosphatase and negative regulator of ERK signaling. We explore the involvement of 

PPP6C in melanoma signaling and MAPKi response and how melanoma-associated 

mutations may disrupt these functions. 

 
3.2 Results 

3.2.1 PPP6C negatively regulates ERK signaling  

In our validation studies (Chapter 2.2.3), PPP6C knockdown and knockout not 

only decreases sensitivity to the MEKi, but also decreases overall cell growth in the 

absence of MEKi (Figure 2.10B, 2.12B). We suspected that loss of PPP6C led to ERK 

pathway hyperactivation, as this phenomenon can underlie inhibitor resistance and 

cause growth suppression238,239. Indeed, we observed that silencing of PPP6C in 501mel 

cells elevated the levels of activating phosphorylation of ERK1/2 and MEK1/2 (Figure 

3.1A). Cells expressing shPPP6C required higher concentrations of inhibitor to reduce 

MEK and ERK phosphorylation to levels seen in control cells (Figure 3.1B), likely 

explaining why PPP6C knockdown decreases sensitivity to MEKi. Likewise, low 

concentrations of MEKi attenuated hyperactivation of ERK signaling that is presumably 

toxic to these cells, explaining why decreasing PPP6C expression reduces growth. 

Furthermore, the ability of low concentrations of MEKi to rescue growth suggests that 

PPP6C is required for optimal growth of 501mel cells largely because it restrains ERK  
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Figure 3.1 PPP6C negatively regulates ERK signaling and promotes MEKi response 

(A) 501mel cells stably expressing shCTRL, shPPP6C-1, and shPPP6C-2 were lysed and 
assessed by immunoblot for levels of phosphorylated and total MEK and ERK. 
Quantification of Phospho/Total MEK and ERK was normalized to shCTRL. Data are 
represented as mean ± SD, n = 4. 

(B) shCTRL and shPPP6C expressing 501mel cells were treated with the indicated 
concentrations of trametinib for 1 hour and lysed. Phosphorylated and total levels of MEK 
and ERK were detected by immunoblot.  
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Figure 3.2 PPP6C negatively regulates ERK signaling and promotes cell proliferation 
(A) PPP6C-/- 501mel cell lines were established by CRISPR/Cas9. PPP6C+/+ and PPP6C-/- cell 

lines were lysed and assessed by immunoblot for levels of phosphorylated and total MEK 
and ERK. Quantification of Phospho/Total MEK and ERK was normalized to PPP6C+/+. 
Data are represented as mean ± SD, n = 3. 

(B) PPP6C+/+ and PPP6C-/- 501mel cells stably expressing WT PPP6C, phosphatase inactive 
PPP6CD84N (PD), or GFP (-) as a control were lysed and assessed by immunoblot for 
phosphorylated and total MEK and ERK.  

(C) Cell proliferation was measured by cell counting for PPP6C+/+ and PPP6C-/- cells 
expressing GFP, WT PPP6C, or PD PPP6C. Mean values ± SD are shown, n = 2. 

(D) shCTRL, shPPP6C-1, and shPPP6C-2 expressing 501mel cells and PPP6C+/+ and PPP6C-

/-  501mel cells were lysed and assessed by immunoblot for full length and cleaved 
Caspase-3 and PARP. Representative blots shown, n = 3 
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signaling. The complete loss of PPP6C in the PPP6C-/- clonal cell lines described in 2.2.3 

(Figure 2.11) resulted in an even more pronounced increase in MEK and ERK 

phosphorylation than seen with partial loss of PPP6C via shRNA (Figure 3.2A). Re-

expression of wild-type (WT) PPP6C, but not a phosphatase inactive mutant (D84N, PD) 

in these cells reversed ERK hyperactivation (Figure 3.2B), indicating that negative 

regulation of ERK signaling requires PPP6C phosphatase activity. Consistent with this 

observation, re-expression of WT, but not PD, PPP6C rescued the growth defect seen in 

PPP6C knockout cells (Figure 3.2C). PPP6C loss did not appear to induce apoptosis in 

501mel cell lines as judged by levels of caspase-3 and PARP cleavage, suggesting that 

it causes slow growth rather than cell death (Fig 3.2D).  

To determine whether PPP6C acts as a general regulator of ERK signaling outside 

of the cell line used for our screen, we examined the effect of PPP6C knockdown in a 

panel of cell lines of varying genotype and lineage (Figure 3.3, 3.4). We found that 

silencing PPP6C expression led to MEK hyperphosphorylation in each of five additional 

BRAFV600 mutant melanoma cell lines tested, including Yugen8 cells from our screens 

described in Chapter 2 and YURIF cells heterozygous for a PPP6CS270L mutation. Among 

four NRASQ61 mutant melanoma cell lines, all but one (YUGASP) exhibited increased 

MEK phosphorylation upon PPP6C knockdown. We observed the same phenomenon 

with MEL-ST, a non-transformed immortalized melanocyte cell line. Additionally, in three 

colon carcinoma cell lines with BRAF or RAS mutations, we also observed increased 

MEK phosphorylation with PPP6C loss. We note that the impact of PPP6C knockdown 

on the level of ERK phosphorylation across this panel of cell lines was more variable, 

suggesting that feedback mechanisms acting directly on ERK may blunt regulation by 

PPP6C.  The osteosarcoma cell line U2OS, which does not harbor BRAF or RAS 

mutations, and KRAS mutant A549 lung adenocarcinoma cells did not display consistent 

increases in phospho-MEK levels upon PPP6C knockdown. Overall, the large majority of 

cell lines examined displayed PPP6C regulation of ERK signaling.  
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We further examined a role for PPP6C as a regulator of ERK signaling by analyzing 

data from the Cancer Dependency Map Project185-187, which compiles the results of 

genome-wide CRISPR/Cas9 screens across a large panel (739) of cell lines. PPP6C is 

categorized as a common essential gene with an average CERES gene dependency 

score of -1.00 ± 0.28, where a more negative score indicates a larger effect on cell 

growth or survival187.  Notably, in skin cancer cell lines, the mean CERES score for PPP6C 

is -1.16 ± 0.31, indicating these cell lines are in general more dependent on PPP6C. 

Among skin cancer cell lines, those with BRAF hotspot mutations were significantly more 

dependent on PPP6C than those that are wild-type for BRAF (Figure 3.5A). Taken 

together with our data in 501mel cells, these data suggest that cells characterized by 

hyperactive ERK signaling are more sensitive to loss of PPP6C. 

 We also compared the dependency of skin cancer cell lines on PPP6C and core 

components of the ERK signaling pathway by examining pairwise correlations between 

genes. In these data, co-dependency between two genes across cell lines can indicate 

that they participate in a common pathway240,241. Dependency on PPP6C significantly 

correlates with dependency on BRAF, MAP2K1 (encoding MEK1), and MAPK1 

(encoding ERK2) (Figures 3.5B-F). Strikingly, strongest co-dependency with PPP6C was 

found among negative regulators of the pathway, the ERK selective dual-specificity 

protein phosphatases (DUSP4, DUSP5, DUSP6, and DUSP7). Consistent with a key role 

for PPP6C in dephosphorylating Aurora A152,190, PPP6C dependency negatively 

correlated with that of AURKA among the full set of cell lines across all lineages 

(Pearson’s correlation coefficient = -0.216, p = 1.40 x 10-9) (Figure 3.5G). However, this 

correlation was not significant in skin cancer cell lines (p = 0.44) (Figure 3.5H), 

suggesting that regulation of Aurora A is not the primary determinant of PPP6C 

dependency in these cells. Overall, these correlations suggest that in skin cancer cell 

lines, dependency on PPP6C is associated with its role as a regulator of ERK signaling.  
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To examine whether PPP6C might modulate ERK signaling in human melanoma, 

we analyzed reverse-phase protein array and RNA-seq data collected across a panel of 

tumors from The Cancer Genome Atlas. We observed a significant correlation between 

PPP6C mRNA expression and levels of both phospho-MEK and phospho-ERK among 

tumor specimens (Figure 3.6A, B). However, the extent of ERK pathway activation was 

not significantly higher in tumors harboring recurrent or truncating PPP6C mutations (Fig 

3.6C, D). These data suggest that MEK phosphorylation in melanoma tumors may be 

more strongly influenced by PPP6C levels than by its mutation.  

 

3.2.2 PPP6C regulates ERK signaling via MEK1/2 

Hyperphosphorylation of MEK observed with PPP6C loss suggests PPP6C 

regulates ERK signaling either at the level of MEK or upstream of MEK. To determine 

which component of the ERK signaling cascade is regulated by PPP6C, we initially 

investigated the RAF kinases directly upstream of MEK. In BRAFV600E mutant melanoma, 

oncogenic signaling is driven primarily by mutant BRAF, with little contribution from the 

other RAF isoforms ARAF and CRAF42. However, in settings of MEKi/BRAFi resistance, 

ERK pathway reactivation can occur in a manner dependent on CRAF, for example by 

induction of upstream receptor tyrosine kinases115,242,243 (Figure 1.3). To determine if 

increased MEK phosphorylation observed with PPP6C loss is due to compensation by 

ARAF or CRAF, we silenced each of the RAF isoforms by siRNA in combination with 

shRNA knockdown of PPP6C in 501mel cells (Figure 3.7A, B). In both the shCTRL and 

shPPP6C cells, only BRAF knockdown decreased MEK phosphorylation, while silencing 

ARAF and CRAF alone or in combination (Figure 3.7C) did not. Thus, in the context of 

PPP6C loss, BRAF remains the principal activator of MEK in 501mel cells. We note that 

in cells harboring RAS mutations, other RAF isoforms such as CRAF likely have a 

predominant role in MEK phosphorylation. 
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Figure 3.3 PPP6C regulation of ERK signaling is prominent in ERK pathway-driven cancer cells 

The indicated cell lines were transduced to stably express control (shCTRL) or PPP6C-
targeting (shPPP6C-1 or PPP6C-2) shRNAs. Cells were lysed and assessed by 
immunoblot for levels of phosphorylated and total MEK and ERK. Quantification is shown 
in Figure 3.5. n ≥ 2. 
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Figure 3.4 PPP6C regulation of ERK signaling in cancer cell lines  

Quantification of the relative levels of Phospho/Total MEK and ERK from Figure 3.4 was 
normalized to shCTRL for each cell line. Data are represented as mean + SD, n ≥ 2. 
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Figure 3.5 PPP6C dependency and ERK pathway dependency 

(A) PPP6C CERES scores for skin cancer cell lines with WT BRAF or hotspot BRAF mutations 
from the Cancer Dependency Map Project. Cell lines harboring non-recurrent BRAF 
variants of unknown significance were excluded. Data are represented as mean ± SD. 
***p < 0.0005, Welch’s t test.  

(B) Heatmaps depicting CERES scores of PPP6C, ERK selective DUSPs, and ERK MAPK 
cascade components in skin cancer cell lines using data from Cancer Dependency Map 
Project. Pearson’s correlation coefficients and p-values from linear regression analysis of 
each gene with PPP6C in the DepMap portal are listed. 

   (C-G)  CERES scores for PPP6C (x-axis) plotted against CERES scores for (C) DUSP6,  
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(D) BRAF, (E) MEK1, (F) ERK2, and (G) Aurora A (y-axis). CERES scores are for all skin 
cancer cell lines from the Cancer Dependency MAP Project. Pearson’s correlation 
coefficients (r) and associated p-values from linear regression analysis are indicated. 

(H) CERES scores for PPP6C (x-axis) plotted against CERES scores for Aurora A (y-axis). 
CERES scores are for all cancer cell lines from the Cancer Dependency MAP Project. 
Pearson’s correlation coefficient (r) and associated p-value from linear regression 
analysis are indicated. 
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Figure 3.6 PPP6C mutational status and ERK pathway activation 

(A) PPP6C RNA-seq mRNA expression level plotted against MEK1 phosphorylation levels 
(MEK1 pSer221, pThr217) for TCGA tumor samples in cBioPortal. Correlation coefficients 
and associated p-values from linear regression analyses are indicated. 

(B)  PPP6C mRNA levels plotted against ERK2 phosphorylation levels (ERK2 pThr202, 
pTyr204) for TCGA tumor samples as in (A). 

(C) MEK phosphorylation levels (MEK1 pSer221, pThr217). Data were obtained from 
cBioPortal and are represented as mean ± SD. 

(D) ERK phosphorylation levels (ERK2 pThr202, pTyr204) for TCGA tumor samples with WT 
PPP6C or recurrent/truncating PPP6C mutations as in (C). Data are represented as mean 
+ SD 
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We next considered whether loss of PPP6C leads to increased BRAF activity. To 

do so, we immunoprecipitated endogenous BRAF from shCTRL cells and shPPP6C cells 

and examined its vemurafenib-sensitive kinase activity on MEK1 in vitro.  We found that 

BRAF isolated from both shCTRL and shPPP6C cells phosphorylated MEK1 at similar 

rates (Figure 3.8A), indicating PPP6C does not regulate BRAF activity.  While we did not 

observe changes in RAF expression levels with PPP6C loss (Figures 3.7A), we did note 

upward electrophoretic mobility shifts suggestive of a change in the phosphorylation 

states of BRAF and CRAF that could have a regulatory role (Figure 3.8B). We found 

however that treatment of cells with MEKi or BRAFi caused the multiple BRAF species to 

collapse into a lower, presumably less phosphorylated species (Figure 3.8B, C). The 

increased RAF phosphorylation observed in shPPP6C cells is therefore presumably a 

consequence of increased negative feedback phosphorylation due to ERK 

hyperactivation5,244, though we were unable to identify specific sites regulated by PPP6C 

(Figure 3.8C). In keeping with reports that BRAFV600E is insensitive to feedback 

phosphorylation5, its hyperphosphorylation did not affect its activity in vitro and is thus 

unlikely to impact MEK phosphorylation in cells. 

PPP6C regulates the level of RAF-mediated MEK activation loop phosphorylation 

without affecting the activity of RAF itself. MEK activation loop phosphorylation can be 

influenced by crosstalk regulation through phosphorylation at other sites, which could 

be subject to regulation by PPP6C. Indeed, we found that MEK1 phosphorylation at 

Ser298, which is mediated by PAK1 to promote activation loop phosphorylation244,245, 

was elevated in cells lacking PPP6C (Figure 3.8D). In contrast, there was no effect on 

phosphorylation at Thr286, a negative regulatory site phosphorylated by CDK1 or CDK5 
246,247. Because regulation by Ser298 phosphorylation is specific to MEK1 and not MEK2, 

we examined whether PPP6C selectively regulates MEK isoforms. We found that 

ectopically expressed MEK1 and MEK2 (upper bands), like endogenous MEK1/2 (lower 

bands), were both hyperphosphorylated when expressed in PPP6C-/- cells in comparison 
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to WT cells (Figure 3.8E). PPP6C therefore does not preferentially regulate one isoform 

of MEK but instead regulates both MEK1 and MEK2. This suggests that PPP6C regulates 

MEK activity by modulating activation loop phosphorylation independently of crosstalk 

pathway. 

 

3.2.3 MEK1/2 is a direct substrate of PP6 

As our findings above indicate PPP6C regulates MEK1/2 activation loop 

phosphorylation without affecting RAF activity, PPP6C likely promotes MEK1/2 

dephosphorylation, possibly acting directly. To assess PPP6C dephosphorylation of 

MEK, we isolated PP6 complexes by affinity purification from HEK293T cells ectopically 

expressing FLAG epitope-tagged PPP6C with PPP6R3 and ANKRD28. Complexes 

containing WT PPP6C dephosphorylated the activation loop residues (pSer218 and 

pSer222) of MEK1 in a manner sensitive to the pan-PP2A family phosphatase inhibitor 

okadaic acid (Figure 3.9A). Phosphatase inactive PPP6CD84N complexes had no activity 

against MEK1, indicating that our preparations were not contaminated with other MEK 

phosphatase activities. We found that PP6 also dephosphorylated pSer298 on MEK1, 

albeit with slower kinetics than with the activation loop sites, while it did not detectably 

dephosphorylate pThr286. Thus, PP6 dephosphorylates MEK1 selectively at the same 

sites that are elevated in cells lacking PPP6C (Figure 3.9C). Furthermore, PP6 had no 

activity on phospho-ERK2, consistent with PPP6C acting as a regulator of MEK (Figure 

3.9B). Overall, these studies demonstrate the direct dephosphorylation of MEK1 by PP6 

with substrate and phosphorylation site specificity (Figure 3.9C).  

To provide additional evidence that PPP6C acts directly on MEK, we performed 

co-immunoprecipitation experiments to determine if PP6 can interact with MEK in cells. 

HEK293T cells were transfected with plasmids expressing a FLAG epitope tagged PP6 

subunit (PPP6C, PPP6R1, PPP6R2, or PPP6R3) and untagged MEK1. We found that 

MEK1 co-immunoprecipitated with each of the PP6 regulatory subunits (Figure 3.9D), 
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with the amount of associated MEK1 proportional to the PPP6R expression level. 

Significantly less MEK1 associated with FLAG-tagged PPP6C. These results suggest 

that PP6 regulatory subunits serve to recruit MEK to the PP6 complex for 

dephosphorylation by PPP6C, consistent with a general role for non-catalytic subunits of 

PP6 and other PP2A family phosphatases in substrate binding149,153,155,248,249. In keeping 

with our observation that MEK binds to each of the regulatory subunits, we found that 

combined siRNA silencing of PPP6R1, PPP6R2 and PPP6R3, but not knockdown of 

individual subunits, significantly elevated MEK phosphorylation in 501mel cells (Fig 

3.9E). 

Our observations collectively suggest that PP6 has a general role as a MEK 

phosphatase across multiple cell types. Classical studies, however, had implicated 

PP2A as the major MEK phosphatase, suggesting that PP6 may act indirectly by 

regulating PP2A activity on MEK235,236. We therefore investigated the impact of PP6 and 

PP2A loss, alone and in combination, on MEK phosphorylation. We used siRNA 

SMARTpools to knockdown the two PP2A catalytic subunits (PPP2CA and PPP2CB) in 

PPP6C-/- and control 501mel cells (Figure 3.10A). In these cells, PPP2CA appeared to 

be the predominantly expressed isozyme, as PPP2CB siRNA alone did not detectably 

decrease total catalytic subunit levels. Knockdown of PPP2CA, but not PPP2CB, 

increased MEK activation loop phosphorylation levels in the control cell line. In PPP6C-/- 

cells, PP2A downregulation further increased MEK phosphorylation, with the two 

phosphatases having an apparently additive effect. Notably, loss of either phosphatase 

increased expression levels of the other, suggestive of a compensatory mechanism 

(Figure 3.10A, B). We further found that two other phosphorylation sites on MEK1, 

pThr292 and pSer298 were impacted by loss of PPP6C but not PP2A (Figure 3.10B). 

This experiment suggests that PP6 and PP2A act independently to dephosphorylate the 

activation loop of MEK, while PP6 also dephosphorylates additional sites. 
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Figure 3.7 PPP6C does not regulates ERK signaling via RAFs 
(A) shCTRL, shPPP6C-1, and shPPP6C-2 expressing 501mel cells were transfected with 

non-targeting control siRNA or siRNAs directed to ARAF, BRAF, or CRAF as indicated. 
Cells were lysed and assessed by immunoblot for phosphorylated and total MEK and 
ERK.  
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(B) Quantification of the relative levels of Phospho/Total MEK and ERK from (A) was 
normalized to shCTRL, siCONTROL. Data are represented as mean ± SD, n = 3. 

(C) 501mel cells expressing shCTRL, shPPP6C-1, or shPPP6C-2 were transfected with non-
targeting control siRNA or siRNA targeting both ARAF and CRAF. Cells were lysed and 
assessed by immunoblot for phosphorylated and total MEK and ERK. Knockdown of 
ARAF, CRAF, and PPP6C was also confirmed via immunoblot. 
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Figure 3.8 PPP6C regulates MEK and not BRAF 

(A) BRAF was immunoprecipitated from 501mel cells expressing shCTRL, shPPP6C-1, or 
shPPP6C and evaluated in vitro in kinase assays on MEK1 over the indicated time course. 
Vemurafenib (1 µM) was added to negative control reactions. Reactions were evaluated 
by immunoblot.  

(B) shCTRL, shPPP6C-1, and shPPP6C-2 501mel cells were treated with 1uM vemurafenib 
or 50nM trametinib for 24 hours as indicated. Cells were lysed and assessed by 
immunoblot for BRAF electrophoretic mobility shifts indicative of changes in 
phosphorylation.  

(C) PPP6C+/+ and PPP6C-/- 501mel cells were treated with 1uM vemurafenib or 50nM 
trametinib for 24 hours as indicated. Cells were lysed and assessed by immunoblot for 
phosphorylation at regulatory sites on BRAF. Quantification of the relative levels of 
Phospho/Total BRAF was normalized to PPP6C+/+. Data are represented as mean ± SD, 
n = 3. ***p<0.001, unpaired t-test. 
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(D) 501mel cells expressing shCTRL, shPPP6C-1, and shPPP6C-2 were lysed and assessed 
by immunoblot for MEK phosphorylation at Ser218/Ser222, Thr286, and Ser298. Non-specific 
cross-reacting bands in the pThr286 and pSer298 blots are indicated with an asterisk. 
Quantification of the relative levels of Phospho/Total MEK was normalized to shCTRL. Data 
are represented as mean ± SD, n = 3. 

(E) PPP6C+/+ and PPP6C-/- 501mel cell lines were transiently transfected to express His epitope 
tagged MEK1 or MEK2. Cell lysates were analyzed by immunoblot for phosphorylated and 
total MEK. Upper bands (open arrows) correspond to ectopically expressed His-tagged 
MEK1/2, and lower bands (solid arrows) show endogenous MEK1/2. 
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Figure 3.9 MEK1/2 is a direct substrate of PP6 

(A) PP6 complexes with WT or phosphatase inactive PPP6C (PD) were partially purified from 
HEK293T cells and incubated with phosphorylated MEK1 in vitro for the indicated times. 
Okadaic acid (OA, 100nM) was added where indicated. Reactions were evaluated by 
immunoblot. 

(B) In vitro phosphatase assays evaluating phospho-ERK2 as a PP6 substrate were carried 
out as in (A). Reactions were evaluated by immunoblot. 

(C) Quantification of in vitro phosphatase assays in (A) and (B). Remaining phosphorylation 
is shown relative to the 30 min control reaction. Data are represented as mean ± SD. For 
MEK1 pSer218/pSer222, n = 4; for all other data, n = 3. 
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(D) HEK293T cells were co-transfected to express the indicated FLAG epitope tagged PP6 
subunit and untagged MEK1. Anti-FLAG immunoprecipitates and whole cell lysates 
(WCL) were evaluated by immunoblot for MEK.  

(E) 501mel cells were transfected with non-targeting control siRNA or siRNA targeting 
PPP6R1, PPP6R2, and/or PPP6R3. Cells were lysed and assessed by immunoblot for 
phosphorylated and total MEK. Knockdown of PPP6Rs was also confirmed via 
immunoblot.  

(F) Quantification of the relative levels of Phospho/Total MEK in (E) was normalized to 
siCTRL. Data are represented as mean ± SD, n = 3. ***p<0.001, unpaired t-test. 



 75 

 
 

Figure 3.10 PP6 and PP2A regulate MEK independently 
(A) PPP6C+/+ and PPP6C-/- 501mel cells were transfected with non-targeting control siRNA or 

siRNA SMARTpools targeting PPP2CA and/or PPP2CB. Cells were lysed and evaluated 
by immunoblot for phosphorylated and total MEK. Quantification of the relative level of 
Phospho/Total MEK for PPP2CA/PPP2CB knockdown in PPP6C+/+ and PPP6C-/- cells. 
MEK phosphorylation was normalized to PPP6C+/+, siRNA Control. Data are represented 
as mean ± SD, n = 5. **p < 0.01, ***p < 0.001, unpaired t test. 

(B) PPP6C+/+ and PPP6C-/- 501mel cells were transfected with non-targeting control siRNA or 
siRNA SMARTpools targeting PPP2CA and PPP2CB. Cells were lysed and evaluated by 
immunoblot for phosphorylated and total MEK. Quantification of the relative levels of 
Phospho/Total MEK for PPP2CA/PPP2CB knockdown in PPP6C+/+ and PPP6C-/- cells. 
MEK phosphorylation was normalized to PPP6C+/+, siRNA Control. Data are represented 
as mean ± SD, n = 5. *p < 0.05, **p < 0.01, unpaired t test. 
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3.2.4 Cancer-associated PPP6C mutations abrogate PP6 phosphatase activity against 

MEK1/2 

PPP6C mutations are found across multiple cancer types but are most common 

in melanoma and other skin cancers, where they are thought to contribute to tumor 

development18,33,37,188,190. Prior characterization of PPP6C mutations has focused primarily 

on non-recurrent mutations that cluster at the catalytic center, which reportedly reduce 

or eliminate phosphatase activity. Interestingly, there are several PPP6C hotspot 

residues that are recurrently mutated, with R264C being the most common (Figure 1.4C). 

When modeled onto the X-ray crystal structure of a PPP5C-peptide complex250, sites of 

recurrent mutations are generally located within or proximal to the catalytic cleft (Figure 

3.11A). Of these, His55 appears critical for activity as it coordinates one of the bound 

metal ions (Figure 1.5A).  

We chose to characterize five of the most common mutations reported in 

melanomas (H55Y, P186S, P259S, R264C, and S270L) for their ability to regulate ERK 

signaling by ectopic expression in the PPP6C-/- 501mel cell line (Figure 3.10B). While re-

expression of WT PPP6C suppressed MEK and ERK phosphorylation to levels observed 

in parental cells, melanoma-associated PPP6C mutants varied in their impact on MEK 

and ERK phosphorylation (Figure 3.11B, C). In keeping with an essential role for His55 

in catalysis, cells expressing the H55Y mutant exhibited the highest level of MEK 

phosphorylation, similar to that seen in empty vector control cells. Cells expressing the 

P259S, R264C, and S270L mutants had moderate but significant increases in MEK 

phosphorylation compared to cells expressing WT PPP6C, suggesting partial loss of 

activity.  We note that the S270L mutant consistently expressed to lower levels than WT 

PPP6C or the other mutants, likely underlying its inability to promote MEK 

dephosphorylation. Ser270 maps to the globular core of the PPP6C catalytic domain 

(Figure 3.11A), potentially explaining the instability of the S270L mutation. Unlike the 

other mutants, expression of PPP6CP186S reduced MEK phosphorylation to a similar extent 
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as did the WT phosphatase. PPP6C mutants likewise impacted, to varying degrees, 

Aurora A phosphorylation in mitotically-arrested cells (Figure 3.11D, E). Expression of 

the H55Y, P259S, and S270L mutants resulted in high levels of Aurora A phosphorylation, 

similar to those seen in PPP6C-/- cells. Aurora A phosphorylation was more modest in 

cells expressing the PD, P186S, and R264C mutants, but still significantly higher 

phosphorylation than in cells expressing WT PPP6C.  We also examined the impact of 

PPP6C mutations on the levels of several transcriptional targets of ERK (DUSP6, ETV4 

and SPRY2, Figure 3.12). Elevated expression of all three targets were significantly 

suppressed upon re-expression of WT PPP6C in PPP6C-/- cells. The effect of PPP6C 

mutants generally correlated with their impact on MEK and ERK phosphorylation, with 

only levels of ETV4 being significantly affected by all mutants. 

We next performed clonogenic assays to examine the impact of PPP6C mutations 

on cell growth and MEKi sensitivity (Figure 3.13). We found that growth of the cells in the 

absence of drug inversely correlated with the degree of ERK pathway activation. For 

example, cells expressing the PPP6CH55Y mutant, which had the highest levels of MEK 

and ERK phosphorylation, grew equivalently to PPP6C-/- cells. Conversely, expression of 

PPP6CP186S, fully rescued the growth defect of null cells, in keeping with its complete 

reversal of MEK hyperactivation.  The other mutants, which partially impacted MEK and 

ERK phosphorylation, likewise grew at an intermediate rate. In all cases, treatment with 

low concentrations of MEKi at least partially reversed the growth impairment observed 

in cells expressing PPP6C mutants. Collectively, these experiments indicate that cancer-

associated PPP6C mutations generally cause partial loss-of-function, impacting both 

dephosphorylation of substrates and sensitivity. 

 

3.3 Discussion 

Our identification of PPP6C as a MEK phosphatase suggests that it also acts as a 

negative regulator of the core pathway driving melanoma, likely underlying at least in 
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part its role as a tumor suppressor. PPP6C mutations in melanoma almost exclusively 

co-occur with BRAF and NRAS mutations (Figure 1.4B), suggesting that alone they do 

not provide oncogenic levels of ERK signaling. In this context, downregulation of PPP6C 

is likely to have a role in tuning flux through the ERK pathway to counteract negative 

feedback regulation. A similar phenomenon may drive selection for mutations in MEK1, 

MEK2 and ERK2 found at low frequency in melanomas that generally co-occur with other 

activating lesions19,33,37,251. We note that like loss of PPP6C, these putatively oncogenic 

mutants suppress growth when delivered to cultured BRAF mutant melanoma cell lines, 

potentially reflecting different optimal levels of ERK signaling for cells in tumors in 

comparison with cells in culture.  

Most studies of PPP6C in melanoma have focused on its regulation of Aurora A, 

an essential kinase regulating mitotic spindle assembly and chromosome 

segregation152,190. Melanoma-associated PPP6C mutations impair its ability to 

dephosphorylate and inactivate Aurora A, resulting in genomic instability and DNA 

damage that may contribute to cancer progression189,190. Interestingly, Aurora A is 

reportedly a transcriptional target of oncogenic BRAF signaling in melanoma cells, 

suggesting that PP6 may coordinately regulate Aurora A through both direct 

dephosphorylation and through downregulation of ERK signaling252. This phenomenon 

may offer a therapeutic vulnerability, as melanoma cells expressing mutant PPP6C are 

sensitized to Aurora A inhibitors. 

The observation that loss or mutation of PPP6C is deleterious to cell growth may 

appear at odds with its role as a tumor suppressor and a negative regulator of ERK 

signaling. Recent studies indicate however that in the context of activating BRAF and 

RAS mutations, further elevation of signaling through the ERK pathway is toxic238,239,253,254. 

This phenomenon can give rise to inhibitor addiction, in which tumor cells treated with 

pathway inhibitors reactivate ERK signaling to re-establish signaling within an optimal 

range, or “fitness zone”. Subsequent inhibitor withdrawal results in a rebound signaling,  
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Figure 3.11 Cancer-associated PPP6C mutations abrogate PP6 phosphatase activity against 
MEK1/2 

(A) PPP6C residues mutated in cancer are shown in spacefill representation modeled on the 
X-ray crystal structure of PPP5C in complex with a peptide substrate (PDB: 5HPE). The 
bound peptide is shown in cyan in stick representation, and the catalytic metal ions are 
shown as gray spheres.  

(B) PPP6C+/+ and PPP6C-/- 501mel cells were transduced to stably express GFP (-), WT 
PPP6C, or the indicated PPP6C mutants. Cells were lysed and assessed by immunoblot 
for phosphorylated and total MEK and ERK.  

(C) Phospho/Total MEK (black) and ERK (blue) signal ratios were quantified and normalized 
to the GFP-expressing PPP6C+/+ samples. Mean values ± SD are shown, n = 5. 
Significance is shown in comparison to PPP6C+/+ cells expressing GFP. *p < 0.05, **p < 
0.01, ***p<0.001, paired t test. 
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(D) Cells from (C) were treated with 100ng/mL nocodazole for 24 hours. Mitotic cells were 
lysed and assessed by immunoblot for phosphorylated and total Aurora A.  

(E) Phospho-Aurora A/Total Aurora A signal ratios were quantified (n = 5) and significance 
determined as in (C). *p < 0.05, **p < 0.01, paired t test. 
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Figure 3.12 Cancer-associated PPP6C mutations upregulate ERK transcriptional targets  

PPP6C+/+ and PPP6C-/- 501mel cells were transduced to stably express GFP (-), WT 
PPP6C, or the indicated PPP6C mutants. Cells were lysed and assessed by immunoblot 
for ETV4, SPRY2, and DUSP6. Total protein signals were quantified and normalized to 
the GFP-expressing PPP6C+/+ samples. Mean values ± SD are shown, n = 3. Significance 
is shown in comparison to PPP6C+/+ cells expressing GFP. *p < 0.05, **p < 0.01, 
***p<0.001, unpaired t test. 
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Figure 3.13 Cancer-associated PPP6C mutations decrease sensitivity to MEKi. 

PPP6C+/+ and PPP6C-/- 501mel cells were transduced to stably express GFP (-), WT 
PPP6C, or the indicated PPP6C mutants. Cells were cultured in media containing DMSO 
vehicle alone or the indicated trametinib concentration for 2 weeks in colony forming 
assays. Colonies were stained with crystal violet. Clonogenic growth was analyzed by 
ColonyArea in ImageJ and normalized to GFP-expressing PPP6C+/+ samples, n = 3. 
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leading to toxic hyperactive signaling outside of the fitness zone. In this context, even 

modest increases in ERK phosphorylation suppress growth, while further elevation 

induces cell death238. Toxicity and growth suppression due to ERK hyperactivation has 

been associated with a phenotypic switch mediated in part by downregulation of the 

melanocyte lineage-specific transcription factor MITF and by transcriptional 

upregulation of genes encoding secreted cytostatic proteins253,254. BRAFi and/or MEKi 

addicted melanoma tumors grown in mice regress when treatment with inhibitors is 

ceased238,253, suggesting periodic “drug holidays” could benefit patients who have 

progressed on BRAFi and MEKi. However, in clinical studies, cessation of BRAFi and/or 

MEKi therapy for several months re-sensitized to the inhibitors, though did not cause 

tumor regression255,256, revealing how the diversity of resistance mechanisms, tumor 

heterogeneity and adaptability complicate response to drug withdrawal in patients. Our 

studies suggest downregulation or inactivation of PPP6C as an unappreciated 

mechanism influencing inhibitor sensitivity. This substantiates the identification of PPP6C 

in modulating sensitivity to BRAFi in an insertional mutagenesis screen in a mouse model 

of melanoma, and to MEKi in CRISPR/Cas9 screens conducted in NRAS and KRAS 

mutant cells in culture140,143,257. 

The toxicity associated with high level ERK signaling indicates that tumor cells 

harboring hyperactivating BRAF or RAS mutations rely on negative feedback control to 

maintain signaling within the fitness zone. For example, silencing expression of the ERK 

phosphatase DUSP6 is toxic to BRAF mutant melanoma and KRAS mutant lung cancer 

cells258,259. Indeed, in genome wide CRISPR/Cas9 screens, dependency on DUSP6 was 

highly correlated with dependency on PPP6C across a panel of melanoma cells lines, in 

keeping with PPP6C as a key negative regulator of ERK signaling. We hypothesize that 

through dephosphorylation of MEK, PPP6C likewise contributes to negative feedback 

control of the ERK pathway. While we did not observe changes in levels of PPP6C upon 

inhibition of BRAF-MEK-ERK signaling, we cannot rule out transcriptional control of PP6 
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regulatory or scaffolding subunits as a mechanism of feedback regulation. Furthermore, 

because phosphorylation of PP6 regulatory subunits can mediate recruitment to 

substrates and other interaction partners249,260, targeting of MEK may be impacted by 

ERK-dependent phosphorylation or other modifications.  

Atypically for a tumor suppressor, more than half of melanoma-associated PPP6C 

mutations occur recurrently in hotspots (Figure 1.4C). While frameshift/truncation 

mutations are less common, they do appear to be associated with reduced progression-

free survival in melanoma186. Notably, non-recurrent mutations, while distributed in the 

primary sequence, do significantly cluster in the phosphatase catalytic center. Prior 

analysis of recurrent and non-recurrent PPP6C mutations indicate that all of them, to 

varying degrees, reduce catalytic activity189,190. These prior results are consistent with 

our observation that PPP6C mutations vary in their ability to suppress MEK 

phosphorylation. Given that PPP6C has been characterized as a “common essential” 

gene, it is possible that full loss of function is incompatible with cell proliferation. It has 

also been reported that PPP6C mutations weaken association with the PPP6R2 

regulatory and ANKRD28 scaffolding subunits190. While the three-dimensional structure 

of a PP6 heterotrimer has not yet been determined, in the X-ray crystal structures of the 

PP2A-B56 holoenzyme, the residue analogous to R264 participates in interactions 

between catalytic and regulatory subunit261. In contrast, the same residue is not at the 

catalytic-regulatory subunit interface in structures of other PP2A holoenzymes261,262. This 

raises the possibility that PPP6C mutations might change the heterotrimer composition, 

favoring some regulatory subunits over others, which could favor selective 

dephosphorylation of substrates in a manner that preserves cell viability. By analogy, 

recurrent cancer-associated mutations in the PP2A scaffolding subunit PPP2R1A 

preferentially disrupt interactions with some regulatory B subunits rather than causing 

complete loss of function191. The capacity for specific complexes to restrain cell 

proliferation is key to the activity of recently developed PP2A small molecule activators, 
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which stabilize specific holoenzymes263,264. As with PP2A, at least some PP6 substrates 

are recruited through interaction with individual regulatory subunits149,153,155,249, 

suggesting the potential for developing PP6 activators with therapeutic benefit.  

While our studies implicate PP6 as a MEK phosphatase, early reports suggested 

that MEK is dephosphorylated by PP2A235,236. Indeed, downregulation of PP2A activity 

by loss or mutation of its scaffolding subunit PPP2R1A causes resistance to MEK 

inhibitors in KRAS mutated lung and colorectal cancer cell lines191,265. Likewise, 

enhancing PP2A activity through downregulation of endogenous inhibitor proteins or 

through small molecule activators sensitizes to MEK inhibition265. However, in these 

contexts PP2A promotes sensitivity to MEKi by restraining bypass PI3K/mTOR signaling 

and by direct dephosphorylation of MYC or ERK itself. Likewise, the tumor suppressor 

function of PP2A is suggested to involve other processes, such controlling the stability 

of MYC and β-catenin266,267. Notably, in addition to restraining ERK signaling, PP2A can 

also promote MEK phosphorylation through dephosphorylation of inhibitory feedback 

phosphorylation sites on RAF and KSR234. Because oncogenic mutant BRAF signals 

independently of KSR and is feedback-resistant5, PP2A activity as a MEK phosphatase 

would not be counterbalanced by activation of upstream signaling. This phenomenon 

may explain our observation that like PP6, PP2A also contributes to MEK 

dephosphorylation in BRAF mutant 501mel cells. While we found that silencing PPP6C 

expression hyperactivates MEK in most cell lines we examined, this was not universally 

the case. The relative contributions of PP2A, PP6 and potentially other phosphatases to 

dephosphorylation of MEK is thus context dependent. Melanoma cells in particular are 

characterized by low PP2A activity, and the PP2A inhibitor protein CIP2A is an 

established transcriptional target of ERK signaling268,269. Interestingly, we observed that 

PP6 and PP2A catalytic subunit expression levels increase when the other is silenced 

(Figure 3.1A, B), suggesting compensation between the two complexes that could 

potentially influence dephosphorylation of any number of targets. Further work will be 
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necessary to understand the lineage-specific, signaling, or genetic contexts that dictate 

PPP6C regulation of MEK1/2.  
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CHAPTER 4: FUNCTIONAL CONSEQUENCES OF RECURRENT SOMATIC CANCER-

ASSOCIATED MEK1 MUTATIONS AND DELETIONS 

 

4.1 Introduction 

MEK1 and MEK2 are dual specificity kinases that selectively activate ERK1/2 by 

phosphorylating a tyrosine and a threonine residue on its activation loop. Although MEK1 

and MEK2 are structurally similar, sharing 80% sequence identity, they have non-

redundant roles. MEK1 deficiency in mice is embryonic lethal whereas MEK2 deficiency 

in mice does not disrupt embryonic development270,271. It is thought that MEK1 can 

compensate for loss of MEK2 but not vice versa. MEK mutations observed in diseases 

are more commonly found in MEK1 (Figure 1.2), suggesting MEK1 has a more prominent 

role in development and disease. MEK1 has a core protein kinase catalytic domain with 

conserved features including a small N-lobe consisting of a 5-stranded β-sheet and αC-

helix and a large α-helix-rich C-lobe3,272 (Figure 4.1A). MEK1 has a proline rich insert 

unique to MEK1/2 in the protein kinase domain. The region N-terminal to the protein 

kinase domain contains a segment for ERK1/2 docking, a nuclear export sequence, and 

an inhibitory segment, also known as the negative regulatory region (NRR). The NRR, 

helix αA, stabilizes an inactive conformation of MEK1 by shifting the αC helix out of the 

active conformation. RAFs phosphorylate MEK1 at Ser218 and Ser222 of its activation 

loop, leading to conformational rearrangement into an active kinase conformation. Given 

the vital role of MEK1 in regulating fundamental cellular processes, MEK1 activity is 

highly regulated by intrapathway feedback mechanisms and cross-talk with other 

pathways (Figure 1.1A). Several regulatory and functional phosphorylation sites have 

been identified. MEK1 kinase activity is positively and negatively regulated by 

phosphorylation by PAK1, ERK1/2, and CDK53,245,273. Many of these phosphorylation 

events have MEK1 activity independent consequences including cross-talk with the 

PI3K-AKT pathway through regulation of PTEN localization4,274,275. MEK1 activity is also 
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regulated by scaffolding proteins276,277. For example, KSR associates with MEK and 

binds RAF and ERK upon growth factor stimulation278,279. 

It was originally assumed that because of the essential roles of MEK1 in 

fundamental cellular processes and for viability in mice, germline mutations in MEK1 

would be lethal. However, activating germline MEK1 mutations were first identified in 

cardio-facio-cutaneous (CFC) syndrome, a rare genetic disorder280. Somatic activating 

MEK1 mutations have been identified in various cancer types (Figure 4.1C). The first 

nonsynonymous MEK1 mutation associated with human cancer was discovered in an 

ovarian cancer cell line281. Since then, MEK1 mutations have been detected at low 

frequencies (4% or less) in lung adenocarcinoma282-284, chronic lymphocytic leukemia285, 

colorectal cancer286-289, and gastric cancer290,291. MEK1 mutations are reported to have a 

high prevalence in rare cancers such as hairy cell leukemia and Langerhans cell 

histiocytosis292-296. In melanoma, MEK1 mutations have been found to occur at an overall 

frequency of less than 8% in tumors18,19,287,297 (Figure 1.2), and identified in association 

with BRAF and MEK inhibitor resistant tumors87,101-103,298,299 suggesting MEK1 mutations 

as resistance mechanisms to targeted therapies. However, there is also evidence 

suggesting MEK1 mutations preexist in treatment-naïve tumors and do not correlate with 

inhibitor resistance300,301. MEK1 mutations in cancers overlap with those in CFC. The 

major mutational hotspot is the NRR (Figure 4.1B, C). Several recurrent mutations within 

the catalytic domain are in residues proximal to the N-terminal end of the NRR in the 

three-dimensional structure of MEK1. Of these mutations, P124S/L is the most frequent 

MEK1 mutation in melanoma. A recurrent in-frame deletion, ΔE102-I103, is located on 

the loop between N-lobe β3 strand and the αC helix (Figure 4.1A). Several other in-frame 

deletions at the b3-aC loop region presumably share similar mechanisms of activation 

with ΔE102-I103. Despite most mutations clustering to a similar spatial region, these 

mutations exhibit differing activities in overexpression studies and MEK inhibitor 
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sensitivity profiles297,302. It is therefore likely that distinct MEK1 mutations have differing 

mechanisms of activation. 

Elucidating the specific functional consequences of common somatic cancer-

associated MEK1 mutations is important for understanding how MEK1 mutations 

contribute to or drive tumorigenesis and drug resistance. We selected 8 recurrent MEK1 

mutations and in-frame deletions to investigate how MEK1 mutations alters activity 

(Figure 4.1B). Since we have completed these studies, other groups have published 

work with comprehensive biochemical and cellular characterization of tumor-associated 

MEK1 mutants, including our chosen mutants251,303. Our work presented here is 

consistent with the Rosen group’s findings.  

 

4.2 Results 

4.2.1 MEK1 mutations increase MEK1 kinase activity  

Cancer and CFC-associated MEK1 mutations have been widely characterized as 

gain-of-function mutations. To confirm our selected mutations as activating mutations 

and determine the level of kinase activity, MEK1 mutants, expressed and purified from 

HEK293T cells, were evaluated in in vitro kinase assays detecting MEK phosphorylation 

of ERK2.  ERK2 phosphorylation by each mutant was compared to ERK2 

phosphorylation by wild-type MEK1 (Figure 4.2). All MEK mutants we investigated have 

enhanced kinase activity against ERK2 compared to wild-type MEK1. The degree to 

which each mutation Is activating is highly variable. The activity of ΔE102-I103 deletion 

mutant is strikingly high (Figure 4.2B).  The signal intensity for phosphorylated ERK2 was 

well above the linear dynamic range of signal detection to accurately determine the fold 

increase in activity compared to that of wild-type MEK1 or any of the other mutants. The 

other deletion mutant, ΔQ58-E62, has an 8.9-fold increase in activity compared to wild-

type MEK1. The D67N mutant and the P124S mutant have modest increases in activity 

of < 3-fold. The remaining mutants are 4-7-fold more active than wild-type. The different  



 90 

 
Figure 4.1 MEK1 Mutations 

(A) 3D crystal structure of MEK1. (PDB:3EQI). Selected mutations (red) and activation loop 
phosphorylation sites (yellow) are shown in stick representation. Bound ADP (white) is 
shown stick representation.  
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(B) Linear representation of MEK1 protein. Organization of nuclear export signal (NES), 
negative regulatory region (NRR), protein kinase domain, proline-rich insert, and ERK 
docking segment is color coded as indicated. Selected mutations and in-frame deletion 
are indicated in red. 

(C) Frequencies of MEK1 mutations reported in cancers 2 or more times. Data are from the 
cBioportal curated set of non-redundant studies.  
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levels of activation support the notion that mutations have different mechanisms of 

activation. The degree of ERK signaling activation in cells is likely influenced by the 

signaling context, in addition to structural consequences of the mutations. 

 

4.2.2 MEK1 mutations alter basal activation loop phosphorylation levels 

Upon phosphorylation at the activation loop, kinases undergo structural changes 

to adopt an active conformation. MEK1 is activated by RAF phosphorylation of its 

activation loop residues Ser218 and Ser222. MEK1 remains active until 

dephosphorylated at these sites by PP2A or, as we have shown in Chapter 3, PP6. 

Increased activation loop phosphorylation of MEK mutants may in part explain increased 

MEK activity. MEK1 mutants were examined for their relative levels of activation loop 

phosphorylation which we found were not necessarily correlative of their relative 

increases in activity (Figure 4.3). P124S and D67N mutants have reduced basal 

activation loop phosphorylation despite having higher activity than wild-type MEK1. The 

F53L mutant had the same basal phosphorylation levels as wild-type and 4-fold higher 

activity. The remaining mutants have higher activation loop phosphorylation than wild-

type MEK1. The activation loop phosphorylation of the ΔE102-I103 mutant is 

considerably higher than any other mutant and >40 fold higher than wild-type.  

 The inconsistency between basal activation loop phosphorylation and kinase 

activity identifies distinct groups of mutations. P124S and D67N mutants are 

underphosphorylated, suggesting their modest increases in basal activity is not 

attributed to increased activation by upstream RAFs. The F53L, K57N, C121S, E203K, 

and ΔQ58-E62 mutants have more correlative activation loop phosphorylation levels and 

activity levels. In these cases, activation loop phosphorylation most likely contributes to 

increased kinase activity. The extremely high levels of activation loop phosphorylation 

and activity of ΔE102-I103 suggest factors other than activating phosphorylation are 

involved in its mechanism of action. 
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4.2.3 MEK1 mutations can disrupt or enhance binding to regulatory binding partners 

MEK activity is regulated by key binding partners. BRAF-MEK1 complexes are 

enriched in wild-type BRAF cells and mutant RAS cells304. Pathway activation induces 

BRAF dimerization and phosphorylation of MEK1 which then dissociates from BRAF to 

activate ERK. Depending on the genetic background, MEK1 mutations may alter MEK1 

interactions with RAFs impacting pathway activation. Additionally, KSR1 scaffolding 

protein binds MEK1 via the proline-rich region to regulate MEK activation by RAF279. In 

the context of wild-type BRAF (HEK293T cells), most MEK1 mutants immunoprecipitated 

similar amounts of CRAF, BRAF, and KSR1 (Figure 4.4). Interestingly, the C121S 

mutation disrupts interaction with CRAF, BRAF, and KSR1. The ΔQ58-E62 and ΔE102-

I103 deletion mutants do not bind BRAF as well as wild-type MEK1 but bind similarly to 

CRAF and KSR1. This is not surprising given these deletion mutants have the highest 

activation loop phosphorylation levels, which favors dissociation from BRAF.  

Interestingly, P124S has enhanced interactions with BRAF and CRAF, which is 

consistent with P124S having the lowest activation loop phosphorylation levels.  

 MEK1 mutant interactions with other binding partners should be explored for their 

consequences on MEK1 signaling. Changes in binding to MEK phosphatases and 

substrates (ERK1/2) directly impact signaling propagation further downstream. 

 

4.3 Discussion 

 Our work characterizing MEK1 mutations, though limited, provide key 

insight into MEK1 mutant activation and the genetic contexts they are observed in. The 

wide range of activation levels observed with MEK1 mutations is surprising because ERK 

pathway activation promotes cell fitness only when within an optimal range. Low and 

high pathway activation can be toxic to cells. The extreme ERK activation with the ΔE102-

I103 mutation is unlikely to be tolerable in contexts where ERK activation is already 

elevated. In patient samples, this deletion does not co-occur with mutations in other ERK  
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Figure 4.2 MEK1 mutations increase MEK1 kinase activity 

(A) MEK1 wild-type (WT), kinase dead (KD), and mutants were purified from HEK293T cells 
and incubated with ERK2 for 30 minutes. Reactions were evaluated by immunoblot. 
Quantification of ERK2 phosphorylation levels shown relative to the WT reaction. n = 2. 

(B) MEK1 wild-type (WT) and ΔE102-I103 deletion mutant (EIdel) kinase reactions run 
parallel to reactions in (A). Reactions were evaluated separately to avoid signal 
interference from hyperphosphorylated ERK. 
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Figure 4.3 MEK1 mutations alter basal activation loop phosphorylation levels 

MEK1 wild-type (WT), kinase dead (KD), and mutants were purified from HEK293T cells 
evaluated by immunoblot for MEK phosphorylation at S218 and S222. Quantification of 
MEK1 phosphorylation levels shown relative to the WT reaction. n = 3. 
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Figure 4.4 MEK1 mutations can disrupt or enhance binding to regulatory binding partners 

MEK1 wild-type (WT), kinase dead (KD), and mutants were purified from HEK293T cells 
evaluated by immunoblot for co-immunoprecipitation of BRAF, CRAF, and KSR1 
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pathway components and are present only in the triple wild-type genetic subtype of 

melanoma77,305. However, mutations with modest increases in activity, like P124S and 

D67N, commonly occur with BRAF mutations, NRAS mutations, NF1 mutations, or other 

MEK1 mutations. Interestingly, MEK1 mutations are generally not present in cancer types 

with low RAS and RAF mutation rates.  

In the context of BRAFi resistance, C121S, E203K, and K57N mutations have 

been detected in progressive tumors but not in patient-matched MAPKi naïve 

tumors101,102,299. The moderate increases in ERK activity for these mutations contribute to 

acquired resistance to BRAFi through MAPK reactivation. However, P124 mutations 

found in progressive tumors were also present in treatment naïve tumors of the same 

patient89,300,301. Pre-existing P124 mutations are associated with poorer response and 

shorter progression free survival with BRAFi therapy compared to wild-type MEK1. 

Progressive tumors from patients with pre-existing P124 mutations acquire NRAS 

mutations or BRAF amplification for BRAFi resistance91,300. The modest elevation in MEK1 

activity from P124 mutations may contribute to drug resistance but is insufficient to 

confer resistance alone.  

Many MEK1 mutations and deletions map to or spatially near the NRR. Loss or 

interruption of the helical secondary structure of the NRR results disrupts its stabilization 

of an inactive conformation and results in elevated MEK1 activation independent of 

activation loop phosphorylation306. ΔQ58-E62, F53L, K57N, and D67N are a part of the 

NRR helix, (Figure 4.1A). P124S, E203K, and C121D map to regions spatially proximal 

and potentially interacting with the NRR helix. The disparate activity levels and activation 

loop phosphorylation levels of these mutants we observed show the activating 

mechanisms of these mutations are more complex than just the relief of an intramolecular 

negative regulatory mechanism. ΔE102-I103 is a deletion in the b3-aC loop. Similar 

activating deletions in the b3-aC loop have been detected in EGFR and BRAF231,307. 
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These deletions presumably constrain the aC helix in an active conformation.  

Our findings were consistent with the Rosen group’s characterizations of these 

mutants251. They identify 3 classes of MEK1 mutations. Class 1 mutants are dependent 

on the activation loop phosphorylation by RAF for hyperactivation and always co-occur 

with RAS, RAF, and NF1 mutations in tumors. This class include the D67N and P124S 

mutants we characterized to have modest increases activation with decreased activation 

loop phosphorylation compared to wild-type MEK1. The authors demonstrate that 

additional phosphorylation of these mutants beyond the basal levels result in 

hyperactivated MEK1. Class 2 mutants have elevated intrinsic activity that is further 

activated by RAF phosphorylation of the activation loop. These mutations can sometimes 

co-occur with RAS, RAF, or NF1 mutations in tumors and are associated with acquired 

BRAFi resistance. The F53L, K57N, C121S, and E203K are class 2 mutations. We found 

these mutations to have moderate increases activity and activation loop phosphorylation 

compared to wild-type MEK. Class 3 mutants, which are b3-aC loop region deletions, 

autophosphorylate and therefore are activation loop phosphorylation independent and 

intrinsically hyperactive. There is evidence that these deletion mutations promote MEK1 

homodimerization and intradimer cross-phosphorylation of activation loops303. These 

mutations, which include the hyperactive and hyperphosphorylated ΔE102-I103 deletion 

mutant from our studies, do not co-occur with RAS, RAF, or NF1 mutations. 
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CHAPTER 5: CONCLUDING REMARKS 
 

 The ERK signaling pathway is one of the most thoroughly investigated signaling 

pathways. With increasing activation, ERK signaling proceeds from stimulating cell 

growth and proliferation to promoting malignant transformation and then to inducing 

cytotoxicity at extremely high levels of pathway activation. Accordingly, the ERK 

signaling cascade is central to a broader and more complex signal transduction 

network. This includes a multitude of regulators and regulatory mechanisms which have 

been exhaustively studied and described. Mutations or other alterations in the cascade 

or this extended network shifts signaling levels to initiate tumorigenesis or MAPKi 

resistance. In this dissertation, 

we describe the identification of modulators of MEKi sensitivity in melanoma, discovery 

of a novel MEK regulator, and the biochemical and cellular characterization of cancer-

associated genetic lesions.  

Establishing PP6 as a MEK phosphatase provides a mechanistic explanation 

supporting previous assumptions of PPP6C being a tumor suppressor based on 

occurrences of PPP6C mutations in melanoma. In terms of potential clinical implications, 

our work characterizing melanoma-associated PPP6C mutations suggests these loss-of-

function mutations may be predictive of poor or limited response to MAPKi therapy. 

Conversely, activating PPP6C may sensitize cells to MAPKi. The recent development of 

small molecule PP2A activators that stabilize specific PP2A holoenzymes263,264 

demonstrate the potential for development of PP6 activators for use in combination with 

other MAPKi to treat BRAFV600E melanoma.  

Our characterization of both cancer-associated MEK1 mutations and PPP6C 

mutations demonstrates how activating mutations in an oncogene and loss-of-function 

mutations in a tumor suppressor can result in similar signaling consequences These 

mutations all result in MEK activation which has clear implications for these mutations in 

tumorigenesis and MAPKi response. However, the levels of MEK activation are highly 
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variable among all MEK and PPP6C mutants indicating a diversity in the mechanisms of 

activation and physiological consequences. 

Expanding the intricate ERK signaling regulatory network to include PP6 raises 

new questions related to PP6 involvement in the numerous ERK signaling cellular 

functions in normal and pathological conditions. These questions, many of which are 

posed in chapter discussion sections (2.3, 3.3) include determining the specific contexts 

that govern PP6 regulation of MEK and understanding the functions and distribution of 

different PP6 holoenzymes. However, in addition to revealing what is not yet understood 

about PPP6C, the work presented in this dissertation principally contributes to our 

understanding of ERK signaling regulation. 
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APPENDIX 
 
 
Materials 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

PPP6C, rabbit polyclonal Bethyl Laboratories, 
Inc 

Cat# A300-844A; 
RRID: AB_2168899 

Phospho-MEK1/2 (Ser217/221), rabbit polyclonal Cell Signaling 
Technology 

Cat# 9121; RRID: 
AB_331648 

Phospho-MEK1/2 (Ser217/221) (41G9), rabbit 
monoclonal 

Cell Signaling 
Technology 

Cat# 3958; RRID: 
AB_2138014 

Phospho-MEK1 (Ser298), rabbit polyclonal Cell Signaling 
Technology 

Cat# 9128; 
RRID:AB_330810 

Phospho-MEK1 (Thr286), rabbit polyclonal Cell Signaling 
Technology 

Cat# 9127; RRID: 
AB_331654 

MEK1/2, rabbit polyclonal Cell Signaling 
Technology 

Cat# 9122; RRID: 
AB_823567 

MEK1/2 (L38C12), mouse monoclonal Cell Signaling 
Technology 

Cat# 4694; RRID: 
AB_10695868 

P44/42 MAPK (ERK1/2), rabbit polyclonal Cell Signaling 
Technology 

Cat# 9102; RRID: 
AB_330744 

Phospho-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) 
(E10), mouse monoclonal 

Cell Signaling 
Technology 

Cat# 9106; RRID: 
AB_331768 

RAF-B (F-7), mouse monoclonal Santa Cruz 
Biotechnology 

Cat# sc-
5284; RRID: 
AB_626760 

RAF-1 (C-12), rabbit polyclonal Santa Cruz 
Biotechnology 

Cat# sc-133; RRID: 
AB_632305 

A-RAF (D2P9P), rabbit monoclonal Cell Signaling 
Technology 

Cat# 75804; RRID: 
AB_2799875 

Phospho-Aurora A (Thr288) (CD39D8), rabbit 
monoclonal 

Cell Signaling 
Technology 

Cat# 3079; RRID: 
AB_2061481 

Aurora A (1F8), mouse monoclonal Cell Signaling 
Technology 

Cat# 12100; RRID: 
AB_2797820 

PP2A C Subunit (52F8), rabbit monoclonal Cell Signaling 
Technology 

Cat# 2259; RRID: 
AB_561239 

Caspase-3, rabbit polyclonal Cell Signaling 
Technology 

Cat# 9662; RRID: 
AB_331439 

PARP (46D11), rabbit monoclonal Cell Signaling 
Technology 

Cat# 9532; RRID: 
AB_659884 

ETV4, rabbit polyclonal Proteintech Cat# 10684-1-AP; 
RRID: AB_2100984 

DUSP6/MKP3, rabbit polyclonal Cell Signaling 
Technology 

Cat# 39441; RRID: 
AB_2799156 

SPRY2 (D3G1A), rabbit monoclonal Cell Signaling 
Technology 

Cat# 14954l RRID: 
AB_2798658 
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Phospho-BRAF (Ser445), rabbit polyclonal Cell Signaling 
Technology 

Cat# 2696; RRID: 
AB_390721 

Phospho-BRAF (Thr401) (JJ08-72), rabbit 
monoclonal Invitrogen Cat# MA5-32430; 

RRID: AB_2809708 

Phospho-BRAF (Thr753), rabbit polyclonal Invitrogen Cat# PA5-37498; 
RRID: AB_2554107 

Phospho-MEK1 (Thr292) (D5L3K), rabbit 
monoclonal 

Cell Signaling 
Technology 

Cat# 26975; RRID: 
AB_2798935 

KSR1, rabbit polyclonal Cell Signaling 
Technology 

Cat# 4640; RRID: 
AB_ 10544539 

Normal mouse IgG Santa Cruz 
Biotechnology 

Cat# sc-2025; 
RRID: AB_737182 

FLAG M2, mouse monoclonal Sigma Cat# F3165; RRID: 
AB_259529 

Penta-HIS, mouse monoclonal Qiagen Cat# 34660; RRID: 
AB_2619735 

Goat anti-Rabbit secondary antibody, Alexa Fluor 
680 Invitrogen Cat# A32734; 

RRID: AB_2633283 
Goat anti-Mouse secondary antibody, Alexa Fluor 
800 Invitrogen Cat# A32730; 

RRID: AB_2633279 

Chemicals, Peptides, and Recombinant Proteins 

Selumetinib (AZD6244) SelleckChem Cat# S1008 

Trametinib (GSK1120212) SelleckChem Cat# S2673 

Vemurafenib (PLX4032) SelleckChem Cat# S1267 

Puromycin Thermo Fisher 
Scientific Cat# A1113803 

Nocodazole Sigma Cat# M1404 

Okadaic Acid Enzo Life Sciences Cat# ALX-350-063 

3xFLAG peptide Sigma Cat# F4799 

Anti-FLAG M2 affinity gel Sigma Cat# A2220 

Critical Commercial Assays 

QuikChange II Kit Agilent Cat# 200521 

Gateway LR Clonase II Enzyme Kit Thermo Fisher 
Scientific Cat# 11791100 

Lipofectamine RNAiMAX Reagent Thermo Fisher 
Scientific Cat# 13778100 

DNeasy Blood and Tissue Kit Qiagen Cat# 69504 

Pierce BCA Protein Assay Thermo Fisher 
Scientific Cat# 23250 
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Experimental Models: Cell Lines 

501mel (human) 
Yale SPORE in Skin 
Cancer Biospecimen 
Core 

 

A375 (human) Laboratory of Harriet 
Kluger  

YUGEN8 (human) 
Yale SPORE in Skin 
Cancer Biospecimen 
Core 

 

YUZEAL (human) 
Yale SPORE in Skin 
Cancer Biospecimen 
Core 

 

YUSIK (human) 
Yale SPORE in Skin 
Cancer Biospecimen 
Core 

 

YURIF (human) 
Yale SPORE in Skin 
Cancer Biospecimen 
Core 

 

YUGASP (human) 
Yale SPORE in Skin 
Cancer Biospecimen 
Core 

 

SK-MEL-103 (human) Laboratory of 
Narendra Wajapeyee  

SK-MEL-30 (human) Laboratory of Craig 
Crews  

M318 (human) Laboratory of 
Narendra Wajapeyee  

MEL-ST (human) Laboratory of 
Narendra Wajapeyee  

A549 (human) ATCC Cat# CCL-185; 
RRID: CVCL_0023 

HCT116 (human) ATCC Cat# CCL-247; 
RRID: CVCL_0291 

SW620 (human) ATCC Cat# CCL-227; 
RRID: CVCL_0547 

RKO (human) ATCC Cat# CRL-2577; 
RRID: CVCL_0504 

U2OS (human) ATCC Cat# HTB-96; 
RRID: CVCL_0042 

HEK293T (human) ATCC Cat# CRL-11268; 
RRID: CVCL_1926 

Bacterial Strains 

MAX efficiency DH5a Thermo Fischer 
Scientific Cat# 18258012 

One Shot Stbl3 Thermo Fischer 
Scientific Cat# C737303 

Oligonucleotides 

CRISPR PPP6C sgRNA 2a 
(CACCGTGAGAGTAGACAGATAACAC)   
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CRISPR PPP6C sgRNA 2b 
(AAACGTGTTATCTGTCTACTCTCAC)   

CRISPR PPP6C Sequencing Primer F 
(CAGATTCTTGTAGATTTCCCTGGAATC)   

CRISPR PPP6C Sequencing Primer R 
(CTTTGAGGCACAGATCTAGAAAGATG)   

BRAF siRNA 
(UCUGUAAGGCUUUCACGUUAUA) Horizon Discovery  

ARAF siRNA 
(UUUCGUCCCUUGAUGAGUCGGU) Horizon Discovery  

CRAF siRNA 
(UCUCUGAAAACAUGUGUUCUGC) Horizon Discovery  

siGENOME Non-Targeting siRNA #2 Horizon Discovery Cat# D-001210-02-
05 

ON-TARGETplus Human PPP2CA (5515) siRNA – 
SMARTpool Horizon Discovery Cat# L-003598-01-

0005 
ON-TARGETplus Human PPP2CB (5516) siRNA – 
SMARTpool Horizon Discovery Cat# L-003599-00-

0005 

ON-TARGETplus Human PPP6R1 siRNA (A) Horizon Discovery Cat# J-020420-09-
0002 

ON-TARGETplus Human PPP6R1 siRNA (B) Horizon Discovery Cat# J-020420-10-
0002 

ON-TARGETplus Human PPP6R2 siRNA (A) Horizon Discovery Cat# J-021331-09-
0002 

ON-TARGETplus Human PPP6R2 siRNA (B) Horizon Discovery Cat# J-021331-11-
0002 

ON-TARGETplus Human PPP6R3 siRNA (A) Horizon Discovery Cat# J-014646-09-
0002 

ON-TARGETplus Human PPP6R3 siRNA (B) Horizon Discovery Cat# J-014646-10-
0002 

Recombinant DNA 

pSpCas9(BB)-2A-GFP (PX458) Addgene Cat# 48138 

pSpCas9(BB)-2A-GFP_hPPP6C-2   

pDONR223_PPP6C_WT Addgene Cat# 81811 

pLEX_305 Addgene Cat# 41390 

pLEX_305-PPP6C-WT   

pLEX_305-PPP6C-D84N   

pLEX_305-PPP6C-H55Y   

pLEX_305-PPP6C-P186S   

pLEX_305-PPP6C-P259S   
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pLEX_305-PPP6C-R264C   

pLEX_305-PPP6C-S270L   

pLEX_305-GFP   

pLKO.1_shPPP6C-1 Sigma TRCN0000379835 

pLKO.1_shPPP6C-2 Sigma TRCN0000002767 

pREP4-MEK1 [308]  

pcDNA3-His6-MEK1 [309]  

pcDNA3-His6-MEK1-K57N   

pcDNA3-His6-MEK1-F53L   

pcDNA3-His6-MEK1-D67N   

pcDNA3-His6-MEK1-C121S   

pcDNA3-His6-MEK1-P124S   

pcDNA3-His6-MEK1-E203K   

pcDNA3-His6-MEK1-ΔQ58-E62   

pcDNA3-His6-MEK1- ΔE102-I103   

pcDNA3-His6-MEK1-K97M   

pcDNA3-His6-MEK2   

pGEX4T3_ERK2 [310]  

pET22b-MEK1 Laboratory of Titus 
Boggon  

pET22b-MEK1-DE102_I103   

pFLAG-BRAF-V600E   

pFLAG-PPP6C   

psPAX2 Addgene Cat# 12260 

pCMV-VsV-G Addgene Cat# 8454 

pCMV-dR8.91   
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pV1900 [311]  

pV1900-PPP6R3   

pV1900-ANKRD28   

pFLAG-PPP6R1   

pFLAG-PPP6R2   

pFLAG-PPP6R3   

Software and Algorithms 

GENE-E Broad Institute https://software.broad
institute.org/GENE-E/ 

GraphPad Prism GraphPad https://www.graphpa
d.com 

RIGER Broad Institute 
https://software.broad
institute.org/GENE-
E/extensions.html 
 

PYMOL Schrodinger https://pymol.org/ 

Image Studio Lite LI-COR Biosciences https://www.licor.com
/bio/image-studio-lite/ 

ImageJ NIH https://imagej.nih.gov
/ij/ 

ImageJ plugin ColonyArea  
https://b2share.eudat
.eu/records/39fa3996
5b314f658e4a198a78
d7f6b5 

 
 
Cell Lines and Culture Conditions 

501mel, YUGEN8, YUZEAL, YUSIK, YURIF, and YUGASP cells were cultured in Opti-

MEM medium (Gibco) supplemented with 5% fetal bovine serum (FBS) (Gibco) and 1% 

penicillin/streptomycin (P/S, Gibco). A375 cells were cultured in Opti-MEM medium 

supplemented with 10% FBS and 1% P/S. MEL-ST, U2OS, and HEK293T cells were 

cultured in DMEM medium (Gibco) supplemented with 10% FBS and 1% P/S. SK-MEL-

103, SK-MEL-30, HCT116, and M318 cells were cultured in RPMI 1640 medium (Gibco) 

supplemented with 10% FBS and 1% P/S. RKO were cultured in MEM medium (Gibco) 

supplemented with 10% FBS and 1% P/S. All cell lines were cultured at 37°C under 5% 

CO2. 
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Methods 

 

Plasmids, Cloning, and Mutagenesis 

Plasmids harboring cDNAs of PPP6C, PPP6R1, PPP6R3 and ANKRD28 in pDONR223 

were from the human ORFeome collection (v8.1), and the PPP6R2 cDNA was from 

Transomic. The lentiviral expression vector pLEX_305-PPP6C and the transient 

expression plasmid pVL1900-ANKRD28 (untagged) were generated by Gateway 

recombination cloning into their respective destination vectors. The untagged 

expression vector for PPP6R3 used for preparation of PP6 complexes was generated by 

Gateway recombination into pV1900 followed by QuikChange mutagenesis to insert a 

stop codon upstream of the FLAG tag. The transient expression vector for N-terminally 

FLAG-tagged PPP6C, PPP6R1, PPP6R2 and PPP6R3 were made by PCR amplification 

of the coding sequence from the source plasmid and inserting into pcDNA3-FLAG by 

either Gibson assembly (PPP6R3) or restriction enzyme cloning (all others). The 

mammalian expression vector for N-terminally 6xHis-tagged MEK2 was generated by 

shuttling the entire coding sequence from pRSET-MEK2 (obtained from the laboratory of 

Natalie Ahn) and into pcDNA3. All mutants were generated using QuikChange Site 

Directed Mutagenesis following standard protocols. Constructs were verified by Sanger 

sequencing through the entire open reading frame. 

 

Recombinant Lentivirus Production and Cell Infection 

shRNA lentiviruses were packaged in low passage HEK293T cells by polyethylenimine 

(PEI) co-transfection with packaging constructs dR8.91 and VsV-G (Addgene, 8454). 

PPP6C expression lentiviruses were packaged in low passage 293T cells by PEI co-

transfection with packaging constructs psPAX2. (Addgene, 12260) and VsV-G 

(Addgene, 8454). For PEI co-transfection, lentiviral transfer plasmid:packaging 

plasmid:envelope plasmid ratio was at 10:10:1 with the PEI:DNA ratio at 3:1. Supernatant 
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media containing virus was collected at 48 hours post transfection. Cells were infected 

with lentivirus at an MOI of 0.3-0.4 in the presence of 4ug/mL polybrene for 24 hours and 

selected for >48 hours in fresh media containing (1.5-2.5 ug/mL) puromycin.  

 

shRNA Screening 

The shRNA library was custom generated by pooling human MISSION shRNA constructs 

(Sigma) targeting all annotated protein kinases and phosphatases and packaged into 

lentiviral particles as described above. To initiate the screen, 501mel cells were 

transduced for 24 hours with the lentiviral library in 0.4 µg/ml polybrene at an MOI of 0.3 

to assure that most cells receive a single viral integration. A sufficient number (8 x 106) 

of cells were infected to ensure >1,000-fold coverage for each unique shRNA in the 

library for a reference sequencing sample and for each drug condition. Infected cells 

were selected with 1.8 µg/mL puromycin for 48 hours, trypsinized, and 8 x 106 cells were 

reserved for the T0 reference sample. For the remainder, 8 x 106 cells were plated for 

each of the 5 conditions: 0.0001% DMSO vehicle control, 1 nM trametinib, 3.3 nM 

trametinib, 33 nM selumetinib, and 100 nM selumetinib. Every two doublings, cells were 

counted, and 8 x 106 cells were replated for propagation. The screen was carried out for 

10 total population doublings (T10). Genomic DNA from the T0 and T10 samples for each 

of the drug conditions was extracted using Qiagen DNeasy Blood and Tissue Kit 

(Qiagen, Cat No. 69504), following the manufacturer’s protocol. For each drug 

condition/time point sample, the shRNA integrants were PCR-amplified from the genomic 

DNA with barcoded primers and sequenced on an Illumina HiSeq instrument. The RIGER 

algorithm in GENE-E (www.broadinstitute.org/cancer/software/GENE-E/) was used to 

rank each gene by their enrichment.  

 

MEKi Dose Response Assays  
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Cells (750 per well) were seeded in 96-well black/clear bottom plates, allowed to recover 

overnight, and treated with varying concentrations of trametinib or selumetinib (6 

wells/concentration) in fresh media for 72 h.  Media aspirated and replaced with fresh 

media containing 44 µM resazurin (alamarBlue Cell Viability Reagent, Fisher Scientific). 

Plates were incubated in the dark for 4 hours at 37°C, and fluorescence (excitation 560 

nm; emission 590nm) was measured on a plate reader.  When MEKi treatment was 

initiated, starting time reading was obtained on a separate plate containing untreated 

cells. Starting point readings were subtracted from the 72 h readings to measure overall 

growth inhibition. Dose response curves were generated with GraphPad Prism.  

 

Clonogenic Growth Assays 

Cells (1 x 103) were plated in each well of a six-well plate containing 3 mL of media with 

or without MEKi and cultured at 37°C under 5% CO2 undisturbed for 14 days. Media was 

removed, and cells were gently washed with PBS. The cells were stained with crystal 

violet staining solution (0.5% crystal violet, 6% formaldehyde, 1% methanol in PBS) for 

15 min and washed 3 times with water. Plates were air-dried and imaged. For 

experiments characterizing PPP6C mutants, cells (2.5 x 103) were plated in 12 well plates 

containing 1 mL media with or without MEKi. 

Cell Lysis and Immunoblot Analysis 

Cells were placed on ice, washed twice with cold PBS, and lysed in cold lysis buffer (20 

mM Tris [pH 8.0], 137 mM NaCl, 10% glycerol, 1% Igepal CA-630, 1 mM PMSF, 1 mM 

Na3VO4, 10 µg/mL leupeptin, 2 µg/mL pepstatin A, 10 µg/mL aprotinin) for 15 min. Cell 

lysates were scraped into 1.5 mL tubes and clarified in a 4 °C microcentrifuge at 13,000 

rpm for 10 min. Cleared lysates were analyzed by BCA protein assay. 4X SDS-PAGE 

loading buffer was added to lysates to prepare immunoblot samples. Equal amounts of 

lysate (15 µg per lane) were fractionated by SDS-PAGE and transferred to polyvinyl 
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difluoride (PVDF) (Sigma, IPFL85R) membrane. Membranes were blocked in Tris 

buffered saline (TBS) with 5% non-fat milk for one h and probed overnight at 4 °C with 

primary antibodies diluted according to manufacturer’s recommendations. Membranes 

were incubated for 1 h in fluorescently-labeled secondary antibodies diluted 1:10,000 in 

TBS with 5% bovine serum albumin (BSA) and 0.1% Tween20. Western blots were 

imaged with an Odyssey CLx imaging system (LI-COR Biosciences), and densitometry-

based quantification was carried out with Image Studio Lite. 

 

Co-immunoprecipitation 

HEK293T cells in 10 cm plates were transiently transfected with equal amounts of pREP-

MEK1 (untagged) and FLAG tagged PP6 subunit plasmid precomplexed with 

polyethyleneimine (PEI) at a 3:1 ratio with DNA. After 48 h, cells were placed on ice and 

washed twice with cold PBS. On the second PBS wash, cells were scraped into 1.5 mL 

tubes and pelleted at 1000 rpm for 5 min.  Cells were resuspended in 300 µL hypotonic 

lysis buffer (10 mM Tris-HCl [pH 8.0], 1 mM KCl, 1.5 mM MgCl2, 0.5 mM DTT, 0.05% 

Igepal CA-630, 1 mM PMSF, 1 mM Na3VO4, 10 µg/mL leupeptin, 2 µg/mL pepstatin A, 

10 µg/mL aprotinin) and kept on ice for 5 min. Cell lysates were vortexed for 1 minute 

and run three times through a 25G needle with a syringe. Lysates were spun at 3500 

rpm for 10 minutes in a 4°C microcentrifuge. A portion (30 µL) of the supernatant was 

reserved for analysis of the whole cell lysate sample. The remaining total supernatant 

was brought to a volume of 500 µL with additional hypotonic lysis buffer, and the [NaCl] 

was adjusted to 150 mM. Anti-FLAG M2 Affinity Gel beads (Sigma, A2220) were blocked 

in 5% BSA-TBS solution for 1 h, equilibrated to hypotonic lysis buffer, and 30 µL of the 

suspension was added to each supernatant. Samples were rotated at 4°C overnight. 

Beads were pelleted and washed with cold wash buffer 1 (20 mM Tris [pH 7.5], 150 mM 

NaCl, 1% Triton X-100, 2.5 mM Na4P2O7, 1 mM b-glycerophosphate, 3 mM b-
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mercaptoethanol, 1 mM PMSF, 1 mM Na3VO4, 10 µg/mL leupeptin, 2 µg/mL pepstatin A, 

10 µg/mL aprotinin) for 10 minutes, followed by one quick and one 10 min wash with 

cold wash buffer 2 (50 mM HEPES [pH 7.4], 150 mM NaCl, 3 mM b-mercaptoethanol, 

0.1 mM Na3VO4, 0.01% Igepal CA-630, 10% glycerol). Beads were resuspended in 30 

µL 2X SDS buffer (100mM Tris-Cl [pH 6.8], 4% SDS, 20% glycerol) and boiled for 5 min. 

Samples were centrifuged in Whatman UNIFILTER 0.45 µm plates (Sigma, 

WHA77002808) at 4000 rpm for 10 minutes to remove beads, and 4X SDS-PAGE loading 

buffer was added to filtrates. Samples were analyzed via immunoblot as described 

above. 

 

Generation of CRISPR/Cas9 Knockout Cell Lines  

CRISPR/Cas9 constructs were generated by cloning sgRNA sequences into 

pSpCas9(BB)-2A-GFP (Addgene, 48138) according to the cloning protocol established 

by the Zhang lab (https://www.addgene.org/browse/article/7475/). Two sets of sgRNA 

oligos were used but only one sgRNA targeting exon 4 resulted in PPP6C knockout 

clones. pSpCas9(BB)-2A-GFP was used to generate negative control clones. 501mel 

cells were transfected with CRISPR/Cas9 constructs via PEI, and 48 hours post 

transfection, cells were trypsinized. After centrifugation and removal of media/trypsin, 

cells were resuspended in PBS and transferred to FACS tubes. Single GFP positive cells 

were sorted into 96 well plates via a BD FACSAria instrument. 96 well plates were treated 

with 0, 1, or 2 nM trametinib and incubated for several weeks until colonies were 

observed. PPP6C knockout 501mel cell colonies only grew out in the presence of 

trametinib and were maintained in 1-2 nM trametinib but withdrawn from trametinib >24 

h before experiments. PPP6C knockout was confirmed by immunoblot and sanger 

sequencing of PCR amplified target site.  
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Protein Purification 

MEK1 and MEK1 mutants were expressed in HEK293T cells by PEI transfection with 

pcDNA3-His-MEK1 alone or in a 4:1 ratio with pFLAG-BRAF-V600E to generate 

phosphorylated MEK1 (for PP6 phosphatase assays). After 40 h, plates were put on ice 

and washed once with ice-cold PBS. To lyse cells, 1 mL ice cold lysis buffer (20 mM Tris 

[pH 7.5], 150 mM NaCl, 1% Triton X-100, 2.5 mM Na4P2O7, 1 mM b-glycerophosphate, 

1mM Na3VO4, 3 mM b-mercaptoethanol, 1 mM PMSF, 10 µg/mL leupeptin, 2 µg/mL 

pepstatin A, 10 µg/mL aprotinin) was added to each plate. Lysates were scraped into 

1.5 mL tubes, incubated on ice for 10 minutes, and clarified in a microcentrifuge at 

13,000 rpm for 10 min at 4°C. Supernatants were transferred to fresh tubes, and 50 µL 

of Talon resin (Takara) was added. Samples were rotated for 2 hours at 4 °C. Beads 

were pelleted for (2 min, 4000 rpm) at 4°C microcentrifuge, washed twice with lysis buffer 

containing 10 mM imidazole, and transferred into a column. Beads were washed with 2 

mL of wash buffer (50 mM HEPES [pH 7.4], 150 mM NaCl, 3 mM b-mercaptoethanol, 10 

mM imidazole, 0.01% Igepal CA-630, 10% glycerol), and MEK1 was eluted in 150 µL 

fractions with wash buffer + 250 mM imidazole. The two most concentrated fractions as 

determined by Bradford assay (Bio-Rad, 5000006) were combined and dialyzed 

overnight at 4°C into 20 mM HEPES [pH 7.4], 150 mM NaCl, 1 mM DTT, 10% glycerol, 

0.01% Igepal CA-630. Protein concentration was estimated from Coomassie-stained 

10% polyacrylamide gels using a BSA standard curve 

 To prepare PP6 complexes, HEK293T cells were co-transfected in 15 cm plates 

with 4 µg pFLAG-PPP6C, 8.6 µg pV1900-PPP6R3 and 8.6 µg pV1900-ANKRD28 pre-

complexed with 63.3 µg PEI. Cells were lysed 40 hours post-transfection after washing 

with cold PBS in 2.25 µL CHAPS lysis buffer (50 mM Tris [pH 7.5], 150 mM NaCl, 0.3% 

CHAPS, 1 mM PMSF, 10 µg/mL leupeptin, 2 µg/mL pepstatin A, 10 µg/mL aprotinin) per 
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plate. Lysates were cleared as above, and M2 anti-FLAG affinity gel (33 µL per plate) 

was added to the supernatant. Samples were rotated at 4 °C for 1 hr, and beads were 

pelleted, washed three times with lysis buffer (0.3 mL per plate) and once with wash 

buffer (50 mM HEPES, pH 7.4, 150 mM NaCl, 10% glycerol). Protein was eluted in two 

rounds with 30 uL wash buffer + 0.5 mg/mL 3xFLAG peptide (Sigma F4799) per plate, 

snap frozen on dry ice/EtOH and stored at -80 °C. Protein concentration was estimated 

from Coomassie-stained 10% polyacrylamide gels using a BSA standard curve.  

 ERK2 was purified in unphosphorylated from bacteria as described in 310.  ERK2 

(21 µM) was phosphorylated in vitro by incubation with 0.2 µM bacterially-expressed 

active His6-MEK1DE102-I103 in kinase reaction buffer (50 mM Tris [pH 8.0], 50 mM NaCl, 0.5 

mM ATP, 1mM DTT, 0.01% Igepal CA-630, 10% glycerol, 10 mM MgCl2) at 30°C for 30 

min. MEK1 was removed by adding 20 µL Talon resin, rotating at 4°C for 1 h, and filtered 

through a chromatography column.  

 

BRAF IP Kinase Assay 

Protocol for BRAF IP kinase assays was adapted from 312. Confluent 10 cm plates of 

shCTRL, shPPP6C-1, or shPPP6C-2 expressing 501mel cells were washed twice with 

cold PBS and lysed in RIPA buffer (20 mM Tris [pH 8.0], 137 mM NaCl, 10% glycerol, 

1% NP-40, 1 mM PMSF, 1 mM Na3VO4, 10 µg/mL leupeptin, 2 µg/mL pepstatin A, 10 

µg/mL aprotinin, 0.1% SDS, 0.5% sodium deoxycholate) on ice for 15 min. Cells were 

scraped into 1.5 mL tubes and lysates were passed through 22G needle with a syringe 

3 times. Lysates were clarified in a 4°C microcentrifuge at 13,000 rpm for 10 min. Lysates 

were analyzed by BCA protein assay and equivalent amounts of protein were pre-

cleared for 1 hour at 4°C with nProtein A Sepharose 4 Fast Flow beads (Sigma, GE17-

5280-01) pre-equilibrated with lysis buffer. Beads were removed and lysates were 
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divided into 500 µL aliquots containing 500 µg protein for each assay condition or 

timepoint. Antibody to BRAF (7.5 µL) was added to each sample, and tubes were rotated 

2 h at 4°C. To precipitate immune complexes, 50 µL of a 1:1 suspension of nProtein A 

Sepharose in lysis buffer was added, and tubes again rotated for 2 h at 4°C. Beads were 

pelleted, washed three times with lysis buffer, and resuspended in kinase reaction buffer 

(20 mM Tris [pH 7.4], 20 mM NaCl, 1 mM DTT, 10 mM MgCl2, 1 mM MnCl2). Purified 

unphosphorylated MEK1 (0.5 µg) and/or vemurafenib (to 1 µM) were added to as 

indicated. To initiate kinase reactions, ATP was added to a final concentration of 1 mM 

and volume of 40 µL, and tubes were transferred to 30°C heat block for the indicated 

times. Reactions were quenched with 4X SDS-PAGE loading buffer and boiled for 5 

minutes and then subjected to SDS-PAGE (10% acrylamide) and immunoblotting as 

described above.  

 

siRNA Transfection 

Cells plated in 6-well plates were transfected with siRNA using Lipofectamine RNAiMAX 

reagent (Thermo Fisher Scientific, 13778100). Equal parts siRNA oligonucleotides (100 

nM in 1X siRNA buffer, Horizon Discovery) and Lipofectamine RNAiMAX (diluted 1:100 

in Opti-MEM Medium) were combined and incubated for 15 minutes at room 

temperature. Lipofectamine:siRNA complexes (400 µL) and complete media (600 µL) 

were added to each well. Cells were incubated for 72 h before being lysed for 

immunoblot analysis as described above. For cells transfected with two different siRNAs, 

half the amount of each siRNA was used. 

 

In Vitro Phosphatase Assays 

For each reaction, PP6 complex containing 125 ng PPP6C and 500 ng phosphorylated 

MEK were mixed in 30 µL reaction buffer (50 mM Tris-HCl [pH8.0], 0.5 mM MnCl2, 2 mM 
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DTT) with or without 100nM okadaic acid as indicated. Reactions were incubated at 30 

°C for the indicated time, quenched by the addition of 4X SDS-PAGE loading buffer, and 

boiled for 5 min.  Samples were separated by SDS-PAGE (10% acrylamide) and analyzed by 

immunoblot.  
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