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Abstract

Essays in Applied Bayesian Analysis

Xinyuan Chen
2021

With continuing rapid developments in computational power, Bayesian statistical

methods, because of their user-friendliness and estimation capabilities, have become in-

creasingly popular in a considerable variety of application fields. In this thesis, applied

Bayesian methodological topics and empirical examples focusing on nonhomogeneous

hidden Markov models (NHMMs) and measurement error models are explored in three

chapters. In the first chapter, a subsequence-based variational Bayesian inference frame-

work for NHMMs is proposed in order to address the computational problems encountered

when analyzing datasets containing long sequences. The second chapter concentrates on

measurement error models, where a Bayesian estimation procedure is proposed for the

partial potential impact fraction (pPIF) with the presence of measurement error. The third

chapter focuses on an empirical application in marketing, where a coupled nonhomoge-

neous hidden Markov model (CNHMM) is introduced to provide a novel framework for

customer relationship management.
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Chapter 1

Introduction

With continuing rapid developments in computational power, Bayesian statistical methods,

because of their user-friendliness and estimation capabilities, have become increasingly

popular in a considerable variety of application fields. In this dissertation, I investigate

some methodological topics and empirical applications of Bayesian analysis, emphasizing

nonhomogeneous hidden Markov models and measurement error models.

This dissertation includes three chapters. The first chapter, Variational Bayesian Anal-

ysis of Nonhomogeneous Hidden Markov Models with Long Sequences, focuses on

addressing computational issues encountered when analyzing datasets containing long se-

quences using nonhomogeneous hidden Markov models (NHMMs). This study is motivated

by a collaboration with the Yale Child Study Center, where the main interest lies in model-

ing eye-tracking scan-paths of autistic children to examine the comparative social salience

of puppets and people in designed social-communicative scenes, and a joint work with a

large telecommunication carrier in China, where the goal is to model ultra-long sequences

of customers’ telecom records to uncover the relationship between their mobile Internet use

behavior and conventional telecommunication (phone calls and SMS) behaviors.

Conventional Bayesian approaches, particularly Markov chain Monte Carlo (MCMC)

methods, are computationally demanding especially for long observation sequences. I thus
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develop a variational Bayes (VB) method for NHMMs, which utilizes a structured varia-

tional family of Gaussian distributions with factorized covariance matrices to approximate

target posteriors, combining forward-backward algorithm and stochastic gradient ascent

in estimation. To improve efficiency and handle ultra-long sequences, I further propose a

subsequence VB (SVB) method that works on subsamples (short sequences sampled from

from some of the series). The SVB method exploits a memory decay property of NHMMs

and uses buffers to control for bias caused by breaking sequential dependence from sub-

sampling. The chapter highlights that local nonhomogeneity of NHMMs substantially

affects required buffer lengths and proposes the use of local Lyapunov exponents to help

characterize local memory decay rates of NHMMs and determine buffer lengths adaptively.

The second chapter, A Bayesian approach for estimating the partial potential im-

pact fraction with exposure measurement error under a main study/internal valida-

tion design, discusses the estimation of the partial potential impact fraction (pPIF) in

the presence of measurement error. The pPIF is often used to describe the proportion of

disease cases that can be prevented if the distribution of a modifiable continuous expo-

sure is shifted in a population, while other risk factors are not modified. It is a useful

quantity for evaluating the burden of disease in epidemiologic and public health studies.

When exposures are measured with error, standard pPIF estimates may be biased, which

necessitates methods to correct for the exposure measurement error. Motivated by the

Health Professionals Follow-up Study (HPFS), I propose a Bayesian approach to adjust

for exposure measurement error when estimating the pPIF under the main study/internal

validation study design. I adopt a reclassification approach that leverages the strength of the

main study/internal validation study design, and clarify transportability assumptions, which

relate certain distributions from the main study and validation study, for valid inference.

I assess the finite-sample performance of both the point and credible interval estimators

via extensive simulations, and apply the proposed approach in the HPFS to estimate the

pPIF for colorectal cancer (CRC) incidence under interventions exploring shifting the
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distributions of red meat, alcohol, and/or folate intake.

The third chapter, When customer dynamics is more than relationship: A coupled

hidden Markov model framework, concentrates on an empirical application of the cou-

pled nonhomogeneous hidden Markov model (CNHMM) in marketing to study customer

dynamics and implement customer relationship management (CRM). In this research, I

propose a CNHMM-based framework that simultaneously considers two correlated Markov

processes, respectively representing the latent relational and monetary value of customers.

Leveraging data from a major telecommunication carrier in China, the findings indicate

that the proposed method is able to uncover the two-dimensional latent states of customers

(dynamic customer values) and possible effects of covariates of interest (including mar-

keting mixes) on the evolutions of the latent states. Consumers’ choice of products (and

services) are jointly influenced by their relational and monetary value over time, and the

evolution of customers’ relational states is significantly dependent on their monetary states

(but not vice versa), suggesting customer heterogeneity in monetary value is a potential

antecedent of customer-firm relationship. Furthermore, scenario analyses are conducted

to showcase how the proposed model can help firms formulate effective multidimensional

dynamic segmentation strategies for customer relationship management.
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Chapter 2

Variational Bayesian Analysis of
Nonhomogeneous Hidden Markov

Models with Long Sequences1

Abstract

Nonhomogeneous hidden Markov models (NHMMs) are useful in modeling sequential

and autocorrelated data. Bayesian approaches, particularly Markov chain Monte Carlo

(MCMC) methods, are principal statistical inference tools for NHMMs. However, MCMC

sampling is computationally demanding especially for long observation sequences. We

develop a variational Bayes (VB) method for NHMMs, which utilizes a structured varia-

tional family of Gaussian distributions with factorized covariance matrices to approximate

target posteriors, combining forward-backward algorithm and stochastic gradient ascent in

estimation. To improve efficiency and handle ultra-long sequences, we further propose a

subsequence VB (SVB) method that works on subsamples. The SVB method exploits the

memory decay property of NHMMs and uses buffers to control for bias caused by breaking

sequential dependence from subsampling. We highlight that local nonhomogeneity of

NHMMs substantially affects required buffer lengths and propose the use of local Lya-

1Co-authored with Yiwei Li, Xiangnan Feng, Fred Volkmar, Katarzyna Chawarska, and Joseph Chang
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punov exponents which characterizes local memory decay rates of NHMMs and determines

buffer lengths adaptively. Our methods are applied in modeling eye-tracking scan-paths of

autistic children to examine the comparative social salience of humanoid representation

and person in designed social-communicative scenes and in modeling ultra-long sequences

of customers’ telecom records to uncover the relationship between their mobile Internet use

behavior and conventional telecommunication behaviors.

2.1 Introduction

Hidden Markov models (HMMs) are a class of discrete-time finite state-space models,

which are particularly suitable for modeling sequentially correlated observations via the

evolution of a set of hidden states. Because of their structural flexibility in uncovering

the dynamic transitions between hidden states and interpretation power of summarizing

complex behavioral patterns implied from the observation sequences, HMMs and their

variants have been applied widely (Cappé et al., 2005). HMMs model observed sequences

through two components: a latent Markov chain governing the sequential evolution of

hidden states, and an emission model generating state-specific observations. Most applica-

tions have focused on time-homogeneous HMMs, where transition probability matrices are

time-invariant. This homogeneous setting ignores the impacts of time-varying influential

factors on the transition probabilities and is over-simplified in certain applications. As an

extension, nonhomogeneous HMMs (NHMMs), which relax the homogeneous assumption

and model the temporal changes in the hidden process of HMMs, have been developed and

applied (Heaps et al., 2015; Holsclaw et al., 2017; Netzer et al., 2008; Hughes et al., 1999).

Bayesian approaches, particularly Markov chain Monte Carlo (MCMC) methods, are

widely adopted for conducting inference on NHMMs (e.g., Heaps et al., 2015; Ascarza

et al., 2018; Montoya et al., 2010). The Bayesian paradigm is appealing for estimating

complex models such as NHMMs because it provides reliable results through incorporating
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valuable prior information and facilitates statistical inference by generating entire posterior

distributions for unknown quantities. However, Bayesian approaches for NHMMs are com-

putationally demanding, especially when the observation sequences are long. Specifically,

parameter inference for the transition model is complicated, not only because using the

logistic function jeopardizes the conjugacy of posterior distributions, but also because the

estimation of unobservable hidden states depends on the forward-backward algorithm which

requires iterative updates across entire sequences. For instance, the length of each observed

sequence is 2.6× 103 and 8.7× 104 in our first and second applications respectively, which

is overly long for conventional methods to handle efficiently.

The development of an efficient Bayesian method for NHMMs that handles long

observation sequences is challenging. To our knowledge, Holsclaw et al. (2017)’s work is

the only study that attempts to propose an efficient Bayesian method for an NHMM with

long observation sequences. They focus on the lack of conjugacy problem that arises from

the presence of the logistic function in the transition model and adopt the Pólya-Gamma

data augmentation method (Polson et al., 2013) as a remedy to reduce the mixing time and

hyper-parameter tuning complexity of the MCMC approach. In their example, the proposed

method is able to handle an NHMM with long sequences of a length up to 104, where the

NHMM contains a transition model of a reduced form tailored for the application.

In this paper, we consider an alternative Bayesian approach for general NHMMs with

long sequences, Variational Bayes (VB), which demonstrates appealing computational

efficiency and accuracy and features satisfactory scalability to large-scale data (Blei et al.,

2017). The aim of MCMC and VB methods is to approximate complex posterior distri-

butions; MCMC methods achieve this goal by generating samples from a Markov chain

that converges to the target posteriors, whereas VB methods use variational posteriors as

the approximation, obtained by minimizing a distance between the variational and true

posteriors through optimization. Though not enjoying theoretical guarantees of producing

samples from the true target posteriors, VB methods typically provide sufficiently close
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approximations with a significant speedup (Braun and McAuliffe, 2010; Blei et al., 2017).

To our understanding, no VB method has been proposed for general NHMMs. Hence, we

contribute to the literature by developing an efficient VB method for NHMMs capable of

handling datasets with long sequences. A structured mean-field variational family that

allows for dependence among variational posteriors is used to preserve the structural de-

pendence implied by the model and thereby better approximate the true posteriors (Ong

et al., 2018). We utilize stochastic gradient ascent (SGA, Robbins and Monro, 1951) as the

optimization approach which directly works on the gradient of the objective function and

does not rely on the conjugacy of posteriors, which alleviates the lack of conjugacy problem

in the transition model. The proposed VB method for NHMMs is capable of handling

moderately long sequences (T ≤ 104). However, neither the MCMC method in Holsclaw

et al. (2017) nor the proposed VB method can efficiently process datasets with ultra-long

sequences (T > 104).

To reduce the computational complexity of the proposed VB method in handling ultra-

long sequences, we propose a subsequence VB (SVB) method that works on subsamples.

Subsampling methods, especially stochastic gradient methods (Hoffman et al., 2013; Ne-

mirovski et al., 2009) which employ noisy estimates of the gradient using minibatches of

the data, have been proposed to avoid costly gradient computation using the full dataset.

Marked progress has been made by adapting subsampling methods in various models

to analyze massive datasets (e.g., Ansari et al., 2018; Blei et al., 2017; Gentzkow et al.,

2019). However, these subsampling methods are mainly developed for independent or

exchangeable data and not directly applicable for sequential and correlated data as modeled

by HMMs, because simply sampling several subsequences may break crucial dependence

among data points and lead to significant bias (Aicher et al., 2019). Recently, subsequence

methods exploiting the memory decay property of homogeneous HMMs have been pro-

posed to control for the bias with the aid of buffers adjacent to the sampled subsequences

(Foti et al., 2014; Aicher et al., 2019; Ma et al., 2017; Ye, 2018). Our proposed SVB method
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extends this methodology and uses buffers to reduce bias caused by subsampling. Our work

highlights a new aspect of NHMM analysis, in that, in comparison to homogeneous HMMs,

NHMMs require more careful consideration of local nonhomogeneity when developing the

subsampling method. Specifically, local nonhomogeneity of an NHMM significantly affects

its local memory decay rates, and thus, the required buffer lengths. We thus propose the

use of Local Lyapunov Exponents (LLEs, Abarbanel et al., 1992), a measure characterizing

local memory decay rates of NHMMs, to estimate the buffer lengths. With LLEs, our

subsampling method adaptively determines the buffer lengths for each subsequence and is

demonstrated to be efficient and effective in processing ultra-long sequences.

The methods for analyzing NHMMs with long and ultra-long sequences are motivated

by two real data problems. The first motivating example is the problem of modeling eye-

tracking scan-path data obtained from children with autism spectrum disorders (ASD). ASD

refers to complex developmental brain disorders of early onset marked by a profound social

dysfunction affecting an individual’s social interaction and behavioral pattern (American

Psychiatric Association, 2013). One critical deficit among children with ASD is diminished

attention to social cues from others, such as face directions, eye gaze, gestures, and

language, which impacts the development of critical social-cognitive skills such as joint

attention, social play, language development, and theory of mind (Chawarska et al., 2012;

Klin et al., 2002). Therefore, increasing children’s social attention is a major target

of ASD interventions. Recent research on ASD interventions suggests that humanoid

representations (e.g., robots and puppets) may be more effective in teaching ASD children

certain social skills than human-delivered training (Kim et al., 2013; Scassellati et al., 2018).

Although the findings generate considerable excitement, the underlying mechanisms of the

advantageous performance of humanoid representations remain uncertain. For instance,

it is unclear whether humanoid representations are particularly suitable to teach certain

social skills, such as joint attention, are generally more salient to children with ASD than

a human, especially with the presence of higher saliency cues (HSCs) such as speech. In
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this motivating example, we focus on the latter potential mechanism and use an NHMM

to model eye-tracking scan-paths recorded from children with ASD watching a video that

features a puppet and a person engaging in a conversation, so as to examine the comparative

social salience of the puppet and the person in the setting of designed social-communicative

scenes.

The data of this example came from a research program on the social and emotional

development of children with ASD conducted by the Child Study Center of the Yale School

of Medicine. Children were eye-tracked during the experiment to obtain precise and dense

measurements of their eye movements in the form of sequences of gaze point coordinates

scan-paths. Previous methods for analyzing eye-tracking scan-path data in autism research

mainly lie in two directions. The first direction focuses on spatial information of the scan-

paths by analyzing fractions of time participants looked at predefined regions of interest

(ROIs, Wang et al., 2019; Shic et al., 2019) or constructing a cohesion metric to quantify

children’s gaze behaviors (Wang et al., 2018). This direction loses potentially valuable

temporal information of the scan-paths. The second direction regards the scan-paths as time-

series data and applies sequential models such as HMMs to summarize the temporal gaze

patterns or to classify gaze points into data-driven categories (Alie et al., 2011; Mavadati

et al., 2014). This latter direction may provide data-driven ROIs and investigate both

spatial and temporal aspects of gaze behaviors. However, the latter approach generally use

homogeneous HMMs, which cannot capture the effects of time-varying influential factors

(e.g., HSCs in our study) on dynamic transitions between hidden states (e.g., attention

shifts across ROIs). We therefore propose an NHMM for analyzing eye-tracking scan-

paths, providing data-driven ROIs on which children’s attention focuses and describing

children’s attention shifts across ROIs. In addition, the NHMM captures the effects of

time-varying HSCs on children’s attention shifts. The proposed framework presents an

appealing alternative for analyzing eye-tracking data in autism research, which, however,

requires an efficient computational approach to deal with the methodological challenge
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caused by the long sequences (T = 2.6× 103 in this application).

The second motivating example arises from the need for better capturing and under-

standing the mobile Internet use patterns of customers in the telecom service industry.

Recent technological innovations of mobile Internet are reshaping functions of modern

smartphones. The evolution of mobile functions has started to shift the telecom industry’s

core business from conventional telecom services to mobile Internet-based services (An-

drews et al., 2016; Fong et al., 2015; Luo et al., 2014). Consequently, there has been much

debate among managers and even lawmakers on whether conventional telecom services are

competitive substitutes or useful complements for mobile Internet services. While some

managers think that mobile Internet messaging apps are taking the place of phone calls and

SMS and therefore hurt company profits from metered consumption and billing, some other

decision makers believe that the relationship between conventional telecom services and

mobile Internet services is complementary and helps the company generate more profits

through better catering to customers’ needs for communication and social connectivity.

These competing viewpoints motivate us to examine the relationship between conventional

telecom services and mobile Internet services through modeling the dynamics of customers’

mobile Internet use behaviors. Our results may guide companies in adjusting their busi-

ness strategies. The analysis was conducted based on densely recorded individual-level

data from a major telecom service provider in China, which contains information (calls,

texts/short message service [SMS], and mobile Internet usage) at a frequency of every five

minutes for 10 months from September 2013 to June 2014 for a group of customers. We

set out to utilize an NHMM to model customers’ dynamic mobile Internet use behaviors,

uncover their latent needs for mobile Internet through analysis of hidden states, assess the

influence of their conventional telecom behaviors (i.e., calls and SMS) on the latent needs,

and forecast their future mobile Internet usage.

This analysis not only benefits decision makers by enhancing their understanding of

the relationship between conventional telecom services (phone call and SMS) and mobile
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Internet services, but also provides companies with a useful tool to analyze valuable real-

time customer information on mobile Internet usage. In particular, our modeling effort is

performed on the individual level, delineating patterns of customers’ mobile Internet use and

assisting companies in timely monitoring and forecasting customers’ latent needs (and thus,

usage) of mobile Internet. This application showcases the potential of NHMMs in customer

relationship management (CRM). CRM, defined as the process of managing customers’

information to create value for customers and maximize their loyalty, is the outcome of the

evolution and integration of new data, technologies, and strategies (Boulding et al., 2005;

Kotler and Keller, 2016). NHMMs have been recognized in the literature as an effective

tool for analyzing customer behavior data, uncovering meaningful hidden states such as

customer preference, customer satisfaction, and customer relationship, as well as assessing

the influential factors for transitions among different hidden states (e.g., Netzer et al., 2008;

Ascarza et al., 2018; Ma et al., 2015b; Montoya et al., 2010). Our analysis further suggests

that the NHMM framework can be applied by companies to obtain real-time customer

information through identifying the latent needs that drive customers’ mobile Internet use

behaviors and dynamically monitoring and forecasting the transitions of customers’ hidden

states. This analysis enables companies to achieve better planning for their mobile network

capacity so as to provide better services to customers, increase customer loyalty, and thereby

generate more profits. All of these potential benefits, however, rely on the availability of an

efficient technique to analyze ultra-long sequences with NHMMs.

The reminder of this paper is organized as follows: Section 2.2 describes the general

setting of NHMMs. Section 2.3 introduces variational Bayesian inference and proposes

a VB and an SVB method for NHMMs with long and ultra-long sequences, respectively.

Section 2.4 conducts simulation studies to examine the performance of the proposed

methods in comparison with conventional methods. Section 2.5 reports the analysis of

applying the VB method in the NHMM modeling of the eye-tracking scan-paths. Section

2.6 presents the study using the SVB method to handle ultra-long mobile Internet usage
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sequences in the NHMM modeling. Section 2.7 concludes the paper with some discussion.

2.2 Nonhomogeneous Hidden Markov Models

In this section, we introduce the specification of NHMMs. Consider an observed multi-

variate temporal process yT = {yt}Tt=1, where T denotes the entire time indices within

the sequence, yt = (yt1, ..., ytRy)
′, and Ry denotes the dimensionality of yt. Note that we

assume one process here to suppress the subject index n for notational simplicity. To model

dynamics of the observed process, an NHMM assumes yT to be a stochastic function of a

hidden sequential process zT = {zt}Tt=1 which follows a nonhomogeneous discrete-time

Markov chain with a finite state space {1, ..., K}. Given state zt, each vector yt is assumed

to be conditionally independent of other yt∗ vectors and states zt∗ , for t∗ 6= t.

The hidden process zT is formulated by two components, initial state distribution and

transition probability matrices. The initial state distribution p(z1|π) is defined as follows:

P(z1 = πk|π) = πk, k = 1, . . . , K, (2.1)

where π = (π1, ..., πK)′. We follow a common practice to assume a uniform distribution

for the initial state in this study (Meligkotsidou and Dellaportas, 2011).

The transition probability matrices of hidden process zT are time varying and given as

follows: for t = 1, . . . , T ,

Qt = [qt,k1k2 ] =


qt,11 · · · qt,1K

... . . . ...

qt,K1 · · · qt,KK

 , (2.2)

where

qt,k1k2 = P(zt = k2|zt−1 = k1)
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denotes the transition probability from state zt−1 = k1 at time t− 1 to state zt = k2 at time

t and
K∑

k2=1

qt,k1k2 = 1.

We consider two ways of modeling transition probabilities qt,k1k2 , depending on whether

the identified hidden states follow a rank order. The transition probabilities qt,k1k2 for

unordered hidden states such as the ROIs identified in our first motivating example may be

modeled via the following multinomial logit regression (Meligkotsidou and Dellaportas,

2011; Ascarza et al., 2018): for k1, k2 = 1, . . . , K and t = 2, . . . , T ,

qt,k1k2 = P(zt = k2|zt−1 = k1,ρ,wt) =
exp(ρk1k2,0 +w′tρk1k2)∑K
k=1 exp(ρk1k,0 +w′tρk1k)

, (2.3)

where ρk1k2,0 denotes a state-specific intercept, wt is an Rw-dimensional covariate vector,

and ρk1k2 is an Rw-dimensional vector of coefficients that can be interpreted as conditional

log odds ratios. Specifically, a higher value of ρk1k2,j indicates that a higher value of wt,j

increases the likelihood of transitioning to state zt = k2 relative to state zt = K at time t,

conditional on the state being zt−1 = k1 at time t− 1. For identifiability, we set ρkK,0 = 0

and ρkK = 0 for all k. We utilize a full design here to model the transition probability

matrices by allowing each transition probability to have its own set of coefficients, which

captures detailed effects of exogenous covariates on state transitions and summarizes

comprehensive impacts of HSCs on children’s attention shifts in our first application.

If the hidden state is ordinal, such as the latent needs for mobile Internet in our second

application, qt,k1k2 can be modeled by the following continuation-ratio logit model (Ip et al.,

2013; Song et al., 2017): for k1 = 1, . . . , K, k2 = 1, . . . , K − 1, and t = 2, . . . , T ,

log

(
P(zt = k2|zt−1 = k1)

P(zt > k2|zt−1 = k1)

)
= log

(
qt,k1k2

qt,k1k2+1 + · · ·+ qt,k1K

)
= ρk1k2,0 +w′tρk1 ,

(2.4)
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where the same vector of coefficients ρk1 for each logit is assumed to follow the common

proportional odds assumption in regression models for ordinal responses (McCullagh, 1980;

Ip et al., 2013; Song et al., 2017). The model forms logits in a sequential manner and is

appropriate for discrete responses that have a rank order. We apply this transition model in

our second real application to examine the transitions between states of latent needs for

mobile Internet. Given the hidden state zt, the conditional distribution of the observed yt

vector at time t is modeled through the following emission distribution:

(yt|zt = k) ∼ P(yt|zt = k,xt,β), (2.5)

where xt is an Rx-dimensional covariate vector, and β represents the set of parameters

in the emission distribution of dimension Rβ. The distributional choice for emission

distribution is flexible including normal (Meligkotsidou and Dellaportas, 2011), Gamma

mixture (Heaps et al., 2015; Holsclaw et al., 2017), and categorical distributions (Ascarza

et al., 2018). The structure of NHMMs is illustrated in Figure 2.1.

xt−1

wt−1

yt−1

zt−1

xt

wt

yt

zt

xt+1

wt+1

yt+1

zt+1

Figure 2.1: An illustration of the structure of NHMMs. xt and yt are observed covariates
and responses for the emission model, respectively. wt are observed covariates for the
transition model. zt is the unobservable latent state variable.
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2.3 Variational Bayesian Inference

In this section, we first briefly review aspects of the VB method, then propose a VB

inference procedure for NHMMs with long observation sequences, and finally develop an

efficient SVB procedure for NHMMs with ultra-long observation sequences.

2.3.1 Variational Bayes

VB is a Bayesian estimation approach that uses density functions from simple distribution

families to approximate intractable posteriors (Jordan et al., 1999; Blei et al., 2017). Given

a generic model p(y|θ) with y denoting the observed data and θ as unknown parameters,

the aim of VB is to approximate the intractable posterior p(θ|y) through a variational

posterior distribution p̃φ(θ) from a tractable variational distribution family P̃ , where φ

is the set of variational parameters that govern the variational distribution. The distance

between p̃φ(θ) and p(θ|y) is often measured by the Kullback-Leibler (KL) divergence

KL [p̃φ(θ)‖p(θ|y)] = Ep̃φ [log p̃φ(θ)− log p(θ|y)]

= Ep̃φ [log p̃φ(θ)− log p(y,θ)] + log p(y)

= −L(φ) + log p(y). (2.6)

Since KL [p̃φ(θ)‖p(θ|y)] is nonnegative, Equation (2.6) implies that L(φ) ≤ log p(y),

∀p̃φ. So L(φ), being a lower bound for the log marginal likelihood, is called the evidence

lower bound (ELBO) function. The optimal variational posterior can be obtained by

maximizing L(φ) over φ, which is performed via SGA (Robbins and Monro, 1951) in this

study because the ELBO objective has no closed form in the setup of NHMMs. Letting

∇L(φ) denote the gradient of L(φ) with respect to φ, after selecting an initial value φ(0),
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φ is updated via

φ(τ+1) = φ(τ) +ψτ ◦ ∇L(φ(τ)), (2.7)

where superscript (τ ) denotes the τ -th iteration, operator ◦ denotes the Hadamard (element-

wise) product, and {ψτ}τ≥0 contains a sequence of learning rates satisfying the Robbins-

Monro conditions (Robbins and Monro, 1951). Each updating step involves determining

values of the learning rates and the gradient.

Selecting appropriate learning rates in SGA helps improve its performance, which is

typically done through a tuning procedure by hand (Hoffman et al., 2013). However, manual

setting of learning rates before the analysis may cause the algorithm to converge slowly

or even diverge. Therefore, adaptive methods adjusting the learning rates in each step are

generally preferred (Kingma and Ba, 2015; Zeiler, 2012). In this study, we apply the well-

received Adam approach for adaptive learning rates; Adam is efficient with limited tuning

required, capable of handling noisy and/or spare gradients and non-stationary objectives,

and particularly suitable for dealing with non-convex objective functions (Kingma and Ba,

2015). We proceed to briefly introduce the specification of the Adam optimization approach.

Let φ(τ)
j , ψτ,j , and ∇l(τ)

j denote the j-th element of φ(τ), ψτ , and ∇L(φ(τ)), respectively.

The learning rate ψτ,j at the τ th-iteration is computed as follows:

ψτ,j = oj
χ̂1,τ,j

(
√
χ̂2,τ,j + ε0)∇l(τ)

j

,
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where

χ̂1,τ,j =
χ1,τ,j

1− ετ1
,

χ̂2,τ,j =
χ2,τ,j

1− ετ2
,

χ1,τ,j = ε1χ1,τ−1,j + (1− ε1)∇l(τ)
j ,

χ2,τ,j = ε2χ2,τ−1,j + (1− ε2)∇l(τ)
j

2
,

and ε0 ε1, ε2, and oj are predefined hyperparameters. For this approach, we set starting

values as χ1,0,j = χ2,0,j = 0 and hyperparameters as ε0 = 10−8, ε1 = 0.9, ε2 = 0.999,

oj = o1jo
τ
2j , o1j,∈ (10−4, 10−2), and o2j ∈ (0.999, 0.9999), according to the suggestions

in the literature (Shi et al., 2019; Kingma and Ba, 2015). For other details of the Adam

approach, we refer readers to Kingma and Ba (2015).

For non-conjugate models such as NHMMs, the gradient∇L(φ(τ)) cannot be computed

analytically and thus is replaced by its estimate ̂∇L(φ(τ)) (Ranganath et al., 2014; Ku-

cukelbir et al., 2017). To compute the gradient estimate, we utilize the reparameterization

approach, which alleviates the variance control issue associated with the conventional

Monte Carlo numerical integration method (Kingma and Welling, 2014; Ong et al., 2018).

The reparameterization approach is applicable when θ can be represented as θ = t(φ, ζ),

where ζ denotes a random vector with a known fixed distribution f(ζ). For instance, sup-

pose θ follows a multivariate normal variational distribution, then it can be reparameterized

by the mean vector µ, the lower Cholesky factor L of its covariance matrix, and a standard

normal random vector ζ as θ = µ + Lζ. After reparameterization, the ELBO objective

function can be rewritten as

L(φ) = Ep̃φ [log p(y,θ)− log p̃φ(θ)] = Ef [log p(y, t(φ, ζ))− log p̃φ(t(φ, ζ))] ,
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and the gradient becomes

∇φL(φ) = Ef
{

dt(φ, ζ)

dφ

′

∇θ [log p(y, t(φ, ζ))− log p̃φ(t(φ, ζ))]−∇φ log p̃φ(t(φ, ζ))

}
.

(2.8)

The variance of the gradient estimate can be further reduced by dropping the last term in

Equation (2.8) (Ong et al., 2018); the final formula for estimating gradient is given as:

∇φL(φ) = Ef
{

dt(φ, ζ)

dφ

′

∇θ [log p(y, t(φ, ζ))− log p̃φ(t(φ, ζ))]

}
, (2.9)

which is computed with random samples generated from f(ζ).

The complexity and accuracy of the above VB method is significantly influenced by the

choice of variational posterior family P̃ (Blei et al., 2017). In practice, a trade-off between

approximation accuracy and computational complexity is sought. The mean-field family,

which assumes complete independence for model parameters, is a common choice, but

while it reduces computational complexity, the over-simplified form may lead to suboptimal

approximations. In this study, we use a structured mean-field family that adds dependence

among certain variational posteriors to better approximate the structures of true posteriors.

The dependence is introduced based on the factor covariance structure developed by Ong

et al. (2018). Numerical studies in latter sections show that the utilized posterior family

performs satisfactorily.

2.3.2 Full-sequence VB for NHMMs with Long Sequences

Consider observation sequences {yn,T ,xn,T ,wn,T } for n = 1, . . . , N from N independent

subjects. For notational simplicity, we assume the sequences have a common length T

in the following discussion; extending the algorithm to handle unbalanced sequences is

straightforward. Letting {zn,T }Nn=1 denote the hidden state sequences, the complete-data
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likelihood for NHMMs is

p(y, z,β,ρ|x,w) =
N∏
n=1

p(zn,1)
T∏
t=1

p(yn,t|zn,t,xn,t,β)
T∏
t=2

p(zn,t|zn,t−1,wn,t,ρ)p(β)p(ρ),

(2.10)

where p(β) and p(ρ) are priors, model parametersβ and ρ are continuous, and p(y, z,β,ρ|x,w)

is differentiable with respect to model parameters. Bayesian inference computes the poste-

riors of model parameters β and ρ as well as hidden state sequences {zn,T }, conditional on

data and model setup. We develop a VB procedure to approximate the true posteriors.

We first specify the variational posteriors with the factorized form

p̃φ(β,ρ, z) = p̃φβ(β)p̃φρ(ρ)p̃(z),

where φ = {φβ,φρ} are the variational parameters. We allow dependence within each of

β, ρ, and z to achieve better approximation, and retain independence between β, ρ, and z

for computational tractability. The ELBO objective,

L = Ep̃φ
{
Ep̃(z)

[
log p(y, z,β,ρ|x,w)− log p̃φβ(β)p̃φρ(ρ)p̃(z)

]}
, (2.11)

is maximized by updating p̃φβ(β), p̃φρ(ρ), and p̃(z) iteratively.

The updating of p̃(z) involves calculating posteriors of zn,t and (zn,t−1, zn,t) with

current values of variational parameters. The joint posterior of {zn,T } is proportional to

N∏
n=1

exp

{
T∑
t=1

Ep̃φβ (β) [log p(yn,t|zn,t,xn,t,β)] +
T∑
t=2

Ep̃φρ (ρ) [log p(zn,t|zn,t−1,wn,t,ρ)]

}
.

(2.12)

Based on the posterior, we compute the marginal posteriors p̃(zn,t) and p̃(zn,t−1, zn,t) using

the forward and backward probabilities of the Baum-Welch procedure (Baum et al., 1970).
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The forward probabilities an,t(k) and backward probabilities bn,t(k) are defined as: for

k = 1, . . . , K,

an,t(k) = p(yn,1:t, zn,t = k|xn,1:t,wn,1:t,β,ρ),

bn,t(k) = p(yn,(t+1):T |zn,t = k,xn,(t+1):T ,wn,(t+1):T ,β,ρ).

(2.13)

They can be computed iteratively using the following formulas:

a′n,1 = π′nDn,1,

a′n,t+1 = a′n,tEn,t+1Dn,t+1,

bn,T = 1,

bn,t = En,t+1Dn,t+1bn,t+1,

(2.14)

where an,t = (an,t(1), ..., an,t(K))′, bn,t = (bn,t(1), ..., bn,t(K))′, 1 is a K-dimensional

vector with all elements being 1, and Dn,t and En,t are diagonal and square matrices,

respectively, as defined below. To prevent numerical underflow issues, an,t and bn,t are

normalized at each iteration. The diagonal elements of Dn,t are given as follows: for

k = 1, . . . , K,

dn,t,kk = exp
{
Ep̃φβ (β) [log p(yn,t|zn,t = k,xn,t,β)]

}
. (2.15)

Elements in En,t are given as follows: for k1, k2 = 1, . . . , K

en,t,k1k2 = exp
{
Ep̃φρ (ρ) [log p(zn,t = k2|zn,t−1 = k1,wn,t,ρ)]

}
. (2.16)

The above two expectations are computed numerically using Monte Carlo samples from

p̃φβ(β) and p̃φρ(ρ). Note that Dn,t and En,t can be viewed as variational estimates of

emission probabilities in Equation (2.5) and transition probability matrices in Equation (2.2)
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respectively. Marginal posteriors p̃(zn,t) and p̃(zn,t−1, zn,t) can be computed as follows:

p̃(zn,t = k) ∝ an,t(k)bn,t(k)

=
an,t(k)bn,t(k)∑
j an,t(j)bn,t(j)

,
(2.17)

and

p̃(zn,t−1 = k1, zn,t = k2) ∝ an,t−1(k1)en,t,k1k2dn,t,k2k2bn,t(k2)

=
an,t−1(k1)en,t,k1k2dn,t,k2k2bn,t(k2)∑

j1

∑
j2
an,t−1(j1)en,t,j1j2dn,t,j2j2bn,t(j2)

.
(2.18)

The updating of variational parameters φρ and φβ is conducted through gradient ascent.

We assume all model parameters are unconstrained in the following discussion and the

constrained parameters can be converted to unconstrained ones; for instance, a nonnegative

parameter σ ≥ 0 can be represented by eς with ς ∈ R (Kucukelbir et al., 2017). By

converting parameters into the same space, the advanced Gaussian variational family with a

factor covariance structure developed by Ong et al. (2018) can be applied to all parameters,

which flexibly captures the complex dependence structure in NHMMs and attains model

parsimony that enables efficient estimation. For the updating ofφρ, we discuss the transition

model of multinomial logit regression with a full design given by Equation (2.3). As for the

transition model of continuation-ratio logit regression given by Equation (2.4), the updating

procedure is similar. We assign the following factorized variational posterior for ρ:

K∏
k1=1

K−1∏
k2=1

p̃φρ,k1k2 (ρk1k2), (2.19)

where the intercept ρk1k2,0 is included into ρk1k2 and inferred together, and p̃φρ,k1k2 (ρk1k2) is

a (Rw + 1)-dimensional multivariate normal distribution with a factor covariance structure
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(Ong et al., 2018):

p̃φρ,k1k2 (ρk1k2) = N
(
ρk1k2 ;µρ,k1k2 ,Gρ,k1k2G

′
ρ,k1k2

+H2
ρ,k1k2

)
. (2.20)

Thus, φρ,k1k2 = {µρ,k1k2 ,Gρ,k1k2 ,Hρ,k1k2} are variational parameters to be estimated,

where µρ,k1k2 is the variational mean vector for ρk1k2 , Gρ,k1k2 is a (Rw + 1) × rρ,k1k2

matrix with rρ,k1k2 ≤ Rw + 1, rρ,k1k2 denotes the number of factors used to approximate

the correlation among elements in ρk1k2 , the upper triangle of Gρ,k1k2 is restricted to

0 for identification, and Hρ,k1k2 is a diagonal matrix with diagonal elements hρ,k1k2 =

(hρ,k1k2,1, ..., hρ,k1k2,Rw+1)′. As demonstrated in Ong et al. (2018), a small number of

factors (rρ,k1k2 = 3 or 4) already provides satisfactory approximation to high-dimensional

posteriors. Indeed, approximation accuracy can be improved if we increase the number of

factors rρ,k1k2 used, which also raises the optimization difficulty; if we set rρ,k1k2 = Rw + 1,

we are using a multivariate normal distribution with a full covariance structure, which yields

the closest approximation. Note that, in our applications, we generally set rρ,k1k2 = Rw + 1

to obtain close approximation, considering that the dimensionality of posteriors is relatively

low.

With the factorized variational posterior for ρ, updating φρ reduces to the iterative

update of φρ,k1k2 . To update φρ,k1k2 , we need to compute the gradient estimates, ̂∇µρ,k1k2L,

̂∇Gρ,k1k2L, and ̂∇hρ,k1k2L, and then update µρ,k1k2 , Gρ,k1k2 , and Hρ,k1k2 sequentially ac-

cording to the formula (2.7). The reparametrization that represents ρk1k2 as follows:

ρk1k2 = µρ,k1k2 +Gρ,k1k2ζρ,k1k2,1 + hρ,k1k2 ◦ ζρ,k1k2,2,

where ζρ,k1k2,1 and ζρ,k1k2,2 are independent standard normal random vectors of dimensions

rρ,k1k2 and Rw + 1, respectively. The gradient estimates are computed numerically using

samples of ζρ,k1k2,1 and ζρ,k1k2,2.
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Finally, the updating of φβ is similar to that of φρ. The possible constrained parameters

in the emission model can be converted to unconstrained ones; for instance, a nonnegative

parameter σ ≥ 0 can be represented by eς with ς ∈ R (Kucukelbir et al., 2017). By

converting parameters into the same space, the advanced Gaussian variational family

with a factor covariance structure developed by Ong et al. (2018) can be applied to all

parameters, which flexibly captures the complex dependence structure in NHMMs and

attains model parsimony that enables efficient estimation. For theK sets ofRβ-dimensional

emission model parameters {βk}, we assign them with similar factorized multivariate

normal variational posteriors as follows:

K∏
k=1

p̃(βk) =
K∏
k=1

N
(
βk;µβ,k,Gβ,kG

′
β,k +H2

β,k

)
, (2.21)

where µβ,k,Gβ,k, andHβ,k are defined similarly. The number of factors is denoted as rβ,k.

The variational parameters φβ,k = {µβ,k,Gβ,k,Hβ,k} can be updated similarly as above.

The label-switching issue of the NHMM elicited by the invariance of the likelihood

to a random permutation of the state labels is addressed by incorporating the permutation

sampling idea from Frühwirth-Schnatter (2001). At each iteration, we adjust the state labels

of emission variational parameters φk. The proposed VB method is guaranteed to converge

to an local optimum; we terminate the algorithm after a sufficient number of iterations

when convergence is attained (Blei et al., 2017; Ong et al., 2018; Hoffman et al., 2013).

Detailed procedures and formulas of the VB method are summarized as follows:

Step 1: Specify the number of iterations for the algorithm, Iter. Initialize variational

parameters, µρ,k1k2,0, hρ,k1k2,0, µρ,k1k2 , Gρ,k1k2 , and hρ,k1k2 , for k1 = 1, ..., K and k2 =

1, ..., K − 1, in Equations (2.19) - (2.20) for the transition model. Randomly initialize

variational parameters, µβ,k,Gβ,k, andHβ,k, for k = 1, ..., K, in Equation (2.21) for the

emission model.
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The procedure iteratively performs the following steps until Iter is reached.

Step 2: Randomly sample Ns subjects from the total N subjects without replacement.

Step 3: Update the posteriors for hidden states zn,t based on the current values of variational

parameters and the sampled Ns sequences. Specifically, Dn,t and En,t are computed for

the sampled m sequences following Equations (2.15) - (2.16), which are subsequently used

to compute forward and backward probabilities following Equations (2.13) - (2.14). To

address numerical underflow issues, we normalize the forward and backward probabilities

for each time point t. The variational posteriors are finally computed following Equations

(2.17) - (2.18).

Step 4: Update variational parameters, µβ,k,Gβ,k, andHβ,k, for the emission model using

SGA. The adaptive learning rates are determined using the introduced Adam approach. The

gradient with respect to each parameter vector is obtained based on the general formula

given in Equation (2.9). Let LNs denote the ELBO (defined in Equation [2.11]) computed

from the sampled Ns sequences. The specific gradient with respect to µβ,k is

∇µβ,kLNs = Ef
{
∇βk [log pNs(µβ,k +Gβ,kζβ,k,1 + hβ,k ◦ ζβ,k,2)] +

(
Gβ,kG

′
β,k + h2

β,k

)−1
(Gβ,kζβ,k,1 + hβ,k ◦ ζβ,k,2)

}
,

where pNs is the likelihood function computed from the sampled Ns sequences after

marginalizing hidden states with posteriors computed from the last step, hβ,k is the diagonal

elements ofHβ,k, and ζβ,k,1 and ζβ,k,2 are rβ,k and Rβ dimensional vectors with elements

sampled from independent standard univariate normal distribution, respectively. Note that

we only show the argument related to βk for the likelihood function in the above formula
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for notational simplicity. The gradient with respect toGβ,k is

∇Gβ,kLNs = Ef
{
∇βk [log pNs(µβ,k +Gβ,kζβ,k,1 + hβ,k ◦ ζβ,k,2)] ζ ′β,k,1+

(
Gβ,kG

′
β,k +H2

β,k

)−1
(Gβ,kζβ,k,1 + hβ,k ◦ ζβ,k,2) ζ ′β,k,1

}
.

The gradient with respect to hβ,k is

∇hβ,kLNs = Ef
{

diag
(
∇βk [log pNs(µβ,k +Gβ,kζβ,k,1 + hβ,k ◦ ζβ,k,2)] ζ ′β,k,2+

(
Gβ,kG

′
β,k +H2

β,k

)−1
(Gβ,kζβ,k,1 + hβ,k ◦ ζβ,k,2) ζ ′β,k,2

)}
.

The expectations are computed numerically by generating samples ζβ,k,1 and ζβ,k,2 from

respective standard normal distributions. Adjust state labels using permutation sampler in

Frühwirth-Schnatter (2001).

Step 5: Update variational parameters, µρ,k1k2,0, hρ,k1k2,0, µρ,k1k2 ,Gρ,k1k2 , and hρ,k1k2 , for

the transition model using SGA. The adaptive learning rates are determined using the

introduced Adam approach. The specific gradient with respect to µρ,k1k2,0 is

∇µρ,k1k2,0
LNs = Ef

{
∇ρk1k2,0

[log pNs(µρ,k1k2,0 + hρ,k1k2,0ζρ,k1k2,0)] + h−1
ρ,k1k2,0

ζρ,k1k2,0

}
,

where ζρ,k1k2,0 is sampled from a univariate standard normal distribution. The gradient with

respect to hρ,k1k2,0 is

∇hρ,k1k2,0
LNs = Ef

{
∇ρk1k2,0

[log pNs(µρ,k1k2,0 + hρ,k1k2,0ζρ,k1k2,0)] ζρ,k1k2,0

+ h−1
ρ,k1k2,0

ζ2
ρ,k1k2,0

}
.
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The gradient with respect to µρ,k1k2 is

∇µρ,k1k2LNs = Ef
{
∇ρk1k2 [log pNs(µρ,k1k2 +Gρ,k1k2ζρ,k1k2,1 + hρ,k1k2 ◦ ζρ,k1k2,2)] +

(
Gρ,k1k2G

′
ρ,k1k2

+ h2
ρ,k1k2

)−1
(Gρ,k1k2ζρ,k1k2,1 + hρ,k1k2 ◦ ζρ,k1k2,2)

}
.

The gradient with respect toGρ,k1k2 is

∇Gρ,k1k2LNs = Ef
{
∇ρk1k2 [log pNs(µρ,k1k2 +Gρ,k1k2ζρ,k1k2,1 + hρ,k1k2 ◦ ζρ,k1k2,2)]

· ζ ′ρ,k1k2,1 +
(
Gρ,k1k2G

′
ρ,k1k2

+ h2
ρ,k1k2

)−1
(Gρ,k1k2ζρ,k1k2,1 + hρ,k1k2 ◦ ζρ,k1k2,2) ζ ′ρ,k1k2,1

}
.

The gradient with respect to hρ,k1k2 is

∇hρ,k1k2LNs = Ef
{

diag
(
∇ρk1k2 [log pNs(µρ,k1k2 +Gρ,k1k2ζρ,k1k2,1 + hρ,k1k2 ◦ ζρ,k1k2,2)]

· ζ ′ρ,k1k2,2 +
(
Gρ,k1k2G

′
ρ,k1k2

+ h2
ρ,k1k2

)−1
(Gρ,k1k2ζρ,k1k2,1 + hρ,k1k2 ◦ ζρ,k1k2,2) ζ ′ρ,k1k2,2

)}
.

The expectations are computed numerically by generating samples ζρ,k1k2,0, ζρ,k1k2,1, and

ζρ,k1k2,2 from respective standard normal distributions. Adjust state labels using permutation

sampler in Frühwirth-Schnatter (2001).

Step 6: Compute the ELBO value LNs using current variational parameters.

The time complexity per update is of order O(NT ) because the entire dataset is used.

The developed method is capable of efficiently handling long sequences of a length T up

to 104.The time complexity of O(NT ) indicates that the VB method’s efficiency faces

challenges when dealing with massive datasets, that is, when N or T is ultra-large. The

cases with large N can be handled easily via subsampling because of the independence

among subjects. In specific, we may randomly sample Ns out of the N subjects at each

iteration (Ns = 1 is sufficient for most applications) and update parameters based on the
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subjects; this can be achieved using the stochastic variational inference procedure developed

by Hoffman et al. (2013). The time complexity of the algorithm thus reduces significantly to

O(NsT ). The cases with ultra-large T , however, present major methodological challenges.

2.3.3 SVB for NHMMs with Ultra-long Sequences

Applying NHMMs to datasets with ultra-large T (T > 104) could not be simply achieved

through subsampling, as simply sampling several subsequences from a full sequence breaks

dependence in an HMM’s hidden state sequence and thus may produce significant biases

(Aicher et al., 2019). Recently, the subsequence method developed by Aicher et al. (2019),

Foti et al. (2014), Ma et al. (2017), and Ye (2018) proposes to control for the bias through

attaching sufficiently long buffers at both ends of each subsequence under the homogeneous

HMM framework. Here we develop a new efficient SVB method to analyze NHMMs with

ultra-long sequences; we highlight that, unlike homogeneous HMMs, NHMMs require

careful consideration of local nonhomogeneity in the subsequence method.

ys0

U2SU1

Figure 2.2: An illustration of a subsequence with two buffers. S is the length of the
randomly sampled subsequence starting at time index s0. U1 and U2 are buffers attached
to the subsequence in order to control the estimation bias caused by breaking sequential
dependence from subsampling.

An illustration of a subsequence and its corresponding buffers is shown in Figure 2.2,

where S, U1 and U2 denote the lengths of the subsequence and the two buffers, respectively,

and s0 denotes the starting time index of the subsequence. Below, we show that direct

subsampling from the sequence causes bias and how attaching buffers can help reduce the

generated bias. Applying the forward-backward algorithm to the subsequence S directly

leads to inaccurate specifications of the starting forward and backward probabilities (i.e.,
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forward probabilities at s0 and backward probabilities at s0 + S − 1) as follows:

a∗
′

n,s0
= π′n,s0Dn,s0 , b

∗
n,s0+S−1 = 1.

Note that the forward and backward probabilities are normalized in each iteration from the

Baum-Welch procedure. The error distances between the normalized inaccurate specifica-

tions and the normalized true forward and backward probabilities are thus represented as

follows:

dist(ā∗n,s0 , ān,s0) =
∥∥ā∗n,s0 − ān,s0∥∥ ,

dist(b̄∗n,s0+S−1, b̄n,s0+S−1) =
∥∥b̄∗n,s0+S−1 − b̄n,s0+S−1

∥∥ , (2.22)

where ā and b̄ denote normalized vectors, and ‖ · ‖ denotes the l2 norm. The error distances

can be substantial, and thus, may cause significant bias in statistical inference. The bias can

be reduced by adding buffers since the error distances decay exponentially as the buffer

length grows. Specifically, we can inaccurately specify the starting forward and backward

probabilities at the outside endpoints (i.e., s0 − U1 and s0 + S + U2 − 1) of the buffers as

a∗
′

n,s0−U1
= π′n,s0−U1

Dn,s0−U1 , b
∗
n,s0+S+U2−1 = 1.

The memory decay property of HMMs guarantees that forward and backward probabilities

converge exponentially from different starting values (Le Gland and Mevel, 2000a,b). That

is, though the starting forward and backward probabilities are still specified inaccurately,

they converge to the true probabilities at both endpoints of the subsequence as lengths of

the buffers increase, so that the error distances in Equation (2.22) are reduced exponentially.

Therefore, at each iteration of the proposed SVB procedure, we first randomly sample Ns

subjects. From each of the Ns full sequences, M subsequences of equal length S are then
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randomly sampled, with two buffers attached to each sampled subsequence determined

subsequently. The forward-backward algorithm is performed on the buffered subsequences

to control for the error distances of forward-backward probabilities. Finally, variational

parameters are updated solely based on the subsequences without buffers using procedures

developed above. Hence, we need to determine the number of subsequences (i.e., M ) and

lengths of each subsequence (i.e., S) and the attached buffers (i.e., Un,m,1 and Un,m,2).

Choosing large values for M and S tends to improve the estimation accuracy but

increases the computation complexity considerably. A balance needs to be attained when

determining M and S. Existing studies (Foti et al., 2014; Ma et al., 2017) mention that M

and S should be set according to the transition patterns of the Markov chain in homogeneous

HMMs. For instance, if a Markov chain transits frequently between states, a large S is

preferable to achieve a sample well representing the information of transition dynamics.

Note that the transition patterns of the Markov chain in an NHMM may vary over time

due to possible complex nonhomogeneity, which requires that both M and S should be

moderately large at least to reflect crucial features of the NHMM. From the numerical

studies in the literature and our experiments, we find that the setting of S = 10 to 20

and M = 10 to 20 provided overall satisfactory performance. We further recommend a

sensitivity analysis by altering M and S in applications to evaluate whether estimation

results are sensitive to the choices.

The challenging part of the SVB method is to determine buffer lengths (Un,m,1 and

Un,m,2) for each subsequence, so that the buffers are not only long enough to control the bias

from subsampling but also sufficiently short to attain computational efficiency. Aicher et al.

(2019) propose to use buffers of a fixed length for homogeneous HMMs. However, there is

no guarantee that, with fixed length buffers, the bias can be reduced to the desired level for

NHMMs. Another stream of research (Ye, 2018; Foti et al., 2014; Ma et al., 2017) proposes

to determine precise buffer lengths based on the memory decay property of homogeneous

HMMs so that the bias are controlled effectively. We here adopt the latter scheme and
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extend it by considering local nonhomogeneity in NHMMs and proposing the use of LLEs

to quantify local memory decay rates of NHMMs and estimate buffer lengths adaptively.

The aim of attaching buffers is to reduce the error distances between the inaccu-

rately specified forward and backward probabilities and their true counterparts on the

subsequence. The following result given in Collet and Leonardi (2014) provides a the-

oretical basis for the memory decay rates of HMMs. Define Mn,t,t = Qn,tPn,t and

Mn,t,s = Qn,sPn,s · · ·Qn,tPn,t for s < t, whereQn,t is the transition probability matrix

in Equation (2.2), and Pn,t denotes a K ×K diagonal matrix with the kth diagonal element

being the emission probability pn,t,kk = p(yn,t|zn,t = k,xn,t,β). Collet and Leonardi

(2014) show that, assume Pn,t andQn,t are positive, there exists λn < 0 such that

lim sup
t→∞

1

t
log
∥∥ā∗n,t − ān,t∥∥ = λn, a.s., (2.23)

where λn = λn,2 − λn,1, and λn,1 and λn,2 are the first two Lyapunov exponents ofMn,t,1,

as t → ∞. Here we focus on the forward probability vectors a∗n,t and an,t, and the

corresponding buffer length Un,m,1 in the above theorem and the following procedure of

determining buffer lengths; the theorem and the procedure apply similarly to backward

probability vectors b∗n,t and bn,t, and the corresponding buffer length Un,m,2.

The first two components of the Lyapunov spectrum of the whole HMM system (i.e.,

λn,1 and λn,2 from Equation [2.23]) are commonly used in characterizing the long-run

memory decay rate (i.e., over infinite time) of an HMM, and thus, are referred to as Global

Lyapunov Exponents (GLEs). For a homogeneous HMM with time-invariant transition

probability matrix and emission distributions, this global decay rate exp(λn) roughly applies

to buffer length estimations for any subsequences sampled from the full sequence; therefore,

Ye (2018) proposes that to control the error distance at s0 under a specified level δ, the
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buffer length Un,m,1 should be set as

Un,m,1 = [log(δ)/(λn)] , ∀m,

where the operator [·] indicates rounding to the nearest integer, and λn is estimated numeri-

cally. This method is effective for homogeneous HMMs but could be compromised by the

nonhomogeneity of NHMMs, as demonstrated in the following example.

Example 1: Consider a sequence of a length T = 105 from an NHMM with K = 3 states

defined by Equations (2.1) - (2.3) and (2.5). For the transition model (2.3), the covariate

vector wt = (wt,1, wt,2)′ is set as (0.45, 0.45)′ for t = 1, . . . , 103 and (−0.45,−0.45)′

for t = 1001, . . . , 105, and the parameters are set as ρ11,0 = 2, ρ12,0 = −2, ρ21,0 = −2,

ρ22,0 = 2, ρ31,0 = −2, ρ32,0 = −2, ρ11 = (2, 2)′, ρ12 = (−2,−2)′, ρ21 = (−2,−2)′,

ρ22 = (2, 2)′, ρ32 = (−2,−2)′, and ρ32 = (−2,−2)′. The emission distribution is set

as (yt|zt = k) ∼ N (µyk, σ
2
yk), for k = 1, 2, 3, where µy1 = −0.5, µy2 = 0, µy3 = 0.5,

σy1 = 1, σy2 = 1, and σy3 = 1.

For the first part of the observation sequence (i.e., t = 1, . . . , 103), the transition

probability matrices are approximately diagonal, which significantly slow down the memory

decay of the Markov chain; whereas for the second part (i.e., t = 1001, · · · , 105), the

transition probability matrices are with approximately identical rows, which leads to much

faster convergence speed. Therefore, when the subsequence S is sampled from the first

part of the observation sequence, long buffers are required to control the error distances;

whereas much shorter buffers are needed when S is from the second part of the observation

sequence. We analyze the data sequence using the method proposed by Ye (2018) and our

method as developed below, respectively. For demonstration, we set M = 1 in this example.

The estimated buffer lengths for both methods are shown in Figure 2.3. It is evident

that Ye (2018)’s method is heavily influenced by the first part of the observation sequence
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Figure 2.3: Estimated buffer lengths for the example based on the method in Ye (2018)
and the proposed local stepwise method in this paper, respectively. The proposed stepwise
approach returns required buffer lengths dependent on the local nonhomogeneity of the
NHMM, while the approach proposed in Ye (2018) tends to yield buffer lengths longer
than needed.

and produces unnecessarily long buffers in many iterations. On the contrary, our approach

yields desired adaptive buffer lengths, which demonstrates the necessity of considering

local nonhomogeneity of an NHMM.

This example highlights that the nonhomogeneity of an NHMM can significantly affect

its local memory decay rates, and thus, the buffer lengths required in the subsampling

procedure. Although GLEs characterize the long-run memory decay rate for a nonhomoge-

neous system, it struggles in capturing finite-time local memory decay patterns because the

long-run limit nature of GLEs renders them independent of local dynamics of the system

(Abarbanel et al., 1992). A precise measure that quantifies the local memory decay rates is

thus required. In this paper, we propose the use of LLEs instead of GLEs to estimate buffer

lengths for NHMMs. Specifically, LLEs are defined as follows (Abarbanel et al., 1992):

λL,n(t, t+ T0) = λL,n,2(t, t+ T0)− λL,n,1(t, t+ T0) =
1

T0

log
∥∥ā∗n,t+T0 − ān,t+T0∥∥ ,
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where λL,n,1(t, t + T0) and λL,n,2(t, t + T0) are the first two LLEs of the subsequence

from t to t+ T0 with initial state distributions being ā∗n,t and ān,t. LLEs characterize the

finite-time local average memory decay rates of the subsequence from time t to t + T0,

and are useful in determining buffer lengths for NHMMs. In fact, LLEs can be viewed as

the finite-time version of GLEs on the subsequence from t to t+ T0, and they converge to

GLEs as T0 →∞.

Since LLEs vary when t or T0 changes, we propose a stepwise method to determine

the buffer length, Un,m,1. The stepwise method starts from the shortest possible buffer

(i.e., Un,m,1 = 1) adjacent to the sampled subsequence S and evaluate whether the buffer

is sufficiently long to control the error distance; if so, then Un,m,1 is determined, and if

not, we increase the buffer length by one and repeat the above process. The evaluation

compares the current Un,m,1 and [log(δ)/λL,n(s0−Un,m,1, s0)]; the buffer is sufficiently long

if Un,m,1 ≥ [log(δ)/λL,n(s0−Un,m,1, s0)]. The remaining task is to estimate λL,n(t, t+T0).

Abarbanel et al. (1992) show that λL,n(t, t + T0) can be estimated by the following

formula:

λL,n(t, t+ T0) =
1

T0

log ‖Jn,t+T0(vn,t+T0−1) · · ·Jn,t+1(vn,t)‖ , (2.24)

where vn,t is a (K − 1)× 1 vector from a mapping of normalized forward probabilities to

an unconstrained real space, and Jn,t+1(vn,t) is the (K − 1) × (K − 1) Jacobian matrix

that characterizes the contraction and expansion properties of vn,t+1. We follow the idea

given in Ye (2018) and treat the forward probabilities as a random dynamical system (RDS)

and derive formulas and expressions for vn,t and Jn,t+1(vn,t). We treat the unnormalized

forward probabilities {an,t+T0 = Mn,t+T0,t+1an,t} as a random dynamical system (RDS);

the normalized forward probabilities {ān,t+T0} are thus an induced RDS satisfying the
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following constraint:
K∑
k=1

ān,t+T0(k) = 1.

We refer readers to Arnold (1998) and Ye (2018) for a detailed introduction of RDS. A

transformation can be applied to ān,t+T0 as:

ān,t+T0 = (ān,t+T0(1), ..., ān,t+T0(K))′

→ vn,t+T0 =

(
log

(
ān,t+T0(1)

ān,t+T0(K)

)
, ..., log

(
ān,t+T0(K − 1)

ān,t+T0(K)

))′
, (2.25)

with the inverse mapping:

vn,t+T0 = (vn,t+T0(1), ..., vn,t+T0(K − 1))′

→ ān,t+T0 =

(
exp(vn,t+T0(1))∑K−1

k=1 exp(vn,t+T0(k)) + 1
, ...,

1∑K−1
k=1 exp(vn,t+T0(k)) + 1

)′
. (2.26)

The transformation preserves the Lyapunov spectrum. Here vn,t+T0 contains K − 1 uncon-

strained entries and can be written as

vn,t+T0 = v0,n,t+T0 + Fn,t+T0(vn,t+T0−1), (2.27)

where

v0,n,t+T0 =

(
log

(
p(yn,t+T0|zn,t+T0 = 1,xn,t+T0 ,β)

p(yn,t+T0|zn,t+T0 = K,xn,t+T0 ,β)

)
, ...,

log

(
p(yn,t+T0|zn,t+T0 = K − 1,xn,t+T0 ,β)

p(yn,t+T0|zn,t+T0 = K,xn,t+T0 ,β)

))′
, (2.28)
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Fn,t+T0(vn,t+T0−1)

=

(
log

(
exp(vn,t+T0−1)′Qn,t+T0,·1

exp(vn,t+T0−1)′Qn,t+T0,·K

)
, · · · , log

(
exp(vn,t+T0−1)′Qn,t+T0,·K−1

exp(vn,t+T0−1)′Qn,t+T0,·K

))′
,

(2.29)

andQn,t+T0,·k denotes the vector of the k-th column of transition matrixQn,t+T0 . The con-

traction and expansion properties (as measured by LLEs) of {vn,t+T0} can be characterized

by the (K − 1)× (K − 1) Jacobian matrix

Jn,t+T0(vn,t+T0−1) = ∇Fn,t+T0(vn,t+T0−1), (2.30)

where the ij-th element in the matrix is expressed as follows: for i, j = 1, ..., K − 1

Jn,t+T0,ij(vn,t+T0−1) =
exp(vn,t+T0−1(j))qn,t+T0,ji
exp(vn,t+T0−1)′Qn,t+T0,·i

− exp(vn,t+T0−1(j))qn,t+T0,jK
exp(vn,t+T0−1)′Qn,t+T0,·K

.

(2.31)

The Jacobian matrices can be used in estimating λL,n(t, t + T0) according to Equation

(2.24).

For computation, instead of the QR decomposition approach given in Abarbanel et al.

(1992), we adapt the efficient method developed in Ye (2018) to estimate λL,n(t, t+ T0) by

sequentially multiplying the Jacobian matrices to an initialized unit vector and renormalizing

the obtained vector at each step. This estimation scheme facilitates the implementation of

the proposed stepwise method; when we increase the buffer length by one, we only need to

multiply another Jacobian matrix for the estimation of the new LLE.

The developed SVB can be efficiently performed on NHMMs with ultra-long sequences.

At each iteration, Ns subjects are sampled; M subsequences of equal length S are sampled

from each of the Ns full sequences; two buffers are determined adaptively according to the

proposed local stepwise method for each subsequence; the forward-backward algorithm is
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then performed on the buffered subsequences; finally, variational parameters are updated

solely based on the subsequences without buffers. We first introduce the detailed procedure

of determining the length Un,m,1 for the forward buffer, which applies to the determination

of the length Un,m,2 for the backward buffer. The full procedure of the SVB method is

presented subsequently.

The buffer length Un,m,1 of a subsequence is determined though the following steps:

Step 1: Suppose the starting point is s0 for the sampled subsequence of a length S from the

subject n. Specify a threshold δ for the error distance, which is set as 10−8 in this study.

Initiate the buffer length Un,m,1 = 1. Initiate a unit working vector$1 of a length K − 1

and a scalar ϕ2 = 0.

The forward buffer starts from s0 − 1 towards the direction of s0 − 2. The following steps

are repeated until the termination criterion is reached.

Step 2: Compute vn,s0−Un,m,1 following Equation (2.25) with current values of normalized

forward probabilities.

Step 3: Compute Jn,s0−Un,m,1(vn,s0−Un,m,1+1) via Equations (2.30) - (2.31) with entries of

En,s0−Un,m,1 , the variational estimate ofQn,s0−Un,m,1 .

Step 4: Update the working vector$1 through the following formula:

$1 = Jn,s0−Un,m,1(vn,s0−Un,m,1+1)$1.

Update the scalar $2 through the following formula:

$2 = $2 + log ‖$1‖.
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Step 5: Compute λL,n(s0 − Un,m,1, s0) by averaging $2 though the following formula:

λL,n(s0 − Un,m,1, s0) =
$2

Un,m,1
.

Step 6: Compute [log(δ)/λL,n(s0 − Un,m,1, s0)]. Terminate the algorithm and return Un,m,1

if Un,m,1 ≥ [log(δ)/λL,n(s0 − Un,m,1, s0)], the buffer has reached the starting point of the

entire sequence, or the buffer length Un,m,1 is regarded too long (e.g., Un,m,1 reaches 500).

Otherwise, renormalize$1, set Un,m,1 = Un,m,1 + 1, and repeat steps 2 - 6.

The full procedure of the SVB method (details similar to those in the VB procedure are

omitted) is given as follows:

Step 1: Specify the number of iterations for the algorithm, Iter. Initialize variational

parameters and forward and backward probabilities.

The procedure iteratively performs the following steps until Iter is reached.

Step 2: Randomly sample Ns subjects from the total N subjects without replacement.

Step 3: Randomly sample M subsequences of a length S from each of the sampled Ns

sequences. Determine buffers for each subsequence using the above procedure.

Step 4: Update forward and backward probabilities and the posteriors for hidden states

based on the buffered subsequences.

Step 5: Update variational parameters for the emission and transition models based on the

subsequences without buffers.

Step 6: Compute the ELBO value LNs using current variational parameters.
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2.4 Simulation Studies

We conduct two simulation studies to assess the empirical performance of proposed methods.

In Simulation 1, we evaluate the finite sample performance of the developed methods under

different sample sizes. We consider three approaches as benchmarks, including an SVB

method without buffers, a conventional Bayesian MCMC method, and a conventional

frequentist MLE method. In Simulation 2, we further compare our methods to the recently

developed Bayesian method for NHMMs via Pólya-Gamma data augmentation (PGMCMC,

Holsclaw et al., 2017). The PGMCMC method is specifically designed for NHMMs with

unordered hidden states governed by reduced-design transition probability matrices, a

special case of our full-design transition model given by Equation (2.3).

2.4.1 Simulation 1

In this simulation, we consider an NHMM defined by Equations (2.1)-(2.3) and (2.5) with

K = 3 unordered hidden states. Detailed settings of this simulation are given as follows.

For the transition model given by Equation (2.3), we set true values of ρ as ρ11,0 = 0.5,

ρ12,0 = −0.5, ρ21,0 = −0.5, ρ22,0 = 0.5, ρ31,0 = −0.5, ρ32,0 = −0.5, ρ11 = (0.5)′,

ρ12 = (−0.5)′, ρ21 = (−0.5)′, ρ22 = (0.5)′, ρ31 = (−0.5)′, and ρ32 = (−0.5)′. We let

wn,t = (wn,t,1)′, where wn,t,1 is generated as:

w∗n,t,1 ∼ N (4 sin(0.002t), 1),

wn,t,1 = w∗n,t,1I(w∗n,t,1 ≥ 0) + 0.1w∗n,t,1I(w∗n,t,1 < 0),

and I(·) denotes an indicator function. The local memory decay rates of the considered

NHMM are influenced by the covariate. In specific, the Markov chain exhibits a lower

memory decay rate as wn,t,1 grows more positive. The emission distributions of the
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NHMM are taken as (yn,t|zn,t = k,β,xn,t) ∼ N (x′n,tβk, σ
2
k), for k = 1, 2, 3, where

xn,t = (xn,t,1, xn,t,2)′, xn,t,1 = 1, xn,t,2 is generated from a standard normal distribution,

and the true values of the parameters in β are set as β1 = (−5,−1)′, β2 = (−1, 1)′,

β3 = (3, 1)′, and σk = 1 for k = 1, 2, 3. We consider 12 different scenarios by setting

N = 10, 50, 100 and T = 10, 102, 103, 104. For each scenario, we generate 100 data sets

for replications.

In this simulation, we consider three approaches for comparison. The first approach is an

SVB method without buffers. The only difference of the approach with the developed SVB

method is that buffers are excluded. This benchmark is used to examine the effectiveness

of attaching adaptive buffers to control for bias in the developed SVB method. Two

conventional approaches, including a Bayesian MCMC approach and a frequentist MLE

method, are also used as baselines. The MCMC approach is commonly used for analyzing

NHMMs (e.g., Heaps et al., 2015; Kang et al., 2019; Spezia, 2006); it utilizes Gibbs sampler,

Metropolis-Hastings algorithm, and forward-backward algorithm to sample from the exact

posteriors. The approach is expected to produce more accurate estimates by generating

exact samples from the target posteriors than the proposed variational Bayesian methods,

but at the cost of being computationally intensive or even infeasible for massive datasets.

The frequentist MLE approach is another conventional method for NHMMs (e.g.,

Hughes et al., 1999; Kani et al., 2018). The expectation-maximization algorithm is the

standard choice which treats the hidden states as missing data. The E-step uses forward-

backward algorithm to determine the forward and backward probabilities, and the M-

step performs numerical optimizations on the unknown parameters. In applications with

NHMMs, MLE methods are less preferred compared to the Bayesian methods because

Bayesian methods can incorporate prior information, directly provide interval estimations

for the parameters, and produce reliable results for complex models such as NHMMs.

Nonetheless, we consider the MLE method here to thoroughly evaluate the performance of

the proposed methods. In total, we consider five methods in this simulation study, that is,
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VB, SVB, SVB without buffers, MCMC method, and MLE method.

We assign normal priors for β and ρ in the four Bayesian methods (i.e., MCMC, VB,

SVB, and SVB without buffers) as:

p(β) ∼ N (β0,Σβ,0), p(ρ) ∼ N (ρ0,Σρ,0),

where the hyperparameters are set as β0 = 0, Σβ,0 = 102I , ρ0 = 0, and Σρ,0 = 102I so

that the priors are diffuse. For the VB and SVB methods, we apply rρ,k1k2 = 2 and rβ,k = 3

factors in variational posteriors for ρ and β, respectively. Moreover, we sample Ns = 1

subject out of the N subjects randomly at each iteration for the VB methods; as mentioned

previously, this stochastic consideration reduces computational cost significantly and attains

acceptable estimation accuracy. For the SVB methods, the number of subsequences M is

set as 10 and the length of each subsequence S is set as 10. Further sensitivity analyses

show that varying M and S provides similar estimation results. All five approaches are

implemented using Python. Related computer codes are provided as a supplement for this

paper. Several test runs show that the MCMC method converges within 5000 iterations;

we obtain estimation results for this method using 5000 samples after discarding the first

5000 burn-in iterations. Convergence for MLE, VB, and SVB methods generally occurs

within 2000 iterations; we thus use a conservative 10000 iterations for these methods. Each

of the five methods is applied to analyze the generated data sets on a computer with an 8

GB memory and a 2.70 GHz CPU; the estimation results are assessed using computational

time, bias and root mean square errors (RMSE). Table 2.1 summarizes the results for this

simulation. Note that to make the table concise, we report the average RMSE and bias of

the parameters in the emission model and transition model, respectively; the detailed bias

and RMSE of each specific parameter are available upon request.

The results show that the MCMC approach (first panel in Table 2.1) performs the best

in recovering the parameters in both the emission model and transition model with different
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sample sizes. The main obstacle for the MCMC approach is the high computational cost;

it is evident that the computation time for one replication increases to over 8500 seconds

when the total sample size NT reaches 104. Further MCMC replications are not completed

due to our limited computational resources. The MLE approach (second panel in Table

2.1) performs not as well as MCMC in terms of estimation accuracy; its computational

efficiency is also limited. The proposed VB and SVB methods (third and fourth panels in

Table 2.1) provide comparable estimation accuracy to that of the MCMC and MLE methods,

especially for datasets with relatively long sequences (e.g., T ≥ 103). The efficiency gain

for the two proposed methods is significant; the VB method is able to handle datasets

with long sequences within a reasonable time frame, and the SVB method attains high

efficiency in analyzing datasets with ultra-long sequences. As expected, we note that the

SVB method is slightly less accurate than the VB method because SVB only uses several

buffered short subsequences sampled from an ultra-long sequence. The significant bias and

RMSE associated with the estimations from the method of SVB without buffers (fifth panel

in Table 2.1) highlight the effectiveness of using adaptive buffers to control for bias due

to subsampling. Overall, the MCMC approach is preferable when N and T are small to

moderate, the VB approach is preferable when sequences are long, and the SVB approach

is preferable when sequences are ultra-long. Therefore, we apply the VB approach in our

first data application to analyze an NHMM with long sequences of children’s eye-tracking

scan-paths, and use the SVB approach in the second data application to analyze an NHMM

with ultra-long sequences of customers’ mobile Internet usage records.
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Table 2.1: Estimation results in Simulation 1.

MCMC MLE VB SVB SVB w/o Buffer

N T BIAS RMSE Time∗ BIAS RMSE Time BIAS RMSE Time BIAS RMSE Time BIAS RMSE Time
Parameters in emission model, β

10

101 0.0849 0.1846 117.79 0.0920 0.2894 48.47 0.2325 0.5063 139.30 - - - - - -
102 0.0045 0.1226 991.24 0.0058 0.1228 300.11 -0.0467 0.3842 224.38 - - - - - -
103 0.0022 0.0705 8639.88 -0.0015 0.0720 2526.32 0.0032 0.1569 767.75 0.0056 0.1529 1001.21 0.3269 0.4933 245.71
104 - - - - - - 0.0046 0.1373 6134.78 0.0012 0.0703 1376.63 0.3345 0.4578 249.30

50

101 -0.0093 0.1341 593.94 0.0157 0.1670 195.18 -0.2242 0.4651 140.47 - - - - - -
102 0.0026 0.0805 6011.44 0.0036 0.1202 1521.44 -0.0235 0.3161 231.23 - - - - - -
103 - - - - - - 0.0027 0.1691 774.81 0.0032 0.1066 1004.82 0.3434 0.5184 246.39
104 - - - - - - 0.0008 0.1021 6376.39 -0.0005 0.0787 1358.54 0.3529 0.4785 245.45

100

101 0.0026 0.0821 1140.92 -0.0020 0.1248 378.25 0.2226 0.4283 162.25 - - - - - -
102 -0.0019 0.0577 8540.19 0.0025 0.0830 3080.02 0.0325 0.3109 236.85 - - - - - -
103 - - - - - - 0.0050 0.1938 790.37 0.0003 0.1033 1033.26 0.3295 0.5725 246.00
104 - - - - - - -0.0007 0.0924 6403.50 0.0072 0.0770 1370.99 0.3516 0.4823 246.62

Parameters in transition model, ρ

10

101 -0.1442 0.3218 -0.2780 0.4110 -0.2985 0.5452 - - - -
102 -0.0577 0.1807 0.0917 0.1961 0.0921 0.3744 - - - -
103 0.0069 0.0956 -0.0090 0.1367 -0.0155 0.2605 -0.0891 0.2949 -0.3263 0.5737
104 - - - - -0.0061 0.1679 -0.0628 0.1305 -0.2395 0.3796

50

101 -0.0981 0.1695 -0.1649 0.3523 -0.3012 0.4934 - - - -
102 0.0216 0.1302 -0.0736 0.1824 -0.0506 0.3212 - - - -
103 - - - - -0.0100 0.2346 -0.0847 0.2337 -0.3419 0.6036
104 - - - - 0.0086 0.1141 -0.0574 0.1138 -0.2482 0.4126

100

101 -0.0607 0.1275 -0.0645 0.1791 -0.2995 0.5263 - - - -
102 -0.0192 0.0830 0.0122 0.1217 -0.0818 0.2969 - - - -
103 - - - - -0.0081 0.2437 -0.0821 0.2307 -0.3232 0.5766
104 - - - - 0.0077 0.1116 -0.0544 0.1032 -0.2428 0.4023

∗Average computation time in seconds for one replication.
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2.4.2 Simulation 2

In this simulation, we compare the proposed methods to the PGMCMC approach in

Holsclaw et al. (2017). The PGMCMC approach utilizes the method of Pólya-Gamma

data augmentation to induce conjugacy for parameters in the transition model so that an

efficient and closed-form Gibbs sampler can be obtained. The closed-form Gibbs sampler

enables the PGMCMC approach to handle NHMMs with long sequences of a length up to

104. Here we use this recently developed method as another baseline.

The PGMCMC approach is developed for NHMMs withN = 1 sequence of multivariate

temporal process yT . The corresponding emission model is defined separately on each

element of yt from yt1 to ytRy ; and yt forms a multivariate emission model similarly to the

one given in Equation (2.5). The corresponding transition model, on the other hand, is in a

reduced form given as: for k1, k2 = 1, . . . , K,

qt,k1k2 =
exp(ρk1k2,0 +w′tρk2)∑K
j=1 exp(ρk1j,0 +w′tρj)

,

where ρkK,0 and ρkK are set as 0 for all k for identification purposes. This reduced form

model has one set of regression coefficients for the probability of entering each state k2 and

is a special case of our full-design transition model given in Equation (2.3).

In this simulation study, we consider an NHMM as described above with K = 3 hidden

states. For the transition model, we havewt = (wt,1, wt,2)′, where wt,1 is generated from

a standard normal distribution and wt,2 is generated from a Bernoulli distribution with a

probability of 0.5 to be 1. The true values of parameters are set as ρ11,0 = 2, ξ12,0 = 2,

ξ21,0 = −2, ξ22,0 = 2, ξ31 = −2, ξ32 = −2, ρ1 = (−1, 1)′, and ρ2 = (0.5,−1)′. For the

emission model, we consider two cases. The first case is a Gaussian emission model with
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the dimensionality of yt being Ry = 2; the model is given as follows:

(ytj|zt = k,β) ∼ N (µjk, σ
2
jk),

where the true values of parameters in β are set as µ11 = −5, µ12 = −1, µ13 = 3,

µ21 = −4, µ22 = 0, µ23 = 4, and σjk = 1 for j = 1, 2, k = 1, 2, 3. The second case is an

exponential emission model with Ry = 2; the model is given as follows:

(ytj|zt = k,β) ∼ Exp(µjk),

where Exp(·) denotes an exponential distribution and the true values of parameters in β are

set as µ11 = 2.7, µ12 = 1, µ13 = 0.4, µ21 = 4.5, µ22 = 1.6, and µ23 = 0.6. We consider 4

different scenarios with T = 5× 103, 104, 5× 104, 105 for evaluation. For each scenario,

we generate 100 data sets for replications.

Similar diffuse priors as in Simulation 1 are used. The settings and implementations of

VB and SVB methods are also similar to those described in Simulation 1. The PGMCMC

approach is implemented using the R-package NHMM provided by Holsclaw et al. (2017),

and the default settings therein are used in this study. Several test runs show that the

PGMCMC approach converges within 5000 iterations. We therefore use a burn-in phase

of 5000 iterations and obtain the estimation results based on another 5000 iterations. In

simulation 2, we use 10000 iterations for the VB and SVB methods. Table 2.2 summarizes

results for this simulation.

The results show that the proposed VB and SVB methods provide comparable estimation

accuracy and superior computational efficiency compared to PGMCMC. The computational

gain of SVB is again significant with slight sacrifice of estimation accuracy. This simulation

study further confirms the satisfactory performance of the proposed methods.
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Table 2.2: Estimation results in Simulation 2.

PGMCMC VB SVB

T BIAS RMSE Time∗ BIAS RMSE Time∗ BIAS RMSE Time∗

Gaussian emission case, parameters β
5× 103 0.0283 0.1630 8653.22 0.0029 0.0110 2407.13 0.0035 0.0110 433.02

104 0.0145 0.0260 34178.44 0.0014 0.0073 5140.68 0.0042 0.0087 473.76
5× 104 - - - - - - 0.0009 0.0066 511.56

105 - - - - - - 0.0012 0.0054 549.78

Gaussian emission case, parameters ρ
5× 103 0.0515 0.0932 0.0165 0.0533 0.0180 0.0670

104 0.0427 0.0775 0.0086 0.0380 0.0116 0.0405
5× 104 - - - - - - 0.0073 0.0251

105 - - - - - - 0.0038 0.0182

Exponential emission case, parameters β
5× 103 0.0637 0.1481 8511.60 0.0133 0.0191 3024.41 0.0128 0.0545 431.34

104 0.0215 0.0797 32832.20 0.0071 0.0103 5943.06 0.0038 0.0135 441.84
5× 104 - - - - - - 0.0040 0.0092 432.18

105 - - - - - - 0.0030 0.0075 446.46

Exponential emission case, parameters ρ
5× 103 0.0507 0.0832 0.0537 0.1039 0.0798 0.1487

104 0.0397 0.0671 0.0409 0.0706 0.0688 0.1017
5× 104 - - - - - - 0.0535 0.0686

105 - - - - - - 0.0372 0.0461
∗Average computation time in seconds for one replication.

2.5 Analysis of Eye-tracking Scan-path Data

In this section, we present an analysis of the first motivating example. This analysis used

an NHMM to delineate how children with ASD watch social-communicative scenes when

interacting partners in the scenes vary by social salience (i.e., puppet v.s. person) and to

reveal how HSCs (e.g., speech cue) affect selective social attention of the children. We

applied the proposed VB method to perform statistical inference for the NHMM.
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2.5.1 Scan-path Data

A group of ASD children (N = 39; Median age = 49.44 months) were eye-tracked while

they were watching a designed video clip. The featured video is 86-second-long, depicting

two interacting partners, a puppet and an actress (i.e., a person), engaging in a playful

conversation. In the video, the puppet and the person took turns speaking and playing with

a ball; the ball was introduced at around the 23-second mark of the video, segmenting the

video into two parts naturally. Typical frames from the video clip are shown in Figure 2.4.

The setting of this study is suitable to examine the relative social salience of the puppet and

the person based on the following considerations. First, of a similar size to the actress in the

scene, the puppet mimicked human behaviors with moving limbs, head and mouth, stable

eyes, and a female voice performed by another actress, ensuring the puppet is human-like.

Second, two partners in the video separated the left and right halves of the scene without

any overlap and their locations remained largely unchanged, facilitating the detection and

interpretation of ROIs. Third, introduction of the ball enabled us to evaluate the distracting

effect of the ball on children’s attention to the puppet and the person. Finally, HSCs such as

speech and face direction of the puppet and the person were clearly present in the video,

allowing us to examine the impacts of HSCs on children’s attention shift across ROIs.

The study was implemented on an eye-tracking platform. The video was displayed on a

computer monitor with the resolution of 1680× 1050 pixels that comprised 43.1 degrees of

visual angle. Coordinates of each child’s gaze points were recorded by an SR EyeLink 1000

Plus 500 Hz eye-tracker at a sampling rate of 30 Hz (the sampling rate of the eye-tracker

matches with the frame rate of the video), which results in an observation scan-path of a

length T ≈ 2.6× 103 (see Figure 2.4 for gaze points of a child).

We pooled the gaze points of the entire group together and plotted them in Figure 2.5,

where the monitor frame area is (0 ≤ x ≤ 1680, 0 ≤ y ≤ 1050). The distribution of gaze

points is dispersed with no obvious clustering patterns and a considerable amount of gaze
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(a) Gaze points on frame, before ball (b) Gaze points on frame, after ball

(c) ROIs on frame, before ball (d) ROIs on frame, after ball

Figure 2.4: Typical frames of the video in the eye-tracking study for children with autism
spectrum disorders (ASD). (a) a frame from before the ball is introduced; (b) a frame
from after the ball is introduced; the gaze points are from a randomly selected ASD child
throughout the video clip. (c) and (d) include data-driven ROIs (i.e., hidden states) given by
the NHMM modeling. Except for the first hidden state of a point at (0,1050), the second,
third, fourth, and fifth ROIs are denoted in grey, blue, green, and red colors, which can be
interpreted as background, person face, puppet face, and ball, respectively.

points are located outside the monitor frame area. A gaze point outside the monitor frame

area suggests the eye-tracked participant not paying attention to the video content at the

moment. One technical issue of the eye-tracker is that it is only able to track the precise

location of an outside-of-frame gaze point when the point is not far from the frame; if the

gaze point is too far from the frame, the default program of the eye-tracker automatically

uses the coordinate of upper left corner of the frame, (0, 1050), as a surrogate (account

for 16.2% of all gaze points in our sample). Such surrogate observations were classified

into a separate state in NHMM, which should draw our special attention because such

observations indicate that children were highly distracted at the moment.

HSCs in the video are mainly speech and face directions of the two partners. Speech

was present for 93% of the video clip, with remaining time of the video filled with naturally
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Figure 2.5: Pooled gaze points of all participants in the eye-tracking study.

occurring, transitional silences between conversation partners. The speech of the puppet

and the actress accounted for 64% and 36% of the overall speech in the video, respectively;

the two partners took turns and did not speak simultaneously. As for the face directions,

before the ball was introduced, the partners either spoke to the camera or looked at each

other; they also looked at the ball after the ball was introduced. The HSCs in the video were

coded frame-by-frame according to the two partners’ speech and face direction to form time-

varying covariates, which may influence children’s attention shift between ROIs. In total,

six binary indicators variables (given in Table 2.3) were defined to specify combinations of

puppet speech, person speech, puppet face direction, and person face direction, where no

speech and person and puppet looking at camera (i.e., looking at the participants) are set as

reference categories.

Specifically, recall that wt denotes the covariate vector in the transition model at

time t, thenwt = (Ppt Spkt, Per Spkt, Ppt Pert, Ppt Balt, Per Pptt, Per Balt)
′, where

Ppt Spkt, Per Spkt, Ppt Pert, Ppt Balt, Per Pptt, and Per Balt are binary indicators

taking the value of 1 when the corresponding scenario occurs in frame t.

2.5.2 Model Specification and Inference

In this study, we proposed an NHMM with an emission model that uses a bivariate normal

density to describe the distribution of the coordinates of each gaze point conditional on
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Table 2.3: Codings of higher saliency cues in the video of the eye-tracking study for children
with ASD.

Factor Value Variable Interpretation

Speech
0 Baseline No Speech
1 Ppt Spkt Puppet Speaking
2 Per Spkt Person Speaking

Puppet
Face Direction

0 Baseline Puppet Looking at Camera
1 Ppt Pert Puppet Looking at Person
2 Ppt Balt Puppet Looking at Ball

Person
Face Direction

0 Baseline Person Looking at Camera
1 Per Pptt Person Looking at Puppet
2 Per Balt Person Looking at Ball

the hidden state and a transition model that considers the impact of HSCs on transition

probabilities between hidden states. Since we directly modeled children’s eye movements,

the hidden states in our model are associated with the ROIs on which children’s attention is

focused. ROIs can be interpreted depending on their specific locations and do not follow

a rank order. The transition between hidden states thus reflects children’s attention shift

across ROIs; and the nonhomogeneous setting in the transition model examines the effects

of HSCs on children’s attention shift.

The proposed NHMM is defined by Equations (2.1) - (2.3) and (2.5) with the number

of hidden states K to be determined. The specific emission model is given as: for n =

1, . . . , N ,

(ynt|znt = 1) ∼ I(ynt = µ1),

(ynt|znt = k) ∼ N (µk,Σk), for k = 2, ..., K,
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where the covariance matrices can be represented as

Σk =

 σ2
k1 αkσk1σk2

αkσk1σk2 σ2
k2

 .

The mean vector µk and the covariance matrix Σk in the emission model characterize

the center and the spread of the corresponding state. As mentioned above, the emission

distribution of the first state is assumed to be a constant distribution with a point mass

at the coordinate (0, 1050) to model the surrogates for the gaze points far away from the

frame. This separate state indicates that children were highly distracted at the moment. The

multinomial logit model given in Equation (2.3) was adopted for modeling the transition

probabilities.

One feature of the designed video is that the ball was introduced at around the 23-second

mark of the video. The ball itself is likely to represent an ROI, indicating the inclusion of

the ball may change the number of the hidden states. We therefore split each scan-path

into two segments according to the inclusion of the ball and applied the proposed NHMM

twice to analyze the scan-paths recorded before the ball was introduced (T ≈ 0.8× 103)

and after the ball was introduced (T ≈ 1.8× 103), respectively. The obtained two sets of

results may provide clues to the distracting effect of the ball on children’s attention. Note

that before the ball was introduced, the covariate vector in the transition model should be

wt = (Ppt Spkt, Per Spkt, Ppt Pert, Per Pptt)
′.

The developed VB method was utilized to perform statistical inference on the NHMM.

Prior distributions similar to that used in the simulation study were used for the Bayesian

inference. We applied rρ,k1k2 = 5 (rρ,k1k2 = 7 for the analysis of scan-paths after the

ball is introduced) and rβ,k = 5 factors in variational posteriors for ρ and β = (µ,Σ),

respectively. Note that we used full covariance matrices because the dimensionality in

this scenario is relatively low. Researchers can use substantially smaller number of factors
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compared to parameter dimensions when facing high-dimensional situations. We sampled

Ns = 1 subject out of the N = 39 subjects randomly at each iteration; as demonstrated in

the simulation study, this stochastic method reduces computational cost significantly and

attains satisfactory estimation accuracy. To obtain appropriate initial values of parameters,

we followed the suggestion in Song et al. (2017) by conducting a preliminary analysis using

the MCMC method on a small proportion of the data. Test runs showed that the VB method

converges within 2000 iterations. We terminated the VB algorithm after 5000 iterations (see

Figure 2.8 in the Appendix for the plot of the corresponding ELBO values). The number of

hidden states, K, was determined using the widely applicable information criterion (WAIC,

Watanabe, 2010). We varied K from 2 to 8 and computed WAIC for each candidate model,

with results shown in Table 2.4.

Table 2.4: WAIC values of the NHMM model with different number K of hidden states
in the analysis of eye-tracking scan-path data. “Before Ball” and “After Ball” denote the
scenarios of before and after the inclusion of the ball in the video, respectively.

K Before Ball After Ball

2 9165.66 25463.88
3 8729.95 21021.13
4 8179.22 20940.01
5 8826.18 19860.86
6 8853.79 20232.38
7 8984.94 20254.24
8 9487.99 22597.82

2.5.3 Results

We summarized results in this section. NHMMs with K = 4 and K = 5 hidden states

exhibit the best fit to the scan-paths before and after the introduction of the ball, respectively

(shown in Table 2.4). This suggests that the introduction of the ball increases the number of

ROIs by one and the ball itself represents an ROI to the children. The estimation results for

parameters in the emission model are given in Table 2.5.
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Table 2.5: Bayesian estimates (posterior standard deviations in the parentheses) for the
parameters in the emission model in the analysis of eye-tracking scan-path data. Parameters
in µk and Σk indicate the center locations and area spreads of ROIs, respectively. “Before
Ball” and “After Ball” denote the scenarios of before and after the inclusion of the ball in
the video, respectively.

States (k) Parameters Before Ball After Ball Parameters Before Ball After Ball

Background
(2)

µ21
792.51 1016.57

σ21
397.99 634.18

(1.4774) (1.4650) (1.1922) (1.0673)

µ22
312.01 448.85

σ22
314.53 446.63

(1.8068) (1.1941) (1.0717) (1.2474)

α2
0.2216 0.0895

(0.0134) (0.0073)

Person Face
(3)

µ31
1129.23 1129.24

σ31
59.08 77.19

(0.5139) (0.5756) (0.3414) (0.5002)

µ32
699.26 691.03

σ32
64.72 77.40

(0.4903) (0.9804) (0.2812) (0.7768)

α3
0.1182 0.1714

(0.0421) (0.0125)

Puppet Face
(4)

µ41
447.44 377.04

σ41
91.70 108.78

(1.2733) (0.5760) (0.4293) (0.2411)

µ42
551.70 527.54

σ42
99.18 105.35

(1.8640) (1.1750) (0.9299) (0.3937)

α4
-0.0043 0.0513
(0.0104) (0.0256)

Ball
(5)

µ51 -
619.53

σ51 -
132.13

(0.7351) (0.8658)

µ52 -
274.61

σ52 -
80.53

(1.2062) (0.3793)

α5 -
0.2529

(0.0196)

The estimated ROIs are depicted in Figure 2.4. By comparing the two sets of results in

Table 2.5 and Figure 2.4, we noted that ROIs display larger spread after the inclusion of

the ball. Larger ROI spreads might indicate less concentrated attention on related objects,

providing evidence for the distracting effect of the ball on children’s attention. According

to the locations and spread areas of the ROIs, they were interpreted as background, person

face, puppet face, and ball (see Figure 2.4). The ROIs of person face and puppet face

indicate children’s attention to the two partners in the video and are the main interest of the
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current study.

The data-driven ROIs detected through the NHMM offer an alternative to the conven-

tional method of pre-defining ROIs manually. For example, previous research generally

isolates the body parts of partners in the video as separate ROIs (e.g., Chawarska et al.,

2012; Shic et al., 2019), which seems not be supported by the current analysis. NHMM

classified the body parts into the background region according to signals of children’s

scan-paths, suggesting the body parts of the partners may not be salient objects in the scene.

(a) Hidden states sequences, Before Ball (b) Hidden states sequences, After Ball

Figure 2.6: Estimated hidden state sequences for children with ASD in the eye-tracking
study. The five hidden states of a point at (0,1050), background, person face, puppet face,
and ball, are denoted in black, grey, blue, green, and red colors.

The estimated state sequences zn,T , shown in Figure 2.6, indicate children’s attention

shifts across ROIs and provide fruitful information on children’s eye movement patterns,

which help reveal the relative salience of the two partners. Specifically, the attention to

the puppet ROI exhibits a higher degree of consistency among the children than that of

the attention to the person ROI. This phenomenon is particularly noticeable in the first

subfigure of Figure 2.6. The column-wise consistency of the green hidden states indicates

that the puppet ROI may draw systematic attention from the children, which is not the case

for the person ROI; this provides evidence of the higher saliency of the puppet relative to

the person.

Parameters in the transition model reflect the effects of HSCs on children’s attention
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shifts across ROIs. For example, the influences of speech cues on children’s attention to

puppet face can be obtained from the coefficients related to the transition probabilities from

other ROIs to the ROI of puppet face. The full estimation results for parameters in the

transition model are given in the Appendix (Tables 2.10 - 2.11).

Table 2.6: Bayesian estimates (posterior standard deviations in the parentheses) for the
parameters in the transition model that reflect the effects of speech cues on attention shift
to the two partners in the video.

Stimuli From∗ To∗ Before Ball After Ball Stimuli From∗ To∗ Before Ball After Ball

Person
Speech

1 3
-0.6570 -0.8066

Puppet
Speech

1 4
-0.2497 -0.6349

(0.6839) (1.4790) (0.4738) (1.0550)

2 3
0.9172 0.7941

2 4
0.8417 0.1981

(0.5046) (1.1395) (0.5259) (0.8562)

3 3
0.9697∗∗ 1.0117

3 4
0.9048∗∗ 0.3469

(0.3440) (0.6536) (0.2642) (1.0873)

4 3
0.7766 0.1424

4 4
1.0180∗∗ 1.0971∗∗

(0.5225) (0.8967) (0.3164) (0.3941)

5 3 -
0.0043

5 4 -
0.1989

(0.5992) (0.4754)
∗ State 1: (0, 1050), 2: Background, 3: Person Face, 4: Puppet Face, 5: Ball.
∗∗ Zero is not contained in the 95% credibility interval.

The estimated parameters that reflect the effects of speech cues on attention shifts to the

two partners are summarized in Table 2.6. The results show that speech cues may increase

the saliency of the speaker and draw children’s attention to the speaker. One advantage

of the NHMM modeling is that it reveals the mechanisms of how the speech cues help

draw children’s attention. Specifically, before the introduction of the ball, person speech

helps to maintain a child’s attention to the person, conditional on that the child is paying

attention to the person; puppet speech not only helps to maintain a child’s attention to the

puppet, conditional on that the child is paying attention to the puppet, but also increases

the likelihood that the child shifts attention to the puppet, conditional on that the child

is paying attention to the person. After the inclusion of the ball, only puppet speech is

effective in maintaining a child’s attention to the puppet, conditional on that the child is

paying attention to the puppet. These results demonstrate the higher saliency of the puppet

relative to the person with effects of speech cues and that children’s attention to the puppet

might be less distracted by the ball.
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The above findings were further confirmed by the estimated transition matrices in

different scenarios of speech cues given in Table 2.7. We found that the puppet seemed to

Table 2.7: Transition matrices in different scenarios of speech cues in the analysis of
eye-tracking scan-path data.

Case 1: Before Ball
Scenario 1: No Speech Scenario 2: Person Speech Only

FromTo∗ 1 2 3 4 1 2 3 4

1 0.9118 0.0367 0.0228 0.0287 0.9396 0.0325 0.0119 0.0160
2 0.0739 0.8849 0.0185 0.0227 0.0546 0.8826 0.0352 0.0275
3 0.0498 0.0152 0.9225 0.0125 0.0201 0.0108 0.9628 0.0063
4 0.0465 0.0103 0.0084 0.9348 0.0212 0.0090 0.0092 0.9606

Scenario 3: Puppet Speech Only

From To 1 2 3 4

1 0.9409 0.0251 0.0110 0.0231
2 0.0416 0.9190 0.0098 0.0296
3 0.0330 0.0229 0.9237 0.0204
4 0.0175 0.0066 0.0015 0.9743

Case 2: After Ball
Scenario 1: No Speech Scenario 2: Person Speech Only

From To 1 2 3 4 5 1 2 3 4 5

1 0.9005 0.0321 0.0155 0.0231 0.0288 0.9380 0.0257 0.0071 0.0148 0.0144
2 0.2908 0.6067 0.0301 0.0351 0.0372 0.1428 0.8078 0.0252 0.0091 0.0151
3 0.1496 0.0201 0.7891 0.0211 0.0201 0.0576 0.0074 0.9241 0.0043 0.0065
4 0.1470 0.0137 0.0156 0.7960 0.0277 0.0664 0.0052 0.0080 0.9074 0.0130
5 0.1593 0.0188 0.0210 0.0233 0.7776 0.0807 0.0090 0.0107 0.0100 0.8895

Scenario 3: Puppet Speech Only

From To 1 2 3 4 5

1 0.9392 0.0244 0.0059 0.0128 0.0177
2 0.1687 0.7688 0.0107 0.0249 0.0269
3 0.0688 0.0109 0.8971 0.0137 0.0095
4 0.0567 0.0042 0.0040 0.9196 0.0154
5 0.0859 0.0082 0.0104 0.0153 0.8802
∗ State 1: (0, 1050), 2: background, 3: person face, 4: puppet face, 5: ball.
Note: Reference categories that person and puppet looking at camera are used here.

be more salient than the person in most scenarios of speech cues (scenarios 1 and 3 in both

cases in Table 2.7). Specifically, children were more likely to shift attention from the ROIs

of the point (0, 1050) and background to the puppet ROI than to the person ROI. They were

also less likely to shift attention to other ROIs from the puppet ROI than from the person
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ROI. Moreover, even in the scenario that only the person was delivering speech (scenario 2

in both cases in Table 2.7), the puppet ROI was more likely to draw children’s attention

from the point (0, 1050) ROI than the person ROI.

In this analysis, the VB analysis of NHMM determined data-driven ROIs, revealed the

state sequences associated with children’s eye movements, depicted children’s attention

shift between ROIs, evaluated the impacts of HSCs on children’s attention shifts, and

explored the transition matrices under different scenarios of speech cues. These modeling

achievements are difficult to obtain using the conventional methods in autism research. Our

obtained results provide evidence on the higher saliency of the puppet relative to the person

in the designed social-communicative scenes, which may help to understand the mechanism

behind the advantageous performance of humanoid representations in teaching children

with ASD and should be considered in the development of intervention schemes for ASD.

2.6 Analysis of Mobile Internet Usage Data

This section presents an analysis of the second motivating example. This analysis proposed

an NHMM to model customers’ mobile Internet usage behaviors, the underlying latent

needs for mobile Internet, and the influences of customers’ conventional telecom behaviors

on the latent needs. The SVB method was used to analyze the ultra-long sequences of

customers’ telecom records. We also demonstrated the capability of the utilized NHMM

framework in forecasting of customers’ future mobile Internet usage, based on which

companies can adjust their CRM strategy and achieve better mobile Internet capacity

planning.

2.6.1 Mobile Internet Usage Data

The mobile Internet usage dataset contains records of whether each of the 82 customers

made/received calls, sent/received texts, and used mobile Internet at a frequency of every
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five minutes for 10 months from September 2013 to June 2014, resulting in N = 82

observation sequences of a length T = 87552. The dataset also contains price of mobile

Internet data at each time period. Records of whether customers used mobile Internet yn,t

are considered as the binary dependent variable, where yn,t = 1 if customer n used mobile

Internet at time t. Possible covariates in the NHMM are:

Int Chgt ≥ 0 denotes the price of mobile Internet data at time t;

Calln,t ∈ {0, 1}, Calln,t = 1 if customer n made or received phone calls at time t;

SMSn,t ∈ {0, 1}, SMSn,t = 1 if customer n sent or received text messages at time t.

We expected the price of mobile Internet data at each period may directly affect customers’

mobile Internet usage at that period, and customers’ conventional telecom behaviors such

as calls and texts may affect their latent needs for mobile Internet which govern customers’

decisions of using mobile Internet. The instant effect of the price of mobile Internet data

is intuitive, as customers tend to be price-sensitive. Customers’ conventional telecom

behaviors are assumed to affect their states of latent needs for mobile Internet because the

effects tend to be in the longer term considering that the observation time window is short in

this study. The communication behaviors are likely to create a regime shift in a customer’s

mobile Internet use pattern by transitioning the customer to a different state of latent need

for mobile Internet. Preliminary analysis suggests that conventional telecom behaviors may

be associated with customers’ higher latent demands for mobile Internet. We found that if a

customer made or received calls or texts in the previous period, there was a increase of the

likelihood of using mobile Internet data in the period after (shown in see Figure 2.7).

2.6.2 Model Specification and Inference

We considered a K-state NHMM defined by Equations (2.1)-(2.2) and (2.4)-(2.5) with an

emission model of a logistic regression to describe the probability of using mobile Internet

at each period and examine the instant effect of mobile Internet data price on the probability
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Figure 2.7: Customers’ mobile Internet usage under different scenarios of calls/texts in
the previous period. Scenarios 1: No call/text message in the previous period; 2: Only
made/received calls; 3: Only sent/received texts; and 4: Both calls & texts.

conditional on the current hidden state. The specific form of the emission model is: for

n = 1, . . . , N , k = 1, . . . , K and t = 1, . . . , T ,

P(yn,t = 1|zn,t = k) =
exp(βk0 + βk1Int Chgt)

1 + exp(βk0 + βk1Int Chgt)
, (2.32)

where βk1 captures the instant effect of mobile Internet data price. Since the hidden states

govern customers’ decisions of using mobile Internet, these states can be interpreted as

latent needs for mobile Internet and have a natural order from weak to strong. Therefore,

the transition model with continuation-ratio logits given in Equation (2.4) was used and the

nonhomogeneous setting therein revealed the impacts of conventional telecom behaviors

on customers’ states of latent needs for mobile Internet. The specific form of the transition

model is given as follows: for n = 1, . . . , N , k1 = 1, . . . , K, k2 = 1, . . . , K − 1 and
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t = 2, . . . , T ,

log

(
P(zn,t = k2|zn,t−1 = k1)

P(zn,t > k2|zn,t−1 = k1)

)
= log

(
qn,t,k1k2

qn,t,k1k2+1 + · · ·+ qn,t,k1K

)
= ρk1k2,0 + ρk1,1Calln,t−1 + ρk1,2SMSn,t−1.

The proposed SVB method was utilized to conduct statistical inference on the proposed

NHMM. The prior distributions similar to that used in the simulation study were adopted.

We applied rρ,k1k2 = 3 and rβ,k = 2 factors in variational posteriors for ρ and β, respec-

tively. We sampledNs = 1 subject out of theN = 82 customers andM = 10 subsequences

of a length S = 20 from the full sequence randomly at each iteration. We analyzed a small

proportion of the data to obtain good initial values for parameters estimation (Song et al.,

2017). Test runs showed that the SVB method converged within 4000 iterations. The

algorithm was thus terminated after a conservative 10000 iterations (see Figure 2.9 in the

Appendix for the plot of ELBO values). The number of hidden states, K, was determined

through WAIC. We varied K from 1 to 5 and computed WAIC for each candidate model.

2.6.3 Results

The obtained results are summarized in this section. The WAIC values for candidate models

are 17187.03, 16157.54, 15669.34, 15809.98 and 15884.97 (K = 1 to 5). The NHMM with

K = 3 hidden states provides the best overall fit to data. The average probabilities of using

mobile Internet conditional on hidden states 1 to 3 were calculated as 0.0315, 0.1037 and

0.2092, suggesting the states can be interpreted as the states of weak, moderate, and strong

latent needs for mobile Internet, respectively.

The estimates of parameters are given in Table 2.8. For the emission model, the effects

of mobile Internet data price on mobile Internet use are negative, which is consistent with

the fact that customers are generally sensitive to price. Interestingly, our NHMM modeling
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Table 2.8: Bayesian estimates (posterior standard deviations in the parentheses) for the
parameters in the NHMM in the analysis of mobile Internet usage data.

Covariates Parameters
States (k)∗

1 2 3

Emission
- βk0

−3.4047∗∗ −2.4706∗∗ −1.8920∗∗

(0.0074) (0.0163) (0.0083)

Int Chg βk1
−3.3272∗∗ −2.3374∗∗ -1.8970
(1.5742) (0.6752) (2.2948)

Transition

- ρk1,0
3.7546∗∗ 1.3522∗∗ −4.3117∗∗

(0.0029) (0.0152) (0.0101)

- ρk2,0
2.7517∗∗ 0.1622∗∗ −5.0030∗∗

(0.0397) (0.0168) (0.0225)

Call ρk1
−0.9476∗∗ −1.8282∗∗ −1.7834∗∗

(0.0226) (0.0117) (0.0433)

SMS ρk2
−0.2671∗∗ −0.2637∗∗ −0.4397∗∗

(0.0546) (0.0475) (0.0471)
∗ State 1: weak need for mobile Internet, 2: moderate need, 3: strong need.
∗∗ Zero is not contained in the 95% credibility interval.

revealed that the negative effects of mobile Internet price are significant only under the

hidden states of weak to moderate latent needs for mobile Internet. When customers are in

the state of strong needs, they tend to ignore the influence of mobile Internet charge.

For the transition model, we found that conventional telecom behaviors have negative

effects on the probability of transitioning to a state of weaker needs for mobile Internet.

These results indicate that conventional telecom behaviors may motivate customers to

transition to states of stronger latent needs for mobile Internet, which agrees with the

findings in the preliminary analysis. The relationships between customers’ conventional

telecom behaviors and states of latent needs for mobile Internet can be further revealed

through the estimated transition matrices (shown in Table 2.9).

We found that the impacts of phone calls on mobile Internet use seemed to be stronger

than that of text messages by comparing scenarios 1 - 3 in Table 2.9. Specifically, calls

substantially increase the probabilities of transitioning from any state to the state of strong

need for mobile Internet (i.e., state 3). That is, calls may be more effective in stimulating

customers’ latent needs for mobile Internet, compared to texts. These results are reason-
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Table 2.9: Transition matrices in different scenarios of communication behaviors in the
analysis of mobile Internet usage data.

Scenario 1: No Activity Scenario 2: Calls Only

From To 1 2 3 1 2 3

1 0.9771 0.0215 0.0014 0.9431 0.0489 0.0080
2 0.7945 0.1111 0.0944 0.3832 0.0980 0.5188
3 0.0132 0.0066 0.9802 0.0022 0.0011 0.9967

Scenario 3: Texts Only Scenario 4: Calls & Texts

From To 1 2 3 1 2 3

1 0.9703 0.0274 0.0023 0.9269 0.0602 0.0129
2 0.7481 0.1196 0.1323 0.3231 0.0858 0.5911
3 0.0086 0.0043 0.9872 0.0015 0.0007 0.9978

able considering that phone calls may be more effective than text messages in affecting

customers’ psychological status (e.g., to a status of more willing to play online games on

their smartphones) or delivering information that should be processed using mobile Internet.

We also noted the combination of calls and texts is most effective in increasing customer’s

likelihood of using mobile Internet (scenario 4 in Table 2.9).

The above analysis not only revealed that the usage of conventional telecom services

could positively stimulate that of mobile Internet services, but also delineated the impacts

of customers’ conventional telecom behaviors on their states of latent needs for mobile

Internet. These results provided reference for telecom companies in understanding their

business and customers. In the next section, we further demonstrated the potential of

the proposed NHMM framework together with the developed SVB method in CRM by

examining its out-of-sample forecasting of customers’ mobile Internet use behaviors.

2.6.4 Out-of-sample Forecasting

We examined the out-of-sample forecasting performance of the proposed NHMM by

comparing with three benchmark models. Model 1 is a classic model of logistic regression
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which removes the latent dynamics offered by the HMM framework. yn,t was regarded

as the response variable and all possible covariates including yn,t−1, Int Chgn,t, Calln,t−1

and SMSn,t−1 were included. Model 2 is a homogeneous HMM which retains the emission

model given by Equation (2.32) of the proposed NHMM and has time-invariant transition

probabilities. Model 3 is a homogeneous HMM which considers all possible covariates

including Int Chgn,t, Calln,t−1, and SMSn,t−1 in the emission model. Models 2 and 3

were examined to assess the usefulness of allowing for nonhomogeneity in modeling

dynamics of hidden states. Model 4 is the proposed NHMM. For a fair comparison, three

hidden states were considered for Models 2 and 3. All the three benchmark models were

estimated by adapting the proposed SVB method. We used the first 75% observations of

each customer for calibration and the remaining 25% observations for validation. We used

the predictive log score (PLS, Meligkotsidou and Dellaportas, 2011; Gneiting and Raftery,

2007; Holsclaw et al., 2017) as the criterion for assessment. PLS attains a high score when

the model returns large predictive probability for values that occur in the validation set. A

higher PLS thus indicates a superior predictive ability. Specifically, PLS was calculated as

follows:

PLS = N−1

N∑
n=1

T−T ∗∑
t=1

log p̂(yn,T ∗+t|yn,≤T ∗+t−1),

where

p̂(yn,T ∗+t|yn,≤T ∗+t−1) =∫
β,ρ,zn,≤T∗+t−1

p(yn,T ∗+t|yn,≤T ∗+t−1,β,ρ, zn,≤T ∗+t−1)p̂(β)p̂(ρ)p̂(zn,T ∗+t−1)dβdρdzn,≤T ∗+t−1,

T ∗ denotes the length of calibration period and p̂(β), p̂(ρ), and p̂(zn,T ∗+t−1) are obtained

variational posteriors. The PLS values for Model 1 to Model 4 were calculated as -79572.69,

-78040.53, -77874.69, and -75668.61, respectively, indicating the proposed NHMM had

the best out-of-sample forecasting performance. The results showcase the potential of
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the proposed NHMM framework in CRM. With the system of monitoring and forecasting

customers’ mobile Internet use behaviors, companies can effectively plan their mobile

network capacity in order to provide better services to customers. For instance, if companies

forecast that many customers may use the mobile Internet, they may release more capacity

for their mobile network so that customers can enjoy high mobile Internet speed. Another

interesting finding is that the superior performance of the proposed NHMM relative to

Model 3 provides empirical evidence that customers’ conventional telecom behaviors may

indeed affect their states of latent needs for mobile Internet.

2.7 Discussion

In this paper, we build a framework of variational Bayesian inference consists of two

methods for NHMMs with long and ultra-long observation sequences. The proposed VB

method works on full sequences. It utilizes a structured Gaussian variational family with a

factor covariance structure to approximate the target posteriors and combines the forward-

backward algorithm and SGA to update the unknown quantities. The proposed VB method

is efficient and handles long sequences in NHMMs. The computational efficiency of the

VB method can be further improved through subsampling, leading to the SVB method. The

SVB method uses buffers to reduce the bias caused by working on the subsequences directly.

We demonstrate that the local nonhomogeneity of NHMMs is crucial in determining the

desired buffer lengths. LLEs, which quantify the finite-time local memory decay rates

of NHMMs, are proposed to estimate buffer lengths adaptively. An efficient method by

treating the unnormalized forward and backward probabilities as RDSs is given to estimate

LLEs. The proposed SVB method handles ultra-long sequences for NHMMs efficiently.

The developed methods are demonstrated useful in two real applications. The first

application uses an NHMM together with the VB method to model long eye-tracking

scan-paths from children with ASD. The NHMM framework utilizes both the spatial
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and temporal information of the scan-paths to determine data-driven ROIs, uncover the

underlying hidden state sequences, depict children’s attention shift between ROIs, and

assess the impacts of HSCs on the attention shift. The results provide evidence on the

higher saliency of the puppet relative to the person in the designed social-communicative

scenes, which partly explains the advantageous performance of humanoid representations

in teaching ASD children. The second application uses an NHMM estimated by the

SVB method to model ultra-long telecom records of customers. The analysis focuses on

customers’ mobile Internet use behaviors by revealing the underlying states of latent needs

for mobile Internet, assessing the influences of the conventional telecom behaviors on the

latent needs, and evaluating the forecasting ability of the NHMM framework. The results

show an overall complementary relationship between the conventional telecom services and

mobile Internet services, detailed impacts of different conventional telecom behaviors on

mobile Internet use behaviors, and a satisfactory predictive ability of the proposed NHMM

framework.

The present study can be extended in several directions. First, the currently considered

NHMMs do not consider heterogeneity among subjects. Random effects can be included in

the emission and the transition models to account for possible heterogeneity in the emission

and hidden processes (Altman, 2007; Ip et al., 2013; Song et al., 2017). Another type of

heterogeneity in the number of states across subjects is recently noticed, ignoring which may

lead to model misspecification and erroneous interpretations (Padilla et al., 2020). A mixture

of HMMs model is proposed to account for such heterogeneity. Extending the current model

framework as well as the developed variational methods by considering comprehensive

heterogeneity in the longitudinal setting can enhance its flexibility and analytic power.

Second, in the developed variational methods, we use a structured variational family of

Gaussian distributions with a factor covariance structure. Other structured variational

families such as mixtures of Gaussian and Dirichlet processes (Blei and Jordan, 2006) can

be considered in different applications. Third, the idea of using LLEs to account for the
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nonhomogeneity of NHMMs in this paper could also be considered for other dynamical

systems such as state space models in general. Finally, extra data can be collected to

strengthen our real data analyses. For instance, if children’s neuroimaging data can be

simultaneously obtained in our first data example, we may jointly analyze the sequences of

neural activities and eye movements to generate more insights. In our second data example,

we model customers’ decisions to use mobile Internet because the number of users on the

network is the major challenge to companies’ network capacity. We may further obtain and

model customers’ expenses on mobile Internet data which are directly related to companies’

profits. Customers’ other behavioral data may also be obtained and linked with their mobile

Internet use behaviors.
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2.8 Appendix
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Figure 2.8: Plots of ELBO values for the NHMM in the analysis of eye-tracking scan-path
data. Convergence is generally achieved within 2000 iterations.
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Figure 2.9: Plot of ELBO values for the NHMM in the analysis of mobile Internet usage
data. Convergence is achieved around 2000 iterations.
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Table 2.10: Bayesian estimates for the parameters in the transition model in the analysis of
the eye-tracking scan-path data under the scenario of “Before Ball”.

State 1 State 2 State 3 State 4

Par Est SE Par Est SE Par Est SE Par Est SE

ρ12,1 −3.2122∗∗ 0.1158 ρ22,1 2.4821∗∗ 0.3173 ρ32,1 −1.1875∗∗ 0.4322 ρ42,1 −1.5048∗∗ 0.2597
ρ12,2 -0.4132 0.2222 ρ22,2 0.6134∗∗ 0.1556 ρ32,2 0.8220∗∗ 0.4162 ρ42,2 0.5345 0.2992
ρ12,3 -0.1530 0.2085 ρ22,3 0.3012 0.3630 ρ32,3 0.5674 0.4403 ρ42,3 0.6488∗∗ 0.3090
ρ12,4 -0.1253 0.4573 ρ22,4 0.4054 0.4105 ρ32,4 0.6759 0.3578 ρ42,4 1.1905∗∗ 0.2061
ρ12,5 -0.1297 0.4680 ρ22,5 0.6136 0.5184 ρ32,5 0.8371∗∗ 0.3438 ρ42,5 0.6795∗∗ 0.1795
ρ13,1 −3.6893∗∗ 0.2542 ρ23,1 −1.3845∗∗ 0.4388 ρ33,1 2.9185∗∗ 0.3941 ρ43,1 −1.7157∗∗ 0.3722
ρ13,2 -0.7638 1.0175 ρ23,2 -0.0588 0.3894 ρ33,2 0.4126 0.3187 ρ43,2 -0.7110 0.4315
ρ13,3 -0.6570 0.6839 ρ23,3 0.9172 0.5046 ρ33,3 0.9697∗∗ 0.3440 ρ43,3 0.7766 0.5225
ρ13,4 -0.5917 0.5233 ρ23,4 0.5863∗∗ 0.1645 ρ33,4 0.7548 0.4730 ρ43,4 0.5023 0.5145
ρ13,5 -0.5931 0.9390 ρ23,5 0.1553 0.4119 ρ33,5 0.4983 0.4165 ρ43,5 0.1398 0.4457
ρ14,1 −3.4578∗∗ 0.4028 ρ24,1 -1.1828 0.6622 ρ34,1 -1.3863 0.4893 ρ44,1 3.0008∗∗ 0.3223
ρ14,2 -0.2497 0.4738 ρ24,2 0.8417 0.5259 ρ34,2 0.9048∗∗ 0.2642 ρ44,2 1.0180∗∗ 0.3164
ρ14,3 -0.6138 0.3621 ρ24,3 0.4988 0.5456 ρ34,3 0.2216 0.3192 ρ44,3 0.8114∗∗ 0.3307
ρ14,4 −0.4909∗∗ 0.2308 ρ24,4 0.4784∗∗ 0.1939 ρ34,4 0.4771 0.5634 ρ44,4 0.3145 0.2569
ρ14,5 -0.2985 0.4882 ρ24,5 0.5843 0.4695 ρ34,5 0.6428∗∗ 0.3284 ρ44,5 0.7225∗∗ 0.1967
Par: Parameter, Est: Estimate, SE: Standard Error.
State 1: (0, 1050), State 2: Background, State 3: Person Face, State 4: Puppet Face.
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Table 2.11: Bayesian estimates for the parameters in the transition model in the analysis of
the eye-tracking scan-path data under the scenario of “After Ball”.

State 1 State 2 State 3 State 4 State 5

Par Est SE Par Est SE Par Est SE Par Est SE Par Est SE

ρ12,1 −3.3349∗∗ 0.5398 ρ22,1 0.7353∗∗ 0.1860 ρ32,1 −2.0075∗∗ 0.3138 ρ42,1 −2.3696∗∗ 0.9434 ρ52,1 −2.1391∗∗ 0.7130
ρ12,2 -0.3162 0.7169 ρ22,2 0.7815 0.4149 ρ32,2 0.1628 0.9267 ρ42,2 -0.2225 0.8555 ρ52,2 -0.2082 0.6756
ρ12,3 -0.2621 0.9475 ρ22,3 0.9978 0.6259 ρ32,3 -0.0382 1.0870 ρ42,3 -0.1746 1.4472 ρ52,3 -0.0545 1.0119
ρ12,4 -0.2189 0.7708 ρ22,4 0.7632 0.5732 ρ32,4 0.1961 1.1344 ρ42,4 0.1618 1.4359 ρ52,4 -0.0426 1.1367
ρ12,5 -0.2551 1.0507 ρ22,5 0.9676 0.7697 ρ32,5 -0.1704 1.5235 ρ42,5 -0.2305 1.6012 ρ52,5 -0.1016 1.2319
ρ12,6 -0.2960 0.7137 ρ22,6 0.9132∗∗ 0.4124 ρ32,6 0.3293 1.2444 ρ42,6 -0.1492 1.1066 ρ52,6 -0.4555 1.1047
ρ12,7 -0.2159 1.2296 ρ22,7 1.0035 0.8700 ρ32,7 -0.4026 1.5212 ρ42,7 -0.4144 1.6052 ρ52,7 0.0640 1.4009
ρ13,1 −4.0622∗∗ 0.9388 ρ23,1 −2.2671∗∗ 0.9872 ρ33,1 1.6633∗∗ 0.5427 ρ43,1 −2.2451∗∗ 0.5196 ρ53,1 −2.0258∗∗ 0.1910
ρ13,2 -1.0077 1.3651 ρ23,2 -0.4896 1.0335 ρ33,2 0.9047 0.5753 ρ43,2 -0.3974 0.8406 ρ53,2 -0.0887 0.9363
ρ13,3 -0.8066 1.4790 ρ23,3 0.7941 1.1395 ρ33,3 1.0117 0.6536 ρ43,3 0.1424 0.8967 ρ53,3 0.0043 0.5992
ρ13,4 -0.6826 1.0184 ρ23,4 0.4254 1.4259 ρ33,4 0.9203 0.5813 ρ43,4 0.1473 0.7578 ρ53,4 0.0300 0.9428
ρ13,5 -0.9594 1.1946 ρ23,5 -0.3164 1.2986 ρ33,5 0.8479 0.6923 ρ43,5 -0.3240 1.4741 ρ53,5 -0.5981 1.1012
ρ13,6 -0.8599 1.2008 ρ23,6 -0.1562 1.1282 ρ33,6 0.8206 0.6523 ρ43,6 -0.2349 1.0752 ρ53,6 -0.4559 0.9159
ρ13,7 -0.8588 1.5440 ρ23,7 -0.5517 1.8278 ρ33,7 0.7005 1.0382 ρ43,7 -0.5656 1.8128 ρ53,7 -0.7380 1.5912
ρ14,1 −3.6642∗∗ 0.8289 ρ24,1 −2.1134∗∗ 0.9386 ρ34,1 −1.9576∗∗ 0.8808 ρ44,1 1.6894∗∗ 0.4284 ρ54,1 −1.9231∗∗ 0.5938
ρ14,2 -0.6349 1.0550 ρ24,2 0.1981 0.8562 ρ34,2 0.3469 1.0873 ρ44,2 1.0971∗∗ 0.3941 ρ54,2 0.1989 0.4754
ρ14,3 -0.4841 1.1881 ρ24,3 -0.6417 1.3152 ρ34,3 -0.6336 1.5455 ρ44,3 0.9254 0.5429 ρ54,3 -0.1618 0.8401
ρ14,4 -0.5764 1.1854 ρ24,4 0.1316 0.7660 ρ34,4 0.0568 1.4159 ρ44,4 0.6826 0.6402 ρ54,4 0.1629 1.0329
ρ14,5 -0.6875 1.1445 ρ24,5 -0.2703 1.1001 ρ34,5 -0.2541 1.5277 ρ44,5 0.6760 0.6627 ρ54,5 -0.0672 1.0520
ρ14,6 -0.6079 1.0785 ρ24,6 0.0791 1.0883 ρ34,6 0.4415 1.2429 ρ44,6 1.0183 0.5753 ρ54,6 0.1762 0.8691
ρ14,7 -0.5697 1.3993 ρ24,7 -0.5864 1.5599 ρ34,7 -0.4967 1.7206 ρ44,7 0.7770 0.7365 ρ54,7 -0.0629 1.0408
ρ15,1 −3.4419∗∗ 0.6108 ρ25,1 −2.0551∗∗ 0.9359 ρ35,1 −2.0068∗∗ 0.5626 ρ45,1 −1.6674∗∗ 0.6968 ρ55,1 1.5852∗∗ 0.4024
ρ15,2 -0.5287 0.7055 ρ25,2 0.2186 0.8595 ρ35,2 0.0221 0.8538 ρ45,2 0.3635 0.8259 ρ55,2 0.7417∗∗ 0.2976
ρ15,3 -0.7379 0.7392 ρ25,3 -0.1946 1.2550 ρ35,3 -0.1710 1.2318 ρ45,3 0.0345 1.1261 ρ55,3 0.8143 0.5642
ρ15,4 -0.6159 0.9357 ρ25,4 0.2419 1.0535 ρ35,4 -0.0521 1.1977 ρ45,4 0.2377 0.9805 ρ55,4 0.8447 0.5690
ρ15,5 -0.4543 1.1111 ρ25,5 0.1500 1.1053 ρ35,5 -0.4369 1.5831 ρ45,5 0.6259 0.8937 ρ55,5 1.1271 0.7300
ρ15,6 -0.6652 1.0318 ρ25,6 0.1395 0.9829 ρ35,6 -0.0606 1.1915 ρ45,6 0.4016 0.7560 ρ55,6 1.1269 0.6030
ρ15,7 -0.4647 1.2746 ρ25,7 0.0684 1.4895 ρ35,7 -0.4142 1.9991 ρ45,7 0.1091 1.2577 ρ55,7 1.0315 0.8546
Par: Parameter, Est: Estimate, SE: Standard Error.
State 1: (0, 1050), State 2: Background, State 3: Person Face, State 4: Puppet Face, State 5: Ball.
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Chapter 3

A Bayesian approach for estimating the
partial potential impact fraction with
exposure measurement error under a
main study/internal validation design1

Abstract

The partial potential impact fraction (pPIF) describes the proportion of disease cases that

can be prevented if the distribution of modifiable continuous exposures is shifted in a

population, while other risk factors are not modified. It is a useful quantity for evaluating

the burden of disease in epidemiologic and public health studies. When exposures are

measured with error, the pPIF estimates may be biased, which necessitates methods to

correct for the exposure measurement error. Motivated by the Health Professionals Follow-

up Study (HPFS), we develop a Bayesian approach to adjust for exposure measurement

error when estimating the pPIF under the main study/internal validation study design. We

adopt the reclassification approach that leverages the strength of the main study/internal

validation study design, and clarify transportability assumptions for valid inference. We

1Co-authored with Joseph Chang, Donna Spiegelman, and Fan Li
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assess the finite-sample performance of both the point and credible interval estimators

via extensive simulations, and apply the proposed approach in the HPFS to estimate the

pPIF for colorectal cancer (CRC) incidence under interventions exploring shifting the

distributions of red meat, alcohol, and/or folate intake.

3.1 Introduction

The potential impact fraction (PIF), or sometimes called the population impact fraction,

refers to the proportion of cases of a disease that would be prevented if the exposure or risk

factor distributions were to be modified among a target population. The concept was first

introduced as the generalized impact fraction in Walter (1980) and Morgenstern and Bursic

(1982) and represents a useful measure that evaluates the burden of disease in epidemiologic

and health studies. For instance, our motivating example involves estimating the proportion

of colorectal cancer (CRC) cases that might be prevented when the distributions of several

modifiable risk factors are shifted among participants in the Health Professionals Follow-up

Study (HPFS) (Platz et al., 2000).

The HPFS is a prospective cohort study that started in 1986, and a total of 51,530

male health professionals were enrolled by responding to a baseline questionnaire (Rimm

et al., 1991). Participants responded to follow-up questionnaires every two years on topics

including dietary intake and health status. The accuracy of responses in the food frequency

questionnaires was validated with dietary records in a sub-sample of 127 participants

(Rimm et al., 1992). A comparison between the dietary records and participants’ responses

in the validation study revealed that red meat intake, alcohol intake, and folate intake were

subject to measurement error. These errors will likely distort the association estimates

between key risk factors and CRC, resulting in misleading estimates of the disease burden

(Carroll et al., 2006).

The PIF is a function of the conditional disease probability model and the prevalence
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of exposures (Drescher and Becher, 1997). Therefore, accurate estimation of the PIF

necessitates valid measurement of exposures as well as a correctly specified outcome

model relating disease to exposures and additional covariates. When continuous exposures

are measured with error, estimation of the conditional disease probability model that

ignores this error typically leads to biased regression parameter estimates (Goldberg, 1975;

Copeland et al., 1977; Hsieh and Walter, 1988), which will likely distort the subsequent PIF

estimates. Bias in the PIF estimate can be anticipated from the known bias in estimating

the population attributable risk (PAR), which measures the fraction of diseases prevented if

the exposure were to be eliminated. Hsieh and Walter (1988) showed that the PAR will be

underestimated in the presence of misclassification of a binary exposure. Unlike the bias in

the single-exposure PAR, which can only be towards the null, Wong et al. (2018) recently

demonstrated that the bias in the PAR can be in either direction with two misclassified

binary exposures. In addition, these studies found that the magnitude of the bias is most

dependent upon the sensitivity of the exposure being eliminated.

Although there is a growing literature on addressing bias in the PAR estimates when

the discrete exposures are misclassified (Wong et al., 2020), related methods to correct for

measurement error bias in continuous exposures for estimating the PIF are not available.

Motivated by the analysis of the HPFS, we develop an estimation strategy for the PIF that

operates on mis-measured continuous exposures. We focus on addressing non-differential

measurement error in multiple continuous exposures under a main study/internal validation

study (MS/IVS) design, where validation data are obtained from participants who are

also part of the main study, as is the case with the HPFS. In particular, the measurement

error in continuous exposures is non-differential when it is independent of the outcome

conditional on error-prone exposures and additional covariates (Yi et al., 2015). On the

other hand, measurement error is differential when, for example, sensitivity and specificity

of a binary exposure differ between the disease cases and the controls and may arise through

dichotomizing a continuous exposure which is subject to non-differential measurement
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error (Johnson et al., 2014; Dalen et al., 2009).

In the HPFS, we seek to quantify the partial PIF (pPIF), defined as the fraction of

the preventable CRC cases when the distributions of three modifiable risk exposures, red

meat intake, alcohol intake, and folate, are shifted, while maintaining the levels of other

non-modifiable exposures at their original values. In parallel to the partial PAR (pPAR) and

the PAR, the definition of the pPIF extends that of the PIF in a multi-factorial disease setting

when not all risk factors are modifiable. Thus, it could be a more interpretable measure of

the impact of interventions to be completed, or to what extent the disease burden can be

reduced. The PIF and pPIF are analogous to the attributable fraction (AF) and adjusted

attributable fraction (aAF) introduced by Eide and Heuch (2001).

Even in the absence of exposure measurement error, inference for the pPIF is non-trivial

since it involves integrating over the original and the modified exposure distributions, and a

simple closed-form variance expression is not available. Graham (2000) adopted a Bayesian

approach for estimating generalized population attributable fraction without measurement

error; an important sampling scheme is considered for posterior computation but relies on

the choice of an adequate proposal distribution. With a single binary exposure, Pirikahu et al.

(2016) developed an efficient Bayesian approach to calculate posterior credible intervals

for estimating the PAR without misclassification. They showed via simulations that the

posterior credible interval often maintains closer to nominal coverage percentage compared

to the delta method or bootstrap resampling. In this article, we develop a computationally

tractable Bayesian approach for estimating the pPIF when exposures are measured with

error. We model the disease-exposure relationship using logistic regression, and through

the Pólya-gamma data augmentation (Polson et al., 2013), we propose an efficient posterior

sampling scheme that solely depends on closed-form complete conditionals. The proposed

Bayesian algorithm also alleviates the need to derive an asymptotic variance expression

for inference, as the variance and interval estimates can be conveniently obtained from the

posterior samples.
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The remainder of this article is organized into five sections. In Section 3.2, we provide

details on the definition of pPIF, the model specifications and assumptions. In Section 3.3,

we discuss the proposed Bayesian approach for estimation and inference. An extensive set

of simulation studies are presented in Section 3.4, followed by an application to HPFS in

Section 3.5. Section 3.6 concludes with a short discussion.

3.2 Models and Assumptions

3.2.1 Partial Potential Impact Fraction

We define the PIF following Eide and Heuch (2001). Specifically, we denote Y as the

binary disease status (Y = 1 if the disease occurs and Y = 0 otherwise), and X as the

collection of risk factors or exposures contributing to the occurrence of the disease. In the

absence of additional risk factors, the PIF is defined as

PIF = 1− P(Y∗ = 1)

P(Y = 1)
, (3.1)

where P(Y = 1) and P(Y∗ = 1) denote the disease probabilities before and after the

exposure distributions are shifted, respectively. As the PIF increases, the intervention

modifying the exposure distributions is increasingly more effective in reducing disease

occurrence. In the continuous exposure setting, define

P(Y = 1) =

∫
P(Y = 1|X = x;β)fX(x)dx,

P(Y∗ = 1) =

∫
P(Y = 1|X∗ = x∗;β)f ∗X∗(x

∗)dx∗,

where P(Y = 1|X;β) denotes the conditional disease probability model parametrized by

β, fX is the density of exposureX , and f ∗X∗ is the density of the modified exposureX∗.
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The PIF can thus be written as

PIF(fX , f
∗
X∗ ,β) = 1−

∫
P(Y = 1|X∗ = x∗;β)f ∗X∗(x

∗)dx∗∫
P(Y = 1|X = x;β)fX(x)dx

, (3.2)

which depends on density functions fX , f ∗X∗ and parameter β.

In a multi-factorial disease setting, the burden of disease can be more realistically

assessed by the partial PIF (pPIF), which we define below. LetX = (X(1),X(2)), where

X(1) denotes modifiable exposures targeted by the intervention of interest andX(2) denotes

other non-modifiable risk factors. Now, fX is the joint density of exposures,X(1) andX(2),

withX∗ = (X∗(1),X(2)) and f ∗X∗ = f ∗X∗(x
∗
(1),x(2)) as the modified joint density. The pPIF

is defined as

pPIF(fX , f
∗
X∗ ,β) =

1−
∫ ∫

P(Y = 1|X∗(1) = x∗(1),X(2) = x(2);β)f ∗X∗(x
∗
(1),x(2))dx

∗
(1)dx(2)∫ ∫

P(Y = 1|X(1) = x(1),X(2) = x(2);β)fX(x(1),x(2))dx(1)dx(2)

, (3.3)

Throughout we assume the intervention functions through a change in the exposure density

rather than a change in the disease probability model (Drescher and Becher, 1997). This

latter scenario may be more likely to occur when the intervention does not change the

exposure distribution but affects unobserved factors underlying the conditional disease

probability model. For example, a vaccine program may not affect the prevalence of certain

exposures but reduces the risk of getting the disease in the population, in which case the

assumption of an exposure density shift may be questionable (Barendregt and Veerman,

2010).

Equation (3.3) reveals that specification of the conditional disease probability model as

well as the joint density are critical elements for accurate estimation of the pPIF. For the
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conditional disease probability model, the following log-binomial model may be assumed:

f1(Y |X,β) =
(
eβ0+β′1X

)Y (
1− eβ0+β′1X

)1−Y
, (3.4)

where f1 denotes the probability function of Y ,X , and unknown parameter β = (β0,β
′
1)′.

An attractive feature of the log-binomial model is that it directly estimates the parameter

of interest, the risk ratio (Spiegelman et al., 2007; Barendregt and Veerman, 2010). Poten-

tial limitations of this model include that the estimated probability is unbounded unless

constrained optimization methods are used, which is typically not the case, and there may

be unsatisfactory convergence of the model fit with multiple risk factors (Zou, 2004). An

alternative specification of the disease probability model is through the logistic regression

(Deubner et al., 1980):

f1(Y |X,β) =
eY (β0+β′1X)

1 + e(β0+β′1X)
. (3.5)

While the estimation of the log-binomial model requires eβ0+β′1X ∈ [0, 1] as a boundary

condition, such a condition is not required in logistic regression because the predicted

probabilities are naturally bounded. Under the rare disease assumption, typically with the

outcome probability ≤ 10%, the adjusted odds ratio obtained from the logistic model ap-

proximates the adjusted risk ratio in the log-binomial model (Zhang and Yu, 1998). Because

the logistic model does not require a boundary condition for the model parameters and

simplifies the computation with a closed-form posterior sampling algorithm for estimating

the pPIF, we focus on this model in ensuing sections.

3.2.2 Measurement Error Models

When the exposures, X , are measured without error, the estimation of β and the pPIF

can proceed directly with likelihood-based or Bayesian inference, provided f1(Y |X,β)
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and fX are correctly specified (Graham, 2000). In epidemiologic studies, exposures are

often susceptible to measurement error (for continuous exposures) or misclassification (for

categorical exposures). When the exposures are subject to non-differential measurement

error, we refer to the mis-measured exposures as surrogates, denoted byZ. In the HPFS, the

surrogate exposures include the dietary intake measured by the food frequency questionnaire

(Rimm et al., 1992). As we show in the simulation study in Section 3.4, failure to account

for measurement error in surrogate exposures leads to substantial bias in estimating the

pPIF.

Suppose the vector of true exposures, X = (X1, . . . , XK), is of dimension K. The

vector of surrogate exposure values, Z = (Z1, . . . , ZK), thus corresponds to X on an

element-wise basis. When Xk is not mis-measured, we let Zk = Xk for k = 1, . . . , K.

Hereafter, we assume all elements of surrogate exposures, Z, and true exposures,X , are

continuous. The model describing the relationship between the surrogate and true exposures,

or the measurement error model, can be specified in at least two ways. The first strategy

describes the measurement error process, where both the marginal true exposure density,

fX , and the conditional density of the surrogate exposures, f(Z|X), the measurement

error model, must be specified. In general, parametric or non-parametric approaches

can be used to estimate these model parameters (Sinha et al., 2010). On the other hand,

Spiegelman et al. (2000) considered a reclassification model that requires the specification

of the conditional density of the true exposures given the surrogates. In the context of

misclassification, this strategy attempts to reclassify the surrogate categorical exposures

into the correct categories, and can be easily extended to continuous exposures, where the

conditional probability model is replaced by the conditional density model f(X|Z). Under

non-differential measurement error (Buonaccorsi, 2010), the joint likelihood of (X,Z,Y )
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can thus be written as

f(X,Z,Y ) = f(X|Z)f(Y |X)f(Z) ∝ f(X|Z)f(Y |X),

which holds because Z is fully observed and f(Z) does not contain additional information

for parameters of interest.

We adopt the reclassification modeling approach because it is more convenient to model

a single conditional density f(X|Z). The reclassification process is generically represented

as follows:

(X|Z) ∼ f2(X|Z,Θ) = f2(X1, . . . , XK |Z1, . . . , ZK ,Θ) = P(Θ), (3.6)

where P(Θ) is the assumed multivariate distribution with parameter Θ. Note that when

K1 ≤ K exposures are mis-measured, we can write X = (X̃,
˜̃
X), where X̃ contains

true values of all K1 modifiable exposures and/or non-modifiable risk factors that are

measured with error, and ˜̃X includes values of all correctly measured exposures and/or risk

factors. That is, ˜̃X ⊆ Z by definition. In particular, when all modifiable exposures and

non-modifiable risk factors are mis-measured, we haveX = X̃ and ˜̃X = ∅. This notation

allows us to write the reclassification model in (3.6) as:

f2(X1, . . . , XK1|Z1, . . . , ZK1 , XK1+1, . . . , XK ,Θ)

=f2(X1, . . . , XK1|Z1, . . . , ZK1 , ZK1+1, . . . , ZK ,Θ) = f2(X̃|Z,Θ). (3.7)

Spiegelman et al. (2000) suggest that, in the case of dietary intakes, the multivariate normal

model provides a reasonable way to characterize the reclassification process. We follow this

approach and assume P(Θ) = N (α+ ΓZ,Σx), where α, Γ, Σx represent the intercept

vector, coefficient matrix and covariance matrix, respectively.
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In the MS/IVS design, where mis-measured exposures are validated in a random sample

taken from the main study, it is reasonable to assume a reclassification transportability

condition, where the reclassification process is the same in both the main and validation

studies. Importantly, this transportability condition differs from the transportability condi-

tions introduced in Wong et al. (2020). In Wong et al. (2020), single transportability holds

when, as in simple random sampling into the IVS, the error process f(Z|X) is the same in

both the main study and the validation study. When the distribution of exposures, f(X),

is reasonably assumed to be the same between the main study and validation study, they

further defined the double transportability condition. From Bayes’ rule,

f(X|Z) =
f(Z|X)f(X)

f(Z)
=

f(Z|X)f(X)∫
f(Z|X)f(X)dX

. (3.8)

While the single transportability is not sufficient to ensure reclassification transporta-

bility, the reclassification transportability is necessary for double transportability. Further,

reclassification transportability does not necessarily imply single or double transportability,

though double transportablity ensures reclassification transportability. For example, under

reclassification transportability, there could exist cases where f(Z) is not transportable

(e.g. when sampling into the validation study depends on the observed Z), implying that

the measurement error process is not transportable, further suggesting that even single

transportability may not hold (see Web Figure 1 for a Venn diagram). While the reclas-

sification transportability condition is not nested in the conditions studied in Wong et al.

(2020), when the internal validation study is a simple random sample of the main study,

double transportability holds, which directly implies reclassification transportability. Our

approach assumes reclassification transportability, and to provide explicit connections to

other assumptions used in the literature (Wong et al., 2020), we summarize the relationship

between the three transportability conditions in Proposition 1, and provide a proof in section

3.7.1 of the Appendix.
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Proposition 1. Double transportability holds if and only if both single transportability and

reclassification transportability hold. Single transportability and reclassification transporta-

bility are distinct conditions with neither implying the other.

3.3 Bayesian Estimation and Inference

3.3.1 Likelihood and Prior Specification

Under the MS/IVS design, we have data on disease outcome and surrogate exposures for

all main study participants. In addition, the true exposures are measured among internal

validation study participants. Let Nm denote the number of participants in the main

study who do not have their mis-measured exposures validated, and Nv the size of the

validation study, with N = Nm + Nv as the total sample size. Let Xi ∈ RK denote the

vector of correctly measured exposures. Following previous definitions,Xi = (X̃i

′
,
˜̃
Xi

′
)′,

where X̃i is the K1-dimensional vector of mis-measured risk factors, and ˜̃Xi contains the

exposures that are correctly measured. Zi ∈ RK denote vectors of surrogate exposures

corresponding on an element-wise basis toXi. In particular, Zi is fully observed for all N

participants, while X̃i is only observed in the validation study. Write Yi ∈ {0, 1} as the

binary outcome, and without loss of generality, we label validation study participants by

i = Nm + 1, . . . , Nm +Nv.

Under the reclassification transportability condition, estimation of the pPIF requires the

estimation of parameters in both the conditional disease probability model as well as the

reclassification model. While it is possible to extend the likelihood-based inference to the

pPIF estimation for continuous mis-measured exposures, we take a Bayesian approach here

because it circumvents the necessity of deriving the complex asymptotic variance of the

pPIF defined as the ratio of integrals, and have shown improved finite-sample operating

characteristics for estimating attributable fractions even in the absence of measurement
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error (Pirikahu et al., 2016). Treating the variables X̃i for participants i in the main study

as latent variables, the complete-data likelihood can be written as

N∏
i=1

f1(Yi|Xi,β)f2(X̃i|Zi,α,Γ,Σx). (3.9)

These latent variables will be updated in each cycle of the MCMC algorithm presented

in Section 3.3.2. In the absence of external knowledge, we assign diffuse conjugate

multivariate normal priors for regression parameters β, α, vec(Γ) as well as {X̃i}i=1,...,Nm ,

represented by p(β), p(α), p(vec(Γ)) and p({X̃i}i=1,...,Nm). We assign the conjugate and

non-informative inverse Wishart prior for covariance matrix Σx, denoted by p(Σx).

3.3.2 Posterior Computation

Posterior inference proceeds via data augmentation from the Pólya-gamma representation

of the logistic function (Polson et al., 2013). Specifically, we follow Polson et al. (2013)

and write the logistic function as a scale mixture of Gaussian densities

(
eψ
)a

1 + eψ
=

1

2
eκψ
∫ ∞

0

e−ωψ
2/2p(ω)dω, (3.10)

where κ = a − 1/2 and p(ω) is the standard Pólya-Gamma distribution PG(1, 0). Be-

cause the conditional distribution p(ω|ψ) = e−ωψ
2/2p(ω)/

∫∞
0
e−ωψ

2/2p(ω)dω is again the

Pólya-Gamma distribution PG(1, ψ), augmenting the data by introducing observation-

specific latent variables ωi admits a closed-form derivation of the complete conditionals

and facilitates efficient posterior computation. Based on likelihood (3.9) and these prior
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specifications, we can write the joint posterior as

π({X̃i}i=1,...,Nm , {ωi}1,...,N ,β,α,Γ,Σx)

∝
N∏
i=1

f̃1(Yi|Xi, ωi,β)f2(X̃i|Zi,α,Γ,Σx) (3.11)

× p(ωi)p(β)p(α)p(vec(Γ))p(Σx)p({X̃i}i=1,...,Nm)

where f̃1(Yi|Xi, ωi,β) is the Pólya-Gamma representation of f1(Yi|Xi,β) according to

(3.10).

For posterior computation, we propose the following efficient Markov Chain Monte

Carlo (MCMC) algorithm based on closed-form complete conditional distributions. After

assigning initial values to all model parameters, the algorithm iterates between the following

five steps until convergence:

Step 1: Sample Pólya-Gamma variables {ωi}i=1,...,N

Using the Pólya-Gamma data augmentation method by Polson et al. (2013), we take

advantage of the following identity:

(
eψ
)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω)dω,

where κ = a − b/2 and ω ∼ PG(b, 0). PG(b, 0) is the Pólya-Gamma distribution with

parameters (b, 0). And the conditional distribution

p(ω|ψ) =
e−ωψ

2/2p(ω)∫∞
0
e−ωψ2/2p(ω)dω

,

which is also in the Pólya-Gamma class such that ω|ψ ∼ PG(b, ψ). Sample {ωi}i=1,...,N
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from

ωi|Xi, β0,β1 ∼ PG(1, β0 +X ′iβ1).

Step 2: Sample MS True Values of Mis-measured Exposures {X̃i}i=1,...,Nm

The full conditional distribution of {X̃i}i=1,...,Nm is proportional to

f1(Yi|Xi,β)f2(X̃i|Zi,α,Γ,Σx),

which is then proportional to

[exp (β0 +X ′iβ1)]Yi

1 + exp (β0 +X ′iβ1)
× exp

[
−1

2
(X̃i −α− ΓZi)

′Σ−1
x (X̃i −α− ΓZi)

]
.

The full conditional distribution for X̃i is a multivariate normal N
(
µ̃i,M̃i

)
, where

M̃i =
(
ωiβ̃1β̃

′
1 + Σ−1

x

)−1

,

µ̃i = M̃i

{[
Yi − 1/2− ωi(β0

˜̃
X
′

i
˜̃
β1)

]
β̃1 + Σ−1

x (α+ ΓZi)

}
.

Here β1 = (β̃′1,
˜̃
β
′

1)′, where β̃1 ∈ RK1 and ˜̃β1 ∈ RK−K1 are parameters corresponding to

X̃i and ˜̃X i, respectively.

Step 3: Sample β

Notation-wise, let X and Z denote matrices with each row being X ′i and Z ′i for i =

1, . . . , N respectively. We then have,

W =

(
1N X

)
,

with the i-th row of W, Wi = (1,X ′i) for i = 1, . . . , N . Define Y = (Y1, . . . , YN). We
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assume a multivariate normal prior N (b0,B0) for β = (β0,β
′
1)′. We can then sample β

from

β|Y,W,Ω ∼ N (µ̃β,M̃β),

where

M̃β =
(
W′ΩW +B−1

0

)−1
,

µ̃β = M̃β

(
W′κ+B−1

0 b0

)
,

with diagonal matrix

Ω =


ω1

. . .

ωN


and vector

κ = (Y1 − 1/2, . . . , YN − 1/2) .

Step 4: Sample α and Γ

α and Γ can be jointly sampled due to the model structure. Let Γ∗ = (α,Γ) and Γ∗k =

(αk,Γk), where Γ∗k and Γk denote the k-th row of Γ∗ and Γ respectively. We separately

sample Γ∗k for k = 1, . . . , K. Let

Z̃ =

(
1N Z

)
,

with the i-th row Z̃i = (1,Z ′i). Denote the (i, j)-th entry of Σ−1
x by sij . Assume a multi-

variate normal prior N (γ∗0 ,Γ
∗
0) for Γ∗k. The full conditional for Γ∗k is also a multivariate
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normal N
(
µ̃∗Γ,k,M̃

∗
Γ,k

)
, where

M̃ ∗
Γ,k =

(
skk

N∑
i=1

Z̃ ′iZ̃i + Γ∗0
−1

)−1

,

µ̃∗Γ,k = M̃ ∗
Γ,k

[
N∑
i=1

(
skkXik +

∑
j 6=k

sjk(Xij − Γ∗jZ̃
′
i)

)
Z̃ ′i + Γ∗0

−1γ∗0

]
.

Step 5: Sample Σx

For Σx, we assume an inverse Wishart prior IW
(
ν0,S

−1
0

)
, where S0 is a precision matrix,

following notations in Hoff (2009). The full conditional for Σx is IW
(
ν̃, S̃−1

)
, where

ν̃ = ν0 +N,

S̃ = S0 +
N∑
i=1

(Xi − Γ∗Z ′i) (Xi − Γ∗Z ′i)
′
.

The convergence of the algorithm can be monitored by standard Bayesian diagnostics,

such as trace plots and the Geweke’s z-test. For the estimation of the pPIF according to

a pre-specified distributional shift of the true exposures, we additionally obtain the pPIF

estimate for each update of the Gibbs sampler. For instance, suppose we are interested in

estimating the pPIF after modifying the distributions of a subset ofX . At a given iteration

in the MCMC procedure, we sample X̃i for i = 1, . . . , Nm and perform the modification

on the empirical sample, {Xi}i=1,...,N to obtain modified sample {X∗i }i=1,...,N . In the

motivating HPFS example, one modification could be increasing the daily intake of folate

of all participants by 0.5 grams, which is implemented by adding 0.5 to the element

corresponding to folate intake inXi for all i = 1, . . . , N . The pPIF estimate for this update

is computed by approximating the integrals in (3.3) through averaging over the empirical

joint distribution of {Xi}i=1,...,N and {X∗i }i=1,...,N . The point estimate and the 100(1−ε)%

credible interval for the pPIF are obtained as the mean, 100ε/2-th and 100(1 − ε/2)-th

quantiles of the corresponding posterior samples.
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3.4 Simulation Studies

We investigated the accuracy of the proposed Bayesian approach for estimating the pPIF

in the presence of exposure measurement error. We set the main study size Nm = 10000

and varied the internal validation study size Nv ∈ {100, 250, 500, 1000}, representing 1%,

2.5%, 5%, and 10% of the main study. The internal validation study was sampled randomly

from the main study. We assumed two targeted modifiable exposures, X̃i = (Xi1, Xi2)′,

that are measured with error, and a correctly measured non-modifiable exposure, Xi3. We

simulated the surrogate exposures (Zi1, Zi2)′ ∼ N ((−0.2, 0.8)′,Σz), where both diagonal

elements of Σz are 1 and the off-diagonal element is 0.2. The correctly measured non-

modifiable exposure Xi3 was generated from the standard normal distribution. Conditional

on Zi = (Zi1, Zi2, Zi3)′, where Zi3 = Xi3, we used the multivariate normal reclassification

model to generate true exposures as X̃i ∼ N (Γ̃(1,Z ′i)
′,Σx), and set Σx = Σz for

simplicity. We specified three sets of values for Γ̃ to reflect low, moderate, and high amount

of measurement error in X̃i, and summarized these scenarios in Table 3.1.

Table 3.1: Low, moderate, and high degree of measurement errors, their corresponding true
reclassification model regression parameters (Γ∗), and resulting correlations between true
(X1 & X2) and surrogate (Z1 & Z2) exposures.

Measurement Error Γ∗ Correlations

Low
(
−0.2 1.5 0.8 −0.7
0.1 0.8 1.2 −0.5

)  Z1 Z2

X1 0.7545 0.5022
X2 0.5432 0.7060



Moderate
(
−0.2 0.6 0.2 −0.7
0.1 0.2 0.4 −0.5

)  Z1 Z2

X1 0.4632 0.2275
X2 0.2298 0.3627



High
(
−0.2 0.4 0.1 −0.7
0.1 0.1 0.25 −0.5

)  Z1 Z2

X1 0.3267 0.1371
X2 0.1309 0.2320


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In particular, different choices of Γ̃ lead to different element-wise marginal correlations

between (Xi1, Xi2) and (Zi1, Zi2), which was specified around 0.75, 0.5 and 0.25 to indicate

low, moderate and high amounts of measurement errors. Finally, the conditional disease

probability model was taken to be logistic with

P(Yi = 1|Xi,β) =
exp(β0 + β1Xi1 + β2Xi2 + β3Xi3)

1 + exp(β0 + β1Xi1 + β2Xi2 + β3Xi3)
, (3.12)

where (β1, β2, β3) = (1, 0.5, 0.5), and β0 was varied to determine the baseline prevalence

of disease. Specifically, we investigated cases with β0 = −2 and β0 = −4 to represent

the common and rare disease scenarios, giving baseline disease prevalences around 10%

and 2%, respectively. In summary, we studied a factorial design with four sample sizes,

three amounts of measurement error, and two baseline disease prevalences, totalling 24

scenarios.

For each scenario, we estimated three pPIFs defined by pPIFX1
, pPIFX2

and pPIFX1,X2
,

which correspond to modifying the distributions of X1, X2, and (X1, X2). Specifically,

pPIFX1
is defined in (3.3) when only X1 has a location shift with minus half standard

deviation and pPIFX2
is defined likewise when only X2 has a location shift with minus

half standard deviation. The quantity pPIFX1,X2
is defined when both X1 and X2 have the

same location shift equal to minus half standard deviation.

In each scenario, we compared the proposed Bayesian estimator with an uncorrected

estimator that ignores measurement error, two regression calibration (RC) estimators, and a

Bayesian estimator that only uses internal validation study data (IVS only) as a benchmark.

The uncorrected estimator fits a Bayesian logistic disease model based on the mis-measured

risk factors without measurement error correction, and serves to quantify the measurement

error bias. Assuming reclassification transportability, the first RC estimator (RCM/I) fits

the reclassification model using the internal validation study data, and then predicts the

unobserved true exposures in the main study using the estimated reclassification model
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(Carroll et al., 2006). The coefficients in the disease probability model are then estimated

using the predicted true exposures in the main study, and the pPIFs are estimated using

predicted true exposures in the main study together with true exposures in the internal

validation study. Similarly, the second RC estimator (RCI) first fits the reclassification

model using the internal validation study data, predicts the unobserved true exposures in

the main study, and then estimates the conditional disease probability using predicted true

exposures in the main study. In contrast to RCM/I , RCI assumes double transportability

and only uses observed true exposures in the internal validation study to estimate pPIFs.

Procedures fo the two RC estimators are summarized as follows:

Procedure for RCM/I (assume Reclassification Transportability)

1. Estimate reclassification model parameters α, Γ, and Σx using validation study

data, {Xi}i=Nm+1,...,N and {Zi}i=Nm+1,...,N , to obtain estimates α̂, Γ̂, and Σ̂x via

the maximum likelihood estimator (MLE);

2. Impute true exposures in the main study by expected values X̂i = E(Xi|Zi) =

α̂+ Γ̂(1,Z ′i)
′ for i = 1, . . . , Nm;

3. Estimate conditional disease probability model parameter β using {Yi}i=1,...,Nm and

{X̂i}i=1,...,Nm via MLE, to obtain β̂;

4. Estimate the pPIF using estimated conditional disease probability model parameter

β̂ and empirical samples of {X̂i}i=1,...,Nm and {Xi}i=Nm+1,...,N .

Procedure for RCI (assume Double Transportability)

1. Estimate reclassification model parameters α, Γ, and Σx using validation study

data, {Xi}i=Nm+1,...,N and {Zi}i=Nm+1,...,N , to obtain estimates α̂, Γ̂, and Σ̂x via

the maximum likelihood estimator (MLE);

2. Impute true exposures in the main study by expected values X̂i = E(Xi|Zi) =

α̂+ Γ̂(1,Z ′i)
′ for i = 1, . . . , Nm;
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3. Estimate conditional disease probability model parameter β using {Yi}i=1,...,Nm and

{X̂i}i=1,...,Nm via MLE, to obtain β̂;

4. Estimate the pPIF using estimated conditional disease probability model parameter

β̂ and empirical samples of {Xi}i=Nm+1,...,N .

Finally, the IVS only estimator estimates the conditional disease probability model and

the pPIF using internal validation study only. The procedure is considered a benchmark

for bias because all variables are free of measurement error in the internal validation study.

Standard errors and confidence intervals for the RC and IVS only approaches are computed

via nonparametric bootstrap with 1000 replicates.

For the proposed Bayesian, uncorrected, and the IVS only estimators, we use a non-

informative N (0, 103) prior for each element of β and Γ̃, as well as a IW(3, I) prior

for Σx, and run one chain of length 10000 (with the first 5000 iterations as burn-in). We

compare the estimators in terms of relative bias (Bias %), the Monte Carlo standard error

(MCSE), average of the estimated standard error (ASE), root mean squared error (RMSE),

and frequentist coverage percentage of the credible (confidence) interval (Coverage %).

The relative bias is defined as the ratio of bias over the true pPIF. We use the MCSE to

quantify the efficiency of the estimator, and compare the ASE with MCSE to assess the

accuracy of the standard error estimate. The simulation results are summarized from 1000

data replications.
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Table 3.2: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of different estimators for estimat-
ing the three pPIFs, with different validation study size (Nv = 100, 250). UN = uncorrected,
RCM/I , RCI , and IVS are defined in Section 3.4, Bayes = proposed. The simulation results
are based on 1000 data replications, under β0 = −2 (common disease) and β0 = −4 (rare
disease), multivariate normal true reclassification model, and the moderate measurement
error scenario. Coverage percentage between 93.6% and 96.4% in bold font are within the
margin of error for 1000 replications.

Estimators
β0 = −2 β0 = −4

Nv pPIF UN RCM/I RCI IVS Bayes UN RCM/I RCI IVS Bayes

100 pPIFX1 BIAS -27.77 -9.98 -20.53 2.86 1.16 -26.36 -35.48 -19.12 -5.12 3.57
MCSE 0.009 0.097 0.064 0.067 0.049 0.018 0.231 0.088 0.203 0.105
ASE 0.008 0.265 0.093 0.068 0.042 0.018 0.841 0.120 0.279 0.068

RMSE 0.082 0.103 0.085 0.068 0.050 0.097 0.274 0.111 0.206 0.112
Coverage 0.00 96.50 92.90 94.50 89.30 0.00 97.20 96.20 91.50 79.80

pPIFX2 BIAS -18.74 -37.02 -26.87 -1.86 1.60 -18.41 -102.62 -26.74 -39.82 -7.32
MCSE 0.009 0.157 0.099 0.081 0.067 0.023 0.341 0.131 0.260 0.171
ASE 0.009 0.351 0.136 0.085 0.061 0.021 1.124 0.183 0.398 0.109

RMSE 0.030 0.169 0.107 0.083 0.069 0.044 0.413 0.142 0.277 0.180
Coverag 5.20 97.50 95.90 94.60 90.20 0.00 97.30 96.50 91.20 78.80

pPIFX1X2 BIAS -23.19 -3.37 -18.77 1.98 1.94 -18.41 -13.10 -15.07 -12.12 3.94
MCSE 0.009 0.067 0.051 0.069 0.043 0.023 0.133 0.060 0.199 0.077
ASE 0.009 0.201 0.074 0.071 0.038 0.021 0.633 0.093 0.260 0.054

RMSE 0.096 0.070 0.089 0.069 0.044 0.107 0.160 0.094 0.202 0.083
Coverage 0.00 97.20 76.90 93.80 88.30 56.50 98.10 86.10 93.10 81.30

250 pPIFX1 BIAS -27.60 -0.84 -15.38 0.96 0.75 -26.27 -2.96 -12.94 0.50 0.65
MCSE 0.008 0.060 0.046 0.037 0.028 0.020 0.077 0.061 0.091 0.050
ASE 0.008 0.082 0.047 0.039 0.029 0.018 0.146 0.069 0.096 0.048

RMSE 0.081 0.062 0.063 0.037 0.028 0.097 0.079 0.076 0.092 0.052
Coverage 0.00 92.90 83.50 95.70 95.00 0.00 93.60 91.30 93.40 92.00

pPIFX2 BIAS -20.09 -11.98 -20.88 1.31 -0.46 -19.89 -21.14 -19.16 -7.39 -0.48
MCSE 0.009 0.099 0.072 0.048 0.041 0.023 0.160 0.104 0.123 0.079
ASE 0.009 0.122 0.075 0.049 0.039 0.021 0.232 0.114 0.130 0.077

RMSE 0.033 0.104 0.079 0.049 0.042 0.045 0.174 0.111 0.129 0.082
Coverage 6.50 93.30 93.50 93.30 92.70 49.50 94.10 95.50 93.80 92.50

pPIFX1X2 BIAS -23.50 -1.45 -14.77 1.26 0.62 -21.72 -2.11 -10.90 -0.05 1.35
MCSE 0.009 0.041 0.030 0.039 0.026 0.020 0.052 0.040 0.089 0.040
ASE 0.009 0.057 0.034 0.040 0.025 0.019 0.095 0.047 0.094 0.038

RMSE 0.098 0.042 0.064 0.039 0.026 0.109 0.054 0.066 0.091 0.041
Coverage 0.00 94.90 55.50 94.60 92.80 0.00 94.50 77.80 93.40 92.30
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Table 3.3: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of different estimators for es-
timating the three pPIFs, with different validation study size (Nv = 500, 1000). UN =
uncorrected, RCM/I , RCI , and IVS are defined in Section 3.4, Bayes = proposed. The sim-
ulation results are based on 1000 data replications, under β0 = −2 (common disease) and
β0 = −4 (rare disease), multivariate normal true reclassification model, and the moderate
measurement error scenario. Coverage percentage between 93.6% and 96.4% in bold font
are within the margin of error for 1000 replications.

Estimators

β0 = −2 β0 = −4

Nv pPIF UN RCM/I RCI IVS Bayes UN RCM/I RCI IVS Bayes

500 pPIFX1 BIAS -27.63 -1.51 -14.58 -0.02 0.72 -26.17 -2.52 -11.91 0.63 0.26
MCSE 0.008 0.038 0.031 0.026 0.020 0.018 0.056 0.048 0.058 0.038
ASE 0.008 0.040 0.033 0.027 0.020 0.018 0.058 0.050 0.058 0.036

RMSE 0.082 0.018 0.051 0.026 0.022 0.096 0.058 0.064 0.059 0.039
Coverage 0.00 94.50 77.00 95.40 93.80 0.00 95.10 87.00 93.30 93.00

pPIFX2 BIAS -19.32 -2.70 -18.27 -0.32 -0.83 -19.10 -5.19 -16.53 -2.24 -0.30
MCSE 0.008 0.059 0.050 0.033 0.028 0.021 0.094 0.081 0.078 0.057
ASE 0.009 0.063 0.053 0.034 0.028 0.021 0.102 0.084 0.078 0.057

RMSE 0.032 0.060 0.057 0.033 0.028 0.044 0.097 0.088 0.079 0.060
Coverage 5.00 94.60 92.30 94.00 94.40 53.50 94.40 93.80 94.00 93.00

pPIFX1X2 BIAS -23.28 -1.40 -13.98 0.04 0.36 -21.42 -1.48 -10.35 0.59 0.66
MCSE 0.009 0.027 0.022 0.027 0.018 0.020 0.036 0.030 0.054 0.030
ASE 0.009 0.029 0.023 0.027 0.019 0.019 0.040 0.032 0.056 0.029

RMSE 0.097 0.028 0.058 0.026 0.020 0.108 0.038 0.057 0.054 0.032
Coverage 0.00 95.10 29.20 94.80 93.70 0.00 95.20 65.20 94.10 94.20

1000 pPIFX1 BIAS -27.71 -2.51 -14.60 -0.19 0.37 -26.39 -2.27 -11.47 0.42 0.09
MCSE 0.008 0.029 0.024 0.018 0.015 0.018 0.047 0.038 0.040 0.027
ASE 0.008 0.030 0.025 0.019 0.015 0.018 0.046 0.041 0.039 0.028

RMSE 0.082 0.030 0.047 0.017 0.014 0.097 0.048 0.055 0.040 0.028
Coverage 0.00 93.60 65.20 95.40 94.30 0.00 94.10 85.90 94.00 93.80

pPIFX2 BIAS -18.72 -1.81 -16.33 0.46 -0.57 -19.09 -5.86 -14.06 -0.70 0.30
MCSE 0.010 0.047 0.040 0.024 0.020 0.021 0.081 0.065 0.054 0.044
ASE 0.009 0.047 0.040 0.024 0.021 0.021 0.080 0.070 0.053 0.043

RMSE 0.030 0.047 0.047 0.024 0.020 0.044 0.082 0.071 0.055 0.045
Coverage 5.50 94.40 90.50 94.40 95.20 49.50 94.50 94.80 94.50 92.70

pPIFX1X2 BIAS -23.15 -2.08 -13.61 0.09 0.14 -21.54 -2.12 -9.81 0.46 0.46
MCSE 0.009 0.021 0.017 0.018 0.013 0.019 0.031 0.024 0.037 0.023
ASE 0.009 0.021 0.017 0.019 0.014 0.018 0.031 0.027 0.038 0.023

RMSE 0.096 0.023 0.055 0.017 0.014 0.108 0.033 0.052 0.037 0.024
Coverage 0.00 92.90 10.70 94.20 94.80 0.00 92.60 54.80 94.40 93.80
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Tables 3.2 and 3.3 present the simulation results when disease is common (β0 = −2) and

rare (β0 = −4), and the amount of measurement error is moderate, under varying validation

study sizes. It is evident that the uncorrected approach of ignoring the measurement error

in the modifiable risk factors leads to substantial negative bias in estimating all three pPIFs.

The two RC estimators frequently reduced the bias in estimating the pPIF compared to the

uncorrected estimator, and demonstrate complementary behaviours with different levels of

IVS sample size.

Interestingly, when the IVS was small (Nv = 100 and 250), RCM/I generally had

smaller bias compared to RCI , and demonstrates smaller bias with a larger IVS sample

size. RCI , however, shows significant bias as the size of IVS increases, which is caused

by the bias in estimating conditional disease probability model coefficients. This can be

inferred by comparing results from the IVS only estimator and RCI , because the IVS only

estimator gives unbiased estimates of both the conditional disease probability model and

the pPIF, and the only difference between the two estimator lies in the way they estimate

the conditional disease probability model coefficients. As suggested by Carroll et al. (2006),

RC estimators give biased estimates of logistic disease model coefficients when the effect

of the exposure subject to measurement error is moderate to high, especially as the disease

rate increases and/or measurement error increases, which is the case in our simulations

(Rosner et al., 1989). We investigate this issue further in section 3.7.3 of the Appendix,

and observe improved performance for RC estimators as the effect of X̃i lessens, although

we still see an advantage to the proposed Bayesian approach in the presence of substantial

measurement error, as often occurs in epidemiology.

Finally, the proposed Bayesian approach demonstrates the smallest and negligible

bias and RMSE regardless of the size of the IVS and the amount of measurement error.

In addition, the Bayesian estimator has the highest efficiency in almost all scenarios.

Throughout, the ASE of the Bayesian estimator is close to its MCSE, suggesting that the

Bayesian posterior variance estimator accurately quantifies the uncertainty in the pPIF.
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When the disease is common, the frequentist coverage percentage of the Bayesian credible

interval estimator is close to 95% when Nv ≥ 250. Under the rare disease scenario, the

required level of Nv needs to be 500 to obtain nominal coverage percentage of the Bayesian

credible interval estimator (shown in Table 3.3).

The comparisons between the proposed approach and other estimators under low and

high measurement error scenarios are qualitatively similar and presented in Tables 3.8 to

3.11 in section 3.7.2 of the Appendix. In particular, the bias of the uncorrected approach

became positive in the low measurement error scenario, echoing the observations of Wong

et al. (2018), that the bias of the pPIF with multiple risk factors could be either positive

or negative. In the low measurement error scenario, the coverage percentages of the

proposed Bayesian interval estimator also improved compared to that in moderate or high

measurement error scenarios, as it consistently stayed at least 90% even with limited

validation data. In contrast, the coverage percentage of the Bayesian interval estimator

further declined with high measurement error, small validation study and rare disease (Table

3.11). In section 3.7.4 of the Appendix, we also include an additional simulation study

where the IVS is obtained as a biased sample from the MS, and find the proposed Bayesian

estimator still maintains satisfactory performance.

Because our Bayesian estimator assumed a multivariate normal reclassification model,

we carried out additional simulations to investigate the sensitivity of the results when the

normality assumption is violated. We maintain the above data generating process except that

the true exposures were simulated from a bivariate Gamma distribution with the same mean

and covariance. We update the simulations parameters so that: X̃i = Γ̃(1,Z ′i)
′ + G2(Σx),

where G2(Σx) is a mean-centered bivariate Gamma density with covariance matrix Σx. We

further choose the parameters so that the two marginal distributions implied from G2(Σx)

are univariate G(2, 2) with mild skewness
√

2. For brevity, we present selected simulation

results in Tables 3.12 to 3.15 in section 3.7.2 of the Appendix. Our finding is that, when the

distribution of the true exposures exhibits mild skewness, the proposed Bayesian approach
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could still yield accurate point estimate for the pPIF with slightly reduced precision, as well

as reasonable frequentist coverage percentage of the interval estimator.

3.5 Application to the HPFS Data

We applied the proposed Bayesian approach to correct the measurement errors for estimating

the pPIF of CRC in the Health Professionals Follow-up Study (Platz et al., 2000). For

illustration, our analysis is based on complete data records (regarding intakes of red meat,

alcohol, and folate, as well as age and body mass index) only, leading to 48691 participants

in the main study and 126 participants in the validation study. A total of 1913 (3.9%)

and 6 (4.8%) CRC cases occurred over follow-up in the main study and validation study,

respectively. Our objective was to estimate the pPIF for CRC when several continuous

exposures are modified. We focus on three modifiable exposures that are error-prone: red

meat intake (servings per day), alcohol intake (servings per day), and folate intake (grams

per day). A descriptive summary of self-reported values of the three modifiable exposures

is given in Table 3.4.

Table 3.4: A descriptive statistics at baseline of self-reported (surrogate) exposures and
factors for HPFS participants. Red Meat: red meat intake. Alcohol: alcohol intake. Folate:
folate intake. Nm = 44849, Nv = 126.

Variable (Unit) Mean (Std. Dev.) (Min, Max)

Red Meat (servings/day) 1.270 (0.617) (0.000, 3.000)
Alcohol (servings/day) 0.729 (0.627) (0.000, 2.571)

Folate (g/day) 0.434 (0.190) (0.067, 1.003)
Age (year) 54.49 (9.935) (32.00, 79.00)

BMI (kg/m2) 25.53 (3.365) (12.91, 91.67)

We also consider two error-free risk factors: age (years) and body mass index (BMI,

kg/m2). In the main study, records containing surrogate exposures (any in red meat, alcohol,

or folate intakes) with values below the first quartile minus 1.5×IQR (inter quarter range)
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or above the third quartile plus 1.5×IQR were considered outliers and were removed to

prevent their undue influence on the analysis. The final main study dataset includes 44975

participants with 1748 (3.9%) CRC cases.

We estimated a set of pPIFs by first modifying one exposure (red meat intake, alcohol

intake, or folate intake) only. Then we modified these exposures in pairs (i.e., red meat and

alcohol, red meat and folate, folate and alcohol). Finally, we simultaneously modified all

three exposures and computed the pPIF. Previous studies have shown that increasing red

meat intake and alcohol intake leads to increased risk of CRC occurrence, while increasing

folate intake protected against CRC risk (Giovannucci et al., 1994, 1995). Therefore, we

studied the impact of reductions in red meat intake by 0.5 servings per day, in alcohol intake

by 0.5 servings per day, and increase in folate intake by 0.5 grams per day.

Table 3.5: Correlations between true and surrogate exposures computed from valida-
tion study data, Nv = 126. (X1, Z1): true and surrogate exposures of red meat intake
(servings/day). (X2, Z2): true and surrogate exposures of alcohol intake (servings/day).
(X3, Z3): true and surrogate exposures of folate intake (grams/day).

Z1 Z2 Z3

X1 0.685 0.206 -0.252
X2 0.263 0.852 -0.175
X3 -0.150 -0.276 0.596

In notation, let X1 and Z1 represent the true and surrogate values for red meat intake,

X2 and Z2 represent the true and surrogate values for alcohol intake, while X3 and Z3

represent the true and surrogate values for folate intake. Correlations between true and

surrogate exposures computed from the validation study data are presented in Table 3.5.

The non-modifiable risk factors, age and BMI (correctly-measured and denoted by X4 and

X5), were transformed to quintiles to allow for nonlinear associations. We assume that

reclassification transportablility holds, and for the conditional disease probability model, we

used the logistic regression model (3.5). We assumed a multivariate normal reclassification

process, as in our simulation study. In addition, an uncorrected approach that ignored
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measurement error was used to estimate the same set of pPIFs.

For each estimator, we specified a non-informative N (0, 103) prior for each element

of β and Γ̃, and a IW(4, I) prior for Σx. We ran a chain of 15000 iterations (with the

first 5000 discarded as burn-in), retaining every fifth iteration. Posterior convergence was

monitored by trace plots and the Geweke’s z-scores. As a further comparison, we also

included estimates from the two RC approaches investigated in Section 3.4. The disease

model coefficients, pPIF estimates and associated 95% credible intervals (confidence

intervals for RC estimators) are presented in Tables 3.6 to 3.7. Estimation results for other

model parameters are presented in Tables 3.16 to 3.17 in section 3.7.2 of the Appendix,

with empirical density plots of surrogate and estimated true exposures provided in Figure

3.2 in the same section of the Appendix.

Table 3.6: Association estimates (β̂) in the conditional disease probability model from the
uncorrected, RCM/I , RCI , and the proposed Bayesian methods, the HPFS (1986-2010),
Nm = 44, 849, Nv = 126. The 95% posterior credible intervals are provided in the
parentheses.

Method Red Meat Alcohol Folate Age BMI

Uncorrected
0.069 0.140 -0.223 0.371 0.050

(-0.004, 0.148) (0.068, 0.215) (-0.481, 0.032) (0.333, 0.409) (0.020, 0.085)

RCM/I
0.008 0.164 -0.287 0.372 0.055

(-0.156, 0.139) (0.075, 0.253) (-0.995, 0.420) (0.334, 0.411) (0.017, 0.092)

RCI
0.008 0.158 -0.287 0.372 0.055

(-0.153, 0.137) (0.061, 0.256) (-0.974, 0.401) (0.332, 0.412) (0.017, 0.092)

Bayesian
0.001 0.163 -0.338 0.375 0.055

(-0.116, 0.115) (0.070, 0.266) (-1.072, 0.288) (0.333, 0.420) (0.016, 0.093)

Table 3.6 indicates that association of alcohol intake and folate intake with disease

becomes greater after measurement error correction, which leads to larger estimates for the

pPIF associated with reductions in alcohol intake (pPIF=0.045 before correction versus

pPIF=0.064 using the proposed Bayesian estimator) and with increases in folate intake

(pPIF=0.105 before correction versus pPIF=0.135 using the proposed Bayesian estimator)

by given increments. This indicates that measurement errors in the two exposures could
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have resulted in an underestimate of the impact of potential interventions targeting alcohol

and folate intake.

Table 3.7: The pPIF estimates from the uncorrected and the proposed method. Red meat
intake and alcohol intake were decreased by 0.5 servings per day for all participants. (The
intake level was set to zero for if the original value was below 0.5.) Folate intake was
increased by 0.5 grams per day for all participants. ‘X’ indicates that exposure was modified
when estimating the pPIF. The 95% posterior credible intervals are given in the parentheses.

Modified Exposures Methods
Red Meat Alcohol Folate Uncorrected RCM/I RCI Bayesian

X
0.030 0.004 0.004 0.006

(-0.007, 0.064) (-0.075, 0.067) (-0.071, 0.064) (-0.066, 0.075)

X
0.045 0.069 0.062 0.064

(0.020, 0.068) (0.029, 0.110) (0.024, 0.100) (0.028, 0.100)

X
0.105 0.128 0.127 0.135

(-0.011, 0.209) (-0.163, 0.419) (-0.153, 0.407) (-0.130, 0.361)

X X
0.074 0.073 0.066 0.071

(0.036, 0.113) (-0.006, 0.138) (-0.011, 0.127) (-0.004, 0.126)

X X
0.133 0.132 0.131 0.140

(0.021, 0.235) (-0.129, 0.377) (-0.126, 0.373) (-0.109, 0.343)

X X
0.146 0.189 0.181 0.191

(0.029, 0.247) (-0.078, 0.456) (-0.076, 0.438) (-0.047, 0.400)

X X X
0.172 0.193 0.185 0.198

(0.065, 0.272) (-0.043, 0.414) (-0.047, 0.404) (-0.025, 0.378)

In contrast, the conditional disease probability model coefficient and the pPIF corre-

sponding to red meat intake are larger without measurement error correction (pPIF= 0.030

before correction versus pPIF= 0.006 using the proposed Bayesian estimator), suggesting

that measurement error may have led to an overestimation of the impact of potential inter-

ventions targeting red meat intake alone. This could be resulted by accounting for folate

intake in the conditional disease probability model. Nevertheless, correcting for bias due to

measurement error still led to a larger pPIF estimate for an intervention modifying all three

exposures (pPIF=0.172 before correction versus pPIF=0.198 using the proposed Bayesian

estimator).

The pPIF values estimated by the two RC approaches were often similar, and were larger

than those from the proposed Bayesian approach for the folate intake increase intervention.
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However, the RC results may not be as accurate as the proposed approach due to the caveat

discussed in our simulations. In summary, the CRC disease burden in the HPFS and similar

populations could be reduced by 19.1% when simultaneously reducing alcohol intake while

increasing folate intake, which is similar to simultaneously conducting interventions on

all three exposures. The estimated additional reduction in CRC occurrence results from a

decrease in red meat intake, however, appeared to be relatively minimal.

3.6 Discussion

The pPIF extends the concept of the pPAR, and provides a useful means for assessing the

potential impact of interventions targeting continuous exposures in a population. Motivated

by the HPFS, we developed a computationally tractable Bayesian approach for estimating

the pPIF when continuous exposures are measured with error. This estimator is based upon

the reclassification model, and specifies conditional distributions of the true exposures given

the observed surrogate exposures. In the MS/IVS design considered here, we assumed

the reclassification transportability condition, requiring that the reclassification process to

be exchangeable between the MS and the IVS, and clarified the relationship between this

assumption and the transportability conditions proposed previously. Finally, this Bayesian

procedure allows us to easily obtain both point and interval estimates for a range of pPIF

values, without resorting to complex numerical integration.

Across a range of sample sizes, disease prevalences, and degrees of measurement error,

our simulations suggested that, in the presence of exposure measurement error, the proposed

Bayesian approach can reduce the bias in estimating the pPIF and accurately quantify the

uncertainty. In particular, the estimation bias can be dramatically reduced with an IVS as

small as 100, while nominal frequentist coverage may require a larger IVS, at least 250 in

our simulation scenarios, in the presence of moderate to high amount of measurement error.

Ignoring exposure measurement error leads to substantial bias and under coverage of the
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credible interval, and the bias could be towards either direction.

There are several potential limitations of our approach, both of which will be pursued

in our future work. First, only continuous surrogate and true exposures can enter the

model, which implies a possible improvement of including both discrete/categorical and

continuous exposures into the model. Second, we have assumed that there are no missing

surrogate exposures in both the MS and the IVS. In the HPFS, missing exposures could

arise from non-response of dietary questionnaires, and have been excluded from our

analysis. Assuming exposures missing at random (MAR), a potential modification within

our Bayesian framework could regard the missing surrogate exposures as model parameters

and include additional Gibbs updates for these missing values, alongside estimating the

remaining model parameters. This procedure is akin to the joint modeling approach used in

multiple imputation (Molenberghs et al., 2014). It remains to be explored whether such an

approach would perform well in simulations and substantially change our empirical pPIF

estimates for the HPFS. Third, we have assumed the availability of an IVS, as motivated

by the HPFS data. Often, the validation study occurs in an external population, where the

disease outcome is not available. Given the importance of this design in practice, it would

be worthwhile to extend the current approach to the main study/external validation study

design in the presence of exposure measurement error.

3.7 Appendix

3.7.1 Proofs for Claimed Relationships between ST, RT, and DT

We assume all marginal, conditional, and joint densities exist and are positive on their

respective supports. Following notations in the main article, let X and Z denote the

true and surrogate exposures, let f(x) and f(z) denote marginal distributions of true and

surrogate exposures, let f(z|x) and f(x|z) denote corresponding conditional distributions,
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DTST RT

Figure 3.1: A Venn Diagram for Claimed Relationships between ST, RT, and DT.

and let f(x, z) denote the joint distribution of the true and surrogate exposures. Here we

reiterate the definitions of ST, RT, and DT:

• ST: Single Transportability. f(z|x) is transportable between the validation study

(VS) sample and the main study (MS) sample, but no transportability assumption is

placed on f(x).

• RT:Reclassification Transportability. f(x|z) is transportable between VS and MS,

but no transportability assumption is placed on f(z).

• DT: Double Transportability. f(x, z) is transportable between VS and MS.

We show relationships between ST, RT, and DT are as claimed in the Venn diagrams above.

1. DT ⊆ ST

Proof. Self-evident from the definition.

2. DT ⊆ RT

Proof. Self-evident from the definition.
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3. DT = ST ∩RT

Proof. Since DT ⊆ RT and DT ⊆ ST , we obtain RT ∩ ST 6= ∅ and DT ⊆ RT ∩ ST .

Next, to show the converse, we will show that if ST and RT both hold, which means both

f(z|x) and f(x|z) are transportable between VS and MS, then f(x) is also transportable.

As a general matter, f(x)f(z|x) = f(x, z) = f(z)f(x|z), which gives

f(z|x)

f(x|z)
=
f(z)

f(x)
,

and

1

f(x)
=

∫
f(z)dz

f(x)
=

∫
f(z)

f(x)
dz =

∫
f(z|x)

f(x|z)
dz,

so that the marginal f(x) is determined by the two conditional distributions f(z|x) and

f(x|z). Thus, the transportability of f(z|x) and f(x|z) implies that of f(x), and therefore

implies double transportability.

4. RT − ST 6= ∅

Proof. Let fm(x, z) and fv(x, z) denote the joint distributions in the main and validation

studies. We want to show the existence of an example where RT holds but ST does not. For

simplicity assume both joint densities are positive. Assume fm(x|z) = fv(x|z) so that RT

holds, and denote the common conditional distribution by f(x|z). Let r(z) = fv(z)/fm(z)

denote the ratio of the marginal densities of z in the validation and main studies; for example,

this situation could be realized if the validation study participants were sampled from the

main study participants with probabilities proportional to r(z). Unless r(z) = 1 for all z,

in which case double transportability holds, the function r must take at least two different

values (at least one larger than 1 and one smaller than 1). Let z1 and z2 be such that

r(z1) > r(z2), so that fv(z1)
fm(z1)

> fv(z2)
fm(z2)

, which is equivalent to fv(z1)
fv(z2)

> fm(z1)
fm(z2)

. Then for
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arbitrary x we have

fv(z1|x)

fv(z2|x)
=
fv(z1)f(x|z1)

fv(z2)f(x|z2)
>
fm(z1)f(x|z1)

fm(z2)f(x|z2)
=
fm(z1|x)

fm(z2|x)
,

so that the conditional distribution of Z|X in the validation study is not the same as that in

the main study, and ST does not hold.

5. ST −RT 6= ∅

Proof. This follows from the proof ofRT−ST 6= ∅with the roles ofX andZ interchanged.
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3.7.2 Tables and Figures

Table 3.8: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of different estimators for estimat-
ing the three pPIFs, with different validation study size (Nv = 100, 250). UN = uncorrected,
RCM/I , RCI , and IVS are defined in Section 4, Bayes = proposed. The simulation results
are based on 1000 data replications, under β0 = −2 (common disease) and β0 = −4
(rare disease), multivariate normal true reclassification model, and the low measurement
error scenario. Coverage percentage between 93.6% and 96.4% in bold font are within the
margin of error for 1000 replications.

Estimators

β0 = −2 β0 = −4

Nv pPIF UN RCM/I RCI IVS Bayes UN RCM/I RCI IVS Bayes

100 pPIFX1 BIAS 82.60 1.05 -5.07 1.91 1.31 75.98 0.75 -6.04 5.27 1.46
MCSE 0.005 0.030 0.027 0.035 0.022 0.006 0.038 0.039 0.063 0.033
ASE 0.004 0.033 0.030 0.038 0.020 0.006 0.045 0.039 0.076 0.029

RMSE 0.128 0.030 0.029 0.036 0.022 0.158 0.039 0.041 0.066 0.035
Coverage 0.00 94.90 93.90 96.00 90.50 0.00 94.20 92.80 96.60 91.20

pPIFX2 BIAS 170.84 -3.79 -10.48 3.23 -0.77 159.13 -6.53 -10.90 6.53 -2.79
MCSE 0.005 0.037 0.033 0.039 0.026 0.007 0.050 0.048 0.075 0.043
ASE 0.004 0.040 0.036 0.042 0.024 0.007 0.058 0.048 0.087 0.038

RMSE 0.135 0.038 0.035 0.040 0.026 0.173 0.052 0.050 0.077 0.044
Coverage 0.00 94.30 93.60 95.10 91.40 0.00 95.20 92.50 94.10 91.00

pPIFX1X2 BIAS 101.64 -0.02 -6.30 2.46 0.81 87.65 -0.37 -6.43 6.19 0.65
MCSE 0.005 0.012 0.019 0.030 0.011 0.006 0.015 0.026 0.052 0.015
ASE 0.004 0.014 0.020 0.034 0.011 0.005 0.018 0.027 0.067 0.014

RMSE 0.232 0.012 0.024 0.032 0.013 0.263 0.016 0.032 0.057 0.017
Coverage 0.00 95.00 88.10 96.30 92.20 0.00 94.10 89.30 97.40 92.90

250 pPIFX1 BIAS 82.44 -0.12 -7.18 1.06 0.91 75.76 0.16 -7.17 1.83 0.90
MCSE 0.004 0.018 0.017 0.022 0.013 0.007 0.023 0.022 0.035 0.019
ASE 0.004 0.018 0.018 0.022 0.013 0.006 0.024 0.024 0.036 0.019

RMSE 0.128 0.018 0.020 0.022 0.014 0.158 0.023 0.027 0.035 0.020
Coverage 0.00 95.60 89.50 93.40 94.20 0.00 95.70 91.00 95.00 94.30

pPIFX2 BIAS 170.43 -0.97 -6.58 0.61 -0.71 161.11 -1.98 -9.04 -0.20 -1.49
MCSE 0.005 0.022 0.020 0.025 0.016 0.008 0.030 0.027 0.042 0.024
ASE 0.005 0.022 0.021 0.025 0.016 0.007 0.031 0.029 0.042 0.024

RMSE 0.135 0.022 0.021 0.024 0.017 0.175 0.030 0.029 0.042 0.024
Coverage 0.00 95.20 95.20 94.00 93.60 0.00 94.50 95.50 93.60 94.00

pPIFX1X2 BIAS 101.43 -0.28 -6.64 0.97 0.45 88.07 -0.26 -7.06 1.53 0.33
MCSE 0.005 0.008 0.011 0.017 0.007 0.006 0.010 0.016 0.028 0.009
ASE 0.004 0.008 0.012 0.019 0.007 0.005 0.010 0.016 0.029 0.009

RMSE 0.231 0.008 0.019 0.017 0.010 0.264 0.010 0.027 0.028 0.012
Coverage 0.00 95.00 76.80 95.60 93.00 0.00 94.00 76.10 94.30 94.90
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Table 3.9: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of different estimators for es-
timating the three pPIFs, with different validation study size (Nv = 500, 1000). UN =
uncorrected, RCM/I , RCI , and IVS are defined in Section 4, Bayes = proposed. The
simulation results are based on 1000 data replications, under β0 = −2 (common disease)
and β0 = −4 (rare disease), multivariate normal true reclassification model, and the low
measurement error scenario. Coverage percentage between 93.6% and 96.4% in bold font
are within the margin of error for 1000 replications.

Estimators

β0 = −2 β0 = −4

Nv pPIF UN RCM/I RCI IVS Bayes UN RCM/I RCI IVS Bayes

500 pPIFX1 BIAS 82.56 -0.13 -6.86 0.03 0.29 75.64 -0.44 -7.51 0.22 0.07
MCSE 0.005 0.013 0.013 0.015 0.010 0.007 0.018 0.018 0.024 0.013
ASE 0.004 0.013 0.013 0.015 0.010 0.006 0.018 0.018 0.024 0.014

RMSE 0.128 0.013 0.017 0.015 0.009 0.158 0.018 0.024 0.024 0.014
Coverage 0.00 95.10 87.10 95.30 93.00 0.00 94.70 84.40 94.90 96.00

pPIFX2 BIAS 170.84 -0.93 -7.65 0.96 -0.15 160.66 -1.36 -8.27 -0.83 -0.01
MCSE 0.005 0.016 0.015 0.016 0.011 0.007 0.023 0.023 0.027 0.017
ASE 0.005 0.016 0.016 0.017 0.012 0.007 0.023 0.022 0.028 0.018

RMSE 0.134 0.016 0.017 0.017 0.011 0.174 0.023 0.025 0.028 0.017
Coverage 0.00 95.00 91.90 94.40 94.70 0.00 94.30 91.40 94.10 93.90

pPIFX1X2 BIAS 101.63 -0.34 -6.80 0.41 0.19 87.83 -0.59 -7.11 0.11 0.15
MCSE 0.005 0.006 0.008 0.012 0.005 0.006 0.007 0.012 0.018 0.007
ASE 0.004 0.006 0.008 0.013 0.005 0.005 0.008 0.012 0.019 0.007

RMSE 0.231 0.006 0.017 0.014 0.010 0.264 0.008 0.024 0.017 0.008
Coverage 0.00 95.20 57.70 94.90 95.80 0.00 95.00 58.00 95.70 95.80

1000 pPIFX1 BIAS 82.93 -0.66 -6.93 0.65 0.22 76.04 -1.11 -8.11 0.35 0.26
MCSE 0.004 0.010 0.010 0.010 0.007 0.006 0.015 0.014 0.017 0.011
ASE 0.004 0.010 0.010 0.011 0.007 0.006 0.015 0.014 0.017 0.011

RMSE 0.128 0.010 0.015 0.010 0.006 0.159 0.015 0.022 0.017 0.011
Coverage 0.00 92.70 82.20 94.60 96.30 0.00 94.00 79.00 94.30 94.80

pPIFX2 BIAS 170.03 -0.73 -7.52 -0.25 0.05 159.45 -0.62 -8.02 0.32 -0.51
MCSE 0.005 0.012 0.012 0.012 0.008 0.007 0.019 0.017 0.020 0.014
ASE 0.004 0.013 0.012 0.012 0.009 0.007 0.019 0.018 0.020 0.014

RMSE 0.134 0.013 0.013 0.006 0.004 0.173 0.019 0.020 0.020 0.014
Coverage 0.00 94.70 92.70 95.00 95.30 0.00 94.30 92.20 95.70 95.10

pPIFX1X2 BIAS 101.64 -0.65 -6.84 0.37 0.18 87.77 -0.85 -7.48 0.42 0.07
MCSE 0.004 0.004 0.006 0.008 0.004 0.005 0.006 0.008 0.013 0.005
ASE 0.004 0.005 0.006 0.009 0.004 0.005 0.006 0.009 0.013 0.005

RMSE 0.231 0.005 0.017 0.008 0.007 0.263 0.006 0.024 0.014 0.010
Coverage 0.00 94.50 30.50 96.30 94.50 0.00 93.60 26.00 95.60 95.60

103



Table 3.10: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of different estimators for estimat-
ing the three pPIFs, with different validation study size (Nv = 100, 250). UN = uncorrected,
RCM/I , RCI , and IVS are defined in Section 4, Bayes = proposed. The simulation results
are based on 1000 data replications, under β0 = −2 (common disease) and β0 = −4
(rare disease), multivariate normal true reclassification model, and the high measurement
error scenario. Coverage percentage between 93.6% and 96.4% in bold font are within the
margin of error for 1000 replications.

Estimators

β0 = −2 β0 = −4

Nv pPIF UN RCM/I RCI IVS Bayes UN RCM/I RCI IVS Bayes

100 pPIFX1 BIAS -51.94 -29.52 -26.11 0.89 1.80 -50.07 -95.95 -26.14 -13.98 5.70
MCSE 0.010 0.147 0.068 0.075 0.058 0.0254 0.405 0.093 0.228 0.138
ASE 0.010 0.507 0.128 0.078 0.050 0.0231 1.963 0.166 0.339 0.080

RMSE 0.164 0.173 0.102 0.076 0.060 0.189 0.542 0.133 0.246 0.150
Coverage 0.00 98.30 95.90 93.00 88.10 0.00 99.20 96.00 90.40 74.90

pPIFX2 BIAS -52.46 -100.65 -43.93 -0.52 -2.50 -52.55 -326.10 -49.28 -57.32 -15.13
MCSE 0.011 0.218 0.104 0.094 0.081 0.028 0.686 0.152 0.344 0.235
ASE 0.011 0.682 0.189 0.096 0.072 0.026 2.634 0.263 0.508 0.131

RMSE 0.089 0.273 0.126 0.096 0.082 0.113 0.949 0.181 0.392 0.252
Coverage 0.00 98.60 98.50 93.30 89.40 0.00 98.80 92.00 99.00 73.80

pPIFX1X2 BIAS -49.53 -22.19 -27.30 1.10 1.21 -47.16 -67.45 -25.40 -13.49 3.96
MCSE 0.011 0.133 0.066 0.081 0.055 0.027 0.386 0.090 0.259 0.128
ASE 0.012 0.495 0.132 0.084 0.051 0.027 1.900 0.172 0.347 0.075

RMSE 0.219 0.171 0.130 0.082 0.057 0.240 0.524 0.154 0.294 0.139
Coverage 0.00 98.10 83.90 93.70 90.00 0.00 98.60 92.40 93.10 74.80

250 pPIFX1 BIAS -51.28 -9.12 -20.56 -0.08 0.27 -50.62 -24.06 -19.01 -1.32 2.57
MCSE 0.010 0.098 0.059 0.044 0.036 0.024 0.194 0.085 0.108 0.069
ASE 0.010 0.206 0.076 0.044 0.034 0.023 0.652 0.104 0.132 0.062

RMSE 0.162 0.104 0.085 0.045 0.036 0.191 0.229 0.110 0.111 0.072
Coverage 0.00 95.30 88.30 94.90 92.20 0.00 96.30 92.00 92.90 89.60

pPIFX2 BIAS -53.67 -28.45 -23.97 -1.11 0.95 -51.89 -83.25 -23.80 -1.79 1.02
MCSE 0.011 0.163 0.097 0.056 0.049 0.025 0.334 0.141 0.151 0.111
ASE 0.011 0.311 0.122 0.055 0.047 0.026 0.983 0.173 0.171 0.098

RMSE 0.092 0.174 0.106 0.057 0.051 0.110 0.384 0.150 0.158 0.115
Coverage 0.00 95.20 95.10 94.00 92.40 0.00 96.40 95.50 92.30 90.10

pPIFX1X2 BIAS -49.50 -4.58 -18.04 -0.13 0.78 -47.33 -13.51 -14.33 0.75 3.34
MCSE 0.011 0.080 0.049 0.047 0.035 0.027 0.159 0.065 0.113 0.065
ASE 0.012 0.188 0.069 0.047 0.034 0.026 0.599 0.091 0.129 0.056

RMSE 0.218 0.086 0.089 0.048 0.036 0.241 0.192 0.097 0.115 0.069
Coverage 0.00 97.00 74.50 94.20 92.10 0.00 97.10 89.00 93.80 88.20
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Table 3.11: Simulation results for the relative bias (% Bias), Monte Carlo standard er-
ror (MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE)
and empirical coverage percentage of 95% CIs (Coverage %) of different estimators for
estimating the three pPIFs, with different validation study size (Nv = 500, 1000). UN
= uncorrected, RCM/I , RCI , and IVS are defined in Section 4, Bayes = proposed. The
simulation results are based on 1000 data replications, under β0 = −2 (common disease)
and β0 = −4 (rare disease), multivariate normal true reclassification model, and the high
measurement error scenario. Coverage percentage between 93.6% and 96.4% in bold font
are within the margin of error for 1000 replications.

Estimators

β0 = −2 β0 = −4

Nv pPIF UN RCM/I RCI IVS Bayes UN RCM/I RCI IVS Bayes

500 pPIFX1 BIAS -51.56 -3.64 -17.47 0.16 -0.24 -49.45 -5.39 -13.49 0.02 0.69
MCSE 0.009 0.059 0.045 0.029 0.024 0.023 0.086 0.068 0.068 0.048
ASE 0.010 0.080 0.049 0.031 0.024 0.023 0.150 0.075 0.071 0.047

RMSE 0.163 0.062 0.068 0.030 0.024 0.187 0.092 0.084 0.069 0.049
Coverage 0.00 95.30 82.50 95.90 95.00 0.00 95.80 93.00 93.80 93.70

pPIFX2 BIAS -53.46 -4.58 -20.50 -0.53 -0.43 -52.21 -15.48 -21.17 -1.50 0.01
MCSE 0.010 0.104 0.078 0.037 0.033 0.024 0.167 0.122 0.089 0.073
ASE 0.010 0.130 0.083 0.038 0.034 0.025 0.263 0.134 0.092 0.073

RMSE 0.091 0.108 0.085 0.037 0.035 0.111 0.178 0.133 0.090 0.075
Coverage 0.00 95.20 93.60 95.00 94.50 0.01 95.90 95.00 93.80 93.10

pPIFX1X2 BIAS -49.62 -1.56 -15.72 0.08 -0.12 -46.65 -2.14 -11.19 0.41 1.12
MCSE 0.011 0.052 0.038 0.032 0.024 0.026 0.068 0.053 0.068 0.046
ASE 0.011 0.068 0.041 0.032 0.025 0.025 0.128 0.061 0.071 0.044

RMSE 0.219 0.054 0.075 0.032 0.024 0.238 0.071 0.077 0.070 0.047
Coverage 0.00 95.40 58.60 94.60 95.10 0.00 95.40 87.40 93.50 92.10

1000 pPIFX1 BIAS -51.87 -2.89 -15.67 0.43 0.31 -49.34 -3.98 -12.04 -0.33 0.39
MCSE 0.010 0.042 0.034 0.021 0.018 0.023 0.067 0.056 0.049 0.036
ASE 0.010 0.043 0.036 0.021 0.018 0.022 0.070 0.061 0.047 0.036

RMSE 0.164 0.043 0.057 0.022 0.017 0.186 0.070 0.071 0.049 0.037
Coverage 0.00 93.00 74.80 93.80 95.60 0.00 94.20 90.80 93.50 93.80

pPIFX2 BIAS -53.09 -5.48 -18.51 -1.06 -1.06 -53.17 -9.50 -18.27 -1.74 0.42
MCSE 0.011 0.074 0.060 0.027 0.024 0.027 0.127 0.103 0.061 0.053
ASE 0.010 0.076 0.062 0.027 0.025 0.025 0.131 0.111 0.062 0.054

RMSE 0.091 0.075 0.066 0.026 0.0244 0.114 0.131 0.110 0.062 0.055
Coverage 0.00 94.70 92.50 94.60 94.40 0.01 94.20 95.10 94.60 95.20

pPIFX1X2 BIAS -49.70 -2.98 -14.42 0.04 -0.04 -46.89 -2.66 -10.23 -0.25 0.68
MCSE 0.012 0.036 0.027 0.022 0.018 0.026 0.053 0.044 0.047 0.033
ASE 0.011 0.039 0.029 0.022 0.018 0.025 0.057 0.048 0.047 0.034

RMSE 0.219 0.038 0.065 0.022 0.017 0.239 0.056 0.067 0.047 0.033
Coverage 0.00 94.30 40.90 95.20 94.70 0.00 94.80 84.10 93.40 94.10
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Table 3.12: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of the uncorrected and proposed
Bayesian estimators for estimating the three pPIFs, with different validation study size. The
simulation results are based on 1000 data replications, under β0 = −2 (common disease),
multivariate gamma true reclassification model, and the low measurement error scenario.
Coverage percentage between 93.6% and 96.4% in bold font are within the margin of error
for 1000 replications.

Nv Estimand Method Bias MCSE ASE RMSE Coverage

100

PIFX1

Uncorrected 82.32 0.005 0.004 0.134 0.00
Bayesian 0.06 0.018 0.018 0.020 94.00

PIFX2

Uncorrected 169.27 0.005 0.005 0.138 0.00
Bayesian -0.05 0.022 0.022 0.028 94.70

PIFX1,X2

Uncorrected 100.54 0.004 0.004 0.239 0.00
Bayesian 0.22 0.009 0.009 0.010 94.00

500

PIFX1

Uncorrected 82.57 0.005 0.004 0.134 0.00
Bayesian 0.36 0.009 0.009 0.010 95.00

PIFX2

Uncorrected 169.77 0.005 0.004 0.138 0.00
Bayesian -0.65 0.011 0.011 0.010 94.10

PIFX1,X2

Uncorrected 100.84 0.005 0.003 0.239 0.00
Bayesian 0.09 0.004 0.004 0.010 94.80
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Table 3.13: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of the uncorrected and proposed
Bayesian estimators for estimating the three pPIFs, with different validation study size.
The simulation results are based on 1000 data replications, under β0 = −4 (rare disease),
multivariate gamma true reclassification model, and the low measurement error scenario.
Coverage percentage between 93.6% and 96.4% bold font are within the margin of error
for 1000 replications.

Nv Estimand Method Bias MCSE ASE RMSE Coverage

100

PIFX1

Uncorrected 75.46 0.007 0.006 0.164 0.00
Bayesian -0.23 0.025 0.025 0.026 93.40

PIFX2

Uncorrected 159.60 0.007 0.007 0.182 0.00
Bayesian 0.33 0.032 0.032 0.033 94.20

PIFX1,X2

Uncorrected 86.83 0.007 0.004 0.270 0.00
Bayesian 0.35 0.011 0.011 0.010 95.20

500

PIFX1

Uncorrected 75.24 0.007 0.006 0.164 0.00
Bayesian 0.50 0.013 0.013 0.014 94.30

PIFX2

Uncorrected 159.15 0.008 0.007 0.179 0.00
Bayesian -1.09 0.016 0.017 0.017 94.70

PIFX1,X2

Uncorrected 86.57 0.006 0.004 0.270 0.00
Bayesian 0.12 0.006 0.006 0.010 93.60
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Table 3.14: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of the uncorrected and proposed
Bayesian estimators for estimating the three pPIFs, with different validation study size. The
simulation results are based on 1000 data replications, under β0 = −2 (common disease),
multivariate gamma true reclassification model, and the high measurement error scenario.
Coverage percentage between 93.6% and 96.4% in bold font are within the margin of error
for 1000 replications.

Nv Estimand Method Bias MCSE ASE RMSE Coverage

100

PIFX1

Uncorrected -51.39 0.011 0.010 0.158 0.00
Bayesian 4.34 0.063 0.058 0.063 91.30

PIFX2

Uncorrected -53.56 0.012 0.011 0.089 0.00
Bayesian -6.11 0.105 0.093 0.110 89.90

PIFX1,X2

Uncorrected -49.56 0.013 0.012 0.212 0.00
Bayesian 2.36 0.063 0.058 0.063 91.80

500

PIFX1

Uncorrected -51.44 0.010 0.010 0.158 0.00
Bayesian 1.75 0.028 0.028 0.032 93.10

PIFX2

Uncorrected -53.54 0.010 0.011 0.089 0.00
Bayesian 1.76 0.043 0.042 0.045 93.10

PIFX1,X2

Uncorrected -49.59 0.012 0.012 0.212 0.00
Bayesian 1.92 0.028 0.028 0.032 93.20
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Table 3.15: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of the uncorrected and proposed
Bayesian estimators for estimating the three pPIFs, with different validation study size.
The simulation results are based on 1000 data replications, under β0 = −4 (rare disease),
multivariate gamma true reclassification model, and the high measurement error scenario.
Coverage percentage between 93.6% and 96.4% in bold font are within the margin of error
for 1000 replications.

Nv Estimand Method Bias MCSE ASE RMSE Coverage

100

PIFX1

Uncorrected -50.61 0.023 0.022 0.184 0.00
Bayesian 8.20 0.150 0.088 0.179 79.80

PIFX2

Uncorrected -51.60 0.026 0.025 0.105 0.00
Bayesian -63.86 0.392 0.180 0.473 78.70

PIFX1,X2

Uncorrected -47.44 0.025 0.026 0.235 0.00
Bayesian -4.22 0.185 0.091 0.217 80.80

500

PIFX1

Uncorrected -50.40 0.022 0.022 0.184 0.00
Bayesian 0.90 0.047 0.049 0.055 94.90

PIFX2

Uncorrected -53.31 0.027 0.025 0.110 0.00
Bayesian -4.89 0.084 0.085 0.089 95.00

PIFX1,X2

Uncorrected -47.87 0.025 0.026 0.237 0.00
Bayesian 0.02 0.047 0.047 0.045 93.70
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Table 3.16: Bayesian estimation results from reclassification model parameters (Γ∗), illus-
trative example.

α Z1 Z2 Z3 X4 X5

X1 0.696 0.991 -0.056 -0.714 0.022 -0.008
X2 0.425 0.297 0.830 -0.411 -0.011 -0.043
X3 0.251 -0.061 -0.030 0.503 0.003 -0.004

Table 3.17: Bayesian estimation results from reclassification model parameters (Σx), the
HPFS.

X1 X2 X3

X1 0.284 0.039 -0.004
X2 0.039 0.358 0.007
X3 -0.004 0.007 0.020
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Figure 3.2: An illustration of empirical densities for red meat intake, alcohol intake,
and folate intake obtained from the proposed Bayesian approach. Red lines represent
surrogate exposures. Blue lines represent imputed true exposures. Green lines represent
true exposures in the internal validation study.
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3.7.3 A Simulation Study Investigating Performances of RC Estima-

tors

We conducted a simulation study to further investigate the performances of RC estimators.

As suggested in Carroll et al. (2006), RC methods give suboptimal estimates of logistic

conditional disease probability model coefficients when the under one or more of the

following conditions:

1. The rare disease condition is violated;

2. Large measurement error;

3. Prognostic effects of the exposure are moderate.

In our main simulation setting, where the conditional disease probability model coefficients,

β = (β0, 1, 0.5, 0.5)′, where β0 = −2 (base disease prevalence 12 %) or -4 (base disease

prevalence 2 %). This coefficient setting is unfavorable towards RC methods, because the

relative risk with respect to X1 and X2 are 1.859 and 1.324 when β0 = −2 (2.513 and 1.571

when β0 = −4), which are considerably substantial. We thus consider a more favorable

simulation setting for RC estimators, where β = (−4, 0.25, 0.125, 0.125)′. This reduces the

relative risks to 1.276 and 1.129. We follow the same settings for the generating distributions

of surrogate exposures and the reclassification process coefficients. We considered two

different validation study sizes, 250 and 1000, and three different amount of measurement

errors. Results are given in Tables 3.18 to 3.20.

under more favorable conditions, RC estimators exhibit improved performances in terms

of bias, the RMSE, and coverage probability. RC methods show comparable estimation ac-

curacy and efficiency compared to the Bayesian estimator under the low measurement error

setting. As measurement error amount increases, Bayesian estimator starts to outperform

RC estimators, as it shows less bias and smaller RMSE. Hence, compared to RC estimators,
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the proposed Bayesian estimator shows better stability under various scenarios. However,

RC estimators are easier to implement since they do not require a long running time.
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Table 3.18: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of different estimators for es-
timating the three pPIFs, with different validation study size (Nv = 250, 1000). UN =
uncorrected, RCM/I , RCI , and IVS are defined in Section 4, Bayes = proposed. The simu-
lation results are based on 1000 data replications, multivariate normal true reclassification
model, and the low measurement error scenario. Coverage percentage between 93.6% and
96.4% in bold font are within the margin of error for 1000 replications.

Estimators

Nv pPIF UN RCM/I RCI IVS Bayes

250 pPIFX1 BIAS 82.46 -1.82 -3.11 -13.73 -0.36
MCSE 0.024 0.041 0.038 0.151 0.017
ASE 0.024 0.041 0.040 0.191 0.017

RMSE 0.096 0.042 0.039 0.159 0.019
Coverage 4.00 95.10 94.80 91.70 95.00

pPIFX2 BIAS 162.27 -2.98 -2.82 -72.55 0.88
MCSE 0.025 0.051 0.049 0.206 0.039
ASE 0.026 0.051 0.050 0.261 0.038

RMSE 0.098 0.052 0.50 0.228 0.039
Coverage 4.00 94.10 95.40 90.80 95.60

pPIFX1X2 BIAS 99.24 0.019 -0.75 -3.40 -9.46
MCSE 0.025 0.017 0.017 0.123 0.049
ASE 0.026 0.018 0.017 0.142 0.048

RMSE 0.166 0.017 0.017 0.133 0.050
Coverage 0.00 94.50 95.60 91.60 94.40

1000 pPIFX1 BIAS 80.21 -1.72 -0.47 -2.17 0.31
MCSE 0.024 0.039 0.037 0.061 0.016
ASE 0.022 0.038 0.038 0.061 0.015

RMSE 0.094 0.040 0.037 0.062 0.016
Coverage 5.00 92.70 94.80 93.70 94.60

pPIFX2 BIAS 167.57 -3.23 -1.28 -5.44 -2.05
MCSE 0.027 0.048 0.045 0.074 0.032
ASE 0.024 0.047 0.047 0.073 0.032

RMSE 0.101 0.049 0.046 0.075 0.032
Coverage 4.00 92.70 95.30 92.90 95.80

pPIFX1X2 BIAS 99.39 -0.11 -1.34 0.89 1.02
MCSE 0.028 0.016 0.016 0.045 0.039
ASE 0.024 0.017 0.016 0.045 0.039

RMSE 0.166 0.016 0.016 0.045 0.040
Coverage 0.00 95.90 95.10 93.50 94.80
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Table 3.19: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of different estimators for es-
timating the three pPIFs, with different validation study size (Nv = 250, 1000). UN =
uncorrected, RCM/I , RCI , and IVS are defined in Section 4, Bayes = proposed. The simu-
lation results are based on 1000 data replications, multivariate normal true reclassification
model, and the moderate measurement error scenario. Coverage percentage between 93.6%
and 96.4% in bold font are within the margin of error for 1000 replications.

Estimators

Nv pPIF UN RCM/I RCI IVS Bayes

250 pPIFX1 BIAS -31.09 -24.30 -3.72 -50.81 -0.67
MCSE 0.032 0.123 0.084 0.270 0.081
ASE 0.032 0.284 0.094 0.328 0.066

RMSE 0.048 0.145 0.086 0.298 0.107
Coverage 77.00 95.20 95.10 88.80 94.60

pPIFX2 BIAS -25.02 -90.12 -40.70 -131.28 -4.73
MCSE 0.035 0.195 0.131 0.299 0.091
ASE 0.033 0.395 0.143 0.373 0.079

RMSE 0.038 0.228 0.136 0.327 0.103
Coverage 88.00 95.40 95.00 87.70 93.20

pPIFX1X2 BIAS -27.96 -8.95 -3.74 -40.82 -20.63
MCSE 0.038 0.083 0.067 0.293 0.127
ASE 0.038 0.191 0.074 0.344 0.115

RMSE 0.061 0.087 0.068 0.332 0.137
Coverage 79.00 96.00 95.40 89.50 93.20

1000 pPIFX1 BIAS -24.39 -4.86 -2.54 -7.86 -3.71
MCSE 0.031 0.081 0.079 0.094 0.048
ASE 0.031 0.082 0.079 0.092 0.051

RMSE 0.041 0.083 0.080 0.096 0.049
Coverage 78.00 94.80 94.90 92.70 96.40

pPIFX2 BIAS -32.92 -27.72 -23.37 -15.42 -0.88
MCSE 0.035 0.120 0.117 0.108 0.054
ASE 0.032 0.124 0.118 0.105 0.055

RMSE 0.040 0.123 0.119 0.111 0.054
Coverage 86.00 94.80 94.40 91.60 96.00

pPIFX1X2 BIAS -26.13 -2.54 -3.74 -5.97 -20.76
MCSE 0.036 0.065 0.062 0.108 0.078
ASE 0.038 0.065 0.064 0.104 0.076

RMSE 0.057 0.066 0.064 0.109 0.080
Coverage 76.00 94.90 95.10 92.90 94.40
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Table 3.20: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of different estimators for es-
timating the three pPIFs, with different validation study size (Nv = 250, 1000). UN =
uncorrected, RCM/I , RCI , and IVS are defined in Section 4, Bayes = proposed. The simu-
lation results are based on 1000 data replications, multivariate normal true reclassification
model, and the high measurement error scenario. Coverage percentage between 93.6% and
96.4% in bold font are within the margin of error for 1000 replications.

Estimators

Nv pPIF UN RCM/I RCI IVS Bayes

250 pPIFX1 BIAS -52.53 -92.98 -18.45 -63.81 -17.76
MCSE 0.034 0.250 0.112 0.302 0.142
ASE 0.033 0.904 0.136 0.347 0.112

RMSE 0.069 0.301 0.116 0.333 0.180
Coverage 45.00 96.50 97.60 87.50 90.60

pPIFX2 BIAS -57.76 -364.98 -55.04 -145.53 -6.96
MCSE 0.037 0.433 0.174 0.331 0.116
ASE 0.034 1.324 0.217 0.408 0.102

RMSE 0.050 0.518 0.179 0.357 0.123
Coverage 81.00 96.30 96.50 87.70 91.60

pPIFX1X2 BIAS -53.04 -50.73 -11.32 -56.12 -88.29
MCSE 0.044 0.206 0.112 0.338 0.208
ASE 0.041 0.821 0.136 0.403 0.155

RMSE 0.099 0.235 0.115 0.372 0.249
Coverage 38.00 96.50 96.70 86.40 91.60

1000 pPIFX1 BIAS -53.17 -13.57 -13.95 -6.10 -2.76
MCSE 0.033 0.112 0.108 0.099 0.071
ASE 0.032 0.118 0.111 0.101 0.075

RMSE 0.070 0.115 0.112 0.101 0.074
Coverage 51.00 95.00 94.80 94.40 95.20

pPIFX2 BIAS -60.52 -63.28 -37.85 -28.64 -5.23
MCSE 0.038 0.192 0.172 0.114 0.063
ASE 0.033 0.196 0.173 0.113 0.067

RMSE 0.052 0.200 0.178 0.117 0.066
Coverage 77.00 95.40 94.60 93.50 95.80

pPIFX1X2 BIAS -54.28 -10.75 -9.57 -9.50 -8.77
MCSE 0.040 0.118 0.108 0.119 0.088
ASE 0.040 0.118 0.110 0.121 0.090

RMSE 0.099 0.122 0.111 0.122 0.091
Coverage 37.00 93.70 95.80 93.80 94.00
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3.7.4 A Simulation Study when the Internal Validation Study is a Bi-

ased Sample from the Main Study

We included an additional simulation study to examine the operating characteristics of

the Bayesian estimator when internal validation study (IVS) is a biased sample from

the entire population. Even though the IVS is not uniformly sampled from the main

study, the reclassification transportability still holds (while neither the single nor double

transportability conditions may not hold), and our estimator in theory should still be

effective in accurately estimating the pPIF in the presence of exposure measurement errors.

This simulation study aims to confirm this analytical conjecture, and the results may endorse

the application of our approach in general MS/IVS designs, where the IVS is not a random

sample from the MS.

We conducted the simulation by first generating surrogate exposures (Zi1, Zi2) ∼

N ((−0.2, 0.8)T ,Σz), where

Σz =

 1 0.2

0.2 1

 .

Each observation i = 1, ..., N is independently selected into the IVS according to a

Bernoulli variable Ti with

P(Ti = 1|Zi1, Zi2) =
exp(φ0 + φ1Zi1 + φ2Zi2)

1 + exp(φ0 + φ1Zi1 + φ2Zi2)

and (φ1, φ2) = (1,−0.5). We vary size of the IVS via changing the value of φ0. In

specific, we set the total number of observations in this simulation study N = 10000,

and vary φ0 ∈ {−4.5,−3.5,−2.8,−2}, which corresponds to sizes of IVS at around 100,

250, 500, and 1000. Similar to previous simulation studies, we generate the two true

exposures from a bivariate normal measurement error model, X̃i ∼ N (Γ∗Z̃i,Σx), where
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Z̃i = (1, Zi1, Zi2, Xi3)′ and Σx = Σz. The correctly measured exposure, Xi3, is generated

from the standard normal distribution. The parameter matrix for the reclassification model

is set as

Γ∗ =

−0.2 0.6 0.2 −0.7

0.1 0.2 0.4 −0.5

 ,

which leads to moderate degree of measurement errors. The exposure-outcome relationship

model is assumed logistic with

µi = E(Yi|Xi) =
exp(β0 + β1Xi1 + β2Xi2 + β3Xi3)

1 + exp(β0 + β1Xi1 + β2Xi2 + β3Xi3)
,

and β = (β1, β2, β3) = (1, 0.5, 0.5). The relative bias, MCSE, ASE, RMSE and coverage

probability are reported in Table 11 and 12, where the proposed sampler performs similarly

on the IVS sampled with bias.
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Table 3.21: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of the uncorrected and proposed
Bayesian estimators for estimating the three pPIFs, with different validation study size. The
simulation results are based on 1000 data replications, under β0 = −2 (common disease),
multivariate normal true reclassification model, biased validation study sample, and the
moderate measurement error scenario. Coverage percentage between 93.6% and 96.4% in
bold font are within the margin of error for 1000 replications.

N∗v Estimand Method Bias MCSE ASE RMSE Coverage

100

PIFX1

Uncorrected -28.61 0.007 0.007 0.071 0.00
Bayesian 1.41 0.042 0.036 0.045 89.10

PIFX2

Uncorrected -19.27 0.008 0.008 0.032 12.00
Bayesian 0.92 0.057 0.051 0.055 90.30

PIFX1,X2

Uncorrected -24.42 0.008 0.008 0.089 0.00
Bayesian 1.66 0.037 0.034 0.045 91.00

250

PIFX1

Uncorrected -28.23 0.007 0.007 0.071 0.00
Bayesian 0.76 0.025 0.024 0.032 92.60

PIFX2

Uncorrected -19.54 0.008 0.008 0.032 10.50
Bayesian -0.42 0.033 0.033 0.032 93.30

PIFX1,X2

Uncorrected -24.26 0.008 0.008 0.089 0.00
Bayesian 0.53 0.023 0.022 0.032 93.80

500

PIFX1

Uncorrected -28.66 0.007 0.007 0.071 0.00
Bayesian 0.45 0.017 0.018 0.017 93.90

PIFX2

Uncorrected -19.16 0.008 0.008 0.032 10.00
Bayesian 0.49 0.023 0.024 0.032 95.40

PIFX1,X2

Uncorrected -24.41 0.008 0.008 0.089 0.00
Bayesian 0.52 0.016 0.017 0.014 94.50

1000

PIFX1

Uncorrected -28.33 0.007 0.007 0.071 0.00
Bayesian -0.07 0.013 0.013 0.020 93.60

PIFX2

Uncorrected -19.37 0.008 0.008 0.032 9.50
Bayesian 0.24 0.017 0.018 0.018 94.70

PIFX1,X2

Uncorrected -24.27 0.008 0.008 0.087 0.00
Bayesian 0.07 0.012 0.012 0.017 95.50

∗Average Nv based on N = 10000 and values of (φ0, φ1, φ2).
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Table 3.22: Simulation results for the relative bias (% Bias), Monte Carlo standard error
(MCSE), average (posterior) standard error (ASE), root mean squared error (RMSE) and
empirical coverage percentage of 95% CIs (Coverage %) of the uncorrected and proposed
Bayesian estimators for estimating the three pPIFs, with different validation study size.
The simulation results are based on 1000 data replications, under β0 = −4 (rare disease),
multivariate normal true reclassification model, biased validation study sample, and the
moderate measurement error scenario. Coverage percentage between 93.6% and 96.4% in
bold font are within the margin of error for 1000 replications.

N∗v Estimand Method Bias MCSE ASE RMSE Coverage

100

PIFX1

Uncorrected -26.90 0.015 0.014 0.089 0.00
Bayesian 3.87 0.074 0.058 0.077 86.20

PIFX2

Uncorrected -18.60 0.016 0.016 0.033 43.50
Bayesian -3.90 0.111 0.093 0.114 87.40

PIFX1,X2

Uncorrected -22.26 0.016 0.015 0.105 0.00
Bayesian 3.15 0.058 0.049 0.063 88.60

250

PIFX1

Uncorrected -27.27 0.016 0.014 0.089 0.00
Bayesian 0.83 0.041 0.039 0.044 92.70

PIFX2

Uncorrected -18.98 0.016 0.016 0.032 39.00
Bayesian -1.75 0.063 0.060 0.062 93.30

PIFX1,X2

Uncorrected -22.60 0.016 0.015 0.107 0.00
Bayesian 0.71 0.033 0.033 0.031 93.50

500

PIFX1

Uncorrected -26.99 0.014 0.014 0.089 0.00
Bayesian 0.17 0.031 0.030 0.031 94.00

PIFX2

Uncorrected -18.82 0.016 0.016 0.032 41.00
Bayesian 1.68 0.047 0.045 0.046 93.30

PIFX1,X2

Uncorrected -22.33 0.016 0.015 0.105 0.00
Bayesian 0.93 0.025 0.025 0.032 93.40

1000

PIFX1

Uncorrected -27.06 0.017 0.014 0.091 0.00
Bayesian 0.33 0.023 0.023 0.031 93.60

PIFX2

Uncorrected -18.82 0.018 0.016 0.046 46.00
Bayesian -0.47 0.0350 0.0339 0.036 93.30

PIFX1,X2

Uncorrected -22.41 0.017 0.015 0.109 0.00
Bayesian 0.27 0.020 0.020 0.012 93.40

∗Average Nv based on N = 10000 and values of (φ0, φ1, φ2).
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Chapter 4

When customer dynamics is more than
relationship: A coupled hidden Markov

model framework1

Abstract

Despite the growing interest in using hidden Markov model (HMM) to study customer

dynamics and implement customer relationship management (CRM), little is known about

whether a single Markov process can adequately capture dynamics of customers. In

this research we propose a coupled non-homogeneous hidden Markov model (CNHMM)

framework that simultaneously considers two distinct yet (potentially) correlated Markov

processes, respectively representing the latent relational and monetary value of customers.

Leveraging data from a major telecommunication carrier in China, our findings indicate

that the proposed method is able to uncover the multi-dimensional latent states of customers

(dynamic customer values) and possible effects of covariates of interests (including mar-

keting mixes) on the evolutions of the latent states. Consumers’ choice of products (and

services) are jointly influenced by their relational and monetary value over time, and the

evolution of customers’ relational states is significantly dependent on their monetary states

1Co-authored with Yiwei Li and Xiangnan Feng
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(but not vice versa), suggesting customer heterogeneity in monetary value is a potential

antecedent of customer-firm relationship. Furthermore, we show how scenario analysis

using the proposed model can help firms formulate effective multidimensional dynamic

segmentation strategies for customer relationship management.

4.1 Introduction

Currently, firms widely use the recency, frequency, and monetary value (RFM) framework

to measure customer value (Petersen and Kumar, 2015; Lewis, 2006; Zhang et al., 2015),

conduct customer segmentation (Fader et al., 2005; Feinberg et al., 2016; Haenlein et al.,

2006), and allocate marketing resources to customers (Avery et al., 2012; Venkatesan and

Farris, 2012; Wübben and v. Wangenheim, 2008). This customer-centric approach, coupled

with the increasing availability of customer-generated big data, has led to an interest in

both the notion and the calculation of RFM-based metrics and scores (Ansari et al., 2008;

Ertekin et al., 2019; Venkatesan et al., 2007). Conceptually, while it seems straightforward

that customer value can be calculated independently on each of the three dimensions (i.e.

the recency, frequency, and monetary value), firms in practice assign different weights

to them according to their perceived importance. For an example, Reinartz and Kumar

(2000) suggest firms assign maximum importance to recency then to monetary value and

the lowest importance to frequency.

In understanding the differential importance of customer value in various dimensions,

a common practice is to associate each of the dimension (e.g. RFM metric) with firms’

sales performance, typically in regression analysis (Ansari et al., 2008; Ertekin et al.,

2019). This approach however implicitly assumes orthogonal relationships between the

dimensions, by including them in the regression as independent drivers of product sales.

In particular, we argue customer value measured in different dimensions are potentially

interdependent. Without loss of generality, we consider a two-dimensional case where a
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customer is measured in relational (e.g. recency and frequency in service-encounters or

product purchases) and monetary value (e.g. average spending per transaction). For instance,

loyal customers (i.e. high in relational value) may tend to spend more with the firm (i.e.

also high in monetary value), and the interdependence argument still holds true if we frame

the relationship reversely: customers who spends more can (i.e. high in monetary value)

easily become loyal customers. Therefore, we aim to develop a methodological framework

that helps firms identify potential interdependence between distinctive dimensions of

customer value, and also obtain rigorous empirical evidence revealing such interdependent

relationships.

For customer-centric firms, another challenge in understanding customer value is that

customer preferences and behaviors are fundamentally dynamic (Ansari et al., 2008; Rhee

and McIntyre, 2008; Zhang and Chang, 2021). For instance, customers who received a

direct mail piece last week may be less receptive to a direct mail piece this week (Neslin

et al., 2013), and some customers may stop interacting with a firm by starting to ignore

the communications coming from it (Ascarza et al., 2018). Leveraging real-time data

instead of static list-based audiences of yesteryear, firms start to manage the timing of

marketing efforts in order to obtain optimal results. Consequently, to contact the right

customer (whom) at the right time (when) has now become the central theme of customer

relationship management (CRM) and dynamic segmentation (Ma et al., 2015a; Netzer et al.,

2008; Zhang et al., 2014).

Insofar as the complexity lies in both the interactive nature of the dimensions of customer

value and the embedded dynamic process, we propose a flexible approach that builds on the

coupled nonhomogeneous hidden Markov model (CNHMM) framework (Sherlock et al.,

2013; Touloupou et al., 2020a,b). Hidden Markov models (HMMs) have been widely used

in marketing to study the dynamics in customer behavior, delineating how customers move

back and forth between different unobserved (or latent) states. These latent states, which

govern the observed customer behavior, include, for example the relationship between
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the customer and the firm (Ansari et al., 2012; Holtrop et al., 2017; Zhang et al., 2017),

purchasing propensity (Liechty et al., 2003; Schwartz et al., 2014), and price sensitivity

(Zhang et al., 2014).

Unlike the conventional HMM which includes a single Markov process (e.g. customer-

firm relationship states), the proposed CNHMM employs multiple underlying Markov

processes that evolve dynamically (e.g. two simultaneously evolving latent processes

representing customers’ relational and monetary states). Importantly, the CNHMM relaxes

the complete independence assumption among underlying Markov processes by explicitly

modeling the interdependence among latent states across underlying processes (e.g. whether

customer relational states drive monetary states or vice versa), and thus help firms to evaluate

the differential importance of each underlying process. In addition, we allow customer

latent states to be influenced by time-varying covariates (such as service encounters and

customer spending), leading to time-nonhomogeneous transition matrices, while accounting

for unobserved customer heterogeneity through individual-specific parameters both in the

latent state evolution and observed customer behavior (given state membership) stages.

We apply the proposed CNHMM model to a large-scale longitudinal mobile service

data from a major Chinese telecommunication carrier, comprising 217,726 subscribers

from a major city in southwest China for two years from October 2013 to September 2015.

We identify two distinctive latent processes, which correspond to the evolution of customer

relational and monetary states respectively. The results suggest an interesting interactive

pattern of the two underlying processes: the evolution of customers’ relational states is

dependent upon their monetary states but not vice versa. Specifically, customers in higher

monetary states are likely to transition to higher relational states, implying that the level

of customer engagement may be partially determined by how much money customers

spend with the firm. While the extant literature on HMM has predominantly focused on

single-Markov-process customer-firm relationships (Ascarza et al., 2018; Ma et al., 2015a;

Zhang et al., 2017), our results indicate dynamic monetary value serves as a potential source
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of customer heterogeneity in CRM. By considering the important heterogeneity, our model

also performs better than competing conventional frameworks at identifying the latent states

and predicting future customer behavior (e.g. service plan renewal, and phone purchase).

The proposed framework generates useful guides for firms to actively manage customer

base and effectively allocate marketing resources. Through identifying different factors that

can influence either the evolution of customer latent states or the observed behaviors, we

demonstrate that firms can achieve better performance via meaningful service interventions.

In particular, insights from (the evolution of) customer latent states can help firms formulate

effective promotion strategies. This is exemplified through our scenario analyses in which

we suggest, by focusing on customers in some specific segments, firms can increase the

expected revenue from service plan renewal and phone purchase of customers. In addition,

firms can dynamically (e.g. for every month) recover the latent monetary-relational state

(segment) of their existing customers and effectively allocate marketing resources according

to the perceived importance of each segment.

The remainder of this paper is organized as follows. Section 4.2 continues by discussing

the literature pertaining to customer value, dynamic segmentation, and HMM-based models.

Section 4.3 develops a flexible CNHMM model for firms to dynamically segment customers

based on their monetary and relational value. In Section 4.4 we apply our model to a large-

scale longitudinal mobile service data, and show how two Markov processes simultaneously

and interactively reflect the evolution of the customers’ monetary and relational states, which

govern customers’ phone purchase and service plan renewal behavior. Employing scenario

analyses, we also demonstrate how the telecom carrier could increase sales through actively

targeting the right segments. Finally, Section 4.5 concludes the paper with a discussion.
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4.2 Literature Review

In this section we discuss two streams of relevant literature. From a substantive point of

view, our work relates to customer value, more specifically, to how it serves as a basis for

CRM and marketing resource allocation. From a methodological point of view, our work

relates to a growing number of HMM applications in marketing.

4.2.1 Customer Value-based CRM

The contention that loyal customers are always more profitable is a gross oversimplication.

— Dowling and Uncles

Using a customer-value-based approach to conduct CRM yields several benefits (Ku-

mar and Reinartz, 2012), such as decreased cost (Lewis, 2004), reactivation of dormant

customers (Neslin et al., 2013), acquisition and retention of profitable customers (Lewis,

2006), and increased profits from marketing investments (Venkatesan et al., 2007). The

importance of customer value has led to keen and growing interests on customer lifetime

value (CLV) in a wide sense, for firms that wish to continuously and dynamically align

their resources with drivers of customer value (Kumar et al., 2008; Venkatesan et al., 2007;

Zhang et al., 2015). Customer value, or CLV, is a dynamic concept, not only because its

magnitude is likely to change over time, but also because the determinants of customer

value may alter significantly (Haenlein et al., 2006; Parasuraman, 1997).

With a dynamic perspective, firms are now finding their ways to optimize the current

as well as the future value of customers (Fader et al., 2005; Kumar and Reinartz, 2012).

Naturally customer-firm relationship has become the central focus and a key indicator of

future profitability (Ascarza et al., 2018; Reinartz and Kumar, 2003). A substantial body of

literature has evaluated the effectiveness of relationship-oriented interventions, such as the
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influence of loyalty programs (Lewis, 2004; Liu, 2007; Wang et al., 2016). While great

efforts have been directed to create and maintain strong relational bond between firms and

customers, doubts have been cast on the basic assumption that a loyal customer (high in

relational value) is always more profitable. For instance, Rust and Verhoef (2005) suggest

that action-oriented CRM interventions such as sales promotions, and direct mailing with

coupons are less effective among loyal customers. As loyal customers might have reached

their potential relational value in view of the number of products purchased, they might

be less likely to purchase additional ones, despite a received direct mailing with a call for

action (Dwyer et al., 1987; Grant and Schlesinger, 1995).

Our paper provides a new perspective for Dowling and Uncles (1997) which claims that

it is a gross oversimplication to equate loyal customers with higher profits. Specifically,

we consider the monetary value of customers as potential antecedents of their relational

value, and therefore a loyal customer is not necessarily more profitable, unless he reaches a

“minimum spend” in history. While several studies have included monetary value in predict-

ing CLV, they simply discount the future cashflows associated with a customer to yield a

net present value (NPV) (Reinartz and Kumar, 2000, 2003), or summarize the relational

and monetary value as independent predictors of CLV, such as through RFM framework

(Haenlein et al., 2006; Schmittlein and Peterson, 1994). Our approach used to assess the

customer value provides several benefits relative to standard CLV calculations. First, by

explicitly modeling the interdependence between the relational and monetary value, we

allow customers’ relational value to be endogenously and dynamically affected by their

monetary value (and vice versa); Second, the proposed framework allows firms to validate

the widely-held view that relational value (e.g. recency) is usually a more powerful dis-

criminator than monetary value (Fader et al., 2005; Hughes, 2000), and therefore enhances

the flexibility for firms directly to link CLV to marketing decisions, such as to identify

profitable yet short-lived group and then to stop chasing these customers (Reinartz and

Kumar, 2003), or to simply abandon unprofitable but strongly bonded customers (Haenlein

127



et al., 2006). Third, customer value assessed under our proposed alternative approach can

serve as a basis for segment classification, enabling firms to allocate scarce marketing

resources and make individual customer purchase-level forecast in a real time fashion.

The results based on our mobile service data suggest customers’ relational value can

be influenced by their monetary value, i.e., a customer in higher spending level tends to

remain more loyal to the firm (but not the vice versa). We emphasize that the purpose

of this empirical study is not to straightly conclude monetary value as the determinant of

customer relational value, since the relationship between these two important dimensions

are likely to change across industries and perhaps over time. That being said, we would

join the sentiment with the work of Dowling and Uncles that loyalty does not always

go first. Managers would be wise if they can flexibly conduct CRM based on both the

relational and monetary value of customers, assessing potential interdependences in between

simultaneously.

4.2.2 HMM-based CRM

Customers’ relational and monetary value are not only individual-specific, but also time-

varying. For example, a customer can move from a loyal to a disloyal segment over

time. To capture such dynamic evolution of customer value, HMMs are a representative

setup wherein customers migrate among a set of latent “states” (akin to latent segments in

dynamic customer segmentation) over time.

HMMs have made significant inroads into marketing over the past several decades

(Kappe et al., 2018; Montgomery et al., 2004; Zhang and Chang, 2021). Increasing

attempts are being made to use HMMs to model the dynamic change in customer-firm

relationship. Netzer et al. (2008) used an HMM in the context of university alumni donation

and classified alumni into dynamic relationship states based on their changing propensities

for donation. Montoya et al. (2010) employed an HMM to explore how pharmaceutical
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marketing managers optimize targeting activities to individual customers (physicians), and

found that detailing is more effective for acquisition whereas sampling is more effective for

retention. Ascarza et al. (2018) applied HMMs to two contexts, a daily deal website and a

performing arts organization, and separated two types of customer churns, the observed

and unobserved customer attrition (i.e. “overt” churn and “silent” churn).

Leveraging HMMs in the area of CRM has unique advantages (Du and Kamakura, 2006;

Moon et al., 2007; Zhang and Chang, 2021). First, in today’s information-rich environments,

customer-firms encounters take places across multiple channels and in various forms, and

customer relationship encompassing multiple encounters measures various facets of a

richer relational construct; Second, HMMs classify customers into a set of “latent states”

(e.g. low and high loyalty states) based on their observed (buying) behaviors, and such

empirically determined states naturally shed light on the segmentation strategies for CRM;

Third, HMMs estimate the movements of customers in and out of the segments and identify

drivers of the segment transitions, and therefore allow firms to perform dynamic targeting,

through tailoring marketing actions to nudge customers towards desirable segments; Forth,

marketing mix tailored for each segment can be created to directly influence customer

(state-dependent) behaviors, representing another useful feature of dynamic targeting.

Our CNHMM approach pushes forward the marketing literature of the HMM and its

applications in CRM from several aspects. First, the CNHMM provides a framework

to include multiple potentially correlated underlying Markov processes, by relaxing the

assumptions that only one or independent underlying process(es) should be there (e.g. for

CRM). We also find superior explanation power and predictive validity of the proposed

CNHMM relative to the traditional HMM and the factorial HMM (FHMM, e.g. an HMM

with two independent hidden Markov chains). Second, by adding monetary value as another

distinct yet potentially more fundamental segmentation criterion, the CNHMM allows

firms to implement multidimensional segmentation strategies. For example, managers

will be able to identify high-loyalty but low-monetary, and low-loyalty yet high-monetary
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customers; Third, based on the results generated by the CNHMM, firms can have richer

inputs (considering both latent customer relational and monetary states) to dynamically

tailor targeting actions for customers in a just-in-time fashion, as well as allocate marketing

resources to maximize the long-run profitability.

4.3 Model Development

We extend the existing methods for modeling customer relational value and monetary value

by proposing a joint modeling framework based on an CNHMM that can incorporate both

dimensions as two distinct yet interacting latent processes.

There is a collection of Marketing literature on using Markov models to characterize

customer dynamics (Zhang and Chang, 2021), within which, a sizable section of research

focuses on using HMMs to model dynamic changes in customer-firm relationships (Netzer

et al., 2008; Montoya et al., 2010; Ascarza et al., 2018). These studies predominantly

consider a single aspect, i.e., relational value, in the RFM framework for CRM. We note

that some studies modeled multidimensional behavior of customers (e.g., Ascarza et al.

(2018) modeled customers’ behaviors of opening promotion emails, and clicking on deals

or the unsubscribe button included in those emails) without considering the existence or

effects of multiple latent customer values. Therefore, in this study, we propose to analyze

dynamics of customer behaviors by simultaneously modeling two latent customer values

using a CNHMM.

Different from the traditional HMM and the factorial HMM, the CNHMM allows for

dependence between the two latent Markov chains representing the two evolving customer

values, monetary and relational, respectively. The approach enables firms to implement

finer multidimensional segmentation strategies. For instance, managers will be able to

segment customers into various groups based on their combinations of loyalty and spent

levels, and devise more specific and effective promotion strategies targeting each different
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group.

4.3.1 Preliminaries

We model customers’ multidimensional observed behaviors regarding telecom services.

At each period, we observe two customer behaviors for every individual: (i). whether or

not the customer has changed her mobile phone tier, and (ii). whether or not the customer

has changed her telecom service plan. For the customer behavior of changing mobile

phones, the customer first makes the decision on whether or not to change the tier of her

mobile phone; and if she decides to change phone tiers, she then will decide on choosing

an upgrade or a downgrade. The tiers of mobile phones are largely characterized by phone

prices. For the other customer behavior, we can observe in the data whether or not the

customer decides to change her telecom service plan at each period. Here, we solely focus

on the behavior of changing telecom service plans because such it can largely reflect the

level of engagement of a customer with the firm.

More formally, we observe a three-dimensional binary random vector Yi,ti = [Y c
i,ti
, Y p

i,ti
,

Y pl
i,ti

] with the realization yi,ti = [yci,ti , y
p
i,ti
, ypli,ti ], where yci,ti = 1 if customer i changes the

tier of her mobile phone at time ti (0 otherwise), ypi,ti = 1 if customer i upgrades her mobile

phone at time ti conditional on a phone tier change happens in the same period (0 for

downgrade), and ypli,ti = 1 if customer i changes her telecom service plan at time ti (0

otherwise).

We assume the existence of a pair of latent variables that respectively reflect the

customer’s monetary and relational values to the firm. Each latent variable takes values

from a set of latent states, and we model the likelihood, P(Yi,ti = yi,ti), as a function of

the latent state pairing occupied by customer i at time ti. For instance, we expect that a

customer who is highly interested in buying a newly released mobile phone that is more

expensive and switching to a new service plan will be captured by a latent state pairing
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that exhibits high probabilities of upgrading mobile phones and changing service plans. In

contrast, a customer who might be tightening her financial budget on wearable tech gadgets

and showing little interest in viewing different service plan options will be captured by a

latent state pairing with a high probability of downgrading mobile phones and perhaps a

low probability of switching service plans.

We assume that customers transition among the latent state pairings following a first-

order coupled Markov process, where for a given customer, the two latent states in period t

are independent conditional on latent states in period t− 1. This conditional independence

structure in the CNHMM bridges the gap between the overly simplistic assumption of

complete independence between the two latent states by the factorial HMM, and a poten-

tially over-parameterized HMM that assumes general dependence between the two latent

states. Furthermore, to better understand the evolutions and impacts of the two latent

customer values, we allow managerially relevant covariates such as average revenue per

user (ARPU) of different services and customers’ frequencies of service calls with the firm

to affect customers’ transitions among latent state pairings as well as their behaviors given

membership of a particular latent state pairing.

4.3.2 Model Specification

The model consists of two main components, both describing dynamics at the individual

level: (i). the latent state pairing evolution, and (ii). the customer’s state-dependent

behaviors (e.g., the probability of changing phone tiers, upgrading phones, and switching

service plans). We account for individual heterogeneity across customers by including

individual-specific parameters in both the states evolution and customer behaviors (given

state membership) processes.
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Latent States Evolution

We assume Km latent monetary value states, which differ with respect to the customer’s

probability of changing and upgrading/downgrading her mobile phone, and Kr latent

relational value states, which differ with respect to the probability of the customer switching

to other service plans. To capture the evolution of customers’ behaviors, we allow customers

to transition among latent state pairings over time. Let Zm
i,ti

and Zr
i,ti

denote the latent

state pairing (monetary and relational, respectively) occupied by customer i at time ti. The

evolution of Zm
i,ti

and Zr
i,ti

each follows a first-order hidden Markov process.

Conceptually, however, it will be overly simplistic to assume evolution processes of

a customer’s monetary and relational values to the firm are completely independent. For

instance, a customer is more likely to select products from a certain brand/firm even if they

are more expensive than alternatives with equal value of functionality when she occupies a

state of higher monetary values, and such phenomenon of brand/firm loyalty rarely happens

when the customer falls into a state of low monetary value. Considering such possible

scenarios, we assume that there could exist potential dependence between the two latent

variables when they are evolving over time. This assumption of dependent latent processes

leads to us adopting a CNHMM to describe the underlying transition dynamics. In specific,

with the CNHMM, we assume the following transition probability for the customer’s latent

state pairings:

P(Zm
i,ti+1, Z

r
i,ti+1|Zm

i,ti
, Zr

i,ti
) = P(Zm

i,ti+1|Zm
i,ti
, Zr

i,ti
)× P(Zr

i,ti+1|Zm
i,ti
, Zr

i,ti
). (4.1)

The two latent variables are interactively evolving in a way that the value of one latent

variable at time ti + 1 is dependent upon values of both latent variables at time ti. This is

equivalent to assuming the independence between Zm
i,ti+1 and Zr

i,ti+1 conditional on Zm
i,ti

and

Zr
i,ti

. Such conditional independence structure in the CNHMM serves as an intermediary
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between the overly simplistic assumption of complete independence between the two latent

states by the FHMM, and a potentially over-parameterized HMM that assumes general

dependence between the two latent states.

We model the customer’s probabilities of moving from one latent state to another using

multinomial logit models:

P(Zm
i,ti

= km2 |Zm
i,ti−1 = km1 , Z

r
i,ti−1 = kr)

=
exp

(
ζmi,km1 ,km2 + ηmkm1 ,km2 +Wm

i,ti−1(kr)′ρmkm2

)
∑Km

κm=1 exp
(
ζmi,km1 ,κm + ηmkm1 ,κm +Wm

i,ti−1(kr)′ρmκm
) (4.2)

for km1 , k
m
2 ∈ {1, . . . , Km};

P(Zr
i,ti

= kr2|Zr
i,ti−1 = kr1, Z

m
i,ti−1 = km)

=
exp

(
ζri,kr1 ,kr2 + ηrkr1 ,kr2 +W r

i,ti−1(km)′ρrkr2

)
∑Kr

κr=1 exp
(
ζri,kr1 ,κr + ηrkr1 ,κr +W r

i,ti−1(km)′ρrκr
) , (4.3)

for kr1, k
r
2 ∈ {1, . . . , Kr}. Here Wm

i,ti−1(kr) and W r
i,ti−1(km) are vectors of transition

covariates which also characterized the coupling mechanism between two Markov chains,

and we have

Wm
i,ti−1(kr) =

[
Wm

i,ti−1, I{kr = 2}, . . . , I{kr = Kr}
]
,

and

W r
i,ti−1(km) =

[
W r

i,ti−1, I{km = 2}, . . . , I{km = Km}
]
.

Parameter vectors ρmkm and ρrkr capture the effects of those covariates. Parameters ηmkm1 ,km2

and ηrkr1 ,kr2 determine propensities to transition from state km1 to km2 and kr1 to kr2, respectively.

134



Customers are assumed to differ in their propensities to transition among latent states. These

differences in transition probabilities reflect the hypothesis that customers may exhibit

different lifetimes or shorter (versus longer) runs of frequent activity. This heterogeneity

across customers is captured by individual-level propensities ζmi,km1 ,km2 and ζri,kr1 ,kr2 . For

identification purposes, we set ζmi,km1 ,1, ηmkm1 ,1, ρm1 , ζri,kr1 ,1, ηrkr1 ,1, and ρr1 as zero.

We assume the following initial condition to determine the latent state memberships

for customers in period 1. In specific, we assume that the probabilities that a customer

belongs to latent state pairing km and kr at time ti = 1 are determined by parameters

πm = (πm2 , . . . , π
m
Km) and πr = (πr2, . . . , π

r
Kr), where

P(Zm
i,1 = km) =


1

1 +
∑Km

κm=2 exp(πmκm)
, for km = 1

exp(πmkm)

1 +
∑Km

κm=2 exp(πmκm)
, for km = 2, . . . , Km

, (4.4)

and

P(Zr
i,1 = kr) =


1

1 +
∑Kr

κr=2 exp(πrκr)
, for kr = 1

exp(πrkr)

1 +
∑Kr

κr=2 exp(πrκr)
, for kr = 2, . . . , Kr

. (4.5)

Observed Behaviors

In each period, we observe whether the customer changes her model phone tier or service

plan, represented by the random vectorYi,ti = [Y c
i,ti
, Y p

i,ti
, Y pl

i,ti
]. In the model, conditional on

the latent state membership, we allow the customer’s behavior to be affected by covariates

(e.g., time to the nearest iPhone release date, number of available phone choices) that might

influence behavior without altering the latent states she occupies at the time. For example,

customers might be more likely to upgrade their mobile phones when a new influential

hi-tech smartphone is released to the market.
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Since the customer needs to make the decision on whether or not to upgrade/downgrade

her mobile phone conditional on her decision to change her mobile phone tiers, we model

the customer’s phone changing behavior via a two-stage approach, where the customer first

makes a decision on whether or not to change the tier of her mobile phone, and conditional

on the scenario where the customer decides to change phone tiers, she makes a second

decision on whether to upgrade or downgrade. Feng et al. (2020) suggest that (the price

of) mobile phone is an indicator of the social capital of the user, and thus we consider the

phone changing behavior is primarily associated with customers’ latent monetary value

state. This can also be reflected by our model-free evidence in section 4.4. The probability

of customer i deciding to change phone tier at period ti given the latent monetary state km

is

P(Y c
i,ti

= 1|Xc
i,ti
, Zm

i,ti
= km) =

exp(ξci,km + µckm +Xc
i,ti
′βckm)

1 + exp(ξci,km + µckm +Xc
i,ti
′βckm)

. (4.6)

This probability is modeled as a function of underlying propensities of changing phone

tiers that varies across latent monetary value states, µckm , across customers, ξci,km , and

customer-level time-varying covariates that might affect the phone tier changing behavior

conditional on a given state,Xc
i,ti

. Since both the propensity of changing phone tiers, µckm ,

and effects of covariates, βckm , are state-specific, customers in different monetary value

states can have different underlying propensities of changing phone tiers and different

sensitivity to stimuli from the time-varying covariates.

In a similar fashion, we can model the second stage of customers’ phone changing

behavior, where the probability of customer i in latent monetary value state km upgrading

her mobile phone at time ti, conditional on she has made the decision of changing phone
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tiers, is

P(Y p
i,ti

= 1|Xp
i,ti
, Zm

i,ti
= km) =

exp(ξpi,km + µpkm +Xp
i,ti

′βpkm)

1 + exp(ξpi,km + µpkm +Xp
i,ti

′βpkm)
. (4.7)

µpkm is the propensity of upgrading mobile phones across latent states. ξpi,km represents the

customer-level heterogeneity in phone upgrading propensity, andXp
i,ti

is the customer-level

time-varying covariates that might affect phone upgrading.

Finally, we model the remaining observed behavior of customers changing telecom

service plans. In the literature, the behavior of customers switching service plans often

reflects their latent relational value states to the firm. In specific, customers with higher

relational value exhibit higher levels of engagement with the firm (Lee et al., 2018), and

therefore show higher levels of interest in learning and switching to new service plans

provided by the same firm. We thus model the probability that customer i will switch

service plans in period ti given membership of relational value state kr as

P(Y pl
i,ti

= 1|Xpl
i,ti
, Zr

i,ti
= kr) =

exp(ξpli,kr + µplkr +Xpl
i,ti

′
βplkr)

1 + exp(ξpli,kr + µplkr +Xpl
i,ti

′
βplkr)

, (4.8)

where µplkr and ξpli,kr are population- and customer-level propensities of customer changing

service plans, Xpl
i,ti

is the customer-level time-varying covariates that might affect the

service plan switching behavior when in a given state, and βplkr is the corresponding effects

vector.

The specification of our model assumes that the two observed behaviors are inter-

connected via the hidden states, but conditionally independent given the latent state mem-

bership. Time-specific random effects could potentially be added to the probabilities of

observed behaviors given the latent state membership provided there is more interest in

measuring further correlations among these behaviors. We perform the model estimation

using the method of stochastic variational Bayes (SVB) due to the large size of our data.
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Details of the estimation approach is available in section 4.6.1 of the Appendix.

4.4 Results

We apply our CNHMM framework to a large-scale longitudinal mobile service data obtained

from a major Chinese telecommunication carrier. The telecom carrier operates by providing

customers with different options of mobile phones and service plans. Customers can choose

the type of products in terms of service plans and/or mobile phones based on their needs.

The more frequently appeared purchasing paradigms are: (i). a new customer joining the

carrier’s network by purchasing a service plan only, (ii). a new customer purchasing a new

mobile phone and a service plan from the carrier, (iii). an existing customer switching

to another service plan without purchasing new mobile phones from the carrier, and (iv).

an existing customer purchasing a new mobile phone and switching to another service

plan both provided by the carrier. A customer becomes a subscriber to the carrier once

she purchases a service plan. Subscribers can switch to other available service plans or

terminate the current service plan (unsubscribe from the carrier) at any time they desire

without additional costs.

Service plans offered by the carrier primarily differ in prices and volumes of three main

telecom services, namely, phone calls, SMSs, and mobile Internet data. Customers who

have higher technology affinity may tend to select service plans providing lower prices

on mobile Internet data. The telecom carrier also offers a large variety of mobile phones,

ranging from phones that do not support 3G network to those equipped with the most

cutting-edge technology. Service plans could also be sold together with a newly purchased

mobile phone, but such bundling is not compulsory. From the perspective of the carrier, one

important operating aspect is to retain subscribers through identifying their characteristics

and making timely targeting offers that improves profitability in the long-run.
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4.4.1 Data Description and Patterns

We collected data from a branch of the carrier located in a city of southwest China. An

overwhelming majority of the customers included in the data live in the same area, which

eliminates the factor of different development levels of telecommunication infrastructure to

a large extent. We focus on a cohort of customers that were (any point in time) subscribers

to the carrier’s service network within a time window from October 2013 to September

2015, a total of 24 months. This observation window includes 24 periods, as we record

customers’ behaviors and other related factors at the end of each month. The data comprise

217,726 subscribers. Since the data became uncollectable once subscribes terminate their

relationship with the carrier and no conclusive longitudinal results could be obtained with

data from a single observation period, we observe customers for a minimum of two and a

maximum of 24 periods.

In each period, two behaviors are observed for every customer: their decision on

whether or not to change phone tiers (including whether it is an upgrade or a downgrade),

and their decision on whether or not to change service plans. Phone tiers are formed by

categorizing mobile phones into different tiers mainly based on their prices, which showed

little fluctuation during the observation window. In addition, we observe some general

telecom service usage of customers, including total phone call time (made or received) in

minutes, total number of SMSs (sent or received), and the total mobile Internet data usage

in KB. Other time-varying factors were also recorded in the data, i.e., the tenure length

of the customer with the carrier, late fee frequencies of the customer, and the number of

available service plans/mobile phones etc.

In the data, the majority (169,648 subscribers, 77.9%) of customers ended up unsub-

scribing from the carrier within the observation window. Customers unsubscribing from

the carrier during the observation window on average spends 9.41 months (with a stan-

dard deviation of 5.56) with the carrier, which differs significantly from customers who

139



remain with the carrier at the end of the observation window. For customers who did not

unsubscribe, the average time with the carrier is 23.94 months with a standard deviation

of 0.25. The two groups of customers in terms of whether or not unsubscribe during the

observation window also differ considerably in the frequency of changing service plans,

where customers did not unsubscribe on average change service plan 0.88 times during

their time with the carrier, compared to those who unsubscribed at 0.28. This observation

seemingly suggests that there exists an association between customers’ loyalty to the carrier

and their frequency of changing service plans.

During our observation window, a total of 2,746,398 instances (person×month) were

rerecorded in the data, among which, the change of phone tiers and service plans occur

in 3.1% and 3.3% of these instances, respectively. We categorize mobile phones into five

different tiers, from low to high, according to their prices. It is observed in the data that

probabilities of customers purchasing new phones while using mobile phones in these

five tiers are 2.6%, 2.6%, 3.3%, 4.7%, and 5.6%, respectively. This observation roughly

implies that there might exist an association between customers’ financial capability and

their behavior of phone change.

The behaviors of changing mobile phone tiers and service plans also appear to exhibit

associations when observed longitudinally. In specific, we can compute the empirical

probability of one behavior occurring conditional on the other behavior is observed in the

same period (t). In a similar fashion, the empirical probability of a behavior occurring

can also be computed for times when the other behavior occurs after the next or before

the previous certain number of periods (in period t− n or t+ n). We computed empirical

probabilities for both behaviors and plotted our findings in Figure 4.1.

In the left panel of Figure 4.1, we see that, for a customer who changes phone tiers

at time t, there is a considerable increase in the empirical probability of her switching

service plans at the same time (the empirical probability at time t is over 6%). This

could be partially due to the fact that a large number of service plan sales are bundled
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together with mobile phone sales. However, it is also noted that this increase in service

plan changing probability persists into times several observation periods after the phone

change has occurred (empirical probabilities of changing service plans are less than 2%

before the phone change, but grow to around 4% after the phone change). In contrast, the

right panel of Figure 4.1 shows the empirical probabilities of phone change conditional on

a service plan change occurs at time t, where the phone changing probability spikes in the

same period of service plan change large due to the bundling sale strategy (the empirical

probability at time t is over 6%). The persistent impact of service plan changes on the

behavior of phone change, however, does not seem to exist in observation periods after

the plan change occurs (empirical probabilities of changing mobile phones are around 4%

before and after the service plan change). From this observation, we postulate that there

could be longitudinal dependence between the corresponding latent attributes behind the

two observed behaviors, which we later capture and analyze using our proposed CNHMM

framework.

t− 3t− 2t− 1 t t+ 1t+ 2t+ 3
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(a) Plan change probability (%)
in neighboring time periods conditional

on phone change happens at time t

t− 3t− 2t− 1 t t+ 1t+ 2t+ 3

0
1
2
3
4
5
6
7

(b) Phone change probability (%)
in neighboring time periods conditional

on plan change happens at time t

Figure 4.1: Empirical Distributions of Plan Change Probability (%) and Phone Change
Probability (%) Conditional on the Occurrence of the Other Behavior.

There are certain limitations with the model-free analysis presented: (i). we are making
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inference about individual-level customer dynamics from aggregate data patterns with-

out controlling for individual heterogeneity, and (ii). the patterns analyzed are largely

qualitative, which leads to suggestive results rather than more substantiated explanatory

mechanism. Therefore, in the ensuing sections, we utilize our proposed modeling frame-

work to address these problems by incorporating individual heterogeneity and by providing

more quantitative and detailed explanations for the findings.

4.4.2 Covariates

In this section, we introduce covariates included in each part of the model. The model

comprises two main components: (i). the two observed behaviors (mobile phone change and

service plan change), and (ii). the latent states evolution (affecting the two behaviors) over

time. While some covariates are more likely to impact customers’ behavior instantaneously,

other variables might affect their decision-making long-term in the future. For example, if

a customer has been continually having more phone calls or SMSs with people who are not

in the carrier’s service network, she becomes less likely to stay with the carrier and search

for other service plans in the future. We account for both types of effects by including

variables that are expected to have a short-term impact via the observation part of the model

and variables that are likely to have a longer-term impact in the future via part of the model

that describes latent state transition dynamics.

Observed Behaviors

We consider several variables that might have effects on customers’ decision on changing

mobile phones. One set of variables included in the model are the customer’s total usage

volumes of three primary telecom services, namely, phone calls in minutes (Call V oli,ti),

SMSs (SMS V oli,ti), and mobile Internet data in KB (Net V oli,ti). Customers’ decision

to upgrade or downgrade could partially depend on whether their current mobile phones
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matches well with the functions (e.g., mobile Internet) they desire to use. For example,

customers who exhibit high usage of mobile Internet data are more likely to upgrade if their

current mobile phones do not support high-speed mobile Internet networks.

The using time of current mobile phone (Phone Using T imei,ti) is another variable

that may factor into customers’ decision process of changing phones, where a sense of

attachment or convenience is often established if the customer has been using her current

mobile phone for a longer duration, leading to a reduced change of her changing phones.

Customers’ affinity for technology may also be an influential factor in their decision to

change mobile phones. To capture this effect, we included two related variables, where

one dummy variable (Smartphonei,ti) indicates whether or not the current mobile is a

smartphone, and another variable (iPhone Releasei,ti) measures the time between the

current observation period and the nearest iPhone release date. Here we use iPhone

as a surrogate for an influential mobile phone that represents high-end technology with

a large base of followers, and its release might sway customers’ decision of changing

phones substantially. Besides aforementioned variables, we included another variable

(Available Phone Choicesi,ti), which represents the number of different available mobile

phone types offered by the carrier, as a control covariate. We assume that both stages of the

phone changing behavior might be influenced by the same set of variables. Therefore, with

reference to (4.6) and (4.7), we have

Xc
i,ti

= Xp
i,ti

= [Call V oli,ti , SMS V oli,ti , Net V oli,ti , Phone Using T imei,ti ,

Smartphonei,ti , iPhone Releasei,ti , Available Phone Choicesi,ti ]

For the customer behavior of changing service plans, we expect it to also be affected by

customer’s total usage volumes of three primary telecom services, phone calls in minutes

(Call V oli,ti), SMSs (SMS V oli,ti), and mobile Internet data in KB (Net V oli,ti). We also

include the variable, Available Phone Choicesi,ti , representing the number of different
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available telecom service plans offered by the carrier, as a control covariate. With reference

to (4.8), we have

Xpl
i,ti

= [Call V oli,ti , SMS V oli,ti , Net V oli,ti , Available Phone Choicesi,ti ] .

Summary statistics of covariates included in the observation sub-model are given in Table

4.1.

Table 4.1: Summary statistics of covariates included in the observation sub-model (N =
2, 746, 398).

Covariate Minimum Maximum Mean Std. Dev. Median

Call Volume
0.00 9721.90 197.61 283.47 104.93

(in mins)
SMS Volume 0.00 21788.00 92.44 154.32 42.00
Net Volume

0.00 107802.66 192.73 713.72 16.72
(in KB)

Phone Using
0.00 2717.00 410.90 354.38 313.00

Time (in days)
Smartphone

0.00 1.00 0.83 0.38 1.00
(dummy)

iPhone Release
0.00 181.00 92.69 54.07 92.00

(in days)
Available Phone

255.00 289.00 277.20 11.22 281.00
Choices

Available Plan
189.00 243.00 216.20 19.03 212.00

Choices

Latent State Transitions

As discussed previously, variables that are more likely to affect customers’ behaviors long-

term in the future are included in the latent state transition part of the model. For the latent

process representing the regime-switching of customers’ monetary value, we include each

customer’s average revenue per user (ARPU) for the three primary telecom services, phone

call (Call ARPUi,ti), SMS (SMS ARPUi,ti), and mobile Internet data (Net ARPUi,ti) as
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part of the variables that may affect changes of the customer’s latent monetary value. ARPU

values in each separate category contains information of customers revenue generating

value to the carrier, which can be integrated into a unified customer monetary value by being

incorporated into the transition model. We add a dummy variable (Roamingi,ti) indicating

whether or not the customer spends significant time in a roaming status2, which might impact

customer monetary value. Since our modeling framework allows dependence between the

two latent processes, dummy variables (I{kr = 2}, . . . , I{kr = Kr}) indicating the value

of the other latent variable, Zr
i,ti−1, is also included in the transition covariates. Therefore,

with reference to (4.2), we have

Wm
i,ti

(kr) = [Call ARPUi,ti , SMS ARPUi,ti , Net ARPUi,ti ,

I{kr = 2}, . . . , I{kr = Kr}]

For the latent process representing the evolution of customers’ latent relational value

to the carrier, we include variables that are expected to affect the customers’ relationship

with the firm. One variable we considered is a customer’s tenure length with the carrier

(CI Tenurei,ti), where longer tenure with carrier creates stronger sense of affinity or

convenience, leading to higher relational value. The other variable (Call − In− Call −

Outi,ti) included is a variable indicating the customer’s communication patterns with others

who are within or outside of the carrier’s service network. Call− In−Call−Outi,ti = 1

if customer i has more within-network phone call time in period ti; Call − In− Call −

Outi,ti = −1 if the customer has more out-of-network phone call time in period ti;

Call−In−Call−Outi,ti = 0 if the customer has equal phone call time in both categories

in period ti. In addition, we included carrier’s service phone call frequency with the

customer (Service Call Freqi,ti) and the customer’s late fee frequency (Late Fee Freqi,ti)

2Every telecom service account has a registration area. When the customer is using telecom service
outside of the registration area, a roaming fee is incurred. The roaming fee exists for all Chinese telecom
carriers.
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to capture the effect of qualities of past interactions between the customer and the carrier on

the customer’s latent relational value. Similar to the monetary value latent process, we also

include dummy variables (I{km = 2}, . . . , I{km = Km}) indicating the value of the other

latent variable, Zm
i,ti−1, in the transition covariates. With reference to (4.3), we thus have

W r
i,ti

(km) = [CI Tenurei,ti , Call − In− Call −Outi,ti , Service Call Freqi,ti ,

Late Fee Freqi,ti , I{km = 2}, . . . , I{km = Km}] .

Table 4.2 reports the summary statistics for covariates included in the transition sub-model.

Table 4.2: Summary statistics of covariates included in the transition sub-model (N =
2, 746, 398).

Covariate Minimum Maximum Mean Std. Dev. Median

Call ARPU 0.00 18020.05 61.76 59.08 51.00
SMS ARPU 0.00 704.40 0.85 4.13 0.00
Net ARPU 0.00 2239.36 10.02 28.06 0.00
Roaming

0.00 1.00 0.13 0.34 0.00
(dummy)
CI Tenure 0.00 333.00 43.45 61.82 23.00

Call-In-Call
-1.00 1.00 -0.56 0.75 -1.00

-Out
Service Call

0.00 706.00 0.95 2.93 0.00
Freq

Late Fee
0.00 654.00 9.05 7.43 7.00

Freq

4.4.3 Model Selection

We split the data into a calibration period (from October 2013 to March 2015) and a

validation period (from April 2015 to September 2015). We conduct the model estimation

varying the number of states from one to four in both latent Markov chains and compute the

deviance information criterion (DIC) (Spiegelhalter et al., 2002), in-sample mean squared

error (ISMSE), and in-sample prediction accuracy (ISPA), as well as two out-of-sample
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metrics: out-of-sample mean squared error (OSMSE) and out-of-sample prediction accuracy

(OSPA) to select a suitable model. We use these metrics to select number(s) of states for

the CNHMM, the factorial HMM (FHMM), and the nonhomoenegous HMM (NHMM)

with one latent Markov chain.

With reference to Table 4.12 in section 4.6.4 of the Appendix, the CNHMM with the

best DIC and ISMSE is the model with three latent states in both Markov chains, whereas

models with other numbers of states occasionally show better performances in ISPA. As for

out-of-sample metrics, the CNHMM with three latent states in both Markov chains displays

the best performance in both OSPA and OSMSE. We therefore use the specification with

three latent states in both Markov chains as the model for data analysis. The model selection

results for the FHMM is shown in Table 4.13 in section 4.6.4 of the Appendix, where the

FHMM with four monetary value states and two relational value states are chosen because it

gives the best performance in OSMSE and OSPA. While the FHMM with four states in both

Markov chains performs slightly better in DIC, ISMSE, and ISPA, we chose the chose the

more parsimonious specification with fewer number of states. Table 4.14 in section 4.6.4 of

the Appendix shows the model selection results of the NHMM, where a three state model

performs the best in multiple metrics, including DIC, ISMSE, and OSMSE, and among the

best in other metrics. In addition to the three latent state models, we also estimate a logistic

regression model without the latent state dynamics. The model comparison results for these

four competing models are shown in Table 4.3 below. The proposed CNHMM compared

favorably to other model specifications in both in-sample and out-of-sample metrics, where

it shows lower DIC, ISMSE, and OSMSE, and higher ISPA and OSPA.

4.4.4 Model Estimation Results

In this section, we present our estimation results by first summarizing the state-specific

behaviors for each latent state in order to characterize them. This is then followed by a
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Table 4.3: Model comparison results.

Model DIC ISMSE ISPA OSMSE OSPA

CNHMM 54127.10 0.059 0.978 0.169 0.933
FHMM 56982.58 0.061 0.979 0.177 0.930
HMM 55618.99 0.060 0.977 0.179 0.923

Logistic
98093.10 0.165 0.848 0.357 0.641

Regression

discussion of the effects of covariates on customer behavior in each of the latent states and

latent state transition dynamics. Values of covariates are standardized before entering into

the model to prevent disproportional impacts of certain variables.

4.4.5 Characterizing Latent States

Table 4.4 presents estimated averages of customers’ probabilities of changing mobile

phone tiers, upgrading mobile phones, and changing service plans for each of the hidden

states. Following previous modeling assumption, customers’ phone changing behavior

Table 4.4: Estimated averages of state-specific behaviors.

Monetary Prob (Change Prob Relational Prob (Change
Value State Phone Tier) (Upgrade) Value State Service Plan)

M1 0.054 0.577 R1 0.049
M2 0.035 0.490 R2 0.055
M3 0.047 0.334 R3 0.084

is mainly associated with their latent monetary value states, and customers’ service plan

changing behavior is primarily affected by their latent relational value states. Customers

in monetary value state M1 show the highest probability of changing mobile phone tiers

(P(Change Phone Tier) = 0.054) as well as highest probability of upgrading their mo-

bile phones (P(Upgrade) = 0.577). These two probabilities both decrease on average

when customers transition from state M1 to either state M2 or state M3. Customers

in monetary state M2 are characterized by having the lowest probability of changing
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phone tiers (P(Change Phone Tier) = 0.035) and the median probability of upgrading

(P(Upgrade) = 0.490). In comparison, customers in monetary state M3 have the me-

dian probability of changing phone tiers (P(Change Phone Tier) = 0.047) and the lowest

probability of upgrading (P(Upgrade) = 0.334). Since customers in states M1, M2,

and M3 respectively show the lowest to the highest average probability of upgrading

their mobile phones, we correspondingly label states M1, M2, and M3 as latent states

with high, moderate, and low monetary values. As for service plan changing behaviors,

customers in relational value state R1 shows the lowest average probability of chang-

ing service plans (P(Change Service Plan) = 0.049). This probability increases as cus-

tomers transition from state R1 to states R2 (P(Change Service Plan) = 0.055) and R3

(P(Change Service Plan) = 0.084). We therefore label states R1, R2, and R3 as latent

states with low, moderate, and high relational values, respectively.

Covariate Effects on Customer Behaviors

We now discuss how certain factors affect customers’ state-specific behaviors of changing

mobile phones and service plans. Table 4.5 presents the estimates and standard deviations

for the effects of covariates on the behavior of changing phone tiers. In model specification,

we allow the effects of covariates to be state-specific. Hence, effects of the same covariate

could vary across columns, depending on which latent state customers occupy.

From Table 4.5, we can see that for customers in the highest and lowest monetary value

states (M1 and M3), if the current phone is a smartphone, they are less likely to switch for

a mobile phone in a different tier. For customers in the lowest monetary state (M3) who

are already using a smartphone, there is a higher chance that their need for technology is

readily satisfied by their current equipment; and a lack of monetary budget could further

prevent them from switching to phones in other tiers. For customers in the highest monetary

state (M1) who are already using smartphones, their current equipment is likely to be more

technologically advanced mobile compared to other customers. Hence there could be a
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Table 4.5: Covariate effects on changing mobile phone tiers.

Covariate
Monetary Value States

M1 (“highest”
M2 M3

monetary value)

Call Volume
−0.151 0.113 0.288
(0.481) (0.761) (0.532)

SMS Volume
−0.134 −0.050 −0.093
(0.505) (0.751) (0.522)

Net Volume
−0.110 0.113 0.258
(0.447) (0.705) (0.484)

Phone Using −1.240∗∗ −0.903 −1.226∗∗

Time (0.529) (0.734) (0.584)

Smartphone
−1.874∗∗ −1.891∗∗ −1.907∗∗

(0.559) (0.720) (0.588)

iPhone Release
−0.039 0.089 −0.282
(0.447) (0.730) (0.512)

Available Phone 0.248 0.958 0.343
Choices (0.439) (0.653) (0.530)

1. ∗∗ indicates 95% CIs not including 0.
2. Standard deviations are given in parentheses.

lack of motivation for them to switch to phones that belong to other tiers. Decisions of

customers in the moderate monetary states (M2) are less likely to be affected by the type of

their current mobile phones. The effects of phone using time are negative across all three

latent states, which substantiates our assumption that longer using time builds up familiarity

and reduces customers’ chances of switching to other phones in different tiers.

Results of covariate effects on the behavior of upgrading mobile phones are presented

in Table 4.6. Customers in all three latent monetary value states are more likely to upgrade

their mobile phones with increased usage in primary telecom services, phone calls, SMSs,

and mobile Internet data. Increased usages appear to have largest impacts on customers in

the moderate monetary value state (M2).

For customers who have made the decision to change phone tiers, longer using time

of their current mobile phones seem to lower their probabilities of upgrading. This could
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Table 4.6: Covariate effects on upgrading mobile phones.

Covariate
Monetary Value States

M1 (“highest”
M2 M3

monetary value)

Call Volume
0.336∗∗ 0.950∗∗ 0.747∗∗

(0.171) (0.303) (0.106)

SMS Volume
0.536∗∗ 0.939∗∗ 0.805∗∗

(0.075) (0.213) (0.094)

Net Volume
0.328∗∗ 0.920∗∗ 0.776∗∗

(0.069) (0.135) (0.142)
Phone Using −0.920∗∗ −1.209∗∗ −1.102∗∗

Time (0.228) (0.282) (0.144)

Smartphone
0.144 0.244 0.112

(0.955) (0.257) (0.144)

iPhone Release
−0.763∗∗ −0.908∗∗ −0.575∗∗

(0.230) (0.169) (0.208)
Available Phone 0.865∗∗ 0.769∗∗ 0.869∗∗

Choices (0.272) (0.109) (0.275)
1. ∗∗ indicates 95% CIs not including 0.
2. Standard deviations are given in parentheses.

be caused by their familiarity established with their current equipment, which curbs their

enthusiasm, to certain extent, on pursuing expensive phones that offer additional functions

which they might not use. On the other hand, however, the impact of newly released

hi-tech mobile phones might not be overlooked, as the closer it is to the iPhone release data,

the more likely for customers to upgrade their mobile phones. The number of available

mobile phone types offered by the carrier also has positive effects on customers upgrading

mobile phones, since it is more likely for customers to search for mobile phones that offer

significantly more functions with slightly higher prices when given more choices.

Table 4.7 summarizes the covariate effects on the customer behavior of changing

service plans. Customers in the highest relational value state (R3) are likely to be affected

by their usages of SMSs and mobile Internet data. When customers are enjoying good

relationships with the carrier, they tend to search for more suitable service plans when they
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are experiencing increased telecom service usage. For customers in all three relational

value states, an increased number of service plans could also increase their likelihoods in

switching to a more suitable plan according to their own situations, which corroborates our

assumption.

Table 4.7: Covariate effects on changing service plans.

Covariate
Monetary Value States

R1 (“lowest”
R2 R3

relational value)

Call Volume
−0.069 0.044 0.298
(0.147) (0.145) (0.090)

SMS Volume
−0.005 −0.104 0.629∗∗

(0.182) (0.135) (0.189)

Net Volume
0.059 0.036 0.128∗∗

(0.056) (0.059) (0.066)
Available Phone 0.710∗∗ 0.769∗∗ 1.707∗∗

Choices (0.013) (0.015) (0.058)
1. ∗∗ indicates 95% CIs not including 0.
2. Standard deviations are given in parentheses.

Covariate Effects on Latent State Transition

Covariate effects on latent monetary state transition dynamics are given in Table 4.8. Recall

that coefficients corresponding to the first latent state in (4.2) and (4.3) are set to zero for

identification purposes. Therefore, covariate effects, ρmkm , can be interpreted as increasing

the value of a covariate renders it more or less likely for customers to transit to state km

than to state 1. In Table 4.8, we can see that ARPU values for primary telecom services

have negative effects on customers transitioning to latent states with lower monetary values

(states M2 and M3). The effects of phone call ARPU are significant for transitions to both

moderate monetary value state and low monetary value state, whereas SMS ARPU and

mobile Internet data ARPU are significant for transition to the low monetary value state.

Effects of dummy variables representing membership of the relational value state are not
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statistically significant, which implies that the transition dynamics of customers’ latent

monetary value states do not depend on their latent relational value.

Table 4.8: Covariate effects on monetary value latent state transition.

Covariate
Monetary Value States

M2 M3

Call ARPU
−1.107∗∗ −2.143∗∗

(0.509) (0.607)

SMS ARPU
−1.053 −1.584∗∗

(0.813) (0.778)

Net ARPU
−1.121 −1.389∗∗

(0.619) (0.535)

Roaming
−1.493 −1.294
(1.391) (1.333)

R-State-1
−1.024 0.192
(1.237) (1.120)

R-State-2
−0.277 0.172
(1.142) (1.203)

1. ∗∗ indicates 95% CIs not including 0.
2. Standard deviations are given in parentheses.

Table 4.9 shows the covariate effects on relational value latent state transition. Cus-

tomers are more likely to transition to higher relational value states if they have longer

tenure with the carrier, which corroborates our initial assumption. It is also observed from

the results that customers are more likely to transition to latent states with higher relational

values if customers have higher degree of dependence of the carrier’s because majorities of

their contacts are within the carrier’s network. Service quality of the carrier could play a

significant role in increasing customers’ likelihoods of transitioning to higher relational

value states. Higher service call frequencies and lower frequencies of late fees can both

shift customers to having higher relational values to the carrier.

Different from the latent monetary value states transition, dummy variables representing

membership of the monetary value state in fact show significant effects on the transition

dynamics of customers’ latent relational value states. In specific, the customer is less likely
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to transition to states with higher relational values in the future if she is currently in a

lower monetary value state. Such effects are significant for transitions to both moderate

relational value state (R2) and high relational value state (R3). This result implies that the

evolution of customers’ latent relational value, to certain extent, depends on their latent

monetary value. However, the evolution of customers’ latent monetary value shows no

significant dependence on their relational value. This finding can lead to various managerial

implications for the carrier to implement with the goal of achieving more effective CRM

and increasing profits in the long-run.

Table 4.9: Covariate effects on relational value latent state transition.

Covariate
Relational Value States

R2 R3

CI Tenure
0.920∗∗ 0.787∗∗

(0.087) (0.357)
Call-in-Call- 1.212∗∗ 2.201∗∗

out (0.163) (0.128)
Service Call 2.459∗∗ 0.585∗∗

Freq (0.023) (0.162)
Late Fee −0.826∗∗ −1.304∗∗

Freq (0.071) (0.071)

M-State-1
−1.125∗∗ −1.861∗∗

(0.086) (0.109)

M-State-2
−1.513∗∗ −1.422∗∗

(0.243) (0.352)
1. ∗∗ indicates 95% CIs not including 0.
2. Standard deviations are given in parentheses.

4.4.6 Scenario Analyses

In this section, we present some examples of possible managerial implications that can be

gained for the carrier using our proposed CNHMM framework. We start by recovering

latent state memberships using model estimation results. Managerial implications are then

given via scenario analyses where we compare effectiveness of different targeting strategies
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based on the model.

Recovering Latent State Memberships

We use parameter estimates to compute the probability of each customer belonging to

each state at any time period. The forward-backward algorithm is adopted to calculate the

posterior probability that customer i is in monetary value state km and relational value state

kr at time ti. Details of the forward-backward algorithm is available in section 4.6.3 of the

Appendix. We then averaging these probabilities across customers to obtain estimates of

the proportion of the customer base in each state pairing at any time period. The evolution

of these proportions over time during the calibration period is given in Table 4.10.

Table 4.10: Latent state membership proportions.

Time
Latent State Pairings

M1R1 M1R2 M1R3 M2R1 M2R2 M2R3 M3R1 M3R2 M3R3

2013/11 0.282 0.089 0.015 0.025 0.005 0.035 0.416 0.084 0.050
2013/12 0.332 0.025 0.017 0.019 0.001 0.039 0.502 0.021 0.043
2014/01 0.279 0.079 0.015 0.017 0.004 0.056 0.449 0.063 0.040
2014/02 0.289 0.094 0.014 0.023 0.006 0.062 0.413 0.065 0.035
2014/03 0.260 0.083 0.013 0.018 0.004 0.038 0.471 0.074 0.038
2014/04 0.268 0.094 0.014 0.025 0.006 0.026 0.450 0.078 0.039
2014/05 0.264 0.094 0.015 0.022 0.005 0.025 0.459 0.074 0.042
2014/06 0.267 0.093 0.016 0.022 0.005 0.026 0.455 0.073 0.043
2014/07 0.261 0.096 0.017 0.024 0.005 0.037 0.441 0.076 0.043
2014/08 0.265 0.101 0.015 0.034 0.006 0.029 0.428 0.078 0.043
2014/09 0.258 0.098 0.015 0.056 0.005 0.019 0.429 0.077 0.044
2014/10 0.249 0.088 0.014 0.070 0.006 0.005 0.449 0.076 0.043
2014/11 0.252 0.081 0.012 0.066 0.006 0.003 0.464 0.073 0.042
2014/12 0.239 0.072 0.013 0.070 0.006 0.003 0.477 0.074 0.047
2015/01 0.239 0.073 0.013 0.066 0.006 0.004 0.478 0.073 0.050
2015/02 0.241 0.074 0.013 0.068 0.007 0.004 0.469 0.073 0.050
2015/03 0.257 0.076 0.013 0.030 0.008 0.001 0.495 0.074 0.046

Understanding the evolution of customers’ latent state membership could help the carrier

gain a better understanding of the customer base. For example, we find that proportions of
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customers within the calibration period remain relatively stable. In specific, high monetary,

moderate, and low monetary value customers respectively take up around 37%, 6%, and

57% of the customer base with certain fluctuations from time to time. There exists a gradual

decline in the proportion of customers in the high monetary value state, accompanied

by a gradual increase in the proportion of customers in the low monetary value state,

with the proportion of customers in the moderate monetary value state staying relatively

stable. For relational value states, customers occupy low, moderate, and high relational

states at proportions of roughly 75%, 15%, and 10% in each time period. There appears

to be a gradual increase in the proportion of customers in the low relational value state,

accompanied by a gradual decline in the proportion of customers in the high relational

value state, with the proportion of customers in the moderate relational value state staying

relatively stable. In the next section, we explore the strategies in terms of marketing actions

that the carrier could potentially implement based on customers’ latent state memberships

to achieve better CRM and improved profitability.

Scenario Analyses

We use scenario analyses to demonstrate how the model can help the carrier increase

customers’ activity levels in changing and upgrading mobile phones as well as changing

service plans. We compare results from strategies based on the model with other approaches

using the validation data (from April to September 2015, six months in total). Specifically,

we first estimate the latent state probability at the end of the calibration period for every

customer in the validation data, and assign her to a latent state pairing if the probability of

belonging to that paring is the largest. Using estimated parameters and transition covariates,

the latent state probability at the beginning of the validation period for each included

customer can also be estimated and a latent state pairing can be assigned to her in a similar

fashion. Sequentially, latent state membership at each period in the validation data for all

included customers can be then estimated.
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Since we have obtained estimates of latent state membership at each period in the

validation data, we can then estimate the behavior probabilities of phone mobile change,

mobile phone upgrade, and service plan change for each customer. We then compute

average behavior probabilities across all customers for each time period in the validation

data. These average behavior probability estimates can be obtained for all competing

strategies. If certain average behavior probabilities from the strategy based on our model

are greater than those from competing strategies, then it could be said that our model is

able to provide benefits for the carrier to make more effective managerial decisions.

Stimulation with Promotion Packages

A commonly adopted marketing action is to give out free promotion packages with low

cost in order to stimulate customers into purchasing products and thus achieves higher

profits. For the telecom carrier, such low-cost promotion packages that can be given out

freely often comprises of mobile usage quotas. In this analysis, we simulate a scenario

where the carrier is interested in increasing the probabilities of customers purchasing more

expensive mobile phones and switching service plans via giving out free mobile usage

quotas, including phone call minutes, SMSs, and mobile Internet data. We here make the

assumption that customers will use up all the free quotas given to them and their original

telecom service volumes observed in the validation data.

We consider three competing strategies, i.e., status quo (SQ), universal targeting (UT),

and segmentation (SG). Status quo refers to the strategy where the carrier does not give out

free quotas, and customers only use up their original telecom service volumes. Universal

targeting refers to the carrier gives out the same free quotas to all customer, and segmentation

is the strategy based on the model, where only certain segments of the customers are selected

to be given free quotas.

In this analysis, we assume the carrier gives out an extra 1/3 of the standard deviation

of phone call minutes, SMSs, and mobile Internet data to every customer in the universal
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targeting strategy. From table 4.10, we found that, on average, around 10% of the customers

belong to the moderate monetary value state (M2) or the high relational value state (R3)

at each time period. Because mobile usages have significant effects on customers in state

M2 or R3, they are chosen as the targeted group. Hence for the segmentation strategy, we

assume the carrier gives out all the free quotas, which would have been given out to all

customers in the universal targeting strategy, only to customers in state M2 or R3, and

does not give out free quotas to other customers. We measure the effectiveness of the

strategies using differences in behavior probabilities, which are obtained by subtracting

corresponding behavior probabilities under the status quo strategy from the other two. A

more effective strategy is expected to yield more positive probability differences. Results

are given in Table 4.11.

Table 4.11: Scenario analysis results for free promotion packages (free quotas only).

Time
∆ Phone Change ∆ Phone Upgrade ∆ Plan Change

UT SG UT SG UT SG

2015/04 0.000 0.000 0.086 0.107 0.003 0.043
2015/05 0.000 0.000 0.084 0.103 0.005 0.047
2015/06 0.000 0.000 0.080 0.096 0.005 0.047
2015/07 0.000 0.000 0.075 0.090 0.005 0.050
2015/08 0.000 0.000 0.071 0.087 0.005 0.050
2015/09 0.000 0.000 0.066 0.077 0.006 0.052
UT: Universal Targeting. SG: Segmentation.

Because covariate effects of mobile usages on the behavior of changing mobile phone

tiers are not significant, the marketing action of giving out free quotas does not increase

customers’ likelihoods of changing mobile phone tiers. However, from Table 4.11, we can

see that this marketing action could lead to increased probabilities in customers upgrading

mobile phones and changing service plans. With the same level of cost, the segmentation

strategy, which is more effective, results in a larger increase in both probabilities compared

to the UT strategy. The free promotion strategies do not lead to increased probabilities of
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customers changing phones because the corresponding covariate effects are not significant.

With the model, the carrier can identify a small segment of the customer base and possibly

achieve the same or higher level of profitability.

4.5 Discussion

In this paper, we developed a CNHMM framework for a multidimensional and dynamic

understanding of customer values. Such CNHMM framework, illustrated through an

application in the large-scale telecommunication data, offers several insights into both the

drivers of customer value and dynamic CRM.

The first contribution of this research is to suggest a behaviorally grounded model that

help marketers to identify multiple underlying sources of customer value. Leveraging a

large-scale longitudinal mobile service data, we identify two distinctive latent drivers of

customer value, i.e., the relational and monetary values. Indeed, as customer value can be

measured beyond the relational and monetary dimensions, our proposed model presents a

general framework for marketers to capture multiple sources of heterogeneity in customer

value. Future research can also construct and assess alternative or additional dimensions

that offer additional managerial insights.

Second, our proposed CNHMM model not only uncovers latent drivers of customer

value, but also explicitly identifies the interdependence among different dimensions of cus-

tomer value. Interestingly, our empirical results suggest that customer monetary value drives

relational value but not vice versa, indicating that firms can improve sales performance

(e.g. in eliciting more phone purchases) by strategically considering the weights or relative

importance of customers’ monetary and relational value when allocating scare marketing

resources. While the relationship between monetary and relational value of customers may

vary across industries, our empirical evidence suggests that the sole reliance on customers’

relational dimension in implementing CRMs may lead to incomplete understanding of
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customer values.

Third, the dynamic nature of the proposed model allows firms to understand the evolu-

tion of customer value, and therefore to implement dynamic segmentation strategies. In

our sample, firms can recover the latent monetary and relational states (segments) of their

customers (e.g. for every month), and then dynamically trace those customers that have

“silently” transferred to another segment each month, and eventually adjust the marketing

mix offered to those customers accordingly. With this dynamic approach, marketing re-

sources can be allocated more efficiently over time, with respect to the perceived importance

of each segment.

Besides the methodological developments, our paper offers fruitful managerial insights

for customer-value based CRM. Our simulation studies suggest the proposed model can

help firms formulate customer acquisition strategies. For example, by acquiring customers

high in both monetary and relational value, firms can substantially increase the expected

revenue from customers’ phone purchases and service plan renewals. In addition, firms

can tailor make their (targeted) promotions based on the recovered segments of customers,

which not only enhances the effectiveness of promotion by improving sales performance

(e.g. eliciting more phone purchase), but also leads to higher promotion efficiency as firms

may choose to focus on particular (e.g. customers in the moderate-monetary-value segment)

instead of universal segments, better allocating their scarce marketing resources.

To summarize, we believe our study provides a first step to explore the multidimensional

customer value using HMM-based models. We have also provided CRM practitioners with

an implementable model for evaluating the monetary and relational values of customers,

as well as their interdependence over time. Such models are necessary today as consumer-

generated big data plays an increasingly important role for firms. We encourage future

research to continue investigating the multidimensional characterization of customer value

and derive managerial-relevant insights in creating a better customer-centric CRM system.
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4.6 Appendix

4.6.1 Model Estimation

In this section, we describe the stochastic variational Bayes (SVB) method we used in

estimating the coupled non-homogeneous hidden Markov model (CNHMM).

Variational Bayesian Inference

Variational Bayesian (VB) inference is a Bayesian estimation approach that uses density

functions from simple distribution families to approximate intractable posteriors (Jordan

et al., 1999; Blei et al., 2017).

Given a generic model p(y|θ) with y denoting the observed data and θ as unknown

parameters, the aim of VB is to approximate the intractable posterior p(θ|y) through a

variational posterior distribution p̃φ(θ) from a tractable variational distribution family

P̃ , where φ is the set of variational parameters that govern the variational distribution.

The distance between p̃φ(θ) and p(θ|y) is often measured by the Kullback-Leibler (KL)

divergence

KL [p̃φ(θ)‖p(θ|y)] = Ep̃φ [log p̃φ(θ)− log p(θ|y)]

= Ep̃φ [log p̃φ(θ)− log p(y,θ)] + log p(y)

= −L(φ) + log p(y).

Since KL [p̃φ(θ)‖p(θ|y)] is nonnegative, equations above imply that L(φ) ≤ log p(y),

∀p̃φ. So L(φ), being a lower bound for the log marginal likelihood, is called the evidence

lower bound (ELBO) function.

The optimal variational posterior can be obtained by maximizing L(φ) over φ, which

is performed via stochastic gradient ascent (SGA) (Robbins and Monro, 1951). Letting
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∇L(φ) denote the gradient of L(φ) with respect to φ, after selecting an initial value φ(0),

φ is updated via

φ(τ+1) = φ(τ) +ψτ ◦ ∇L(φ(τ)),

where superscript (τ ) denotes the τ -th iteration, operator ◦ denotes the Hadamard (element-

wise) product, and {ψτ}τ≥0 contains a sequence of learning rates satisfying the Robbins-

Monro conditions (Robbins and Monro, 1951). Each updating step involves determining

values of the learning rates and the gradient. In this study, we apply the well-received Adam

optimizer for adaptive learning rates; Adam is efficient with limited tuning required, capable

of handling noisy and/or spare gradients and non-stationary objectives, and particularly

suitable for dealing with non-convex objective functions (Kingma and Ba, 2015). Section

4.6.2 gives a more detailed specification of the Adam optimizer.

The complexity and accuracy of the above VB method is significantly influenced by the

choice of variational posterior family P̃ (Blei et al., 2017). In practice, a trade-off between

approximation accuracy and computational complexity is sought. The mean-field family,

which assumes complete independence for model parameters, is a common choice, but

while it reduces computational complexity, the over-simplified form may lead to suboptimal

approximations. Here, we use a structured mean-field family that adds dependence among

certain variational posteriors to better approximate the structures of true posteriors. The

dependence is introduced based on the factor covariance structure developed by (Ong et al.,

2018). Numerical studies in latter sections show that the utilized posterior family performs

satisfactorily.

The Stochastic Variational Bayes Estimation of The CNHMM

Following the model setting in the main article, consider the CNHMM with observed

response sequence {Yi,Ti} where Yi,ti = (Y c
i,ti
, Y p

i,ti
, Y pl

i,ti
), emission covariates sequence
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{Xi,Ti} with Xi,ti = (Xc
i,ti
,Xp

i,ti
,Xpl

i,ti
), and transition covariate sequence {Wi,Ti} with

Wi,ti = (Wm
i,ti
,W r

i,ti
) for ti = 1, . . . , Ti and i = 1, . . . , N from N independent individuals.

Let {Zi,Ti} denote the hidden states sequences such that Zi,ti = (Zm
i,ti
, Zr

i,ti
). The

complete-data likelihood for the CNHMM is

p(Y ,Z,µ, ξ,β, ζ,η,ρ,π|X,W )

=
N∏
i=1

p(Zi,1,π)

Ti∏
ti=1

p(Yi,ti |Zi,ti ,Xi,ti ,µ, ξ,β)

Ti∏
ti=2

p(Zi,ti |Zi,ti−1,Wi,ti , ζ,η,ρ)

× p(µ)p(ξ)p(β)p(ζ)p(η)p(ρ)p(π),

where p(µ), p(ξ), p(β), p(ζ), p(η), p(ρ) and p(π) are priors, p(Yi,ti |Zi,ti ,Xi,ti ,µ,β, ξ)

is the emission distribution, p(Zi,ti |Zi,ti−1,Wi,ti , ζ,η,ρ) is the transition distribution, and

p(Zi,1,π) is the initial state distribution.

In specific, for model parameters, we have

• µ = (µc,µp,µpl), where µc = {µckm|km ∈ [Km]}, µp = {µpkm|km ∈ [Km]}, and

µpl = {µplkr |kr ∈ [Kr]};

• ξ = {ξci , ξ
p
i , ξ

pl
i }i=1,...,N , where ξci = {ξci,km|km ∈ [Km]}, ξpi = {ξpi,km|km ∈ [Km]},

and ξpli = {ξpli,kr |kr ∈ [Kr]};

• β = (βc,βp,βpl), where βc = {βckm|km ∈ [Km]}, βp = {βpkm|km ∈ [Km]}, and

βpl = {βplkr |kr ∈ [Kr]};

• ζ = {ζmi , ζri }i=1,...,N , where ζmi = {ζmi,km1 ,km2 |k
m
1 ∈ [Km], km2 ∈ [Km − 1]} and

ζri = {ζri,kr1 ,kr2 |k
r
1 ∈ [Kr], kr2 ∈ [Kr − 1]};

• η = (ηm,ηr), where ηm = {ηmkm1 ,km2 |k
m
1 ∈ [Km], km2 ∈ [Km − 1]} and ηr =

{ηrkr1 ,kr2 |k
r
1 ∈ [Kr], kr2 ∈ [Kr − 1]};

• ρ = (ρm,ρr), where ρm = {ρmkm |km ∈ [Km]} and ρr = {ρrkr |kr ∈ [Kr]};
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• π = (πm,πr), where πm = {πmkm|km ∈ [Km − 1]} and πr = {πrkr |kr ∈ [Kr − 1]}.

VB computes the posteriors of µ, ξ, β, ζ, η, ρ and π, as well as hidden states sequences

{Zi,Ti}. We first specify the variational posteriors with the factorized form

p̃φ(µ, ξ,β, ζ,η,ρ,π,Z) = p̃φµ(µ)p̃φξ(ξ)p̃φβ(β)p̃φζ(ζ)p̃φη(η)p̃φρ(ρ)p̃φπ(π)p̃(Z),

where φ = {φµ,φξ,φβ,φζ ,φη,φρ,φπ} are the variational parameters. We allow depen-

dence within each of µ, ξ, β, ζ, η, ρ, π, and Z to achieve better approximation, and retain

independence between µ, ξ, β, ζ, η, ρ, π, andZ for computational tractability. The ELBO

objective,

L = Ep̃φ
{
Ep̃(Z)[log p(Y ,Z,µ, ξ,β, ζ,η,ρ,π|X,W )

− log p̃φµ(µ)p̃φξ(ξ)p̃φβ(β)p̃φζ(ζ)p̃φη(η)p̃φρ(ρ)p̃φπ(π)p̃(Z)]
}
,

is maximized by updating p̃φµ(µ), p̃φξ(ξ), p̃φβ(β), p̃φζ(ζ), p̃φη(η), p̃φρ(ρ), p̃φπ(π), and

p̃(Z) iteratively.

The updating of p̃(Z) involves calculating posteriors of Zi,ti and (Zi,ti−1,Zi,ti) with

current values of variational parameters. We jointly update the posterior of Zm
i,ti

and Zr
i,ti

due to their dependence on each other. The joint posterior of {Zi,Ti} is proportional to

N∏
i=1

exp

{
Ti∑
ti=1

Ep̃φµ (µ)p̃φξ (ξ)p̃φβ (β) [log p(Yi,ti |Zi,ti ,Xi,ti ,µ, ξ,β)]

+

Ti∑
ti=2

Ep̃φζ (ζ)p̃φη (η)p̃φρ (ρ) [log p(Zi,ti |Zi,ti−1,Wi,ti , ζ,η,ρ)]

}
.

Based on the posterior, we compute the marginal posteriors p̃(Zi,ti) and p̃(Zi,ti−1,Zi,ti)

using the forward and backward probabilities of the Baum-Welch procedure (Baum et al.,

1970). Details of the forward-backward algorithm are given in section 4.6.3.
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The updating of variational parameters φµ, φξ, φβ, φζ , φη, φρ, and φπ is conducted

through SGA. Here we use φρ and φβ as examples to describe the procedure of updating

variational parameters, since other parameters can be updated in a similar fashion. For the

updating of φρ, we assign the following factorized variational posterior for ρ:

Km∏
km=1

Kr∏
kr=1

p̃φρm,km (ρmkm)p̃φρr,kr (ρ
r
kr),

where p̃φρm,km (ρmkm) and p̃φρr,kr (ρ
r
kr) are Rm

w - and Rr
w-dimensional multivariate normal

distributions with factor covariance structures as follows (Ong et al., 2018):

p̃φρm,km (ρmkm) = N
(
ρmkm ;mρm,km ,Gρm,kmG

′
ρm,km +H2

ρm,km

)
,

and

p̃φρr,kr (ρ
r
kr) = N

(
ρrkr ;mρr,kr ,Gρr,krG

′
ρr,kr +H2

ρr,kr

)
.

Thus, by definition, φρm,km = {mρm,km ,Gρm,km ,Hρm,km} and φρr,kr = {mρr,kr ,Gρr,kr ,

Hρr,kr} are variational parameters to be estimated, where mρm,km and mρr,kr are varia-

tional mean vectors for ρmkm and ρrkr ,Gρm,km andGρr,kr are Rm
w × rρm,km and Rr

w × rρr,kr

matrices with rρm,km ≤ Rm
w and rρr,kr ≤ Rr

w, rρm,km and rρr,kr denote numbers of factors

used to approximate the correlation among elements in ρmkm and ρrkr , respectively. Upper

triangles ofGρm,km andGρr,kr are restricted to zero for identification. Hρm,km andHρr,kr

are diagonal matrices with diagonal elements hρm,km = (hρm,km,1, . . . , hρm,km,Rmw )′, and

hρr,kr = (hρr,kr,1, . . . , hρr,kr,Rrw)′. As demonstrated in Ong et al. (2018), a small number of

factors (rρm,km = 3 or 4) already provides satisfactory approximation to high-dimensional

posteriors. Indeed, approximation accuracy can be improved if we increase the number of

factors rρm,km used, which also raises the optimization difficulty; if we set rρm,km = Rm
w ,
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we are using a multivariate normal distribution with a full covariance structure, which

yields the closest approximation.

With the factorized variational posterior for ρ, updating φρ reduces to the iterative

update of φρm,km and φρr,kr . To update φρm,km , we need to compute the gradient estimates,

̂∇mρm,km
L, ̂∇Gρm,kmL, and ̂∇Hρm,km

L, and then update mρm,km , Gρm,km , and Hρm,km

sequentially according to the formula. Similarly, for φρr,kr , compute ̂∇mρr,kr
L, ̂∇Gρr,krL,

and ̂∇Hρr,kr
L, then updatemρr,kr ,Gρr,kr , andHρr,kr . The gradients are computed using

the reparametrization approach, which was introduced to control variance for the Monte

Carlo gradient. It is applicable when the generic model parameter θ can be represented

as θ = t(φ,υ), where υ denotes a random vector with a known fixed distribution f(υ).

For instance, suppose θ follows a multivariate normal variational distribution, then it can

be reparametrized by the mean vector m, the lower Cholesky factor L of its covariance

matrix, and a standard normal random vector υ as θ = m+Lυ. After reparametrization,

the ELBO objective function can be rewritten as

L(φ) = Ep̃φ [log p(y,θ)− log p̃φ(θ)] = Ef [log p(y, t(φ,υ))− log p̃φ(t(φ,υ))] ,

and the gradient becomes

∇φL(φ) = Ef
{

dt(φ,υ)

dφ

′

∇θ [log p(y, t(φ,υ))− log p̃φ(t(φ,υ))]−∇φ log p̃φ(t(φ,υ))

}
.

The variance of the gradient estimate can be further reduced by dropping the last term in

the equation above (Ong et al., 2018); the final formula for estimating gradient is given as:

∇φL(φ) = Ef
{

dt(φ,υ)

dφ

′

∇θ [log p(y, t(φ,υ))− log p̃φ(t(φ,υ))]

}
,

which is computed with random samples generated from f(υ).
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With the reparametrization approach, ρmkm and ρrkr can be represented as

ρmkm = mρm,km +Gρm,kmυρm,km,1 + hρm,km ◦ υρm,km,2,

and

ρrkr = mρr,kr +Gρr,krυρr,kr,1 + hρr,kr ◦ υρr,kr,2,

where υρm,km,1, υρm,km,2, υρr,kr,1, and υρr,kr,2 are independent standard normal random

vectors of dimensions rρm,km , Rm
w , rρr,kr , Rr

w respectively. The gradient with respect to

mρm,km is

∇mρm,km
L = Ef

{
∇ρmkm [log p(mρm,km +Gρm,kmυρm,km,1 + hρm,km ◦ υρm,km,2)] +

(
Gρm,kmG

′
ρm,km +H2

ρm,km

)−1
(Gρm,kmυρm,km,1 + hρm,km ◦ υρm,km,2)

}
.

The gradient with respect toGρm,km is

∇Gρm,kmL = Ef
{
∇ρmkm [log p(mρm,km +Gρm,kmυρm,km,1 + hρm,km ◦ υρm,km,2)]υ′ρm,km,1+

(
Gρm,kmG

′
ρm,km +H2

ρm,km

)−1
(Gρm,kmυρm,km,1 + hρm,km ◦ υρm,km,2)υ′ρm,km,1

}
.

The gradient with respect to hρm,km is

∇Gρm,kmL = Ef
{

diag
(
∇ρmkm [log p(mρm,km +Gρm,kmυρm,km,1 + hρm,km ◦ υρm,km,2)]

· υ′ρm,km,2 +
(
Gρm,kmG

′
ρm,km +H2

ρm,km

)−1
(Gρm,kmυρm,km,1 + hρm,km ◦ υρm,km,2)υ′ρm,km,2

)}
.

The expectations are computed numerically by generating samples υρm,km,1, and υρm,km,2

from respective standard normal distributions. Gradients with respect to mρr,kr , Gρr,kr ,
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and hρr,kr can be derived in the same fashion and computed numerically with samples of

υρr,kr,1, and υρr,kr,2.

The updating of φβ is similar to that of φρ. For the Km sets of Rc
β- and Rp

β-dimensional

emission model parameters {βckm} and {βpkm}, as well as the Kr sets of Rpl
β -dimensional

emission model parameters {βplkr}, we assign them with similar factorized multivariate

normal variational posteriors as

Km∏
km=1

p̃(βckm) =
Km∏
km=1

N
(
βckm ;mβc,km ,Gβc,kmG

′
βc,km +H2

βc,km

)
,

Km∏
km=1

p̃(βpkm) =
Km∏
km=1

N
(
βpkm ;mβp,km ,Gβp,kmG

′
βp,km +H2

βp,km

)
,

Kr∏
kr=1

p̃(βplkr) =
Kr∏
kr=1

N
(
βplkr ;mβpl,kr ,Gβpl,krG

′
βpl,kr +H2

βpl,kr

)
,

wheremβc,km ,mβp,km ,mβpl,kr ,Gβc,km ,Gβp,km ,Gβpl,kr ,Hβc,km ,Hβp,km , andHβpl,kr are

defined similarly. Numbers of factors are denoted as rβc,km , rβp,km , and rβpl,kr . The varia-

tional parametersφβc,km = {mβc,km ,Gβc,km ,Hβc,km},φβp,km = {mβp,km ,Gβp,km ,Hβp,km},

and φβpl,kr = {mβpl,kr ,Gβpl,kr ,Hβpl,kr} can be updated similarly as above. For other

model parameters and their corresponding variational parameters:

• µc: φµc = {mµc ,Gµc ,Hµc}; µp: φµp = {mµp ,Gµp ,Hµp};

µpl: φµpl = {mµpl ,Gµpl ,Hµpl};

• ξci : φξc,i = {mξc,i,Gξc,i,Hξc,i}; ξpi : φξp,i = {mξp,i,Gξp,i,Hξp,i};

ξpli : φξpl,i = {mξpl,i,Gξpl,i,Hξpl,i};

• ζmi : φζm,i = {mζm,i,Gζm,i,Hζm,i}; ζri : φζr,i = {mζr,i,Gζr,i,Hζr,i};

• ηm: φηm = {mηm ,Gηm ,Hηm}; ηr: φηr = {mηr ,Gηr ,Hηr};

• πm: φπm = {mπm ,Gπm ,Hπm}; πr: φπr = {mπr ,Gπr ,Hπr}.
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Here, for convenience, we model and estimate the vectorized version of ζmi such thatmζm,i

is a Km × (Km − 1)-dimensional vector, and Gζm,i and Hζm,i are Km(Km − 1)× rζm-

and Km(Km−1)×Km(Km−1)-dimensional matrices respectively. Similar vectorization

and dimensionality apply to variational parametersmζr,i,Gζr,i,Hζr,i,mηm ,Gηm ,Hηm ,

mηr ,Gηr , andHηr . Gradients with respect to these variational parameters can be derived

and computed in the same fashion as those with respect to φρ.

For a dataset with large number of individuals, N , we can speed up the computational

efficiency via subsampling because of the independence among individuals. In specific,

we randomly sample Ns out of the N individuals at each iteration and update parameters

based on the subsample. Hoffman et al. (2013) labeled this subsampling-based variational

Bayes estimation scheme the stochastic variational Bayes (SVB), which reduces the time

complexity of the algorithm significantly from O(NT ) to O(NsT ). The ELBO, L, and

the likelihood function, p, in the aforementioned gradient derivations are thus replaced by

LNs and pNs , the ELBO and the likelihood function computed from the subsample of Ns

sequences, respectively. The SVB method is guaranteed to converge to an local optimum;

we terminate the algorithm after a sufficient number of iterations when convergence is

attained (Blei et al., 2017; Ong et al., 2018; Hoffman et al., 2013).

The SVB Procedure

The SVB procedure consists of the following steps:

Step 1: Specify the number of iterations for the algorithm, Iter, and initialize all variational

parameters.

The procedure iteratively performs the following steps until Iter is reached.

Step 2: Randomly sample Ns individuals from the total N without replacement.

Step 3: Update the posteriors for hidden states {Zi,ti} for i ∈ {Ns} using current values
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of variational parameters and the sampled Ns sequences. To address numerical underflow

issues, the forward-backward probabilities are normalized for each time point ti.

Step 4: Update shared (global) variational parameters, φµ = {φµc ,φµp ,φµpl}, φβ =

{φβc,km ,φβp,km ,φβpl,kr |km ∈ [Km], kr ∈ [Kr]},φη = {φηm ,φηr},φρ = {φρm,km ,φρr,kr |

km ∈ [Km], kr ∈ [Kr]}, and φπ = {φπm ,φπr} via SGA. The adaptive learning rates are

determined using the Adam optimizer.

Step 5: Update individual (local) variational parameters for i ∈ {Ns},φξ,i = {φξc,i,φξp,i,φξpl,i}

and φζ,i = {φζm,i,φζr,i} via SGA. The adaptive learning rates are determined using the

Adam optimizer.

Step 6: Compute the ELBO value LNs using current values of variational parameters.
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4.6.2 The Adam Optimizer

The Adam optimizer generates adaptive learning rates for SGA. Let φ(τ)
j , ψτ,j , and ∇l(τ)

j

denote the j-th element of φ(τ), ψτ , and ∇L(φ(τ)), respectively. The learning rate ψτ,j at

the τ th-iteration is computed as follows:

ψτ,j = oj
χ̂1,τ,j

(
√
χ̂2,τ,j + ε0)∇l(τ)

j

,

where

χ̂1,τ,j =
χ1,τ,j

1− ετ1
,

χ̂2,τ,j =
χ2,τ,j

1− ετ2
,

χ1,τ,j = ε1χ1,τ−1,j + (1− ε1)∇l(τ)
j ,

χ2,τ,j = ε2χ2,τ−1,j + (1− ε2)∇l(τ)
j

2
,

and ε0 ε1, ε2, and oj are predefined hyperparameters. For this approach, we set starting

values as χ1,0,j = χ2,0,j = 0 and hyperparameters as ε0 = 10−8, ε1 = 0.9, ε2 = 0.999,

oj = o1jo
τ
2j , o1j,∈ (10−4, 10−2), and o2j ∈ (0.999, 0.9999), according to the suggestions

in the literature (Shi et al., 2019; Kingma and Ba, 2015). For other details of the Adam

optimizer, we refer readers to Kingma and Ba (2015).
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4.6.3 The Forward-Backward Algorithm

The forward probabilities ai,ti(k) and backward probabilities bi,ti(k) are defined as: for

k ∈ [K],

ai,ti(k) = p(Yi,1:ti ,Zi,ti = k|Xi,1:ti ,Wi,1:ti ,µ, ξ,β, ζ,η,ρ,π),

bi,ti(k) = p(Yi,(ti+1):Ti |Zi,ti = k,Xi,(ti+1):Ti ,Wi,(ti+1):Ti ,µ, ξ,β, ζ,η,ρ,π),

(4.9)

whereK = Km×Kr, andZi,ti = k if and only if Zm
i,tt = km for km ∈ [Km] and Zr

i,ti
= kr

for kr ∈ [Kr]. Here we establish a one-to-one correspondence between (km, kr) and k by

letting k = km× (Kr − 1) + kr. The forward and backward probabilities can be computed

iteratively using the following formulas:

a′i,1 = π′iDi,1,

a′i,ti+1 = a′i,tiEi,ti+1Di,ti+1,

bi,Ti = 1,

bi,ti = Ei,ti+1Di,ti+1bi,ti+1,

where ai,ti = (ai,ti(1), ..., ai,ti(K))′, bi,ti = (bi,ti(1), ..., bi,ti(K))′, 1 is a K-dimensional

vector with all elements being 1, and Di,ti and Ei,ti are diagonal and square matrices,

respectively, as defined below. To prevent numerical underflow issues, ai,ti and bi,ti are

normalized at each iteration. The diagonal elements of Di,ti are given as follows: for

k = 1, . . . , K,

di,ti,kk = exp
{
Ep̃φµ (µ)p̃φξ (ξ)p̃φβ (β) [log p(Yi,ti |Zi,ti = k,Xi,ti ,µ, ξ,β)]

}
.

Elements in Ei,ti are given as follows: for k1, k2 = 1, . . . , K

ei,ti,k1k2 = exp
{
Ep̃φζ (ζ)p̃φη (η)p̃φρ (ρ) [log p(Zi,ti = k2|Zi,ti−1 = k1,Wi,ti , ζ,η,ρ)]

}
.
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The above two expectations are computed numerically using Monte Carlo samples from

relevant variational posteriors. Note thatDi,ti and Ei,ti can be viewed as variational esti-

mates of emission probabilities and transition probability matrices respectively. Marginal

posteriors p̃(Zi,ti) and p̃(Zi,ti−1,Zi,ti) can be computed as follows:

p̃(Zi,ti = k) ∝ ai,ti(k)bi,ti(k)

=
ai,ti(k)bi,ti(k)∑
j ai,ti(j)bi,ti(j)

,

and

p̃(Zi,ti−1 = k1,Zi,ti = k2) ∝ ai,ti−1(k1)ei,ti,k1k2di,ti,k2k2bi,ti(k2)

=
ai,ti−1(k1)ei,ti,k1k2di,ti,k2k2bi,ti(k2)∑

j1

∑
j2
ai,ti−1(j1)ei,ti,j1j2di,ti,j2j2bi,ti(j2)

.
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4.6.4 Model Selection Tables

Table 4.12: CNHMM model selection results for selecting numbers of states; metrics
include the DIC, in-sample mean squared error (ISMSE) and prediction accuracy (ISPA),
and out-of-sample mean squared error (OSMSE) and prediction accuracy (OSPA).

DIC
Km 1 2 3 4
Kr

1 98093.10 62306.71 68109.99 66207.12
2 56783.00 62127.00 59664.64 62052.25
3 57368.12 58457.01 54127.10 55970.27
4 57609.51 54562.28 54411.67 57205.30
ISMSE
Km 1 2 3 4
Kr

1 0.165 0.066 0.067 0.060
2 0.062 0.062 0.067 0.062
3 0.061 0.065 0.059 0.072
4 0.060 0.063 0.066 0.065
ISPA
Km 1 2 3 4
Kr

1 0.848 0.978 0.971 0.975
2 0.978 0.980 0.967 0.981
3 0.978 0.980 0.978 0.979
4 0.977 0.978 0.978 0.978
OSMSE
Km 1 2 3 4
Kr

1 0.357 0.193 0.234 0.206
2 0.208 0.215 0.216 0.188
3 0.199 0.201 0.169 0.172
4 0.212 0.208 0.230 0.191
OSPA
Km 1 2 3 4
Kr

1 0.641 0.921 0.885 0.910
2 0.877 0.923 0.923 0.921
3 0.925 0.926 0.933 0.928
4 0.912 0.923 0.910 0.917
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Table 4.13: FHMM model selection results for selecting numbers of states; metrics include
the DIC, in-sample mean squared error (ISMSE) and prediction accuracy (ISPA), and
out-of-sample mean squared error (OSMSE) and prediction accuracy (OSPA).

DIC
Km 1 2 3 4
Kr

1 98093.10 62306.71 68109.99 66207.12
2 56783.00 57206.20 58604.66 56982.58
3 57368.12 65591.20 65854.34 69868.21
4 57609.51 59951.82 71976.29 56805.46
ISMSE
Km 1 2 3 4
Kr

1 0.165 0.066 0.067 0.060
2 0.062 0.079 0.072 0.061
3 0.061 0.087 0.071 0.074
4 0.060 0.059 0.073 0.060
ISPA
Km 1 2 3 4
Kr

1 0.848 0.978 0.971 0.975
2 0.978 0.978 0.978 0.979
3 0.978 0.970 0.976 0.974
4 0.977 0.978 0.972 0.979
OSMSE
Km 1 2 3 4
Kr

1 0.357 0.193 0.234 0.206
2 0.208 0.238 0.222 0.177
3 0.199 0.270 0.244 0.254
4 0.212 0.188 0.251 0.175
OSPA
Km 1 2 3 4
Kr

1 0.641 0.921 0.885 0.910
2 0.877 0.918 0.913 0.930
3 0.925 0.851 0.885 0.878
4 0.912 0.918 0.869 0.923
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Table 4.14: NHMM model selection results for selecting numbers of states; metrics include
the DIC, in-sample mean squared error (ISMSE) and prediction accuracy (ISPA), and
out-of-sample mean squared error (OSMSE) and prediction accuracy (OSPA).

K DIC ISMSE ISPA OSMSE OSPA

2 62354.04 0.063 0.965 0.191 0.921
3 55618.99 0.060 0.977 0.179 0.923
4 61522.02 0.063 0.978 0.198 0.926
5 61644.24 0.060 0.978 0.190 0.933
6 67494.01 0.060 0.978 0.184 0.936
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