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Abstract

Essays in Behavioral Finance and Asset Pricing

Shuosong Chen

2021

This dissertation studies a range of topics in behavioral finance and asset pricing. The three

essays presented in this dissertation have the common theme of using economic theory to

explain puzzling phenomena in financial markets. Chapters 1 and 2 focus on one of the

most well-known theories in behavioral finance, the prospect theory, and its implications on

asset returns in the U.S. stock market and options market. Chapter 3 switches the focus to

the Chinese warrants market, and explores the pricing efficiency of option pricing models

from an econometric perspective.

Chapter 1 asks the question “why do investors sometimes require higher expected returns

from the stock market in compensation for bearing volatility, but sometimes do not?” We

answer this question by referring to two important components of the prospect theory,

namely decreasing sensitivity and loss aversion. On one hand, decreasing sensitivity suggests

that after investors have experienced a prior loss, they will behave in a locally risk-seeking

way, such that the higher the market volatility, the lower the expected return they require

from the market. On the other hand, even after a prior loss, investors do not like too much

volatility because the pain inflicted by extra losses exceed the joy coming from extra gains.

Consistent with the theory, we find the mean-variance relation depends on the relative

strength of decreasing sensitivity and loss aversion.

In Chapter 2, Jianfei Cao and I ask the question “do investors’ preferences over risk

change over time in terms of their degrees of loss aversion and probability weighting, and



if so, how do these preferences change with other economic variables?” To answer that

question, we build a representative agent model based on the prospect theory, and in a

dynamic setting, we estimate the structural parameters in the model using data on the U.S.

stock market and the options market. Our results show that after the 2007-2008 financial

crisis, investors became more loss averse, and had a weaker tendency to overweight right

tail events of the market. We also find close relationships between the prospect theory

parameters and investor sentiment.

Chapter 3 studies the performance of various option pricing models in the Chinese

warrants market. To capture the negative skewness and heavy tails in the distribution of

Chinese stock returns, we modify the canonical Black-Scholes model from two perspectives.

First, we introduce stochastic volatility into stock price dynamics using GARCH (general-

ized autoregressive conditional heteroscedasticity) models. Second, we add Poisson jumps

to reflect big shocks to stock prices. We then conduct Monte Carlo simulations to cal-

culate theoretical warrant prices implied by different models, and compare them with the

observed prices. Our results show that the more sophisticated models successfully explain a

large part of the discrepancy between theoretical and real prices, but the differences remain

non-negligible in some cases, suggesting the existence of bubbles in the Chinese warrants

market.
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Chapter 1

Prospect Theory and the

Mean-Variance Relation

Abstract: This paper shows the impact of prospect theory preference, specifically the

loss aversion and the decreasing sensitivity parameters, on the mean-variance relation

of the stock market. We find that the market excess return is positively related to

the market’s conditional variance after a prior gain, but the mean-variance relation is

nonlinear after a prior loss. When the conditional variance is large enough relative to

the magnitude of the loss and the effect of loss aversion dominates, the mean-variance

relation is positive. However, the relation reverses to be negative when the conditional

variance is small, where decreasing sensitivity comes into play and investors are risk

seeking. A simple market timing strategy based on past gains and losses achieves

superior performance compared to the market.
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1.1 Introduction

The mean-variance relation of the aggregate stock market is one of the most fundamental

questions in finance, as it is crucial in understanding investors’ preference over risk and

return. The literature of rational asset pricing theory usually suggests a positive mean-

variance relation, as the representative agents in these models are risk averse, and volatility

increases the risk of their portfolio. For example, Merton (1973) establishes the Intertem-

poral Capital Asset Pricing Model (ICAPM), which suggests the following mean-variance

relation:

Et[Rt+1] = µ+ γV art[Rt+1] (1.1)

where Et[Rt+1] is the expected return of the overall market in the future, V art[Rt+1] is the

conditional variance of the future market return, µ = 0, and γ is the coefficient of relative

risk aversion of the representative agent. Intuitively, when investors expect high variability

in the market return in the future, which is harmful to their wealth, they are less willing

to hold the market portfolio, and require a higher expected return for them to do so in

equilibrium.

On the other hand, despite efforts over the past decades to find supportive evidence for

the positive mean-variance relation, the results are rather inconclusive. Previous studies

have found both positive and negative mean-variance relation using different periods of data

and different methods. To name a few, Ghysels et al. (2005) use past daily squared returns

to forecast monthly return variance, and find a significantly positive mean-variance rela-

tion. Yu and Yuan (2011) find that the mean-variance relation is positive during periods of

low investor sentiment, but there is no relation whatsoever during periods of high investor
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sentiment. Brandt and Kang (2004) use a latent VAR model to study the joint behav-

ior of conditional mean and conditional volatility, and find a strong and robust negative

relationship between the two. The inconsistency between theory and empirical evidence

seems to imply that investors’ preference over risk and return changes over time. A slight

modification of the constant relative risk aversion (CRRA) utility for the investors in the

model to allow for time-varying risk aversion is able to accommodate the fact that the pos-

itive mean-variance relation is sometimes strong and sometimes weak, but the documented

negative relationship is still a puzzle.

Prospect theory provides a very natural explanation for this puzzling phenomenon be-

cause of its decreasing sensitivity component. Specifically, the theory suggests that people

evaluate gains and losses relative to their reference point, and they become less sensitive to

the gains and losses as the magnitude of the gain or loss increases. This means that after

they suffer a loss, they become locally risk seeking instead of risk averse. Therefore, it is

possible that they require a lower expected return from their portfolio when they expect

their portfolio to be more volatile. In this paper, we explore the mean-variance tradeoff in

periods when investors have suffered a loss and when they have achieved a gain, and we

find that investors’ risk appetite is closely related to their prior gain and loss as well as the

magnitude of the loss. The results show that after a prior gain, investors require a higher

expected return for a higher conditional variance of the market return, hence the mean-

variance relation is positive; but after a significant prior loss when decreasing sensitivity

comes into play, they indeed behave in a risk seeking fashion: they require a lower expected

market return for a higher conditional variance and the mean-variance relation reverses.

Our paper contributes to three streams of literature. First, we provide an explanation

for the time-varying mean-variance relation of the aggregate stock market from the per-
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spective of behavioral finance theory. Previous studies have focused on finding alternative

econometric methods to model conditional variance in order to better estimate the mean-

variance relation. Yu and Yuan (2011) and Wang (2018) are the only papers to our best

knowledge that relate the behavioral finance literature to the mean-variance relation. They

divide the whole sample into sub-periods based on Baker and Wurgler (2006, 2007) investor

sentiment, and institutional sentiment, respectively, to measure the mean-variance relation

in different periods. Although sentiment captures investors’ irrational behavior in the finan-

cial markets to some extent, it still does not help us fully understand what exactly in their

preferences drives the time-varying mean-variance relation. This paper builds directly upon

prospect theory, and provides strong evidence that prospect theory is an accurate modeling

device for people’s decision under uncertainty.

Second, we further demonstrate the importance of the decreasing sensitivity component

of prospect theory. There has been growing interests in the literature in the relationship

between decreasing sensitivity and the the well-known disposition effect, the tendency of

investors to hold on to their losing stocks too long and to sell their winning stocks too soon.

For instance, Grinblatt and Han (2005)’s model of equilibrium asset prices suggests that

the disposition effect causes the momentum in the cross section of stock returns, and they

find that once investors’ capital gain overhang is controlled for, the momentum disappears.

Frazzini (2006) argues that the disposition effect induces underreaction to news, and finds

that the post-announcement drift is most severe when capital gains and the news event

have the same sign. Li and Yang (2013) build a general equilibrium model to examine

the implications of decreasing sensitivity for the disposition effect, asset prices, and trading

volume. More recently, Wang et al. (2017) study the risk-return tradeoff in the cross

section, and find a pronounced negative risk-return relation among firms in which investors

4



face prior losses. Barberis et al. (2020) propose a model in which the average returns of

stocks with a larger capital overhang (larger prior gains) are generally higher than those

with a smaller capital overhang, all else being equal, because prospect theory investors have

concave utility over gains but convex utility over losses. Their theory explains the negative

risk-return relation found by Wang et al. (2017). Our results provide additional evidence in

favor of the convex-concave prospect theory utility function structure from the aggregate

stock market.

Third, this paper also adds to the literature of equity premium predictability. Over the

past decades, a lot of macroeconomic variables have been suggested as being able to predict

the risk premium of the stock market. These variables include valuation ratios, interest

rates, interest rate spreads, etc.; see Rapach and Zhou (2013) for an extensive survey. Our

study shows that even though neither past returns nor conditional variances alone predict

future market returns, jointly they have strong predictive power for the equity premium

both in sample and out of sample.

The rest of the paper is organized as follows. Section 1.2 develops our hypothesis from

theory and specifies our model. Section 1.3 shows the main empirical results and examines

the robustness of our results. Section 1.4 concludes.

1.2 Hypothesis Development

1.2.1 Prospect Theory Overview

Our model is motivated by prospect theory, proposed by Kahneman and Tversky (1979).

Prospect theory is to date the most widely used non-expected utility theory that models

people’s decision under uncertainty. To illustrate the differences between the prospect

5



theory and the expected utility theory, consider the following gamble:

(x, p; y, q)

in which the agent gains x with probability p and y with probability q, where x ≤ 0 ≤ y

and p + q = 1. The expected utility theory states that the agent evaluates the gamble by

combining its prize with her current wealth level and taking expectations under the objective

probability. Specifically, the agent has a utility function u(·) defined on her terminal wealth,

and the expected utility associated with this gamble is:

pu(W + x) + qu(W + y)

where W is her current wealth level. The utility function u(·) is usually assumed to be

concave, so that the agent behaves in a risk averse way. One popular functional form for

the utility is the CRRA utility function, which leads to the constant positive mean-variance

relation in (1.1).

The prospect theory, on the other hand, suggests that the agent considers the gamble

in isolation, and evaluates its possible gain and loss with respect to a reference point, which

in this situation is her current wealth level. She also behaves in three other important

ways different than an expected utility maximizing agent. First, she treats gains and losses

differently: she always suffers more from a loss than she enjoys a gain of the same magnitude,

no matter how small the magnitude is. Notice that this is not true in expected utility

theory. Even though a concave utility function allows the disutility of a loss to be greater

than the utility of a gain, the utility function is locally linear everywhere, meaning that the

marginal utility of a gain and the marginal disutility of a loss are approximately equal when

6



their magnitude is small enough compared to the current wealth level. Second, the agent

assigns weights to different states of the world not proportional to the objective probabilities

associated with those states, but rather based on a probability weighting function which

tends to overweight low probability states with extreme outcomes. Probability weighting

explain many phenomena in financial markets, such as people’s preference for lottery-like

stocks as in Barberis and Huang (2008). However, for our purposes, probability weighting is

less important than the other two features of prospect theory. Third, prospect theory states

that people’s sensitivity to both gains and losses decreases as the magnitude of gains and

losses increases. Decreasing sensitivity in the gain region is consistent with expected utility

theory when the utility function is concave. Nonetheless, it is the decreasing sensitivity on

the loss region that distinguishes prospect theory and allows for the possibility of a negative

mean-variance relation.

Formally, a prospect theory agent will evaluate the above gamble in the following way:

π(p)v(x) + π(q)v(y)

where π(·) is the probability function that associates decision weights with probabilities,

and v(·) is the prospect theory value function. Notice how the gamble is evaluated in

isolation, i.e., the value function takes as input the gains and losses x and y themselves,

but not the wealth level W except for using it as the reference point. Figure 1.1 shows

the value function proposed by Kahneman and Tversky (1979). The origin stands for the

agent’s reference point, and all gains with respect to the reference point are to its right

while losses to its left. Loss aversion manifests itself as the kink at the origin, where a small

loss incurs a larger pain to the agent than the joy brought about by a small gain of the same

7



magnitude. The concavity of the value function in the gain region and its convexity in the

loss region represent the decreasing sensitivity component. When the agent is in her gain

region, she is risk averse and will behave similarly to a concave utility function maximizing

agent. However, when she suffers a prior loss which puts her in the loss region, she becomes

less sensitive to further losses and behaves in a risk seeking way.

Risk Seeking

Risk Averse

Value

Losses Gains

Figure 1.1: Kahneman and Tversky (1979) Value Function

Tversky and Kahneman (1992) suggest the following functional form for the value func-

tion:

v(x) =


xα if x ≥ 0

−λ(−x)β if x < 0

where λ > 1 is the coefficient of loss aversion, and α, β ∈ (0, 1) captures the decreasing

sensitivity in the gain and loss region respectively. They use lab experiment data to estimate
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λ = 2.25 and α = β = 0.88. The value function specified by these estimates is close to being

linear in both the gain and loss region, and therefore decreasing sensitivity was thought to be

a weak force in driving people’s preference compared to the loss aversion and the probability

weighting components. However, recent evidence from both experiments and the field have

suggested that α and β may be more like 0.7 or even lower still, which provides theoretical

support for our claim that decreasing sensitivity results in a variable and possibly negative

mean-variance relation.

1.2.2 Model Specification

Two-Regime Model

Prospect theory clearly suggests that people will behave differently after a prior gain than

a prior loss. In the financial market, prior gains and losses are captured by the previous

performance of investors’ portfolios. Consider two different cases for a prospect theory

investor. In the first case, her portfolio did well in the past and achieved a gain with

respect to her reference point, then she will reside in the gain region of her value function,

where she is risk averse, and hence demands a higher expected return from her portfolio for

a higher risk. In the second case, her portfolio did poorly and incurred a loss with respect

to the reference point, she will be in the loss region of the value function where she is risk

seeking, and hence demands a lower expected return from her portfolio given a higher risk. If

all investors share a similar prospect theory preference, then their time-varying appetite for

risk based on prior gains and losses will aggregate to the overall market. Specifically, when

the overall market has had a loss, more investors, both stock pickers and index investors,

are more likely to be in the loss region of their value function. They tend to pursue riskier

assets because such assets, due to their volatile nature, provide investors a good chance of
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breaking even, i.e., bringing them back to their reference point. This joint behavior pushes

up the overall price level of the stock market and lowers its expected return. Therefore, a

possible negative mean-variance relation establishes.

Some argument against prospect theory claims that institutional investors are less sub-

ject to the type of psychological biases in the model, so the behavior described above of

individual investors is not enough to drive the market outcome. However, Chevalier and

Ellison (1997) demonstrated that active mutual fund managers tend to pursue riskier port-

folios when they fall behind in order to attract fund flow. Therefore, the changes in risk

appetite based on prior gains and losses are not only present among näıve retail investors

but also among institutional investors.

Based on the theory, the first hypothesis we test in this paper is a two-regime mean-

variance relation, where the regime is determined by investors’ overall gains and losses in

the past. In the one-regime model, the following equation is tested:

Rt+1 = a+ bV art(Rt+1) + εt+1

where Rt+1 is the monthly excess return of the market, and V art(Rt+1) is its conditional

variance. Conditional variance is not directly observable, but can be approximated by

weighted average of daily squared returns in the past, Chicago Board Options Exchange’s

volatility index (VIX), or other more sophisticated volatility models such as GARCH mod-

els. Rational asset pricing theory such as Merton (1973)’s ICAPM implies a positive slope

coefficient b > 0. The two-regime model suggests instead the following:
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Rt+1 = a1 + b1V art(Rt+1) + a2Dt + b2DtV art(Rt+1) + εt+1 (1.2)

where Dt is an indicator of whether a typical investor is in her gain region of the prospect

theory value function. For example, one possible specification is:

Dt =


1 if Rt ≥ 0

0 otherwise

where gain is defined by last month’s market excess return being nonnegative. This is

equivalent to saying the investor’s reference point is her wealth level if she has invested all

her money in the risk-free asset.

We test three hypotheses for this model. First, we expect b1 < 0. That is, after a prior

loss, investors require a lower return going forward for a higher conditional variance of the

market portfolio. Second, b2 > 0, meaning that a prior gain makes investors’ tendency to

pursue riskier portfolio weaker. Third, b1 + b2 > 0, so that the mean-variance relation is

reversed to be positive when investors are in their gain region.

Nonlinear Mean-Variance Relation

In the two-regime model, only the sign of the past market excess return affects the future

mean-variance relation. However, prospect theory predicts a more subtle mean-variance

relation that also depends on the magnitude of prior gains and losses. In fact, two compo-

nents, namely loss aversion and decreasing sensitivity, jointly determine investors’ attitude

toward risk. Specifically, suppose we fix the past loss level at 10%, then when the volatility

11



increases from 5% to 10%, we may observe a negative mean-variance relation as the de-

creasing sensitivity is the main driving force. As the volatility continues to increase from

10% to a higher level, e.g., 20%, the agent is more likely to go beyond her reference point

to the gain region, and the kink of the value function will make such gain not so attractive

to the agent anymore. In other words, loss aversion becomes more relevant than decreasing

sensitivity when the magnitude of the loss is relatively small compared to the volatility, and

we may observe a positive mean-variance relation in this situation. Notice that when the

agent is in her gain region and hence risk averse, decreasing sensitivity and loss aversion

drive the mean-variance relation in the same way, so we expect the mean-variance relation

to be always positive, except that when the volatility is high relative to the magnitude of the

gain, loss aversion comes into play and the agent hates volatility even more than otherwise,

and the mean-variance relation is expected to be steeper.

To test the nonlinear relationship between conditional variance and expected return, we

augment our previous specification by adding square terms of the conditional variance to

the model, and substitute Rt for the indicator Dt:

Rt+1 = a1 + b1V art(Rt+1) + c1V ar
2
t (Rt+1)

+ a2Rt + b2RtV art(Rt+1) + c2RtV ar
2
t (Rt+1) + εt+1

1.2.3 Conditional Variance Models

Previous studies find that the empirical mean-variance relation relies heavily on the proxy

for the conditional variance. In this paper, we use four conditional variance models follow-

ing the literature: the rolling window model, the CBOE VIX, the GARCH (Generalized

Autoregressive Conditional Heteroskedasticity) model, and the asymmetric GARCH model,
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and our results are fairly robust across different models.

Rolling window model

French et al. (1987) use a rolling window model to estimate the monthly volatility of stock

market returns, and find a positive relation between the market risk premium and the

predictable volatility. The idea of the rolling window model is very straightforward: it uses

the current month’s average daily squared returns to estimate the conditional variance of

returns next month. Specifically,

V art(Rt+1) =
22

Nt

Nt∑
d=1

r2t+1−d

where rt−d is the daily excess return of the market d trading days before the current date t,

Nt is the total number of trading days in the current month, and 22 is the average number

of trading days in a typical month that scales the daily variance to monthly variance, by

assuming returns are uncorrelated across days.

VIX

The CBOE volatility index, or VIX, is a measure of the market’s expected annualized

volatility of the S&P 500 index in the following 30 days. It is computed by the Chicago

Board Options Exchange using a weighted portfolio of out-of-the-money European options

on the S&P 500 index. Therefore, it is an option-implied volatility of the stock market in

the next month, which we use as a proxy for the conditional volatility. There is empirical

evidence (see Carr and Wu (2009) for example) showing that the option-implied volatility

is systematically higher than the actual realized volatility over the same period, known as

the volatility risk premium. Thus VIX can be a biased estimate of the conditional volatility

13



of the stock market. For our purposes, we use it as a robustness check to show our result is

consistent across different conditional volatility estimates.

GARCH and asymmetric GARCH

The ARCH (Autoregressive Conditional Heteroskedasticity) model by Engle (1982) and

the GARCH (Generalized ARCH) model by Bollerslev (1986) have been commonly used in

modeling the volatility of asset returns. Like the rolling window model, they assume that

the conditional variance of returns are determined by past squared returns (for ARCH) as

well as past conditional variance of returns (for GARCH). Moreover, the weights assigned

to past observations are not equal across time, but estimated using data directly. We use

the most popular model in the literature, GARCH(1, 1), to estimate conditional volatility.

Specifically, the model assumes the daily return series {rt} follow the process below:

rt = µ+ εt

σ2t = ω + αε2t−1 + βσ2t−1

εt = σtet, et ∼ N(0, 1)

where µ is the constant mean of daily returns, εt is the return residual, which has a con-

ditional variance of σ2t . The set of parameters to be estimated is {µ, ω, α, β}. We require

α+ β < 1 for the process to be stationary.

Since the GARCH model captures the dynamics of daily returns while we require an

estimate for the monthly conditional variance, we use the model together with its parameter

estimates to forecast, at each end of month, the expected variance of sum of daily returns

14



for the next month, and use that as our proxy for the conditional variance:

V art(Rt+1) = Et

(
22∑
d=1

σ2t+d

)
(1.3)

where 22 is again the approximate number of trading days in a month. The conditional

variance of daily returns over one day ahead depends on future realizations of returns which

are not directly observable at time t. We take two approaches to estimate the expectation

in equation (1.3). First, we use Monte Carlo simulation to generate a large number of paths

of daily returns going forward based on the GARCH process, and use the sample mean

of the conditional variance to approximate for its population mean in (1.3). Second, we

solve for the analytical form of the expectation in (1.3) as a function of the GARCH model

parameters {µ, ω, α, β}, and then plug in their corresponding estimates. The analytical

solution is provided in the appendix. The two approaches lead to very similar results, and

we show only one set of the results in the following section. Full results are available upon

request.

The canonical GARCH model assumes that innovations to the returns, either positive

or negative, have the same impact on the conditional variance through the parameter α.

However, empirical evidence establishes that negative innovations tend to have larger effect

on the volatility than positive innovations, known as the “leverage effect” developed by Black

(1976) and Christie (1982). Glosten et al. (1993) suggest an asymmetric GARCH model

which takes into account the leverage effect, and find that it leads to different conclusions

on the mean-variance relation than the symmetric GARCH. The asymmetric GARCH(1,

1) model is specified similarly to the GARCH(1, 1) model above, except for the process of
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conditional variance σ2t :

σ2t = ω + αε2t−1 + γε2t−1I[εt−1<0] + βσ2t−1

where I[εt−1<0] is an indicator taking value 1 if the innovation εt−1 is negative. One extra

parameter, γ is estimated for the asymmetric GARCH, and γ > 0 if the leverage effect

holds true. The process is stationary if α+ γ/2 + β < 1. We derive the analytical solution

for the monthly conditional variance in the appendix.

1.3 Main Empirical Results

1.3.1 Data and Summary Statistics

The data we use in this paper come from several sources. We use as proxy for the aggregate

stock market the value-weighted returns of all NYSE, AMEX, and NASDAQ stocks, and

the one-month Treasury bill rate as the risk-free rate. We obtain these data from the

Center for Research in Security Prices (CRSP) for the period from July 1926 to December

2019. The CBOE volatility index (VIX) data is published by the Chicago Board Options

Exchange, and date back to January 1990. We also use other control variables in our

regression analysis, which we will describe later.

Table 1.1 presents the summary statistics for the monthly market excess return and its

volatility. Both return and volatility are annualized and are in percentage terms. We show

the results for the excess return in the current month (ret ) as well as in the next month

(ret+1), because we are interested in how the excess return in the future is determined by

the conditional variance now. Four proxies for the conditional volatility are used in our

analysis, as described in the previous section, namely the rolling window realized volatility,
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the VIX, the GARCH forecast, and the asymmetric GARCH forecast. As a comparison,

we also show the summary statistics for the realized volatility in the next month. For each

variable, we calculated its mean, standard deviation, skewness, kurtosis, its 5%, 25%, 50%,

75%, and 95% percentile, as well as its minimum and maximum in the sample. Panel A

presents the results for the whole sample, Panel B shows the results for gain months only,

in which the market excess returns are nonnegative, and Panel C shows the results for loss

months.

We can see from the table that after a gain of the stock market with respect to the risk-

free asset, the average annualized excess return in the next month is 10.67%, a lot higher

than the average return of 3.79% after a loss in the current month. We will see in further

analysis that the difference in average future excess returns in gain months and loss months

depends also on the conditional variance of returns next month. The realized volatility is

generally higher in a loss month than a gain month, with 17.15% versus 12.15%, which is

probably due to the “leverage effect” on a daily frequency: in a loss month, negative daily

return shocks are more likely to occur, causing higher volatility for the next trading day.

Moreover, the realized volatility in the next month also tends to be higher if the current

month experiences a loss (17.01%) than a gain (12.25%). The four proxies for conditional

volatility, except for the VIX, closely match the realized volatility next month on average,

both in gain months and loss months. The VIX is generally higher than other proxies as well

as the realized volatility next month. For example, in a loss month, the VIX expects the

next month’s annualized volatility to be 22.57%, while other estimates are at most 18.31%

(given by the asymmetric GARCH) and the realized volatility next month is 17.01% on

average. This fact is not surprising due to the well known volatility risk premium puzzle.

GARCH and asymmetric GARCH model achieve more stable estimates of the conditional
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volatility than the rolling window model in terms of their standard deviation, as they employ

a smoother weighting scheme.

Figure 1.2 shows the plots of monthly estimates of annualized conditional volatility using

four different models. The VIX series has a shorter time range due to data availability.

These estimates are able to capture high volatility periods in history such as the 1929 and

1987 market crash as well as the 2008 financial crisis.
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(c) GARCH(1, 1)
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(d) Asymmetric GARCH(1, 1)

Figure 1.2: Time Series Plots of Conditional Volatility
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1.3.2 Mean-Variance Relation

We estimate two sets of mean-variance relation models:

Rt+1 = a+ bV art(Rt+1) + εt+1

Rt+1 = a1 + b1V art(Rt+1) + a2Dt + b2DtV art(Rt+1) + εt+1

where Rt+1 is the market excess return, V art(Rt+1) is its conditional variance at time t,

Dt is an indicator for Rt ≥ 0. The first model is a one-regime model while the second

one is a two-regime model where the regime is determined by the current month’s gain

or loss. Table 1.2 shows the model estimates. Specifications (1)(3)(5)(7) correspond to

the one-regime model, and specifications (2)(4)(6)(8) correspond to the two-regime model.

Within the one-regime and two-regime specifications, models differ by the proxies used for

conditional variance. Specifications (1)(2) use the rolling window model, (3)(4) use the

VIX, (5)(6) use the GARCH(1, 1) model, and (7)(8) use the asymmetric GARCH(1, 1).

t-statistics are given in parentheses.

Among the four one-regime models, no one has a significant coefficient on the condi-

tional variance term, and the R2’s are extremely low (the highest being 0.2% given by the

asymmetric GARCH model), meaning that there is no detectable mean-variance relation

in our data. These results contradict the prediction by the rational asset pricing theory

that the mean-variance relation is positive, but are not surprising given the inconclusive

mean-variance relation in the empirical literature.

However, adding the gain/loss indicator Dt together with its interaction with the condi-

tional variance completely changes the results. Specifically, in the two-regime models, the

coefficients on the conditional variance term are all significant at 5% level with a negative
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sign, except for the specification using VIX. These results are consistent with the prediction

by the prospect theory that when investors are in their loss region of the value function

after a prior loss, they become risk seeking, and hence demand a lower expected return

for a higher conditional variance of the market portfolio. Moreover, the coefficients on the

interaction term, Dt × V art(Rt+1), are all highly significant across different specifications,

with the lowest t-statistic being 2.104 for the specification using VIX. This means that for

a given level of conditional variance, investors require a significantly higher expected return

from the stock market when they have experienced a prior gain than a prior loss. The

coefficient estimates do not directly tell us whether the mean-variance relation is positive

after a past gain in the market. To answer that question, we do a F -test for the null hy-

pothesis: H0 : b1 + b2 = 0 against the alternative hypothesis: H1 : b1 + b2 6= 0, where b1

and b2 are the coefficients for the conditional variance term and the interaction term in the

two-regime model, respectively. All the specifications except for the one using VIX reject

the null hypothesis at a high significance level: all p-values are below 0.01. Even the VIX

specification has a p-value of 0.06, which is marginally significant. Therefore, as expected,

when investors are in their gain region and hence risk averse, they do demand a higher

expected return for a higher conditional variance.

The impact of conditional variance on the future market excess return is not only sta-

tistically significant but also economically important. Take the rolling window model as an

example, where the coefficient estimate is −0.0083 for the conditional variance term and

0.0290 for the interaction term. These estimates imply that in a loss month, a one standard

deviation increase in the conditional variance is associated with a decrease of 0.40% (not

annualized) in the next month’s expected return, while in a gain month, the same increase

in the conditional variance is associated with an increase of 0.99% in the next month’s
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expected return. We will show in later part how the economically important alternating

mean-variance relation is potentially turned into profitable market timing strategies.

Our results are strikingly robust across different conditional variance models, in contrast

to the inconclusiveness in the empirical literature. The results also contradict sharply with

traditional understanding of the mean-variance relation, and are highly consistent with the

predictions of the prospect theory.

1.3.3 Other Explanatory Variables

We have considered so far the univariate model relating expected return to conditional

variance, and find that a mean-variance relation indeed exists for the aggregate stock market,

but with alternating sign. Nonetheless, it could be the case that our conditional variance

proxies actually capture the variation in other variables that explain the market expected

returns. In this subsection, we examine the robustness of our model by considering control

variables well studied in the market risk premium literature.

Ghysels et al. (2005) suggest that market variance is highly counter-cyclical and may

proxy for business cycle variables, which are documented to predict the stock market. For

example, Campbell (1991), Campbell and Shiller (1988), Chen et al. (1986), Fama (1990),

Fama and French (1988, 1989), Ferson and Harvey (1991), and Keim and Stambaugh (1986),

among many others, find evidence that the stock market can be predicted by variables

related to the business cycle, such as the dividend-price ratio and the default spread. Even

though these business cycle variables usually have a lower frequency than the monthly

horizon we study, and they tend to predict the market over a longer window, we incorporate

them into our model for completeness. The dividend-price ratio is computed as the ratio of

dividends in the past 12 months to the CRSP value weighted index. We take natural log of
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the ratio to remove the positive skewness in the raw data. The default spread is defined as

the difference in the yields of BAA and AAA rated corporate bonds. The bond yields data

are obtained from FRED (Federal Reserve Economic Data).

Yu and Yuan (2011) find a positive mean-variance relation in low investor sentiment

periods, but no relation in high investor sentiment periods. Their argument is that during

high sentiment periods, the market is dominated by irrational investors who are not able

to properly evaluate how risk the market is, which obscures the risk-return relation of the

overall market. If the low and high sentiment periods coincide with the gain and loss months

in our study respectively, then the time-varying mean-variance relation we find may just

be a phenomenon that has already been discovered, but under a different hood. Therefore,

we take into account of investor sentiment in our analysis. We use the Baker and Wurgler

(2006, 2007) sentiment index published on Jeffrey Wurgler’s website, to be consistent with

Yu and Yuan (2011). A month is defined as a low sentiment month if the sentiment index

is below zero, and as a high sentiment month otherwise. The indicator for high sentiment

as well as its interaction with conditional variance are used as control variables.

Lochstoer and Muir (2019) provide evidence that investors have slow-moving beliefs

about stock market volatility, such that they underreact to volatility news initially and

overreact with a delay. Therefore, the negative mean-variance relation may be a result of

investors underreacting to volatility shocks together with the mean-reverting behavior of

stock market volatility. To decompose the effects on expected returns of conditional variance

and past variances, we add lagged terms of realized variances to our model. Specifically,

lagged realized variance is calculated as the average of realized variances in the past 6

months, excluding the current month.

Figure 1.3 shows the time series plots of the control variables. The investor sentiment
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Figure 1.3: Time Series Plots of Control Variables

data is only available since 1965. All four series exhibit enough variations, which allows us

to detect their predictability for stock market returns if it so exists. Table 1.3 presents the

results for the following regression:

Rt+1 = a1 + b1V art(Rt+1) + a2Dt + b2DtV art(Rt+1) + controls+ εt+1

t-statistics are given in parentheses. Specifications (1)(2)(3)(4) control for dividend-price

(D/P) ratio, default spread, investor sentiment, and lagged variance, respectively, and speci-

fication (5) include all the control variables together. We show here only the model estimates

using the GARCH forecast as the proxy for conditional variance, but using other proxies

generate very similar results. The reasons we choose the GARCH model as our benchmark
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are the following. First, the GARCH model gives less noisy estimates for the conditional

variance than the rolling window model, which should in theory have smaller standard devi-

ation than the realized variance. Second, it gives less biased estimates than the VIX, which

tend to overestimate the realized variance due to the volatility risk premium. Third, it is

nested in the asymmetric GARCH model, which has better fit in sample by construction,

but a more complicated model could be capturing more noise than signal. In fact, the re-

sults without control variables in Table 1.2 show that the GARCH model leads to a better

fit to the mean-variance relation as measured by R2, with 0.027 compared to 0.016 by the

asymmetric GARCH.

Table 1.3: Mean-Variance Relation with Control Variables

(1) (2) (3) (4) (5)

Intercept 2.6941 0.5186 0.8262 0.7929 2.5478
(2.262) (1.269) (2.647) (2.578) (1.597)

V art(Rt+1) −0.0112 −0.0116 −0.0111 −0.0097 −0.0105
(−2.733) (−2.707) (−2.527) (−2.261) (−2.186)

Dt −0.5733 −0.5717 −0.6559 −0.7102 −0.6525
(−1.437) (−1.380) (−1.651) (−1.740) (−1.551)

Dt × V art(Rt+1) 0.0576 0.0569 0.0584 0.0637 0.0637
(5.119) (4.595) (5.179) (5.057) (4.900)

D/P Ratio Yes Yes

Default Spread Yes Yes

Investor Sentiment Yes Yes

Lagged Variance Yes Yes

R2 0.030 0.029 0.028 0.028 0.033

The results in Table 1.3 are strikingly similar to that of the GARCH specification with-

out control variables. First, the coefficient estimates for the conditional variance term are all
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significantly negative at least at the 5% level. This means that the negative mean-variance

relation following a loss month persists after accounting for business cycle variables, in-

vestor sentiment, and lagged variance. Second, the interaction term of the gain indicator

and the conditional variance has a significantly positive estimate across different specifi-

cations. Moreover, the F -tests reject the null hypothesis b1 + b2 = 0 with a p-value less

than 0.01. Therefore, the mean-variance relation is positive after a past gain, holding other

variables constant. Our results show that none of the control variables is able to explain

the alternating sign of the mean-variance relation, and prospect theory turns out to be the

only explanation for this special phenomenon.

To evaluate the economic importance of our findings, consider the model with all control

variables included. The coefficient estimate is−0.0097 for the conditional variance term, and

0.0637 for the interaction term. These estimates imply that if the market has experienced a

loss in the current month, then a one standard deviation increase in the conditional variance

is associated with a decrease of −0.44% (not annualized) in the expected return next month,

all else being equal, while a same increase in the conditional variance is associated with an

increase of 2.25% in the expected return next month, if the current month achieves a

gain. Again, our results are both statistically significant and economically important after

controlling for other explanatory variables, and demonstrate that the direction of the mean-

variance relation depends on the market’s past gain or loss, consistent with the predictions

of prospect theory.

1.3.4 Gain Proxy

We have so far used as proxy for a typical investor’s gain or loss with respect to her reference

point the current month’s market excess return. Therefore, we make the assumption that
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the typical investor evaluates her portfolio performance at the end of each month, with

respect to her wealth level at the end of last month (adjusted for the risk-free return),

and her willingness to pay for the market portfolio depends on both her gain/loss and the

volatility of the portfolio going forward. Then her wealth level at the end of current month

(adjusted for the risk-free return) becomes her reference point for the next month, and so on

so forth. Although the one month evaluation frequency is a natural choice, prospect theory

itself does not provide us any clear guidance where investors’ reference point should be, and

therefore our choice of the gain proxy is somewhat arbitrary in nature. In this subsection we

explore the robustness of our findings to the choice of gain proxy. Specifically, we redefine

our indicator for gain as:

Dt−l,t =


1 if Rt−l,t ≥ 0

0 otherwise

where Rt−l,t is the market excess return from month t− l to month t, and l is the look-back

horizon. For example, when l = 1, this definition coincides with our previous one, i.e.,

Dt−1,t = Dt, as both indicate whether the current month is a gain month or not. We take

l to be 1, 2, 3, 6, and 12, which correspond to a monthly, bimonthly, quarterly, half-yearly,

and yearly evaluation frequency, respectively. Table 1.4 presents the results for the following

regression equation:

Rt+1 = a1 + b1V art(Rt+1) + a2Dt−l,t + b2Dt−l,tV art(Rt+1) + controls+ εt+1

t-statistics are shown in the parentheses. We use the GARCH forecast as the proxy for

conditional variance, and include the full set of control variables for all the specifications.
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The only difference here than specification (5) in Table 1.3 is the proxy used for the gain

indicator. The second column uses a lag of one month for the indicator, which is identical

to specification (5) in Table 1.3, and we show it here for comparison purposes.

Table 1.4: Mean-Variance Relation Using Different Gain Proxies

Lag (months) 1 2 3 6 12

Intercept 2.5478 1.9735 1.9081 1.6130 1.6674
(1.597) (1.235) (1.198) (1.009) (1.052)

V art(Rt+1) −0.0105 −0.0126 −0.0129 −0.0106 −0.0192
(−2.186) (−2.558) (−2.619) (−2.132) (−2.724)

Dt−l,t −0.6525 −0.7733 −0.6602 −0.0760 0.7331
(−1.551) (−1.840) (−1.554) (−0.168) (1.610)

Dt−l,t × V art(Rt+1) 0.0637 0.0319 0.0362 0.0173 0.0171
(4.900) (2.818) (3.231) (1.587) (2.069)

Controls Yes Yes Yes Yes Yes

R2 0.033 0.016 0.018 0.012 0.021

We observe in Table 1.4 very similar mean-variance patterns seen in Table 1.3. Again,

following a period of loss, investors demand a lower expected return for a higher condi-

tional variance, as the coefficient estimates on the conditional variance term are all highly

significantly negative. Additionally, all the interaction terms except the one with a lag of 6

months are significantly positive, meaning that investors always require a higher expected

return from the market when they face a prior gain than a loss no matter how far backward

(up to a year) the gain/loss is calculated, given a fixed level of conditional variance going

forward. Notice that even the specification with a 6-month lag barely misses the significance

test. Given these robust results, we conclude that even though investors may use different

reference points while evaluating their portfolio performance, they always behave in a risk

seeking way after a prior loss, and less so after a prior gain.
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For completeness, we include in Table 1.5 the regression results of the two-regime model

using gain proxies with even longer look-back period up to five years. Interestingly, neither

the coefficients on the conditional variance nor those on the interaction term are significantly

different from zero in any of the specifications. Our interpretation is that investors tend to

change their reference points quite frequently, and they do not seem to look back too far

in the past to define gains and losses. However, we do recognize that the literature on the

reference points investors use to evaluate past performance is rather scarce, and we leave

the question for future research.

Table 1.5: Mean-Variance Relation Using Different Gain Proxies (Continued)

Lag (months) 24 36 48 60

Intercept 1.1212 1.7569 0.6908 0.8778
(0.689) (1.047) (0.401) (0.525)

V art(Rt+1) −0.0052 −0.0021 −0.0056 −0.0056
(−0.660) (−0.279) (−1.101) (−1.104)

Dt 0.4479 −0.1059 0.7069 0.5337
(0.892) (−0.205) (1.317) (1.025)

Dt × V art(Rt+1) −0.0051 −0.0106 −0.0202 −0.0207
(−0.566) (−1.196) (−1.797) (−1.830)

Controls Yes Yes Yes Yes

R2 0.010 0.011 0.012 0.012

1.3.5 Nonlinear Mean-Variance Relation

The analysis we have done so far has focused on the decreasing sensitivity component of

the prospect theory utility function. We demonstrated that when investors are in their loss

region and hence risk seeking, they are more willing to be exposed to a more volatile stock

market, and hence the mean-variance relation is generally negative after investors have
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experienced past losses. However, there is another subtle implication of the prospect theory

when we take into account the magnitude of the past loss. Specifically, the loss aversion

component of the prospect theory suggests that there is a kink in the utility function at the

reference point, and that the marginal utility an investor gets from an extra gain beyond

the kink is smaller than the marginal disutility she suffers from an extra loss. Thus, even

though the prospect theory utility function is convex in the loss region, when a future gain

is so large that it brings the investor back to her previous reference point and even beyond,

the extra boost in her utility will become smaller and smaller. In this situation, she will

not value the volatility of the market as much as when the volatility is smaller.

The loss aversion component therefore drives the mean-variance relation towards the

positive direction, the opposite to the decreasing sensitivity component. The overall direc-

tion of the mean-variance relation depends on which of the two driving forces dominates,

which in turn depends on the magnitude of the conditional variance compared to the dis-

tance the investor is away from her reference point. When the market’s conditional variance

is small relative to the magnitude of the investor’s prior loss, it is rather unlikely that a

future gain brings the investor back and past the previous reference point. When this hap-

pens, the decreasing sensitivity dominates the loss aversion, and the mean-variance relation

is negative. On the other hand, when the conditional variance is relatively large, there is

higher chance that the kink at the reference point will come into play, so the loss aversion

dominates and the mean-variance relation will become positive.

In this subsection, we test whether the relationship between conditional mean and con-

ditional variance of market returns are indeed nonlinear as predicted by the prospect theory.

To be specific, we run the following regressions, adding quadratic terms of conditional vari-
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ance to our previous specification, and replace the gain indicator Dt with Rt:

Rt+1 = a1 + b1V art(Rt+1) + c1V ar
2
t (Rt+1)

+ a2Rt + b2RtV art(Rt+1) + c2RtV ar
2
t (Rt+1) + controls+ εt+1

The reason we use Rt instead of Dt is that we want to explore the impact of the

magnitude of past losses on the mean-variance relation. Before we move on to the results,

it is worth noting a numerical issue in the regression. The issue is caused by the heavy-

tail distribution of both the market excess returns and the conditional variance estimates,

especially during market downturns, as shown by their high kurtosis in Table 1.1. Therefore,

it is possible that our results will be driven mainly by a few outliers in the sample. For

example, our sample includes the 1929 and 1987 market crashes, as well as the recent

financial crisis. This issue is more serious here than in our previous specifications because

now we have the square terms of conditional variances, the interaction of excess returns

and conditional variances, and the interaction of excess returns and the squared conditional

variances. The high correlation between the magnitude of current month’s market return

and the conditional variance makes things even worse. To make our results more robust

to outliers, we make the following adjustments. First, we exclude the interaction term

between Rt and V ar2t (Rt+1), which is the most vulnerable to extreme observations. In

fact, this interaction term turns out to be not significant in most of our specifications,

so there is no loss of generality here. Second, we use the rolling window model as our

proxy for conditional variances, as it generates less heavy-tailed estimates. For instance,

in a loss month, the conditional variance estimates given by the two GARCH models have

a kurtosis of 14.90 and 13.92 respectively, while the rolling window model estimates only
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have a kurtosis of 8.70. Third, we re-estimate our model after removing the most extreme

data points and check the robustness of our results.

Table 1.6 presents the regression results after the adjustments mentioned above, where

t-statistics are shown in parentheses. Specification (1) uses the full sample, while specifica-

tions (2) through (6) leave out the lower 1%, 2%, 3%, 4%, 5% months in terms of market

excess returns. The corresponding cutoff points for the monthly excess returns are −20.36%,

−16.13%, −13.23%, −12.74%, and −11.27%, respectively.

Table 1.6: Nonlinear Mean-Variance Relation

(1) (2) (3) (4) (5) (6)

Intercept 1.9001 1.9875 1.5249 1.6162 1.6931 1.4263
(1.191) (1.249) (0.962) (1.021) (1.069) (0.902)

V art(Rt+1) −0.0078 −0.0192 −0.0299 −0.0271 −0.0274 −0.0343
(−0.717) (−1.587) (−2.350) (−2.118) (−2.120) (−2.595)

Rt −0.0082 0.0050 0.0141 0.0294 0.0281 0.0402
(−0.179) (0.111) (0.309) (0.641) (0.604) (0.858)

Rt × V art(Rt+1) 0.1523 0.1824 0.1391 0.1368 0.1337 0.1264
(×10−2) (3.715) (4.351) (3.114) (3.029) (2.898) (2.657)

V ar2t (Rt+1) 0.4458 0.7986 1.1693 1.1242 1.1316 1.3806
(×10−4) (1.588) (2.559) (3.317) (3.162) (3.168) (3.522)

Controls Yes Yes Yes Yes Yes Yes

R2 0.031 0.039 0.034 0.035 0.034 0.038

The results in Table 1.6 show several interesting findings that are consistent with our

conjectures. First, the coefficient estimates for the squared conditional variance is signifi-

cantly positive for all but one specification. This documents that there is indeed nonlinearity

in the mean-variance relation. The only specification where the quadratic term does not

have a significant coefficient is the one with the full sample, which again corroborates our
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belief that outliers may alter the results. However, by eliminating different portions of

the left tail observations, our results are fairly robust across specifications (2) through (6).

Second, the R2 for the regressions on different subsamples increase first and then decrease,

with the highest being for specification (2). This means that our model achieves the best

fit when the lower 1% observations are left out. Third, for specification (2), the coefficient

for V art(Rt+1) is not significantly different from zero. Notice that this number together

with the quadratic coefficient determines the axis of symmetry of the quadratic function

when the current month’s excess return is zero. An estimate close to zero indicates that

the axis of symmetry stays at V art(Rt+1) = 0 when there is no gain or loss. Therefore,

as conditional variance increases, the required return also increases, establishing a positive

mean-variance relation. This is not surprising because when investors are at the reference

point, loss aversion plays the major role in determining her appetite for risk.

Last but not least, the coefficients for the interaction term of current excess return

and conditional variance are all highly significantly positive across all specifications. This

number determines how the axis of symmetry of the quadratic function moves around when

the current month’s return changes. A positive estimate implies that when the current

month experiences a gain, the axis of symmetry is to the left of zero, and hence the mean-

variance relation is positive. This is again consistent with prospect theory’s prediction,

because while in the gain region, both loss aversion and decreasing sensitivity make the

investor unwilling to hold volatile assets. More importantly, when the current month is a

loss month, the axis of symmetry is to the right of zero. With a positive quadratic estimate,

this means that the expected return investors demand from the market decrease first with

the conditional variance, while it starts to increase when the conditional variance goes

beyond the axis of symmetry. Moreover, the turning point where the mean-variance relation
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switches sign depends on the magnitude of the current month’s loss. As the magnitude of the

loss increases, the axis of symmetry shifts further to the right, requiring a higher conditional

variance to attain the positive mean-variance relation.

Figure 1.4 helps better visualize our results by plotting the mean-variance relation when

the magnitude of prior gains and losses differs. If investors face a prior gain of 5%, our

estimates suggest a mean-variance relation given by the solid line, a quadratic function

with the axis of symmetry to the left of the vertical axis. Since conditional variance can

only be positive, our results imply a positive mean-variance relation. The dashed line

corresponds to the case where investors have experienced a moderate past loss of 5%. Now

the axis of symmetry resides to the right of the vertical axis, such that the market return

required by investors first decrease and then increase with conditional variance, as the

importance of loss aversion becomes stronger and that of decreasing sensitivity becomes

weaker. If the past loss is at a higher level of 10%, the axis of symmetry moves further

away to the right. The expected return still goes down first and up afterwards as conditional

variance increases. However, since now the investor is farther away from her reference point,

decreasing sensitivity dominates loss aversion for the most part, until conditional variance

is high enough to reach the turning point. All these results are exactly the same as the

prospect theory predicts: when the conditional variance is relatively small compared to the

past loss, decreasing sensitivity dominates loss aversion, and investors are willing to take

the market risk in order to break even; when the conditional variance is too large and loss

aversion becomes more relevant, any extra possible gain is not as attractive any more, and

investors become averse to the market risk.
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Figure 1.4: Nonlinear Mean-Variance Relation

1.3.6 Out-of-sample Prediction

Our results have shown that although neither past returns nor conditional variances alone

can predict future market returns, jointly they have strong predictive power for the equity

premium, at least in sample. Table 1.2 shows that the in-sample R2 of predictive regressions

when using different conditional variance proxies range from 1.3% to 2.7%, while the corre-

sponding univariate regressions have essentially no predictive power whatsoever. It is unfair

to compare the in-sample R2 of nested regressions with different numbers of predictors, as

the high R2 associated with more predictors could well be an artifact of overfitting noises.

In fact, Welch and Goyal (2008) test the performance of various equity premium predictors

suggested by the literature, and find that they have done very poorly out of sample. In this

subsection, we address the concern of overfitting, and examine our predictive regressions in

a similar way to Welch and Goyal (2008). Specifically, we estimate the parameters of our

predictive regression every period, using information only up to that period, make predic-
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tion of the equity premium for the next period, and calculate the out-of-sample R2 using

the following formula suggested by Campbell and Thompson (2008):

R2
OS = 1−

∑T
t=1(rt − r̂t)2∑T
t=1(rt − r̄t)2

where r̂t is the fitted value from a predictive regression estimated through period t − 1,

and r̄t is the historical average return estimated through period t − 1. The out-of-sample

R2 thus directly measures the proportional decrease in mean-squared-error of a predictive

model compared to simple expanding window averages. A positive R2
OS implies that the

predictive model does better than simple average, and a negative value means the opposite.

We require at least 30 years of data to obtain the regression coefficient estimates. There-

fore, VIX is excluded from our analysis and we only use the other three conditional variance

proxies. Table 1.7 shows the out-of-sample R2 in the one-regime and the two-regime models

with different conditional variance proxies. Columns 2 through 4 correspond to the R2 for

the full sample, the subsample following gain months, and the subsample following loss

months, respectively. It is not surprising that the magnitude of these out-of-sample R2’s

are fairly small, because monthly returns contain a substantial unpredictable component.

However, a monthly R2 around 0.5% represents an economically important degree of eq-

uity premium predictability, as illustrated in Campbell and Thompson (2008). We can see

from Table 1.7 that over the full sample, the two-regime model achieves a much higher

out-of-sample R2 (at a level around 0.5%) than the one-regime model across different spec-

ifications. Moreover, the R2
OS ’s of the two-regime model are all positive, meaning that the

gain indicator together with the conditional variance predicts market excess returns better

than simple historical averages. Therefore, the two-regime model suggested by prospect
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theory not only explains the time-varying mean-variance relation in sample, but also at-

tains superior predictive performance out of sample compared to the one-regime model and

the constant equity premium model.

Table 1.7: Out-of-sample R2 of Predictive Regressions

Full Sample Gain Months Loss Months

Panel A: Rolling Window

One-Regime −0.43% −0.07% −0.67%
Two-Regime 0.49% −0.87% 1.39%

Panel B: GARCH

One-Regime 0.07% −0.20% 0.25%
Two-Regime 0.56% −0.80% 1.46%

Panel C: Asymmetric GARCH

One-Regime 0.20% −0.23% 0.48%
Two-Regime 0.56% −0.31% 1.14%

Another interesting finding is that the higher predictive power of the two-regime model

concentrates on the subsample following loss months, with a R2 greater than 1% across

different specifications. In contrast, following gain months, the two-regime model does no

better than the one-regime model nor the simple average. This fact again corroborates our

belief that decreasing sensitivity is important in understanding investors’ attitude toward

risk, because it is exactly after prior losses that decreasing sensitivity drives the negative

mean-variance relation, which in turn leads to the better out-of-sample predictive perfor-

mance of our model.

1.3.7 Gain/Loss Timing

We have demonstrated the importance of the decreasing sensitivity component of prospect

theory in determining the mean-variance relation of the overall stock market. To sum

up, investors are only compensated with a higher expected return for a higher conditional
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variance after the market has had a prior gain, but there is no commensurate compensation

after prior losses. Another way to test whether this is true in the data is to look at the

profitability of a market timing strategy based on prior gains and losses. Specifically, if one

is not well compensated for bearing risk after prior losses, she should avoid the market in

such situations. A very simple but natural strategy is to hold the market portfolio after

a gain month, but to switch to the risk-free asset after a loss month. Figure 1.5 gives the

reader an intuitive idea why this strategy might work. We divide the whole sample into

three parts based on monthly market excess returns, with the cutoff points at the lower and

upper 30% quantiles. Then we calculate the Sharpe ratios of the market portfolio in the

next month in each of these three subsamples. We can see from Figure 1.5 that the Sharpe

ratio increases monotonically from 0.25 (annualized) following months with lowest returns,

to as high as 0.70 following months with highest returns. Therefore, our simple strategy

gets exposed to the market when exactly its Sharpe ratio is high.
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Figure 1.5: Sharpe Ratio by Previous Month’s Return

We further evaluate the performance of our gain/loss timing strategy within benchmark
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factor models. Table 1.8 shows the decomposition of our gain/loss timing strategy in CAPM

and the Fama-French three factor model. Even though the strategy does not involve stock

picking, and hence we do not expect our returns to depend on the size and value factors,

we include the Fama-French results here for completeness. We can see from Table 1.8

that our timing strategy generates statistically significant alphas in both of the models. In

the market model, the gain/loss timing strategy has a positive alpha of 0.22% per month,

which amounts to 2.59% per year. The strategy does have a significant loading on the

market factor, which is not surprising given it holds the market portfolio over half of the

time. In the Fama-French model, the loading on the market factor does not change much.

Even though our strategy loads positively on the value factor, it still generates a significantly

positive alpha of 0.19% per month, or 2.27% per year. Besides the positive alphas in factor

models, our strategy also has an annualized Sharpe ratio of 0.50, higher than the market

Sharpe ratio of 0.43 over the same period. Therefore, the strategy successfully utilizes the

positive mean-variance relation after gain months and avoids the flat or negative mean-

variance relation after loss months, and achieve a better risk-return tradeoff.

Table 1.8: Gain/Loss Timing against Factor Models

α Market Size Value R2

CAPM 0.2160 0.4891 0.487
(2.505) (10.469)

Fama-French 0.1892 0.4631 0.0672 0.0852 0.496
(2.230) (10.949) (1.210) (1.937)

We emphasize here that our strategy is different from several other market timing strate-

gies in the literature. Moskowitz et al. (2012) find that the past 12-month excess return of

equity indexes positively predicts its future return, and thus a timing strategy based on the

market excess return over the past year generates alpha. Our strategy differs from theirs
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in two dimensions. First, the role of past gains and losses in our model is in predicting the

tradeoff between risk and return going forward, rather than future returns themselves. In

fact, neither the gain indicator Dt nor the raw excess return Rt has significant predicting

power for future returns Rt+1 in any of our specifications. Instead, past gains and losses

do predict the direction of future mean-variance relation. Second, we use a one-month

look-back period rather than a one-year horizon. It is worth noting that the time-varying

mean-variance relation still holds when we use a 12-month gain proxy, as shown in Table

1.4. Moreover, a gain/loss timing strategy based on the 12-month gain proxy also generates

positive alpha.1 However, we stick to the one-month look-back period to distinguish our

strategy from the time series momentum strategy, because their strategy does not work over

such horizon.

Another strategy we want to compare ours with is the volatility timing strategy proposed

by Moreira and Muir (2017). They find that the risk-return tradeoff is weak when market

volatility is high, so they suggest leveraging the market portfolio in inverse proportion to

the current month’s realized volatility. Their strategy is similar to ours in the sense that it is

based on the prediction of future risk-return tradeoff rather than return itself. Additionally,

it is well known that when market goes down, its volatility tends to be high, the so-called

“leverage effect”. Thus, by holding the market when it goes up while avoiding it when it

goes down, it could be that we are simply timing the market based on realized volatility

indirectly. To investigate the relationship between our gain/loss timing strategy and the

volatility timing strategy, we divide the whole sample into four parts based on the gain

dummy and the low volatility dummy, where low volatility is defined as the volatility being

below its unconditional median. Table 1.9 shows the summary statistics for these four

1. The results are not shown here, but are available upon request.

41



subsamples. We can see from the table that gain tends to coincide with low volatility while

loss tends to coincide with high volatility, which is consistent with the “leverage effect”.

However, notice that the correlation between the gain and the low volatility indicator is not

very high: we still have fair amount of observations of high volatility with a gain (275), and

of low volatility with a loss (153). Row three shows the average realized volatility in the four

subsamples, with higher values in high volatility periods by construction. Row four shows

the average leverage that the volatility timing strategy assigns to the market portfolio in the

four different scenarios, and row five shows the Sharpe ratios of the market in the months

following these scenarios. Clearly, the volatility timing strategy applies a high leverage after

a low-volatility month and a low leverage after a high-volatility month, which enables it

to harvest the high Sharpe ratio of 0.75 following a gain and low-volatility month, while

escaping the low Sharpe ratio of 0.07 following a loss and high volatility month. However,

it misses the chance after a gain and high volatility month, by placing only a leverage of

0.49 on average, when the Sharpe ratio of the market is reasonably high, at 0.62 in such

situation. In contrast, our results suggest that after a prior gain, even if the current realized

volatility is high, the mean-variance relation is still positive going forward, so we should

take the market risk as we will be well compensated by a commensurate expected return.

Therefore, although both our strategy and the volatility timing strategy try to time the

market based on the prediction of the future mean-variance relation, their exposure to the

market differs substantially over various subperiods of our sample.

Table 1.9: Gain/Loss v.s. Realized Volatility

Gain & Low Vol Gain & High Vol Loss & Low Vol Loss & High Vol

# of Obs. 408 275 153 286
Realized Vol 8.13% 19.62% 8.77% 24.11%
Avg. Leverage 2.18 0.49 1.69 0.40
Sharpe Ratio 0.75 0.62 0.56 0.07
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The fact that both our gain/loss timing strategy and the volatility timing strategy

invest heavily in the market when the risk-return tradeoff is superior and that they do not

overlap with each other too much motivates us to combine the two strategies to achieve

better performance. Here, we examine one simple strategy that incorporates both signals.

Specifically, we apply a leverage to the market portfolio that is inversely proportional to

current month’s realized variance as in Moreira and Muir (2017), and we double this leverage

when current month has had a gain rather than a loss. Table 1.10 evaluates the performance

of both the volatility timing alone and the gain/loss augmented volatility timing strategy

within the framework of factor models. Both strategies are scaled such that they have

the same unconditional volatility as the market. We can see that these two strategies

both generate significantly positive alphas against CAPM and the Fama-French three factor

model. Moreover, in both benchmarks, the volatility and gain/loss combined timing strategy

has alphas that are about 0.1% per month higher than the volatility timing strategy alone,

equivalent to a 1.2% boost in annualized alpha. In terms of Sharpe ratio, the combined

timing strategy is superior to either single strategy alone, with a Sharpe ratio of 0.55

compared to 0.52 of the volatility timing strategy and 0.50 of the gain/loss timing strategy.

The differences in alpha as well as in Sharpe ratio turn out to matter a lot for the portfolio

performance. Figure 1.6 shows the compounded excess return (over risk-free return) of

different strategies over our sample period, from 1926 to 2019. The solid line corresponds

to the market portfolio, the dashed line to the volatility timing strategy, and the dotted line

to the volatility and gain/loss combined timing strategy. All returns are in log scales on the

base of 10. One dollar invested in the market since 1926 would have turned into $345.80 in

2019. In comparison, the volatility timing strategy would have turned one dollar in 1926

to $1582.66 in 2019. Moreover, combining our gain/loss timing strategy with the volatility
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Table 1.10: Volatility and Gain/Loss Timing

Model α Market Size Value R2

Panel A: Vol Timing

CAPM 0.3951 0.6103 0.372
(2.887) (7.444)

Fama-French 0.4363 0.6429 −0.0533 −0.1455 0.382
(3.134) (9.187) (−1.024) (−1.715)

Panel B: Vol & G/L Timing

CAPM 0.5069 0.5124 0.263
(3.388) (7.051)

Fama-French 0.5354 0.5389 (−0.0637) (−0.0933) 0.268
(3.577) (8.307) (−1.239) (−1.179)

timing strategy boosts the portfolio even further, turning one dollar to $2595.46 over the

same period. Therefore, the small differences in annualized alpha and Sharpe ratio make a

huge difference over the horizon of nearly 100 years. Notice also that the combined timing

strategy actually started to outperform the volatility timing strategy in late 1960s. The

two timing strategies also did well during several market downturns in the history, such as

the Great Depression, and the recent 2007-08 financial crisis.

The superior returns of our gain/loss timing strategy as well as the volatility augmented

gain/loss timing strategy demonstrate indirectly the importance of the time-varying mean-

variance relation over our sample period. By investing heavily in the market after past

gains while decreasing market exposure after past losses, investors are able to exploit better

risk-return tradeoff and accumulate substantially more wealth than if they have held the

market passively.
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Figure 1.6: Compounded Excess Return (Log Scale)

1.3.8 Sector-Level Analysis

We have so far focused our analysis on the mean-variance relation for the overall stock

market. However, it could well be the case that investors evaluate their gains and losses in

different segments of the stock market separately. Consequently, decreasing sensitivity will

cause a time-varying mean-variance relation in each segment similar to that we observe for

the aggregate market. This kind of narrow framing/mental accounting argument is widely

used in the literature to study the implications of prospect theory in the cross section;

see Frazzini (2006), Li and Yang (2013), and Wang et al. (2017), to name a few. In this

subsection, we examine the mean-variance relation at the sector level, and propose a sector

timing strategy that utilizes this time-varying relation.

We obtain the data on the daily and monthly returns of 12 industry portfolios from

Kenneth French’s website. Industries are defined by companies’ four-digit SIC codes. We

choose the number of 12 because it is the closest to the division of S&P 500 stocks into 11
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sectors, which is the basis of sector timing strategies used by a lot investors. The reason

that we do not use the S&P 500 sector returns directly is because the division began in 1999,

while our data dates back to 1927, and we want to study the sector level mean-variance

relation over a longer period that is comparable to our findings about the aggregate market.

Table 1.11 shows a detailed description of the 12 industry portfolios.

Table 1.11: Definitions of Industry Portfolios

Industries Abbreviation

Consumer Nondurables – Food, Tobacco, Textiles, Apparel, Leather, Toys NoDur
Consumer Durables – Cars, TVs, Furniture, Household Appliances Durbl
Manufacturing – Machinery, Trucks, Planes, Off Furn, Paper, Com Printing Manuf
Oil, Gas, and Coal Extraction and Products Enrgy
Chemicals and Allied Products Chems
Business Equipment – Computers, Software, and Electronic Equipment BusEq
Telephone and Television Transmission Telcm
Utilities Utils
Wholesale, Retail, and Some Services (Laundries, Repair Shops) Shops
Healthcare, Medical Equipment, and Drugs Hlth
Finance Money
Other – Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment Other

To test whether the mean-variance relation within each sector also depends on prior

gains and losses in that sector, we run the regression in (1.2), with the excess returns and

the corresponding gain indicator defined for each sector separately. Table 1.12 presents the

regression results. We can see from the table that in all but two industries, the coefficient

estimates on the interaction term of the gain indicator and the conditional variances are

significantly positive. On the other hand, the coefficients on the conditional variances alone

are all negative, some of which significantly so. This means that at the sector level, the

mean-variance relation is either negative or flat after prior sector losses, and that investors in

these sectors are better compensated for bearing volatility risk after prior gains than prior

losses. Therefore, the results are very similar to our previous findings about the overall

stock market, and are also consistent with the prediction made by prospect theory together
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with narrow framing.

Our results then motivate a natural strategy that refrains from investing in industries

that have experienced recent losses. Specifically, we put equal weights on industries that

have gains in the past month, and zero weight on industries with losses. When all industries

have losses, we switch to the risk-free asset. Figure 1.7 shows the cumulative excess returns

for this sector gain/loss timing strategy over the past one hundred years. As a comparison,

we also include the performance of the market, and a equally weighted sector portfolio.

Our sector gain/loss timing strategy achieves a higher Sharpe ratio of 0.53 during this

period, compared to 0.43 of the market, and 0.47 of the equally weighted portfolio. One

dollar invested in 1927 in the sector timing portfolio would have turned into $2115.72 at

the end of 2019, substantially higher than $345.80 provided by the market and $654.00 by

the equally weighted portfolio.
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Figure 1.7: Compounded Excess Return (Log Scale)
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1.4 Conclusion

This paper investigates one of the most fundamental questions in finance, the mean-variance

relation of the overall stock market. Traditional asset pricing theories have hypothesized a

positive relationship between the expected return of the market and its conditional variance,

as investors require higher compensation for bearing more risk. However, the empirical

evidence in the literature has been mixed at best. We study the mean-variance relation from

the perspective of prospect theory, or its decreasing sensitivity and loss aversion components

to be more specific. Prospect theory suggests that investors’ attitude toward risk depends

on their current state with respect to their reference point. They are risk averse when they

have had a past gain and hence to the right of their reference point, but become risk seeking

when they suffer a prior loss. Thus, whether investors demand a higher return for greater

risk from the market depends on which side the investors are with respect to their reference

point. Our empirical results are strikingly consistent with prospect theory’s prediction. We

find that the future mean-variance relation is negative if the current month has experienced

a loss, and it reverses to be positive when the current month achieves a gain. Our findings

are robust to controlling for business cycle variables, lagged realized variance, as well as

investor sentiment. Moreover, using different look-back windows to define past gains and

losses does not alter the results either.

We also test another more subtle prediction of the prospect theory in terms of the mean-

variance relation, that not only decreasing sensitivity but also loss aversion drive investors’

appetite toward risk. These two forces drive the mean-variance to opposite directions when

the investors are in their loss region. We find a nonlinear mean-variance relation that is

exactly the same as the prediction of prospect theory. When the magnitude of the market’s

conditional variance is relatively small compared to investors’ prior losses, decreasing sensi-
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tivity dominates loss aversion, and the mean-variance relation is negative. However, when

the magnitude of the conditional variance is large relative to past losses, loss aversion plays

a major role, which reverses the mean-variance relation to be positive.

The time-varying pattern of the mean-variance relation has its practical importance

for investors as well. We propose a simple market timing strategy based on the market’s

past gains and losses. The strategy suggests holding the market when the current month

has experienced a gain and the future mean-variance relation is expected to be positive,

and switching to the risk-free asset when the current month has suffered a loss and the

mean-variance relation is weak. This simple strategy achieves a higher Sharpe ratio than

the market, and generates significantly positive alphas in CAPM and Fama-French three

factor models. Our gain/loss timing strategy is different in various dimensions from several

other timing strategies in the literature such as the time series momentum strategy and

the volatility timing strategy. Augmenting our timing strategy with the volatility timing

strengthens its performance even further. Investors would have accumulated much more

wealth if they had employed the combined timing strategy instead of holding the market

passively.
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1.A Proofs

We derive here the analytical solution for the monthly conditional variance, V art(Rt+1),

assuming daily returns follow an asymmetric GARCH(1, 1) process below:

rt = µ+ εt

σ2t = ω + αε2t−1 + γε2t−1I[εt−1<0] + βσ2t−1

εt = σtet, et ∼ N(0, 1)

The solution when the daily returns follow a symmetric GARCH(1, 1) process is a special

case where γ = 0 and hence its derivation is omitted here.

The conditional variance of daily return d days ahead, i.e., rt+d is:

σ2t+d = ω + αε2t+d−1 + γε2t+d−1I[εt+d−1<0] + βσ2t+d−1

Take expectation of both sides conditional on date t gives:

Et(σ
2
t+d) = ω + αEt[Et+d−2(ε

2
t+d−1)] + γEt[Et+d−2(ε

2
t+d−1I[εt+d−1<0])] + βEt[Et+d−2(σ

2
t+d−1)]

= ω + (α+ γ/2 + β)Et(σ
2
t+d−1) (1.4)

where the first equation follows by the law of iterated law of expectation. The second

equation holds because: first, εt+d−1 ∼ N(0, σ2t+d−1); second, σ2t+d−1 is know at t + d − 2;

and third, by symmetry we have:

Et+d−2(ε
2
t+d−1I[εt+d−1<0]) = Et+d−2(ε

2
t+d−1I[εt+d−1≥0]) = Et+d−2(ε

2
t+d−1)/2
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Solve for equation (1.4) iteratively until time t, we get:

Et(σ
2
t+d) =

ω[1− (α+ γ/2 + β)d−1]

1− (α+ γ/2 + β)
+ (α+ γ/2 + β)d−1σ2t+1

The conditional variance at time t for the next month is given by the sum of the expected

daily return variance for each of the D trading days next month:

V art(Rt+1) = Et

(
D∑
d=1

σ2t+d

)

=

22∑
d=1

Et(σ
2
t+d)

=
ωD

1− (α+ γ/2 + β)
− ω[1− (α+ γ/2 + β)D]

[1− (α+ γ/2 + β)]2
+

1− (α+ γ/2 + β)D

1− (α+ γ/2 + β)
σ2t+1

Since σ2t+1 is observable at time t, plugging in the estimates for {µ, ω, α, γ, β} gives the

estimate for the monthly conditional variance.
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Chapter 2

Time-Varying Loss Aversion and

Probability Weighting

Abstract: The prospect theory suggests that people are subject to loss aversion

and probability weighting when they make decisions involving risk, the degrees

of which have been well documented in the experimental setting to vary in

different situations. This paper estimates investors’ time-varying loss aversion

and probability weighting using financial data. We find that after the 2007-

2008 financial crisis, investors are more averse to losses, and their tendency to

overweight right tail events becomes weaker. Additionally, both loss aversion

and probability weighting have a close relationship with investor sentiment.

2.1 Introduction

The prospect theory developed by Kahneman and Tversky (1979) and Tversky and Kah-

neman (1992) has been the major alternative to the expected utility theory as a model to
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describe economic agents’ attitude towards risk. In an experimental setting, the authors

find that people differ in two1 main perspectives from the assumptions of the expected

utility theory when making decisions involving risk. First, they derive value not from their

absolute wealth level but from gains and losses defined relative to some reference point, and

they suffer more from losses than they enjoy gains of the same magnitude. Second, people

tend to overweight tail events even if they know the true probabilities of these events are

small.

These two building blocks of the prospect theory, loss aversion and probability weighting

respectively, have helped solve many puzzles in asset pricing that are not easily explained

by the traditional “rational” asset pricing models, which are built upon the expected util-

ity theory. To name a few, Benartzi and Thaler (1995) attribute the equity premium to

investors’ loss aversion, because the highly disperse distribution of stock market returns is

unappealing to loss averse investors and they have to be compensated to hold the stocks by

a much higher expected return than the risk-free return. In Barberis and Huang (2008)’s

model, even idiosyncratic skewness that is not correlated with the market return is priced

when the economy is populated with prospect theory investors. They claim that assets with

positive skewness such as out-of-the-money options are attractive to investors because they

overweight the states of the world that are not very likely to realize, and consequently these

assets have high price and low expected returns.

Nonetheless, literature on gauging the parameters of the prospect theory is scarce. Most

research has been in the experimental setting, which may not well describe how investors

behave in the financial markets when real money is involved. To our best understanding,

Baele et al. (2019) is the only paper that estimates the parameters of loss aversion and

1. The third feature of the prospect theory, namely diminishing sensitivity, is less important in our paper,
so we omit the discussion here.
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probability weighting using financial data, but the main focus of that paper is not on

the dynamics of the parameters across time. Although the authors did calibrate their

model allowing for time-varying loss aversion and probability weighting, they found that

the improvement in the fit of the model was quantitatively small, and that static estimates

were sufficient for their purposes, namely explaining the variance risk premium. However, as

will be clearer in later part of this paper, a dynamic specification is crucial to understanding

interesting phenomena other than variance premium.

At least two strands of literature motivate us to believe how averse people are to losses

and how heavily they overweight tail events do vary in different situations. For instance,

Thaler and Johnson (1990) find that people are more likely to take gambles they otherwise

would not have taken if they have experienced prior gains, and the authors suggest the

reason be that losses are less painful after prior gains, but more so after prior losses. A

recent paper by Cohen et al. (2020) argues that people make choices relying on small samples

of past experiences with similar decision tasks, and thus the probability weighting tendency

also depends on their experiences.

On the other hand, the empirical asset pricing literature provides indirect evidence for

time-varying loss aversion and probability weighting. For example, Yu and Yuan (2011) find

that the positive relationship between the stock market’s expected excess return and the

market’s conditional variance is stronger when the investor sentiment is low than otherwise.

One explanation would be that investors are more loss averse when sentiment is low, and a

higher variance of the market is more likely to put them in the loss region with respect to

their reference point, so they require being compensated by a higher expected return; when

the sentiment is high, investors are less loss averse, so they do not care about the variance

so much and the correlation is weaker in consequence. Another example is Han (2008),
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who finds that the slope of the implied volatility of index options is steeper when market

sentiment is low. In fact, the negative slope of the volatility smile itself shows evidence

for probability weighting: out-of-the-money put options are valued more than their in-the-

money counterparts by prospect theory investors because they overweight the tail event of

a sharp market downturn, which the out-of-the-money options provide protection against

at a relatively low cost. If the degree of probability weighting of investors changes over

time and is heavier when the sentiment is lower, then the relationship between the slope of

the volatility smile and the sentiment could be well explained. Green and Hwang (2012)

also find a close relationship between investor sentiment and their preference over tails.

They show that IPOs with high expected skewness experience significantly higher first-day

returns during periods of high investor sentiment than otherwise.

Therefore, we believe loss aversion and probability weighting are indeed changing over

time and are closely related to investor sentiment, and that we will be able to demystify

a lot interesting phenomena like those mentioned above if we can learn more about the

prospect theory parameters.

Since the analysis framework of this paper bears some similarity with Baele et al. (2019),

we make clear here the major differences between the two papers. First, the main bulk of

their paper focuses on using prospect theory to explain the variance premium, which can

be expressed as a weighted average of expected returns from out-of-the-money put and

call options. The variance premium puzzle is of course an interesting topic by itself, but

by aggregating the returns of puts and calls across different moneyness into a weighted

average, one misses the chance to see other patterns in the return data, e.g., the difference

in returns between puts and calls, and between out-of-the-money options and in-the-money
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options2. In fact, these differences in returns are very important in helping us identify

investors’ degrees of loss aversion and probability weighting, as we will show later.

And that brings us to the second difference between our paper and Baele et al. (2019),

that we put more emphasis on the time variation in investors’ prospect theory preference.

Though the authors did some analysis on the time-varying parameters, they found that the

dynamic setting only improved the fit to the variance premium marginally compared to the

static setting. Admittedly, if the variance premium puzzle is the main interest, constant

prospect theory parameters suffice to match the data. However, since we aim to explain

other patterns like those mentioned in the first point, the dynamics of these parameters are

as important as, if not more so than their general levels.

Third, because of the importance of the time variation in loss aversion and probability

weighting parameters, we take a closer look at how the parameters change with other

economic variables. Specifically, besides raw returns of the market in the past as in their

paper, we also studied other key features such as the skewness and kurtosis of past returns,

though the results turned out to be not statistically significant. Nonetheless, we did find

close relationships between prospect theory parameters and investor sentiment as well as

its several components.

Last but not least, we propose a new estimation procedure that is very different from

Baele et al. (2019)’s. In their paper, the authors did calibration instead of estimation in

the dynamic setting, because their method falls out of the GMM (Generalized Method of

Moments) framework, and consequently, standard errors of estimators are not available. By

contrast, the new procedure of our paper still fits into the GMM framework, which allows

us to draw more meaningful statistical inference on the structural parameters of the model.

2. Baele et al. (2019) discussed the latter point in the introduction of their paper, but did not continue to
study its time-varying pattern in later analysis.
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The rest of this paper is organized as follows. Section 2.2 introduces our representative

agent model, section 2.3 describes our main empirical findings, and section 2.4 concludes.

2.2 The Model

We use a two-period representative agent model to describe the economy. The representative

agent makes investment decisions in period 0 facing J risky assets and one risk-free asset.

Following Barberis et al. (2001), and Baele et al. (2019), her total utility comes from two

sources: the expected utility defined on her terminal wealth in period 1, and the cumulative

prospect theory (CPT) utility defined on her gain (loss) in period 1 with respect to some

reference level. That is, she solves the following maximization problem:

max
α

EU(WT ) + b0V (XT ) (2.1)

s.t. WT = W0[Rf + α′(R − Rf )], and XT = WT −WRef , where EU(·) is her expected

utility defined on her terminal wealth WT , V (·) is her prospect theory utility defined on

her gain/loss XT , W0 is her initial wealth, and WRef is the reference level of wealth on

which gain and loss are defined. We use WRef = W0Rf , or the wealth the agent will have if

she invests in the risk-free asset only, with Rf being the risk-free rate. The representative

agent chooses her allocation α to the J risky assets with gross return vector R, to maximize

the weighted sum of the expected utility and the CPT utility, and b0 is the relative weight

she puts on the CPT utility. This utility specification avoids a common issue in modelling

investors’ preference with prospect theory alone, that the demand for risky assets is either

infinity or zero. Also, it makes more intuitive sense that the investor cares not only about

her gain or loss in her investment, but also about the absolute level of her wealth which is
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available for consumption.

Notice that our model is very similar to that in Baele et al. (2019), but one key difference

is that the agent in our model faces J risky assets instead of one. Introducing multiple risky

assets allows us to use assets other than the market index and its derivatives as test assets

for the GMM estimation. Although in theory any asset could be used in the estimation,

the availability of index options data is rather limited compared to stocks and portfolios.

The data we have for index options (and in Baele et al. (2019) as well) only dates back to

1996, which greatly limits the possibility to use the data to study investors’ time-varying

preferences over a longer period of time. As we will see in section 2.3, the extra test assets in

the stock market successfully help us capture the dynamics of prospect theory parameters

and their relationship with investor sentiment.

The expected utility part satisfies constant relative risk aversion (CRRA) of degree γ,

i.e., the utility function is given by:

U(WT ) =


W 1−γ
T

1−γ if γ 6= 1

lnWT if γ = 1

For the CPT part, the agent derives utility from gain/loss XT in the following way:

v(XT ) =


XT if XT ≥ 0

λXT if XT < 0

where λ is the parameter of loss aversion and it is usually greater than 1. That is, the agent

is more sensitive to losses than to gains: she suffers more from a loss than she enjoys a gain

of the same magnitude, even when the magnitude is small. We do not model decreasing

sensitivity here fore tractability purposes, but we study its implications in another chapter
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of the thesis (see “Prospect Theory and the Mean-Variance Relation”). The utilities in

different states of the world are then weighted by decision weights instead of objective

probabilities. To determine the decision weights, the agent first sorts the states of the

world based on her wealth level: W1 ≤ · · · ≤ WRef ≤ · · · ≤ WN , with corresponding

objective probabilities pi, then she applies the following transformation to the cumulative

probabilities to obtain decision weights πi:

πi =


w−(p1 + · · ·+ pi)− w−(p1 + · · ·+ pi−1) if Wi < WRef

w+(pi + · · ·+ pN )− w+(pi+1 + · · ·+ pN ) if Wi ≥WRef

w− and w+ are the probability weighting functions in the loss and gain region, respectively:

w−(p) =
pc1

[pc1 + (1− p)c1 ]1/c1

w+(p) =
pc2

[pc2 + (1− p)c2 ]1/c2

where c1, c2 ∈ [0.28, 1] to ensure w− and w+ are monotonically increasing and that decision

weights are positive. Figure 2.1 plots the probability weighting function for c = 1 (the

solid line, no probability weighting), for c = 0.65 (the dashed line), and for c = 0.4 (the

dot-dash line). The weighting functions are steeper in the low and high probability regions,

and flatter in the moderate probability region. Intuitively, the more extreme an outcome is

in terms of ranking of states, the more distortion the agent applies to that state relative to

its objective probability.

We allow the states of the world to be continuous, while in comparison, Baele et al.

(2019)’s model has finite states. Because of the discrete nature of their model, the authors

used a discrete approximation to the distribution of market returns. However, we caution
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Figure 2.1: Probability Weighting Function

Note: Probability weighting functions by Tversky and Kahneman (1992) are defined on cumulative
probabilities, w(p) = pc/(pc + (1 − p)c)1/c. The solid line represents c = 1, where there is no
overweighting of tails. The dashed line is for c = 0.65, which is obtained in some experimental
settings. The dot-dash line is for c = 0.4. The closer c is to 0, the more heavily the agent weights
tails.

against doing so especially when modeling probability weighting, as tail events are extremely

important. For example, suppose in practice there are ten observations of the market

returns, each corresponding to a possible state. Now consider the lowest value of the returns,

which has a cumulative probability of 0.1. Based on Figure 2.1, a moderate probability of

0.1 does not lead to much distortion in decision weight, no matter how extreme the lowest

value is. Thus, discretization may hide the true impact of probability weighting. Even

though this is a hypothetical example, and it will be less of an issue when we have more

observations, we want to avoid any unnecessary approximation errors as much as possible.

We also re-estimated the model after discretizing the states, and the results did not change
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much, but the benefits of having continuous states will be more obvious if one wants to do

a similar analysis on a shorter period.

In out setting, the CPT utility the agent derives from her gain/loss XT is given by

V (XT ) = V +(XT ) + V −(XT )

where

V +(XT ) = −
∫ ∞
0

v(X) dw+(1− P (X))

V −(XT ) =

∫ 0

−∞
v(X) dw−(P (X))

v(·), w+(·), and w−(·) are the value function and the probability weighting functions defined

previously, and P (·) is the cumulative distribution function of the gain/loss. Put simply,

the CPT utility is a weighted sum of the agent’s values in different states of the world, with

the weights assigned according to the probability weighting functions.

Given the representative agent’s preference described above, Proposition 1 gives the

moment conditions that have to be satisfied in equilibrium, which are the basis of our

empirical analysis in the next section.

Proposition 2.1. Assume b0 = b̂W−γ0 , and that the representative agent ranks the states

of the world based on the market return, i.e., she cannot endogenously alter the rankings by

choosing portfolio weights3. In equilibrium, the optimality condition for (2.1) together with

3. This assumption implies a “order-constrained” optimization problem as in Ingersoll et al. (2016). A
full-blown model with prospect theory preference usually generates multiple global optima, which makes the
analysis less tractable.
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market clearing implies:

E[(Rj −Rf )(mCRRA +mCPT )] = 0, j = 1, . . . , J (2.2)

where mCRRA = R−γM , and

mCPT = 1{RM≥Rf}(w
+)′(1− P (RM −Rf )) + λ1{RM<Rf}(w

−)′(P (RM −Rf )) (2.3)

j ranges over all risky assets in the economy, and M is the market portfolio.

Proof. See Appendix.

The pricing kernel in our model consists of two parts, one part from the expected utility

mCRRA, and the other from the CPT utility mCPT . The CPT part of the pricing kernel

tells us two things. First, assets that pay well when the market experiences losses are valued

more by investors than assets that pay well when the market experiences gains if λ > 1.

Second, investors prefer assets that pay well when the market is in extreme conditions, be

it extremely good or extremely bad, because of the probability weighting. As will be seen

in the next section, the CPT pricing kernel is essential in explaining certain patterns in the

data of asset prices.

2.3 Empirical Results

Our empirical analysis focuses mainly on the GMM estimation of the two key parameters

in prospect theory, namely loss aversion and probability weighting, and how they vary over

time with other factors such as investor sentiment.
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2.3.1 Data

The GMM estimators are based on the moment conditions derived in (2.2). Theoretically

speaking, any risky asset j must satisfy the orthogonality condition in equilibrium. One

of the candidates is index options, as their payoffs directly depend on the market return,

which in turn enters both parts of the pricing kernel. Barberis and Huang (2008) show

that prospect theory investors tend to overvalue positively-skewed assets such as out-of-

the-money options because they overweight the low probability events that those options

pay off. Therefore, options data should be able to help identify the degree of probability

weighting. In fact, as we will show in the next subsection, loss aversion could also be

identified from option return data. Moreover, Baele et al. (2019) use index options in their

analysis, which provides us a benchmark for comparison. We obtain from the OptionMetrics

database the options surface constructed using S&P 500 index options from January 1996

to December 2017. These options are standardized in that they have a fixed maturity

(30/60/90/etc. days), and evenly spaced moneyness defined by the option delta.

We calculate the buy-and-hold-until-maturity returns for these options, and present the

summary statistics for options with maturity of 30 days in Table 2.1. The table replicates

Table 1 of Baele et al. (2019), but provides more detailed information. Specifically, for

each option, we compute the skewness, kurtosis, median, and the 25% and 75% percentiles

of their returns, besides the mean and standard deviation already shown in Baele et al.

(2019). We emphasize the importance of skewness here because as Barberis and Huang

(2008) suggest, prospect theory investors have a preference for skewness and hence it earns

a negative risk premium. Panel A shows the results for 13 put options, with delta ranging

from −0.8 to −0.2. The option deltas are negative because they measure the sensitivity of

option prices to the price of the underlying, and the put options become less valuable when
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the index is higher, everything else being equal. Also, the more out of the money an option

is, the less sensitive its price is to the underlying index, and the smaller the magnitude of

the option delta, as we move down the table.

Two interesting facts are worth noting from the table. First, the 25% percentile of the

option returns is uniformly −100% across different moneyness, except for the most in-the-

money option (delta = −0.8). This means that more than a quarter of the time in our

sample periods, these options lose their entire value at maturity. Moreover, from the last

two columns we can see that options with delta over −0.55 become valueless at maturity

more than half of the time; and for the most out-of-the-money put options with delta over

−0.35, that happens more than 75% of the time. This fact is mainly because the stock

market generally had a upward trend over a 30-day horizon during our sample periods.

Second and more importantly, as the option delta increases, the skewness of the options

is monotonically increasing, and at the same time, the average return of the options is

monotonically decreasing. This is consistent with Barberis and Huang (2008)’s theory

that assets with positive skewness are attractive to prospect theory investors because they

overweight the tail events that the assets realize a big payoff. In Panel B, we obtain

similar results for the 13 call options. Notice that call options are more valuable when the

underlying index is higher, so the option deltas are positive; and the calls are more in the

money towards the bottom of the table, as they are more sensitive to the underlying and

hence have a higher delta. Again, the skewness of the option returns increases monotonically

as the options are more out-of-the money, and correspondingly, the average return decreases

monotonically. These results also add evidence to Boyer and Vorkink (2014), who find a

similar negative relationship between total skewness and average return of individual equity

options.
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Table 2.1: Summary Statistics for SPX Option Returns (Maturity = 30 Days)

Panel A: Put Options

Delta Mean Std Skew Kurt 25% Median 75%

-0.80 -17.29% 84.08% 1.2420 1.7560 -92.61% -38.55% 30.85%
-0.75 -19.48% 91.93% 1.3982 2.1848 -100.00% -48.89% 31.02%
-0.70 -21.66% 98.87% 1.5621 2.7508 -100.00% -61.54% 29.17%
-0.65 -23.96% 105.43% 1.7374 3.4653 -100.00% -76.80% 25.68%
-0.60 -26.36% 111.79% 1.9316 4.3802 -100.00% -96.17% 19.36%
-0.55 -28.95% 118.17% 2.1494 5.5441 -100.00% -100.00% 9.52%
-0.50 -31.71% 124.58% 2.4009 7.0694 -100.00% -100.00% -4.99%
-0.45 -34.68% 130.98% 2.7033 9.1502 -100.00% -100.00% -26.27%
-0.40 -38.27% 137.49% 3.0777 12.0817 -100.00% -100.00% -57.77%
-0.35 -42.66% 144.17% 3.5545 16.3947 -100.00% -100.00% -100.00%
-0.30 -47.69% 150.90% 4.2046 23.2891 -100.00% -100.00% -100.00%
-0.25 -54.02% 157.46% 5.1672 35.5073 -100.00% -100.00% -100.00%
-0.20 -62.07% 163.29% 6.7383 60.3333 -100.00% -100.00% -100.00%

Panel B: Call Options

Delta Mean Std Skew Kurt 25% Median 75%

0.20 -15.66% 220.51% 3.8824 21.4966 -100.00% -100.00% -100.00%
0.25 -10.67% 193.99% 3.0607 12.9510 -100.00% -100.00% -28.79%
0.30 -7.21% 173.05% 2.4822 8.1686 -100.00% -100.00% 30.55%
0.35 -4.62% 155.97% 2.0465 5.2446 -100.00% -100.00% 58.34%
0.40 -2.51% 141.43% 1.7000 3.3438 -100.00% -100.00% 72.41%
0.45 -0.94% 128.83% 1.4104 2.0416 -100.00% -69.19% 77.75%
0.50 0.37% 117.54% 1.1633 1.1379 -100.00% -42.45% 78.89%
0.55 1.47% 107.23% 0.9444 0.5012 -100.00% -24.30% 76.68%
0.60 2.16% 97.82% 0.7388 0.0326 -100.00% -11.75% 72.83%
0.65 2.63% 88.98% 0.5460 -0.2964 -96.61% -2.91% 68.32%
0.70 3.04% 80.34% 0.3659 -0.4900 -75.48% 3.09% 62.84%
0.75 3.25% 71.84% 0.1899 -0.5562 -58.58% 6.88% 56.27%
0.80 3.44% 62.98% 0.0264 -0.4716 -44.41% 8.82% 49.33%

One of the restrictions of Baele et al. (2019) is that there is only one risky asset, which

limits the choices of possible test assets to the index and its options. Our model eliminates

the limitation by introducing multiple risky assets into the economy, so more test assets

are available. A natural candidate is individual stocks, but they may greatly increase the

standard errors of our estimates because of their high idiosyncratic risk. We therefore use

industry portfolios in Kenneth French’s data library instead. The portfolio data also has
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an advantage that it dates back much earlier than the options data, which enables us to

extract information about investors’ prospect theory preference over a longer period and to

study how it evolves over time.

2.3.2 Identification

The option return data provides the most intuitive explanation for our identification strat-

egy. We compute the buy-and-hold returns for all the 30-day maturity options every day,

and obtain a time series of daily frequency. Figure 2.2 plots in circles the average returns

of put and call options over the full sample against the moneyness (delta) of the options.

Put options have negative deltas and call options have positive deltas, so the left part of

the graph represents the returns for puts, and the right part for calls. Besides, options with

delta closer to 0 are more out-of-the-money, and options with absolute value of delta closer

to 1 are more in-the-money. As a comparison, we also show as plus signs the expected

option returns required by investors who have a pure CRRA utility function. Figure 2.2 is

a replication of Figure 1 of Baele et al. (2019), but we use delta as the horizontal axis in

order to show put and call returns in the same graph, so that we can see more clearly the

sharp difference in put and call returns. As we will discuss shortly, this return difference is

crucial in the identification of the degree of loss aversion.

We observe at least two interesting patterns from the plot. First, both out-of-the-

money puts and calls have substantially lower average returns than their in-the-money

counterparts. Note that the rational asset pricing framework also predicts lower expected

returns from out-of-the-money puts than in-the-money puts, because the pricing kernel is

monotonically decreasing, and the out-of-the-money puts tend to pay off well when the

market goes down a lot and investors need money the most. However, for a reasonable
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Figure 2.2: Average Returns for Puts and Calls

Note: The graph plots the full-sample average returns for put and call options of different moneyness
(in circle), alongside with the corresponding expected returns required by a CRRA investor (in plus
sign). Moneyness is measured by delta, the partial derivative of option prices with respect to the
underlying prices. The left part of the graph shows returns for 13 puts, with delta ranging from
−0.8 to −0.2 as the puts get more and more out of the money, and the right part shows returns for
13 calls, with delta ranging from 0.2 to 0.8 as the calls get more and more in the money.

level of risk aversion, the slope of the pricing kernel is not high enough to justify the huge

magnitude of difference in returns between out-of-the-money and in-the-money puts as we

see in Figure 2.2: a put option with a delta of −0.8 loses 17.29% on average, whereas a put

with a delta of −0.2 loses 62.07% on average; in contrast, the returns required by a CRRA

investor are almost flat.

On the other hand, the rational framework even gets the sign wrong when it comes

to the average returns of calls. Since call option returns are positively correlated with

the underlying index and hence negatively correlated with the pricing kernel, calls are not

appealing to investors with a pure CRRA utility, so they earn positive expected returns

regardless of their moneyness. Also, out-of-the-money calls are even less appealing because

they pay off well when investors need money least. These predictions are completely in

contradiction to what we observe on the right part of Figure 2.2. The average call returns
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in reality actually decrease monotonically as the calls move towards the out-of-the-money

region. Additionally, the out-of-the-money calls earn an average return that is so much less

than the in-the-money calls that it even becomes negative: the call option with a delta of

0.2 has an average return of −15.66%!

Therefore, rational asset pricing models fail to explain the sharp discrepancy between

out-of-the-money and in-the-money option returns. In comparison, this sharp discrepancy

is actually consistent with investors having prospect theory preferences and hence over-

weighting tail events: they overweight the left tail of the market returns, so they are willing

to pay a price premium for out-of-the-money puts to protect themselves against a market

downturn; meanwhile, they overweight the right tail of the market returns, so they require

a relatively low average return from out-of-the-money calls in the hope of a big payoff if

the market shoots up. The preference revealed by the out-of-the-money option returns is

fairly similar to a prospect theory agent’s preference for both insurance and lotteries, and

it helps us identify the degree to which a representative agent overweights tail events.

The second interesting fact from Figure 2.2 (which Baele et al. (2019) did not point

out) is that put options have much lower average returns than call options. This difference

is not surprising even in the rational asset pricing framework, because the market return

negatively correlates with put returns, but positively so with call returns, so investors are

willing to pay extra money for the hedge provided by puts. However, it is again the observed

huge magnitude of the difference that contradicts the rational theory. In fact, if we rewrite

(2.2) without the CPT component:

E(Rj −Rf ) = −
Cov(Rj , R

−γ
M )

E(R−γM )
≈ γCov(Rj , RM )

E(R−γM )
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then put and call options with the same absolute value of delta should lie to the two sides

of the risk-free rate with approximately the same distance, as shown by the plus signs in

Figure 2.2. Take the most in-the-money options as an example4, a CRRA investor requires

2.65% expected return from a call with a delta of 0.8 and −3.69% expected return from

a put with a delta of −0.8, leaving a difference of 6.34%. In comparison, the observed

average return is 3.44% for the same call and −17.29% for the same put, with a difference

of 20.73%. Therefore, rational asset pricing models cannot explain why puts earn returns

so much lower than calls, and loss aversion is critical in explaining the huge difference: puts

are valued more by investors than calls not only because of their negative correlation with

the market, but also because they pay well when investors suffer a loss.

In summary, the slopes of the put and call return curves help identify the degrees of

probability weighting in the loss and gain regions respectively, and the level difference

between the two curves helps identify investors’ loss aversion.

2.3.3 GMM Estimation: Industry Portfolios

As mentioned previously, one of the advantages of our model over Baele et al. (2019) is the

flexibility in choosing test assets. While they use exclusively the market index and index

options, this paper extends the set of test assets to include stock portfolios. Unlike index

options, the returns of individual stocks and stock portfolios do not depend directly on the

market return. However, the intuition behind the identification strategy is similar to that

in the last subsection. Specifically, first rewrite the optimality condition (2.2) as:

E(Rj −Rf ) = −Cov(Rj ,m
CRRA +mCPT )

E(mCRRA +mCPT )

4. We compare most in-the-money options because they are the least subject to probability weighting.
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It then becomes clear that what determines an asset’s expected return is mainly the covari-

ance between its return and the pricing kernel. Since the pricing kernel can be understood

as the marginal utility of the representative agent, the above equation says that if an asset

tends to pay off well when the marginal utility is high, i.e., when the agent needs money

badly, then the asset is very attractive, so the agent is willing to sacrifice a little on the ex-

pected return of this asset; on the other hand, assets that pay well in states of low marginal

utility are not as desirable, so the agent requires a higher expected return from them in

equilibrium.

The CPT pricing kernel in equation (2.3) shows that the representative agent’s marginal

utility is higher in the loss region than in the gain region due to loss aversion (if λ > 1); it

is also higher in extreme states of the world, where the slope of the probability weighting

function is higher. Therefore, by comparing the difference in average returns between assets

that pay off well in the loss region versus the gain region, and the return difference between

assets that pay well in extreme states and those that do not, the GMM allows us to estimate

the degrees of loss aversion and probability weighting of a representative investor.

We estimate the CPT parameters with GMM based on the moment conditions in (2.2),

using data on various industry portfolios from Kenneth French’s website. Besides, following

Baele et al. (2019), we set γ = 1 and b̂ = 0.95, and focus on the estimation of loss aversion (λ)

and probability weighting (c1 and c2). We also restrict the sample period to between January

1996 and March 2016, in order to make direct comparison to the results in Baele et al. (2019).

Table 2.2 presents the estimation results, with standard errors in the parentheses. Column

2 shows the results for 5 industry portfolios, which is the crudest division in the data set.

Column 3 uses 30 industry portfolios, and the number of moment conditions is the closest to

27 as in Baele et al. (2019). The last column uses 49 portfolios, the largest number possible
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in the data.

Notice that the estimates using different numbers of industries are strikingly close to

each other, showing the robustness of the results. Moreover, our estimates for probability

weighting on the gain region are in line with those obtained in experimental settings. In

their original study, Tversky and Kahneman (1992) estimate c2 = 0.61, compared to ours

between 0.60 and 0.65. An interesting fact is that even though people overweight the left

tail distribution less than the right tail in labs - Tversky and Kahneman (1992) estimate

c1 = 0.69, investors seem to be more concerned about the left tail of market returns, with

a smaller probability weighting parameter around c1 = 0.55 on the loss side than a larger

estimate on the gain side. The estimates for loss aversion λ range from 1.09 to 1.16, and

are different than Tversky and Kahneman’s λ = 2.25. However, recent studies suggest that

the true level of loss aversion in the population is significantly lower. Walasek et al. (2018)

find that the median estimate of λ is 1.31. Finally, in comparison to Baele et al. (2019),

who estimate λ = 1.32, c1 = 0.62, and c2 = 0.69, our estimates are smaller for all three

parameters. Thus, it seems that investors in the stock market are less averse to losses, but

they also have a stronger preference for both insurance and lotteries compared to investors

in the options market.

Table 2.2: GMM Estimates with Industry Portfolios Data

No. Industry Portfolios 5 30 49

Loss aversion 1.1643 1.0926 1.1441
(0.5843) (0.4865) (0.5017)

Probability weighting 0.5554 0.5449 0.5463
(loss region) (0.2227) (0.2141) (0.2008)

Probability weighting 0.6049 0.6549 0.6137
(gain region) (0.2370) (0.2379) (0.2108)
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2.3.4 GMM Estimation: Pre- and Post-Crisis

Our second analysis studies investors’ loss aversion and probability weighting in different

periods of history. The options data we have ranges from 1996 to 2017, and a natural cutoff

point of the data is the 2007-2008 financial crisis. Intuitively, a recent loss may remind

investors how painful a loss really is, and they thus become more loss averse after such

a loss. The financial crisis definitely inflicted huge damage to the wealth of a lot market

participants. Therefore, we expect the parameter of loss aversion to be higher after the

crisis than before. Moreover, the market crash is more readily available to investors in their

memory after the crisis, so they tend to overweight more on the left tail and less on the

right tail of market returns.

Again, we estimate the CPT parameters based on the moment conditions in (2.2), now

with the same data as in Baele et al. (2019). Specifically, we use the 13 puts and 13 calls

in Figure 2.2, and the S&P 500 index itself as test assets, which amounts to 27 moment

conditions in total. We obtain the GMM estimates for the full sample, pre-crisis (1996-

2006), and the post-crisis (2009-2017) period, and present the results in columns 2 through

4 of Table 2.3 respectively. Standard errors are reported in parentheses.

Our estimates for the full sample in column 2 are a replication of specification (2) of

Table 4 in Baele et al. (2019), using a slightly longer period of data until December 2017.

Not surprisingly, the estimates in the two papers are fairly close to each other: λ = 1.22 vs.

1.32, c1 = 0.59 vs. 0.62, and c2 = 0.75 vs. 0.69.

More interesting is that the estimates show clearly distinct patterns before and after

the crisis. First, investors are more loss averse after the crisis (λ = 2.01) than before the

crisis (λ = 1.08), which is consistent with our conjecture as well as Thaler and Johnson

(1990)’s experimental evidence that losses are more painful after prior losses. Notice that
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Table 2.3: GMM Estimates with Options Data

Full sample Pre-crisis Post-crisis
(1996-2006) (2009-2017)

Loss aversion 1.2197 1.0810 2.0127
(0.3869) (0.4922) (0.8475)

Probability weighting 0.5899 0.5174 0.5258
(loss region) (0.1018) (0.0995) (0.1100)

Probability weighting 0.7492 0.7105 0.9770
(gain region) (0.1197) (0.1396) (0.2597)

Note: This table reports the GMM estimates for the prospect theory parameters: loss aversion, and
probability weighting in the loss and gain regions. We use the S&P 500 index options and the index
itself as test assets. The full sample period ranges from January 1996 to December 2017.

the estimates suggest that investors treat losses and gains almost the same way before

the financial crisis, whereas losses are twice as painful as gains are joyful after the crisis.

Second, the probability weighting parameter on the loss side barely changes after the crisis

(c1 = 0.53), compared to its pre-crisis level of 0.52. On the other hand, investors weight

less heavily on the right tail after the crisis (c2 = 0.98) than before (c2 = 0.71). To put

it another way, they now care less about the states of the world where the market attains

huge gains, to the extent that they weight those states almost proportional to the objective

probabilities. However, investors are still as worried about a market crash as usual, and

they keep putting heavy weights on the crash states in their decision making process.

Figure 2.3 plots the observed average returns of puts and calls before and after crisis in

the same graph. Several interesting facts are worth noting. First, the post-crisis put returns

are lower across all moneyness than pre-crisis, while all the post-crisis call returns are higher

than pre-crisis, so the difference between put and call returns becomes larger. Now investors

value puts even more as they pay well when the market experiences a loss, which translates

into a higher estimate for loss aversion (2.01 v.s. 1.08). Second, the slope of the put return
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curve almost stays the same pre- and post-crisis, which explains the similar estimates for

the degree of probability weighting on the loss region in these two sub-periods. However,

the slope of the call return curve becomes much flatter than before, consistent with an

estimate of probability weighting on the gain region that is very close to 1. Therefore, as

suggested in the previous subsection, the levels and the slopes of the put and call return

curves successfully identify investors’ loss aversion and probability weighting.

Figure 2.3: Average Returns for Puts and Calls: Pre- and Post-Crisis

Note: This graph plots the average put and call returns against their moneyness measured by delta.
The left part corresponds to the puts and the right part to the calls. Pre-crisis and post-crisis returns
are represented by the empty and filled circles respectively.

In previous subsection we illustrated the discrepancy between the observed average

option returns and the expected returns required by a CRRA investor. In order to better

compare the prospect theory and the expected utility theory in terms of explaining the

financial data, we plot the observed and model-implied option returns in Figure 2.4, with

the pre-crisis and post-crisis results in Figure 2.4a and Figure 2.4b respectively. Circles show

the observed returns and plus signs show the CRRA-implied returns, and we include the

expected returns implied by our model as asterisks. As before, the expected returns implied

by a pure CRRA utility function does a poor job in fitting the actual data. Although the
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(a) Pre-crisis

(b) Post-crisis

Figure 2.4: Observed and Model-implied Returns for Puts and Calls

CRRA-implied returns are close the observed returns for in-the-money call options in the

post-crisis periods, as shown in the right part of Figure 2.4b, the difference between the two

gets larger and larger as the calls move towards the out-of-the-money region. Therefore, even

though investors have a weak tendency to overweight the right tail of the market after the

financial crisis (c2 = 0.98), it is still important to capture investors’ preference for positively

skewed assets such as the out-of-the-money calls. Compared to the pure CRRA utility, our

76



model that combines the CRRA utility with the CPT utility fits the data amazingly well

- the circles and the asterisks almost overlap with each other in both sub-periods. One

exception is for the most out-of-the-money options with a delta of −0.8 or 0.8, where our

model tends to give a slightly higher expected return than the observed average return.

Remember that the vast majority of these deep out-of-the-money options end up valueless

at maturity, with a return of −100%, which makes it very difficult to accurately estimate

the correlation between these option returns and the pricing kernel, and consequently the

model-implied expected returns are over-estimated.

One question the readers may have in mind is why we find time-varying prospect theory

parameters important while Baele et al. (2019) does not, even though we both use the

same options data. The thing is, in the dynamic setting, they focus mainly on explaining

the variance premium (see Figure 5 and Figure 6 of their paper), which is a weighted

average of out-of-the-money option returns. We claim that this aggregation overlooks other

detailed patterns in the option returns. In fact, the authors themselves realized that (on

page 31) “a model can produce a good fit for the VP (variance premium), even if the

individual option returns are not well matched, as long as the fitting errors for expected

option returns cancel out across all options” in their earlier discussion about asymmetric

probability weighting. And that is exactly the reason why their analysis proves time-varying

parameters unnecessary. To be more specific, Figure 2.3 shows that after the crisis, out-of-

the-money puts earn lower average returns while out-of-the-money calls earn higher average

returns than before the crisis. Therefore, these two effects offset each other to some extent,

so that their weighted average does not change much over time. In consequence, neither

does the loss aversion nor the probability weighting need to change much to match the

variance premium. However, because the nature of the variance premium is a weighted sum
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of option returns, it naturally neglects the differences in average returns across moneyness

and between puts and calls. And as per our discussion above, it is exactly these return

differences that help us to gauge investors’ loss aversion and probability weighting. Thus,

we believe time-varying prospect theory parameters are essential when it comes to explaining

individual option returns.

2.3.5 Loss Aversion and Investor Sentiment

In the last subsection we demonstrated the time-varying nature of loss aversion and prob-

ability weighting, but did not investigate how they change with other economic variables.

To answer that question, one way is to follow a two-step procedure: in the first step divide

the full sample into finer sub-periods, perform GMM estimation for each sub-period, and

then in the second step regress the estimators on other variables of interest. However, there

is a tradeoff in terms of the division of the sample: we need enough sub-periods in order to

see a clear pattern of time-varying CPT parameters, but we also need enough data points

in each sub-period to obtain accurate parameter estimates in the first step. For example,

if we want to learn how loss aversion comoves with investor sentiment, which has data of

monthly frequency, then we better be able to estimate loss aversion every month as well.

However, only about 20 trading days of data are available in a month, which may greatly

increase the standard errors of our estimates in the first step.

We propose in this paper two procedures to address the sample division tradeoff men-

tioned above. The first procedure works as follows. Suppose we want to study how loss

aversion λ varies with a vector of variables X, we first write their dependence structure in
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a linear form:

λ = X ′β + ε (2.4)

then we estimate β using the full sample based on the following identifying assumption:

E[(Rj −Rf )(mCRRA + m̂CPT)] = 0, j = 1, . . . , J (2.5)

where

m̂CPT = 1{RM≥Rf}(w
+)′(1− P (RM −Rf )) + λ̂1{RM<Rf}(w

−)′(P (RM −Rf ))

and λ̂ = X ′β. In this way, we are able to obtain monthly (or even daily, if the explanatory

variables X are of daily frequency) estimates for loss aversion. Notice that because the mo-

ment condition (2.2) is linear in λ, the moment condition (2.5) is linear in β. Theoretically,

we could also apply the same method to the probability weighting parameters. However,

the moment condition (2.2) is highly nonlinear in c1 and c2, which makes the moment con-

dition (2.5) highly nonlinear in β if we write, say, c1 = X ′β. Since GMM is notoriously not

good at dealing with nonlinear parameters, our estimates for dynamic probability weighting

turned out to have fairly large standard errors. Therefore, we only focus on the results for

time-varying loss aversion in this procedure, by fixing the probability weighting parameters

at their full sample static estimates: c1 = 0.59 and c2 = 0.75.

We want to emphasize here that our procedure is very different from the one used by

Baele et al. (2019) in their dynamic setting. They calibrate the parameters period by period,

by matching the model-implied equity and variance premium to the empirically estimated
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counterparts. There are two drawbacks of that method. First, since their calibration uses

the conditional expectations of equity and option returns, which are not observable, these

variables have to be estimated with predictive regressions. Consequently, this intermediate

step introduces extra numerical errors to the calibration and makes the calibrates inaccurate,

especially considering such predictive regressions for equity premium usually have a poor

fit with single-digit R2. Our procedure uses any variables as they are so that we avoid

unnecessary numerical errors. Second, because the calibration involves the conditional

moment conditions instead of unconditional ones, their method does not fit into the general

GMM framework, so standard errors of the calibrates are not available. By contrast, our

procedure still falls into the GMM framework, which allows us to draw more meaningful

inference on the structural parameters based on the standard errors.

The next question is how to choose the appropriate explanatory variables X. In theory,

one would like to incorporate as many relevant variables as possible to accurately estimate

loss aversion, as the sample size is no longer a concern since the full sample is used. However,

another drawback of GMM is that its performance decreases dramatically as the dimen-

sion of parameters increases. Thus, we need to be cautious in choosing the truly relevant

variables. In light of the literature on prospect theory and its applications in finance, past

stock market returns and investor sentiment are both natural candidates for our explanatory

variables. Thaler and Johnson (1990) claim that people’s degree of loss aversion, and hence

their willingness to take gambles, depend on recent gains/losses they have experienced. The

financial market is definitely a place where people learn and adapt, and past stock market

returns well reflect investors’ experiences in their recent investment decisions. Investor sen-

timent, on the other hand, has its potential to explain time-varying loss aversion as well.

For example, Yu and Yuan (2011) find that investors require a higher expected return from
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the market when investor sentiment is low, everything else being equal, which could be due

to higher loss aversion during these periods.

Besides choosing explanatory variables that make economic sense, we employ the fol-

lowing two-step variable selection procedure to avoid common issues in GMM estimation.

First, we put one candidate variable into (2.4) every time, estimate the corresponding β

using a small set of test assets to avoid severe over-identification. Second, we select all those

variables that have a statistically significant slope estimate in the first step, put them all in

(2.4), and jointly estimate their coefficients using a larger set of test assets to improve the

efficiency of the estimators.

Within the past stock market return category, we use the mean, standard deviation,

skewness, and kurtosis of the market returns over the past few years as the single ex-

planatory variable in the first step. However, none of them predicts loss aversion with a

statistically significant coefficient, no matter how long the horizon is over which we calculate

the summary statistics. As for investor sentiment, we use the one proposed by Baker and

Wurgler (2006, 2007). They apply a principal component analysis on five different empirical

measures of investor sentiment, namely the price premium of dividend-paying stocks over

non-dividend-paying stocks (pdnd, which the investor sentiment has a negative loading on),

first day return of IPO’s (ripo, positive loading), number of IPO’s (nipo, positive loading),

closed-end fund discount (cefd, negative loading), and the ratio of equity financing to debt

and equity financing combined (s, positive loading). Loosely speaking, investor sentiment

measures the general valuation of the market by investors. If investor sentiment is high, the

market is overvalued, meaning a higher price for a fixed payoff, which pushes the distribu-

tion of asset returns to the left and makes it more likely for investors to be in the loss region.

Such a high price would only possibly be sustained if investors are less loss averse, all else
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equal. Therefore, we expect a negative relation between investor sentiment and investors’

loss aversion.

The first-step variable selection confirms our conjecture. We present the GMM estima-

tion results in Table 2.4. Since the investor sentiment data dates back to July 1965 while

we only have the options data since 1996, we remove the moment conditions that involve

options and use only Kenneth French’s industry portfolios as test assets. Specifications

(1) through (5) of Table 2.4 use each of the components of Baker and Wurgler’s investor

sentiment as the single explanatory variable. We can see from the table that all but one

investor sentiment components predict loss aversion statistically significantly with the cor-

rect signs. Specifically, all the components on which the investor sentiment has a positive

loading negatively predicts loss aversion, and vice versa. The only exception is ripo, which

still has the correct sign but not any statistical significance. We also test the null hypothesis

that the fitted loss aversion λ̂ is uncorrelated with the investor sentiment, and show the

p-values in the last row. Not surprisingly, all the p-values are less than 0.0001 except for

the specification with ripo.

When we put all the four significant components other than ripo into (2.4) for joint

estimation, the slope coefficients become not statistically significant, which is possibly due

to the multicolinearity of the explanatory variables. However, most importantly, the fitted

value of loss aversion based on the four investor sentiment components is still highly corre-

lated with investor sentiment itself, as shown by the p-value in the last column of Table 2.4.

Notice that this is not simply because we use the same set of variables to construct both loss

aversion and investor sentiment. In fact, Baker and Wurgler build their measure of investor

sentiment by principal component analysis, or finding the direction in the component space

that captures the maximal variation in these components. In our case, the loadings on the
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components are chosen such that they help best identify loss aversion based on the moment

condition (2.5).

Table 2.4: Loss Aversion and Investor Sentiment

(1) (2) (3) (4) (5) (6)

pdnd 0.2476∗∗∗ 0.0211
ripo −0.0091
nipo −0.1260∗∗∗ −0.0184
cefd 0.4490∗∗ −0.0343
s −27.3396∗∗ 0.0104
p-value 0.0000 0.9620 0.0000 0.0000 0.0000 0.0000

Note: This table shows the GMM estimation results for the moment condition (2.5), using as test
assets the industry portfolios from Kenneth French’s website. The sample period ranges from July
1965 to December 2018. Columns 2 through 6 show the results for the univariate specifications
using only one of the components of Baker and Wurgler’s investor sentiment each time, and column
7 includes all the significant components in the estimation. The last row shows the p-value for the
null hypothesis that the fitted loss aversion parameter is uncorrelated with the investor sentiment.
*: p < 0.1, **: p < 0.05, ***: p < 0.01.

We calculate the fitted loss aversion based on our estimates in specification (6), and

present its time series plot alongside with the investor sentiment in Figure 2.5. The solid

line corresponds to the fitted loss aversion, and the dashed line to the investor sentiment.

One can easily tell the strong negative relationship between loss aversion and the investor

sentiment. For example, during the 1980s, the investor sentiment goes up and comes down

several times, and our fitted loss aversion perfectly matches those moves but in the opposite

direction. Besides, loss aversion drops to a low level around the 2000s tech bubble as the

investor sentiment shoots high, and it leads the movement of the investor sentiment by a

month or two. Intuitively, investors are more sensitive to losses after they have experienced

a bubble bust.

Figure 2.6 plots the fitted loss aversion against the investor sentiment with a fitted

straight line. The figure shows a clear negative relationship between loss aversion and the

investor sentiment. The correlation between the two is amazingly high at −0.39, considering
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Figure 2.5: Fitted Loss Aversion and Investor Sentiment

Note: This graph plots the time series of the fitted loss aversion in solid line against the left vertical
axis, and the investor sentiment in dashed line against the right vertical axis. The sample period
ranges from July 1965 to December 2018.

how differently these two measures are constructed. This further corroborates our belief

that these two variables are closely related to each other.

Figure 2.6: Fitted Loss Aversion against Investor Sentiment

To better understand what properties of the data on industry portfolios allow us to

detect the change in investors’ loss aversion, we did the following analysis. First, we divide

the full sample into periods of low sentiment and high sentiment based on a threshold of 0

(the investor sentiment has a median around 0). Then for each of the 49 industry portfolios

84



which we used in the multivariate GMM, we calculate its average return when the market

is in the loss region, the average return in the gain region, and the difference between the

two average returns. Finally, we plot the overall average returns of the industry portfolios

against their return differences in the loss region versus gain region. Figure 2.7 and Figure

2.8 show the plots for periods of low and high sentiment respectively.

In Figure 2.7 there is a negative relationship between average returns and the return

differences, with a highly significant (p-value less than 0.01) slope coefficient in the univariate

regression. This means that during periods of low sentiment, the better an industry pays off

in the loss region compared to the gain region, the more attractive that industry is, and the

lower expected return investors require from that industry. In comparison, Figure 2.8 shows

instead a positive relationship, again with a highly significant slope coefficient estimate (p-

value less than 0.01). Therefore, industries that pay off better in the loss region are not

as attractive during periods of high sentiment, and hence earn higher expected returns.

Although this analysis is preliminary - it does not take into account other characteristics of

the industry portfolios such as their returns in extreme states, it gives us the intuition how

we can learn from the industry data about investors’ preferences. Remember in our earlier

discussion in section 3.3, we mentioned that the GMM allows us to estimate loss aversion

by comparing the difference in average returns between assets that pay off well in the loss

region versus the gain region. Here, since investors have a stronger preference for industries

that pay well in the loss region during periods of low sentiment, the degree of loss aversion

implied by the data is thus high when the investor sentiment is low.

As mentioned before, the more relevant variables we include in the GMM estimation,

the more accurate our estimates for loss aversion. Past stock market returns and investor

sentiment are by no means an exhaustive set of relevant variables, but they do help us
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Figure 2.7: Average Industry Returns against Return Difference (Low Sentiment)

Note: This graph plots the average returns of 49 industry portfolios against the differences in their
average returns when the market is in the loss region versus in the gain region, during periods of
low sentiment.

Figure 2.8: Average Industry Returns against Return Difference (High Sentiment)

Note: This graph plots the average returns of 49 industry portfolios against the differences in their
average returns when the market is in the loss region versus in the gain region, during periods of
high sentiment.

understand how investors’ loss aversion changes over time, and our analysis in this paper

is sufficient to demonstrate their close relationship with loss aversion. For future research,

a tentative approach is a LASSO-type GMM. Specifically, instead of the two-step method

in this paper, one can put all variables of interest into equation (2.4) and impose a L1
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penalty on β’s in the GMM estimation, so that variable selection is done at the same time

of estimation.

Our second method to get around the sample division tradeoff is on an ad hoc basis.

Remember in subsection 2.3.2 we illustrated how we could use the difference in returns from

call and put options, and the difference in returns from in-the-money and out-of-the-money

options, to identify the parameters of loss aversion and probability weighting respectively.

Therefore, instead of obtaining the GMM estimates for the prospect theory parameters

directly, we use those return differences as proxies for the corresponding parameters of

interest. Specifically, the most in-the-money options are the least subject to the impact of

probability weighting, and we thus use the difference in average returns between calls with

a delta of 0.8 and puts with a delta of −0.8 as a proxy for investors’ loss aversion. Moreover,

we use the difference in average returns between the most in-the-money puts (delta = −0.8)

and the most out-of-the-money puts (delta = −0.2) to proxy for the probability weighting

parameter in the loss region, and the average returns between the most in-the-money calls

(delta = 0.8) and the most out-of-the-money calls (delta = 0.2) to proxy for probability

weighting in the gain region. To further ensure a smaller standard error for our proxies, we

take a rolling window average over six months.

As an illustration, Figure 2.9 presents the time series plot of the call-minus-put return

difference alongside the investor sentiment during our sample period. Although we can still

detect the tendency of our loss aversion proxy (the call-minus-put return difference) and

the investor sentiment to move in opposite directions, e.g., around the 2000s tech bubble,

the negative relationship is not as obvious as that in Figure 2.5. However, as we plot the

call-minus-put return difference against the investor sentiment in Figure 2.10, the negative

correlation between the two variables becomes clearer. In fact, the correlation coefficient
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Figure 2.9: Option Return Difference and Investor Sentiment

Note: This graph plots the time series of the difference in average returns between the in-the-money
calls with 0.8 delta and the in-the-money puts with −0.8 delta (the solid line), and the investor
sentiment (the dashed line). The sample period ranges from January 1996 to December 2017.

−0.40 is about the same level as that in our previous analysis (−0.39), and it is highly

significant with a p-value below 0.0001.

Figure 2.10: Option Return Difference against Investor Sentiment

We also study how our proxies for loss aversion and probability weighting vary with

the investor sentiment and its components using regression analysis. The regression results

are presented in Table 2.5, with t-statistics shown in parentheses. Specifications (1)(3)(5)

correspond to the univariate regressions with the investor sentiment as the only explanatory
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variable, and the proxies for λ, c1, and c2 as the dependent variables respectively. Consistent

with Figure 2.10, the proxy for loss aversion is significantly negatively correlated with the

investor sentiment. On the other hand, neither of the probability weighting parameters

shows a discernible relation with the investor sentiment in the statistical sense.

To further investigate which specific components of the investor sentiment explain the

variation in the prospect theory parameters, we conduct multivariate regressions using all

the sentiment components as regressors, and display the results in columns (2)(4)(6) for λ,

c1, and c2 respectively. The result for loss aversion is largely consistent with our previous

analysis using GMM. Specifically, three sentiment components out of five, namely nipo,

cefd, and s, have highly significant coefficient estimates, and they also predict loss aversion

in the correct directions we expect: loss aversion (or at least its proxy) is higher when the

number of IPO’s is lower, the closed-end fund discount is higher, and the equity issuing

share is lower. As in our previous analysis, ripo still does not have significant explanatory

power for loss aversion. Therefore, even though we have used different data, different sample

periods, and also different estimation methods, the results from these two procedures both

confirm our conjecture that investors tend to have higher degrees of loss aversion when the

investor sentiment is low, and vice versa.

Now we are also able to learn more about the dynamics of probability weighting since

we no longer need to worry about the high non-linearity in GMM estimation. Even though

columns (3) and (5) find no significant correlation between the degrees of probability weight-

ing and the investor sentiment itself, columns (4) and (6) tell a different story: pdnd, nipo,

and s all have significant coefficient estimates for our proxy of the probability weighting in

the loss region; nipo and cefd both have significant estimates for the proxy of the probability

weighting in the gain region. More importantly, these estimates also make economic sense.
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Table 2.5: Option Return Differences against Investor Sentiment

(1) (2) (3) (4) (5) (6)

sent −0.2736∗∗∗ 0.0093 0.0604
(−5.4035) (0.3134) (1.4873)

pdnd −0.0002 0.0087∗∗∗ −0.0029
(−0.0402) (4.3588) (−0.8483)

ripo −0.0027 0.0005 −0.0005
(−1.4267) (0.5288) (−0.3385)

nipo 0.0082∗∗∗ −0.0033∗∗∗ 0.0051∗∗∗

(3.8847) (−3.2316) (2.9177)

cefd 0.0342∗∗∗ 0.0034 0.0313∗∗∗

(3.6819) (0.7469) (4.0495)

s −2.2399∗∗∗ 1.1386∗∗∗ −0.7842
(−2.7191) (2.8485) (−1.1452)

Note: This table shows the regression relationship between the proxies for prospect theory parame-
ters and the investor sentiment and its components. We use the difference in average returns between
ITM calls and ITM puts as the proxy for loss aversion, the difference in average returns between
ITM puts and OTM puts as the proxy for probability weighting in the loss region, and the difference
in average returns between ITM calls and OTM calls as the proxy for probability weighting in the
gain region, respectively. The components of the investor sentiment include: the price premium
of dividend-paying stocks over non-dividend-paying stocks (pdnd), first day return of IPO’s (ripo),
number of IPO’s (nipo), closed-end fund discount (cefd), and the ratio of equity financing to debt
and equity financing combined (s). t-statistics are reported in parentheses. *: p < 0.1, **: p < 0.05,
***: p < 0.01.

Intuitively, during periods of high sentiment, investors would tend to put less weight on the

left tails and more weight on the right tails when making investment decisions. And that is

exactly what we have found here: among the significant variables, all those that the investor

sentiment has a positive loading on also predict c1 positively, but predict c2 negatively; and

all those that the investor sentiment has a negative loading on predict c1 negatively and c2

positively. Thus, the investor sentiment not only has a close relationship with loss aversion,

but is also fairly relevant in explaining the time-varying pattern of probability weighting,

both in the loss region and the gain region.
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2.4 Conclusion

This paper studies investors’ time-varying loss aversion and probability weighting. Our idea

is motivated by the experimental literature on prospect theory that finds people exhibit

different degrees of loss aversion and probability weighting in different situations. We build

a representative agent model that captures the investor’s preference over both absolute level

of wealth as well as her gains and losses in the stock market. The empirical part of the

paper estimates the model using data on index options and portfolios of stocks. We find that

investors are more loss averse after the 2007-2008 financial crisis, and that even though they

seem to be just as worried about a stock market crash as before the crisis, they definitely

put less decision weight on the stock market’s prospect on the right tail. Moreover, our

analysis suggests that both loss aversion and probability weighting are closely related to

investor sentiment and its components: when sentiment is high, investors tend to be less

loss averse, and their tendency to overweight tail events is weaker in the loss region and

stronger in the gain region; and vice versa.

2.A Proofs

The derivation of the CRRA pricing kernel is easy and we omit it here. For the CPT part,

in equilibrium, if the investor changes marginally her portfolio weights towards asset j, she

will not get a higher CPT value. That is,

∂V (XT + αW0(Rj −Rf ))

∂α

∣∣∣∣
α=0

= 0
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Ai et al. (2005) show that for a rank dependent expected utility function

U(X) =

∫
u(x) dw(PX(x))

where w is also a probability weighting function, its directional derivative with respect to a

random variable Y is:

∂

∂α
U(X + αY )

∣∣∣∣
α=0

= E[u′(X)w′(PX(X))Y ]

Therefore, if we rewrite the two components of V (XT ) as:

V +(XT ) = −
∫
v(X)1{X≥0} dw

+(1− P (X))

V −(XT ) =

∫
v(X)1{X<0} dw

−(P (X))

then we have

∂V +(XT + αW0(Rj −Rf ))

∂α

∣∣∣∣
α=0

= E[v′(XT )1{XT≥0}(w
+)′(1− P (XT ))W0(Rj −Rf )]

∂V −(XT + αW0(Rj −Rf ))

∂α

∣∣∣∣
α=0

= E[v′(XT )1{XT<0}(w
−)′(P (XT ))W0(Rj −Rf )]

Combining the two expressions above together with the CRRA pricing kernel, we have thus

obtained the Euler equation:

E[(mCRRA +mCPT )(Rj −Rf )] = 0
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where mCPT = v′(XT )1{XT≥0}(w
+)′(1 − P (XT )) + v′(XT )1{XT<0}(w

−)′(P (XT )) is the

cumulative prospect theory part of the pricing kernel.

In equilibrium, XT = W0(RM − Rf ), which is monotonic in RM , and also v′(XT ) =

1{XT≥0} + λ1{XT<0}, so the CPT pricing kernel becomes the following:

mCPT = 1{RM≥Rf}(w
+)′(1− P (RM −Rf )) + λ1{RM<Rf}(w

−)′(P (RM −Rf ))
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Chapter 3

Efficiency of Option Pricing

Models: Evidence from the

Chinese Warrants Market

Abstract: Empirical evidence shows that returns on Chinese stocks have neg-

ative skewness and fat tails, which contradicts the assumptions of the Black-

Scholes option pricing model. This paper improves the Black-Scholes model

to fit Chinese warrants prices from two perspectives: using nonlinear GARCH

(NGARCH) models to capture stochastic volatility; and introducing jumps into

returns to reflect big shocks. We apply these models to fitting warrant prices

and compare their pricing errors. The result shows that NGARCH models out-

perform the Black-Scholes model; the NGARCH-Jump model is even better

at depicting the price dynamics of underlying stocks, but provides marginal

improvement to warrants valuation; out-of-the-money warrants are overvalued

even after model adjustment, suggesting the existence of bubbles in the Chinese
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warrants market.

3.1 Inroduction

Since Black and Scholes (1973) introduced the Black-Scholes option pricing model, it has

been widely used to compute the theoretical prices of options. Empirical analysis has shown

that there is systematic pricing error associated with the model. For example, the volatility

of underlying assets implied by the observed option prices and the Black-Scholes model,

namely the implied volatility, tends to vary across different strike prices and maturities,

which are known as the “volatility smile” and the “term structure of the implied volatility”

respectively (see Hull (2003)). Black (1975) finds that the model overvalues in-the-money

options but undervalues out-of-the-money options. MacBeth and Merville (1979) find ex-

actly the opposite. The pricing bias is also prevalent in the Chinese warrants market. Xiong

and Yu (2011) treat the pricing bias as bubbles and examine a set of bubble theories, but

do not consider the possible flaw in the theoretical framework of pricing models.

On the basis of the Black-Scholes model, there is a strand of literature that revises its

assumptions and proposes more generalized models in order to explain and improve the

pricing errors. Specifically, the original Black-Scholes model assumes the underlying stock

price follows a geometric Brownian motion with a constant volatility, and these generalized

models modify the assumptions in two main dimensions. First, volatility is not constant

during the whole lifetime of options, but rather follows a stochastic process itself. Second,

other than the diffusion process, a jump process is needed to reflect the jumpiness of stock

prices. Geske and Roll (1984) point out that the assumption of the normality of returns of

underlying stocks is invalid. Merton (1976) introduces jumps into the Black-Scholes model

and captures big shocks to stock prices using a compound Poisson process. Ball and Torous
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(1983, 1985) simplify Merton’s model with Binomial approximation to the Poisson distri-

bution, and empirically verify the existence of jumps in the dynamics of stock prices, using

data on returns of NYSE common stocks, but they find that there is no significant difference

between theoretical prices calculated with these two methods. Bakshi et al. (1997) derive a

model that allows volatility, interest rates, and jumps to all be stochastic, and examine its

performance and that of several other alternatives. There is also literature that refers to the

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) models. For instance,

Christoffersen et al. (2010) find that the nonlinear GARCH (NGARCH) model performs

best among all GARCH option pricing models with normal innovations. Duan et al. (2007)

introduce jumps into GARCH models and document a better pricing performance with data

on the S&P 500 index options.

Although warrants are defined slightly differently in textbooks such as Hull (2003),

the Chinese warrants have exactly the same payoff structure as a typical European option.

Therefore, one would expect the prices of these warrants to be largely consistent with various

options pricing models mentioned above. However, to the best of our knowledge, none of

the papers in the literature examines the performance of different options pricing models in

the Chinese warrants market. One of the contributions of this paper is thus to fill this gap.

On the other hand, it is well known that returns of Chinese stocks tend to have negative

skewness and heavy tails, in contradiction to the normality assumption in the Black-Scholes

model. Accordingly, stochastic volatility and jumps are very important in capturing the

dynamics of underlying stock prices, which in turn is crucial to understanding the warrant

prices.

In this paper, we consider several options pricing models including the canonical Black-

Scholes and its generalizations, and apply them to the Chinese warrants market. First,
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we estimate the parameters of these models with maximum likelihood estimation (MLE),

using data on the returns of the underlying stocks. Then we apply the method of Monte

Carlo simulation to generate future returns of the stocks in the risk-neutral world, according

to the price dynamics implied by the estimated parameters in the first step. Finally, we

discount the payoffs of the warrants on expiration dates at the risk free rate to obtain

their theoretical prices. By comparing the differences between theoretical and real prices,

we explain a significant portion of the pricing bias from the perspective of the theoretical

framework.

The rest of this paper is organized as follows: section 3.2 sets up the model, section 3.3

shows the main empirical evidence, and section 3.4 concludes.

3.2 Model Specification

Empirical evidence shows that returns on Chinese stocks exhibit negative skewness and fat

tails, unlike the normality assumption made by the Black-Scholes model. In order to better

depict the dynamics of stock prices, we follow Duan et al. (2007) to fix the Black-Scholes

model in two respects. First, we use GARCH models to capture the stochastic volatility on

returns of stock prices. Second, we incorporate jumps into the dynamics of stock returns

to reflect big shocks on stock prices in the market.

3.2.1 Black-Scholes Model

The Black-Scholes model is the most widely used options pricing model. In its original

form, it is specified in continuous time. Since all the alternatives we use in this paper

are in discrete time, we include the discrete version of the Black-Scholes model here fore

completeness. Specifically, the model assumes that the daily return of the underlying stock,
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rt, follows the stochastic process below:

rt = α+ σXt (3.1)

where α and σ are the mean return and the volatility of the returns during the lifetime of the

option, and Xt is Gaussian white noise, with Xt ∼ N(0, 1). Black and Scholes (1973) derive

a closed-form formula for prices of options whose underlying stock follows the dynamics

described above, and the formula involves only volatility but not the mean of the underlying

returns. In our analysis, the analytical solutions are very close to numerical solutions given

by Monte Carlo simulation, and because none of more generalized models have an analytical

solution, we only display the Monte Carlo results for comparison purposes.

3.2.2 NGARCH-Normal Model

One natural generalization of the original Black-Scholes model is to allow the conditional

mean and volatility of the stock returns to vary across time. In Duan et al. (2007), the

authors suggest an equilibrium model that incorporates stochastic volatility to the dynamics

of underlying stock prices. Specifically, their results show that under the real world measure

P , daily returns on the underlying stock rt can be described by the processes below:

rt = αt +
√
htXt (3.2)

αt = r − ht
2
− ρ
√
ht (3.3)

ht = g(ht−1, Xt−1) (3.4)

where αt and ht are the mean and variance of rt conditional on Ft−1, the information

set at t− 1, Xt ∼ N(0, 1) is a random shock to rt and is independent of Ft−1, r is the risk
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free rate, and ρ is the correlation between innovations of stock returns and of the stochastic

discounting factor, which for simplicity we do not specify here. Equation (3.4) states that

the conditional variance at time t depends on the conditional variance at time t−1 and the

innovation at time t − 1, and the dependence can take any form. One common modeling

device for stochastic volatility in discrete time is the GARCH-type models proposed by

Engle (1982) and Bollerslev (1986). There is a whole strand of literature that studies

the performance of different versions of the GARCH models in fitting asset returns, but

the main purpose of this paper is to document the importance of stochastic volatility in

warrants valuation instead of comparing various GARCH models. Therefore, we follow

Christoffersen et al. (2010) to use a nonlinear GARCH (NGARCH) model in our analysis,

because the authors of that paper show the NGARCH model performs best in terms of

pricing options. Specifically, the NGARCH model specifies that the conditional variance ht

of stock returns follows the process below:

ht = β0 + β1ht−1 + β2ht−1 (Xt−1 − c)2 (3.5)

where {β0, β1, β2, c} is the set of preliminary parameters. The process is no different than the

canonical GARCH(1,1) model, other than the extra parameter c. This parameter captures

the asymmetry in the influence of positive and negative innovations on the conditional

variance next period. Usually c has a positive sign, so that a negative shock on the stock

return will have a larger impact on the stock volatility the next day than a positive shock

of the same magnitude, which is known as the “leverage effect”. We expect this effect to be

more important in less developed financial markets such as the Chinese stock market, and

that is another reason why we use this specific form of GARCH model in this paper. To
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ensure the conditional variance ht is positive, we need to put restrictions on the parameters:

β0 is positive, β1 and β2 are nonnegative. The process is strictly stationary if β1 + β2(1 +

c2) ≤ 1. The unconditional mean of ht is finite and equals β0/
[
1− β1 − β2

(
1 + c2

)]
if

β1 + β2(1 + c2) < 1.

3.2.3 NGARCH-Jump Model

In the NGARCH-Normal model, the innovations to the stock returns are Gaussian white

noise. However, the prices of underlying stocks may also be exposed to big shocks besides

small normal shocks. Such big shocks usually result from the revelation of critical informa-

tion in the market. In order to reflect the effect of these big shocks, we introduce jumps into

the return process of underlying stocks. In a given period, the jumps occur as often as the

stock price is influenced by critical information. Duan et al. (2007) show that under this

assumption the return process rt is as follows (again for simplicity we omit the specification

for the pricing kernel here):

rt = αt +
√
htJt (3.6)

αt = r − ht
2
− ρ
√
ht + λ(1−Kt) (3.7)

ht = β0 + β1ht−1 + β2ht−1

(
Jt−1 − λµ√

1 + λγ̃2
− c

)2

(3.8)

Kt = exp

(√
htµ+

1

2
htγ

2

)
(3.9)

Jt = X
(0)
t +

Nt∑
j=1

X
(j)
t (3.10)

100



where

Nt ∼ Poisson(λ)

X
(0)
t ∼ N(0, 1)

X
(j)
t ∼ N(µ, γ2) for j = 1, 2, . . .

and γ̃2 = µ2+γ2. Nt represents the frequency of big shocks to the stock price at date t, X
(0)
t

represents the small shock, and X
(j)
t represents big shocks. Nt and X

(j)
t are independent

and they are both independent of Ft−1. Here X
(j)
t ’s are “big” if γ is larger than 1, meaning

that they tend to move stock prices by a bigger magnitude. Now ht is not the conditional

variance of stock returns anymore, but can be understood as a scaling factor for Jt, which

is the shock to the stock return in period t that aggregates the small shock and the big

shocks. Again, we require β0 > 0, β1 ≥ 0, and β2 ≥ 0 to ensure the ht process is positive.

Here the model differs from the NGARCH-Normal model in that the innovation term

Jt involves a Poisson random sum of several normal random variables. It is easy to show

that the mean and variance of Jt are

E[Jt] = E[X
(0)
t ] + E

E
 Nt∑
j=1

X
(j)
t

∣∣∣∣∣∣Nt


= µE[Nt]

= λµ
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V ar[Jt] = V ar[X
(0)
t ] + E

V ar
 Nt∑
j=1

X
(j)
t

∣∣∣∣∣∣Nt

+ V ar

E
 Nt∑
j=1

X
(j)
t

∣∣∣∣∣∣Nt


= 1 + γ2E[Nt] + µ2E[Nt]

= 1 + λγ̃2

respectively, using the law of iterated expectations. Therefore, we standardize the innova-

tion when specifying the GARCH model in equation (3.8) in order to make the NGARCH-

Jump model comparable to the NGARCH-Normal model. Note that when λ = 0 the

NGARCH-Jump model degenerates to the NGARCH-Normal model.

3.3 Empirical Evidence

In this section, we first estimate the models in the previous section using time series data on

returns of underlying stocks. Then we conduct Monte Carlo simulations to calculate warrant

prices using risk neutral pricing, and compare the pricing performance of the Black-Scholes

model, the NGARCH-Normal model, and the NGARCH-Jump model.

3.3.1 Data and Summary Statistics

Since August 22, 2005, a total of 55 warrants have been issued in the Chinese warrants

market and all of them are stock warrants. We obtain the basic information and time series

data of the warrants and their underlying stocks from the RESSET Database1. The basic

information includes the types (call or put, American or European), expiration dates, and

strike prices of the warrants. Table 3.1 and Table 3.2 provide a complete list of the 37

call warrants and the 18 put warrants in our sample, respectively. The time series data

1. www.resset.com/cn
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includes the close prices of the warrants and their underlying stocks from the issue dates

to the expirations dates. After excluding one warrant of which the data on prices of the

underlying stock is missing2, and one American warrant3, there are 53 remaining. The data

set has 16,368 observations of the 53 warrants, 36 of which are call warrants, and 19 are put

warrants. The data set also provides data on the risk free rate. We use in our estimation

the annual percentage rate of the three-month China’s central bank bill, converted to a

daily rate of return.

Table A5 and Table A6 in the Appendix show the summary statistics for the returns

of the underlying stocks. For each warrant, we calculated the mean, standard deviation,

skewness, kurtosis, the 5%, 25%, 50%, 75%, and 95% percentile, as well as the minimum

and maximum of the underlying stock returns during the lifetime of the warrant. Several

findings in the table are worth noting. First, about two thirds of the underlying stocks (35

of them) display negative skewness in their returns, which is consistent with the anecdotal

evidence for Chinese stocks in general. Second, most of the stocks, actually 50 out of 53,

have a kurtosis greater than 3, the kurtosis of normally distributed random variables. This

is strong evidence that Chinese stocks, at least those in our sample, have fairly heavy tails

in their return distributions. Third, in order to statistically test whether the returns come

from normal distributions, we conduct the Jarque-Bera test for each of the stocks, and the

p-values are shown in the last columns of Table A5 and Table A6. The null hypothesis of

the test is that the returns are normally distributed, and a small p-value rejects the null.

We can see from the table that the null hypothesis gets rejected for 41 stocks at the 5%

level (35 at the 1% level). This again corroborates our belief that the underlying stock

2. Sichuan Changhong Electric Co., Ltd., listed in the Shanghai Stock Exchange.

3. Guangzhou Baiyun International Airport, listed in the Shanghai Stock Exchange.
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Table 3.1: Summary Information for the 37 Call Warrants

Trading period Price at trading end Exercise period

Warrant
Name shares Stock Stirke Exercise
(exchange) (million) Begin End price price ratio Begin End

AnGang (SZ) 113.10 12/05/05 12/05/06 7.87 3.60 1 12/01/06 12/05/06
WULiang (SZ) 297.87 04/03/06 04/02/08 25.92 6.93 1 03/27/08 04/02/08
QiaoCheng (SZ) 149.52 11/24/06 11/23/07 60.10 7.00 1 11/19/07 11/23/07
GangFan (SZ) 800.00 12/12/06 12/11/08 8.80 3.95 1 11/28/08 12/11/08
ShenFa (SZ) 208.68 06/29/07 12/28/07 36.75 19.00 1 11/19/07 12/28/07
ShenFa (SZ) 104.34 06/29/07 06/27/08 21.00 19.00 1 05/16/08 06/27/08
GuoAn (SZ) 95.71 09/25/07 09/24/09 18.70 35.50 0.5 09/11/09 09/24/09
ZhongXing (SZ) 65.20 02/22/08 02/21/10 42.70 78.13 0.5 02/01/10 02/12/10
EJiao (SZ) 130.94 07/18/08 07/17/09 19.13 5.50 1 07/13/09 07/17/09
BaoGang (SH) 387.70 08/18/05 08/30/06 4.17 4.50 1 08/30/06 08/30/06
WuGang (SH) 474.00 11/23/05 11/22/06 3.35 2.90 1 11/16/06 11/22/06
BaoGang (SH) 714.91 03/31/06 03/30/07 5.70 2.00 1 03/26/07 03/30/07
GanGang (SH) 925.71 04/05/06 04/04/07 6.81 2.80 1 03/29/07 04/04/07
ShouChuang (SH) 60.00 04/24/06 04/23/07 9.97 4.55 1 04/17/07 04/23/07
WanHua (SH) 56.58 04/27/06 04/26/07 38.75 9.00 1 04/20/07 04/26/07
YaGe (SH) 90.66 05/22/06 05/21/07 26.44 3.80 1 05/17/07 05/21/07
ChangDian (SH) 1,228.01 05/25/06 05/24/07 14.49 5.50 1 05/18/07 05/24/07
GuoDian (SH) 151.07 09/05/06 09/04/07 15.24 4.80 1 08/29/07 09/04/07
YiLi (SH) 154.94 11/15/06 11/14/07 28.98 8.00 1 11/08/07 11/14/07
MAGang (SH) 1,265.00 11/29/06 11/28/08 4.10 3.40 1 11/17/08 11/28/08
ZhongHua (SH) 180.00 12/18/06 12/17/07 20.10 6.58 1 12/11/07 12/17/07
YunHua (SH) 54.00 03/08/07 03/07/09 27.72 18.23 1 02/23/09 03/06/09
WuGang (SH) 727.50 04/17/07 04/16/09 7.39 10.20 1 04/10/09 04/16/09
ShenGao (SH) 108.00 10/30/07 10/29/09 5.68 13.85 1 10/23/09 10/29/09
RIZhao (SH) 61.60 12/03/07 12/02/08 5.13 14.25 1 11/19/08 12/02/08
ShangQi (SH) 226.80 01/08/08 01/07/10 26.61 27.43 1 12/31/09 01/07/10
GanYue (SH) 56.40 02/28/08 02/27/10 7.99 20.88 1 02/08/10 02/26/10
ZhongYuan (SH) 51.45 02/26/08 08/25/09 11.71 40.38 0.5 08/19/09 08/25/09
ShiHua (SH) 3,030.00 03/04/08 03/03/10 11.15 19.68 0.5 02/25/10 03/03/10
ShangGang (SH) 291.55 03/07/08 03/06/09 3.82 8.40 1 03/02/09 03/06/09
QingPi (SH) 105.00 04/18/08 10/19/09 29.94 28.32 0.5 10/13/09 10/19/09
GuoDian (SH) 427.47 05/22/08 05/21/10 3.70 7.50 1 05/17/10 05/21/10
KangMei (SH) 166.50 05/26/08 05/25/09 8.26 10.77 0.5 05/19/09 05/25/09
BaoGang (SH) 1,600.00 07/04/08 07/03/10 6.04 12.50 0.5 06/28/10 07/03/10
GeZhou (SH) 301.63 07/11/08 01/10/10 11.71 9.19 0.5 01/04/10 01/08/10
JiangTong (SH) 1,761.20 10/10/08 10/09/10 29.49 15.44 0.25 09/27/10 10/08/10
ChangHong (SH) 573.00 08/19/09 08/18/11 - 5.23 1 08/12/11 08/18/11
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Table 3.2: Summary Information for the 18 Put Warrants

Trading period Price at trading end Exercise period

Warrant
Name shares Stock Stirke Exercise
(exchange) (million) Begin End price price ratio Begin End

GangFan (SZ) 233.34 11/04/05 05/08/07 10.72 4.85 1 05/08/07 05/08/07
WanKe (SZ) 2,140.29 12/05/05 09/04/06 6.79 3.73 1 08/29/06 09/04/06
HuaLing (SZ) 633.18 03/02/06 03/01/08 12.45 4.90 1 02/27/08 02/29/08
WULiang (SZ) 313.15 04/03/06 04/02/08 25.92 7.96 1 03/27/08 04/02/08
ShenNeng (SZ) 437.68 04/27/06 10/26/06 7.25 7.12 1 10/20/06 10/26/06
ZhongJi (SZ) 424.11 05/25/06 11/23/07 24.11 10.00 1 11/19/07 11/23/07
JiaFei (SZ) 120.00 06/30/06 06/29/07 45.21 15.10 1 06/25/07 06/29/07
NanHang (SH) 1,400.00 06/21/07 06/20/08 8.48 7.43 0.5 06/20/08 06/20/08
MaoTai (SH) 431.88 05/30/06 05/29/07 94.84 30.30 0.25 05/29/07 05/29/07
HaiEr (SH) 607.36 05/17/06 05/16/07 15.79 4.39 1 05/10/07 05/16/07
YaGe (SH) 634.63 05/22/06 05/21/07 26.44 4.25 1 05/17/07 05/21/07
WanHua (SH) 84.86 04/27/06 04/26/07 38.75 13.00 1 04/20/07 04/26/07
YuanShui (SH) 280.43 04/19/06 02/12/07 6.54 5.00 1 02/06/07 02/12/07
BaoGang (SH) 714.91 03/31/06 03/30/07 5.70 2.45 1 03/26/07 03/30/07
HuChang (SH) 567.72 03/07/06 03/06/07 25.52 13.60 1 03/06/07 03/06/07
ZhaoHang (SH) 2,241.34 03/02/06 09/01/07 39.04 5.65 1 08/27/07 08/31/07
JiChang (SH) 240.00 12/23/05 12/22/06 7.94 7.00 1 03/23/06 12/22/06
WuGang (SH) 474.00 11/23/05 11/22/06 3.35 3.13 1 11/16/06 11/22/06

returns are generally not normally distributed, in contradiction to the assumptions of the

Balck-Scholes model. Therefore, introducing stochastic volatility and jumps into the model

is crucial to capturing the dynamics of the stock prices as well as valuing warrants written

on these stocks.

3.3.2 Model Estimation

The first step of our analysis is to estimate the model parameters that govern the dynamics

of stock returns. We employ the maximum likelihood estimation (MLE) procedure here, uti-

lizing the parametric assumption that the shock components in all the models are Gaussian

white noises. Specifically, in the Black-Scholes model, the set of parameters is θ = {α, σ}

as in equation (3.1). The probability density function of rt conditional on Ft−1 is:

φ(rt;α, σ) =
1√

2πσ2
exp

(
−(rt − α)2

2σ2

)
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where φ(·;α, σ) is the probability density function of a normally distributed random variable

with mean α and standard deviation σ. As the daily returns are independent across time

in the Black-Scholes model, the conditional log likelihood function is:

L(θ|r) =
T∑
t=1

log φ (rt;α, σ)

= −T
2

log(2πσ2)−
T∑
t=1

(rt − α)2

2σ2

where r = {rt}Tt=1 is the time series of returns and T is the duration of the observations used

for estimation. The first order conditions determine the maximum likelihood estimates:


α = 1

T

∑T
t=1 rt

σ2 = 1
T

∑T
t=1(rt − α)2

We therefore use the sample mean and sample standard deviation as our estimates for α

and σ respectively.

As for the NGARCH-Normal model, the set of parameters is θ = {β0, β1, β2, c, ρ}. By

equation (3.2), the probability density function of rt conditional on Ft−1 is:

φ (rt;αt, ht) =
1√

2πht
exp

(
−(rt − αt)2

2ht

)

Hence the conditional log likelihood function is:

L(θ|r) =
T∑
t=1

log φ (rt;αt, ht)

= −T
2

log(2π)− 1

2

T∑
t=1

log(ht)−
T∑
t=1

(rt − αt)2

2ht

(3.11)
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Now there is no analytical solution for the maximum likelihood estimators, as the first order

conditions involve polynomial terms of higher order. Therefore we compute the estimates

numerically for the NGARCH-Normal model and for all the models hereafter as well. Notice

that the conditional variance ht is defined recursively based on the relationship in equation

(3.5), and the time series of ht ultimately depends on the initial value h1. In our analysis,

we use the sample variance of rt as the initial value. Given the initial value h1, we calculate

α1 using equation (3.3), then X1 by equation (3.2), and finally h2 by equation (3.5) again,

and so on so forth. Therefore, we are able to compute the whole series of {rt, αt, ht}, and

also the log likelihood function once we plug them into equation (3.11) for any given set of

parameter θ. Then we maximize the likelihood function over θ to find the estimates.

In the NGARCH-Jump model, the set of parameters is:

θ = {β0, β1, β2, c, ρ, λ, µ, γ}

By equations (3.6) and (3.10), the probability density function of rt conditional on Ft−1

and Nt = n is:

φ
(
rt;αt +

√
htnµ, ht

(
1 + nγ2

))

Since Nt is a Poisson random variable and independent of any other variables, we have

Pr(Nt = n) = e−λλn/n!. Integrate out Nt, we get the probability density function of rt

conditional on Ft−1:

∞∑
n=0

e−λλn

n!
φ
(
rt;αt +

√
htnµ, ht

(
1 + nγ2

))
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And the conditional log likelihood function is therefore:

L(θ|r) =
T∑
t=1

log

( ∞∑
n=0

e−λλn

n!
φ
(
rt;αt +

√
htnµ, ht

(
1 + nγ2

)))
(3.12)

Based on the upper bound of cutoff errors given by Ball and Torous (1985), we obtain the

MLE based on a finite version of the log likelihood function:

LN (θ|r) =
T∑
t=1

log

(
N∑
n=0

e−λλn

n!
φ
(
rt;αt +

√
htnµ, ht

(
1 + nγ2

)))
(3.13)

with N = 10. The numerical procedure is very similar to that for the NGARCH-Normal

model. Specifically, given initial value h1 and a set of parameters θ, we calculate K1 using

equation (3.9), then α1 by equation (3.7), J1 by equation (3.6), and finally h2 by equation

(3.8) again, and so on so forth. Then we plug the series {rt, αt, ht} into equation (3.13) to

get the log likelihood function, and maximize it over θ to obtain the MLE.

For each underlying stock, we estimate the parameters in the Black-Scholes model, the

NGARCH-Normal model and the NGARCH-Jump model. Due to limitation of space, we

show in Table 3.3 the estimation result for only one of these stocks, TTB4. The results for

other stocks are available upon request. Columns 2 through 4 correspond to the three model

specifications respectively, and standard errors are given in parentheses. For the Black-

Scholes model, our estimates are the average daily return α = 0.0008 and the volatility of

daily returns σ = 0.0287. We plot the histogram of TTB’s daily returns in Figure 3.1b

together with the normal distribution implied by the estimates of α and σ. From Figure

3.1b we can see that the return distribution exhibits higher peak and fatter tails than the

normal distribution, with a corresponding kurtosis of 5.1016, and it is slightly skewed to

4. Tsingtao Brewery Co. Ltd., stock code: 600600, listed in Shanghai Stock Exchange.

108



the left, with a skewness of −0.2867. Moreover, Figure 3.1a shows the time series plot of

the daily returns of TTB. The figure indicates that the returns do not have a constant

volatility across time, with the volatility before January 2009 obviously higher than that

afterwards. Also, higher volatility is followed by higher volatility, and vice versa. In fact,

as shown in Figure 3.1c, the absolute values of the stock’s daily returns have significantly

positive autocorrelation with lags of one, two, and four trading days, again indicative of the

existence of volatility clustering. Therefore, the two parameters in the Black-Scholes model

are not sufficient to fully depict the price dynamics of the TTB stock.

More interesting are the results for the NGARCH models. First, we can see from

columns 3 and 4 of Table 3.3 that the estimates for β1 and β2 are significantly positive

at the 1% level in both NGARCH models, which means that higher past volatility and

return innovations of larger magnitude are associated with higher current volatility. Thus,

volatility clustering is indeed present in the price dynamics of the TTB stock, and GARCH

models are necessary to capture this phenomenon. Second, the estimates for the “leverage

effect”, c, are positive as expected, although not significantly so. This implies that for the

TTB stock, positive shocks and negative shocks to the stock returns contribute similarly

to future volatility. Even though this phenomenon is not common to all the underlying

stocks, it is not surprising for TTB given that the unconditional distribution of its returns

is only slightly negatively skewed. In contrast, we would observe a more negatively skewed

distribution and a significantly positive estimate for c if the “leverage effect” exists. Third,

the correlation between the innovations of stock returns and the pricing kernel has negative

estimates in both models, though not significant. This result is intuitive, as most common

stocks tend to pay off well when the whole economy does well and the marginal utility is low.

Fourth, in the NGARCH-Jump model, λ is highly significant, meaning that there exists a
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jump component in the stock returns, and the estimate implies that jumps happen 1.1466

times per day on average. The mean of the jump, µ, is significantly negative, meaning

the jumps have a tendency to drive the stock prices lower. Also, the standard deviation of

jumps, γ, is significant and greater than one, so the jump process effectively captures the

large shocks that move stock returns by a larger magnitude than the usual small shocks.

Finally, the last row of Table 3.3 shows the log likelihood of the three models, and it increases

monotonically as the model gets more complicated.

Table 3.3: Parameter Estimates for TTB

Black-Scholes NGARCH-Normal NGARCH-Jump

α 0.0008
(0.0015)

σ 0.0287
(0.0011)

β0 8.58× 10−6 1.55× 10−6

(2.69× 10−6) (1.93× 10−6)
β1 0.9520 0.9390

(0.0148) (0.0194)
β2 0.0218 0.0372

(0.0046) (0.0150)
c 0.7457 0.3624

(0.5006) (0.4802)
ρ −0.0513 −0.1616

(0.0528) (0.1511)
λ 1.1466

(0.2139)
µ −0.3786

(0.1845)
γ 2.4926

(0.3680)

Log Likelihood 765.34 783.74 804.37

Our estimation procedure not only gives the parameter estimates, but is also able to

back out the innovations to the stock returns every day based on the estimated parameters.

Figure 3.2a presents the time series plot of the innovations Xt in the NGARCH-Normal

model. Now the innovations do not show any clear patterns in their volatility across time,
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(a) Time Series Plot

(b) Histogram (c) Autocorrelation Plot

Figure 3.1: Daily Returns of TTB

in contrast to Figure 3.1a for the Black-Scholes model. Actually, Figure 3.2c shows that

the absolute values of the return innovations have an insignificant autocorrelation for lags

up to 20 trading days. Therefore, the NGARCH-Normal model does fairly well in removing

the volatility clustering in the daily returns of the TTB stock. On the other hand, the

NGARCH-Normal model also assumes the return innovations are Gaussian white noise,

Xt ∼ N(0, 1). As a comparison, the sample standard deviation of Xt’s is 1.0265, very close

to the assumed value of 1. However, the histogram of Xt displayed in Figure 3.2b shows the

distribution of Xt is still quite different than normal. Although both skewness and kurtosis
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of Xt are smaller in magnitude than those of rt in the Black-Scholes model, it still has a

high peak around the center of its distribution, and the Jarque-Bera test rejects the null

hypothesis at the 1% level. Thus, the NGARCH-Normal model is not completely consistent

with the stock price dynamics of TTB, and we need further improvement in modeling.

(a) Time Series Plot

(b) Histogram (c) Autocorrelation Plot

Figure 3.2: Return Innovations of TTB in the NGARCH-Normal Model

Besides the return innovations, our procedure also gives the scaling factors of inno-

vations, ht. In the NGARCH-Normal model, ht is the same as the conditional variance.

We plot the annualized conditional volatility of TTB, i.e.,
√
ht in Figure 3.3. The dashed

horizontal line is the unconditional volatility over the sample period, 45.63%. We can see
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from the figure that our estimates of conditional volatility are highly persistent, and evolve

around the unconditional volatility. Also, loosely speaking, the conditional volatility after

January 2009 is generally lower than before, consistent with our observation from the time

series plot of the raw returns in Figure 3.1a.

Figure 3.3: Annualized Volatility of TTB in the NGARCH-Normal Model

As the fitted return innovations of TTB in the NGARCH-Normal model fail to meet

the assumption of normal distribution and exhibit excess kurtosis, we further investigate

the property of the innovations in the NGARCH-Jump model. Figure 3.4a shows the time

series plot of Jt in the NGARCH-Jump model. As in the the NGARCH-Normal model, the

volatility of the innovations remains stable across time. Furthermore, the autocorrelation

of the absolute values of return innovations is not significantly different than zero for all

the lags up to 20 trading days as shown in Figure 3.4c. Thus, the NGARCH-Jump model

does a similar job to the NGARCH-Normal model in removing the volatility clustering in

the stock returns of TTB. More important is the histogram of Jt in Figure 3.4b. Remember

that Jt is a random sum of several normally distributed random variables, and the number

of the random variables is a Poisson variable. Therefore, Jt itself is not normal, and in

fact it has a kurtosis of 4.6240. The thick solid line in Figure 3.4b represents the density
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function of Jt implied by our estimates of the jump component, {λ, µ, γ}. We can see that

the fitted innovations follow the implied distribution amazingly well, compared to the case of

the Black-Scholes model and the NGARCH-Normal model. We note that this phenomenon

is not only true for the TTB stock, but generally present for most of the stocks in our

sample. Thus, the GARCH model alone is not able to fully capture the price dynamics of

the underlying stocks, and jump components are necessary. Figure 3.5 shows the time series

plot of the scaling factor,
√
ht, in the NGARCH-Jump model. Notice that here

√
ht cannot

be interpreted as conditional volatility of stock returns, and hence not comparable to
√
ht

in the NGARCH-Normal model as well as the unconditional return volatility. However, it

still governs how volatile the stock return is in a given day. We can see that the scaling

factor is higher in the first half of the sample period than in the second half, consistent with

the result in the NGARCH-Normal model.

3.3.3 Pricing Performance

In this subsection we compare the pricing performance of the various models we estimated

in the previous subsection. While the Black-Scholes model provides a closed form solution

to the option prices, the NGARCH models do not, so we compute the theoretical prices

implied by the NGARCH models using risk neutral pricing. First, we obtain the price

dynamics of underlying stocks under the risk neutral measure Q, then conduct Monte Carlo

simulations to get the expected payoffs of the warrants at maturity, and finally discount

the expected payoffs at the risk-free rate to get warrant prices. According to Duan et al.
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(a) Time Series Plot

(b) Histogram (c) Autocorrelation Plot

Figure 3.4: Return Innovations of TTB in the NGARCH-Jump Model

Figure 3.5: Annualized Scaling Factor of TTB in the NGARCH-Jump Model
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(2007), without jumps the dynamics of underlying stock returns under measure Q are:

rt = r − ht
2

+
√
htXt (3.14)

ht = β0 + β1ht−1 + β2ht−1 (Xt−1 − c̃)2 (3.15)

where the parameters θ = {β0, β1, β2, c, ρ} are the same as in the physical measure P ,

c̃ = c− ρ, and Xt ∼ N(0, 1) is independent of Ft−1.

With jumps, the stock return dynamics under Q is:

rt = r − ht
2

+ λ(1−Kt) +
√
htJt (3.16)

ht = β0 + β1ht−1 + β2ht−1

(
Jt−1 − λµ√

1 + λγ̃2
− c̃

)2

(3.17)

Kt = exp

(√
htµ+

1

2
htγ

2

)
(3.18)

where

c̃ = c− ρ√
1 + λγ̃2

Other parameters θ = {β0, β1, β2, c, ρ, λ, µ, γ}, as well as the innovations Jt, are defined the

same way as under measure P .

With the parameter estimates obtained in the previous subsection, we simulate the time

series of underlying stock returns using the risk neutral dynamics above. For each stock,

we conduct 10,000 simulations. To compare the pricing performance of different models, we

define the average absolute percentage pricing error as:

1

n

n∑
i=1

∣∣∣Ĉi − Ci0∣∣∣
Ci0
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where Ci0 and Ĉi are the real price and the theoretical price respectively, and n is the

number of observations. We divide the warrants into twelve groups based on the type of

the warrants (call or put), time to expiration τ , and moneyness, defined as the spot stock

price over the strike price, S/K, and calculate the pricing error for each group. Table 3.4

presents the results for call warrants in Panel A, and put warrants in Panel B.

Table 3.4: Average Absolute Percentage Pricing Error

Panel A: Call Warrants

S/K < 0.85 0.85 ≤ S/K ≤ 1.25 S/K > 1.25

Black-Scholes τ ≤ 1 year 93.28% 85.18% 70.48%
τ > 1 year 80.23% 128.82% 242.02%

NGARCH-Normal τ ≤ 1 year 94.49% 67.00% 19.32%
τ > 1 year 70.97% 38.90% 13.27%

NGARCH-Jump τ ≤ 1 year 94.63% 66.72% 19.38%
τ > 1 year 71.26% 37.88% 14.45%

Panel B: Put Warrants

S/K < 0.85 0.85 ≤ S/K ≤ 1.25 S/K > 1.25

Black-Scholes τ ≤ 1 year 76.04% 88.14% 99.00%
τ > 1 year 84.57% 94.38% 99.14%

NGARCH-Normal τ ≤ 1 year 31.92% 45.31% 88.81%
τ > 1 year 17.86% 67.59% 50.05%

NGARCH-Jump τ ≤ 1 year 31.96% 45.96% 89.91%
τ > 1 year 18.45% 76.28% 45.88%

From the table we can draw the following conclusions. First, the Black-Scholes model

does a poor job in explaining the warrant prices. The average absolute percentage pricing

error is over 70% for all the categories, and it is as high as 242.02% for long term in-the-

money call warrants. On the other hand, both NGARCH models achieve substantially

smaller pricing errors than the Black-Scholes model in most cases, which demonstrates the

importance of stochastic volatility when modeling the price dynamics of underlying stocks.

Second, while the Black-Scholes model generally has a larger pricing error when the maturity
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is over one year than otherwise, both NGARCH models attain smaller pricing errors for long

term warrants, except for the case of at-the-money put warrants. This is because the longer

the time to expiration, the less realistic the constant volatility assumption is, and the more

accurately the NGARCH models are able to capture the stochastic volatility. Third, the

pricing errors of the NGARCH models get smaller as the warrants get more into the money.

For example, the NGARCH-Normal model has a pricing error of 70.97% for long term out-

of-the money call warrants, and 38.90% and 13.27% for the at-the-money and in-the-money

call warrants respectively. This is largely due to the extreme over-valuation of out-of-the-

money warrants as documented in Xiong and Yu (2011), and we refer interested readers to

their original paper for discussion in more details. Finally, the NGARCH-Jump model has

similar pricing errors to those of the NGARCH-Normal model across different categories of

warrants. Therefore, even though the NGARCH-Jump model is more consistent with the

true price dynamics of the underlying stocks as shown in the previous subsection, it does

not perform better than the NGARCH-Normal model in terms of warrants valuation.

To better visualize the pricing performance of different models and how it evolves over

time, we pick one typical stock, JT5, and show the time series plots of its stock prices and

warrant prices in Figure 3.6. Figure 3.6a displays JT’s stock prices, and the horizontal

dashed line represents the strike price. Since this is a call warrant, most of the time

the warrant is in the money. Figure 3.6b shows the warrant prices, with the solid line

corresponding to the observed prices, the dashed line to the theoretical prices given by the

Black-Scholes model, and the dotted line to the NGARCH-normal prices. The NGARCH-

Jump model gives almost the same prices to the NGARCH-Normal model because the

estimated jump frequency (λ) is very small, so we do not show them in this graph. We can

5. Jiangxi Copper Co., Ltd., listed in the Shanghai Stock Exchange
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see from the figure that the Black-Scholes model tends to predict systematically higher prices

than the real prices. On the other hand, the NGARCH-Normal model is able to track the

real prices to a close extent, which confirms our previous result that the NGARCH models

perform fairly well in pricing in-the-money warrants.

(a) Stock Price

(b) Warrant Price

Figure 3.6: Time Series Plots of Stock and Warrant Prices of JT

However, these options pricing models do not always perform as well as in this case.

Another typical scenario is illustrated in Figure 3.7, for the TTB stock we studied in the

previous subsection. This warrant is again a call, but unlike JT, the warrant is out of
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the money for most of its lifetime, as shown in Figure 3.7a. We can see from Figure 3.7b

that both the Black-Scholes model and the NGARCH-Normal model give substantially lower

prices than the observed warrant prices, until at the expiration when the real price converges

to the theoretical prices. Moreover, even though we have shown that the NGARCH-Normal

model captures the dynamics of the TTB stock more accurately than Black-Scholes, it

implies warrant prices that are even farther away from the real prices. Therefore, we

interpret the mispricing of the TTB warrant as not due to the misspecification of our

models, but rather overvaluation by the market. This is additional evidence to Xiong and

Yu (2011), who demonstrate that bubbles are present in most puts in the Chinese warrants

market. One explanation for this phenomenon is suggested by Barberis and Huang (2008),

that investors have a tendency to overweight tail events as in the prospect theory, and they

are willing to pay a lot more than the “fair” price for out-of-the-money warrants because

the payoffs of these warrants have large positive skewness. We expect the overweighting

tendency to be stronger in emerging markets like China, where investors tend to have

gambling behaviors, but we leave that for future research.

3.4 Conclusion

This paper examines the performance of various options pricing models in the Chinese

warrants market. We document that the distribution of returns on the Chinese stocks in

our sample is generally negatively skewed and leptokurtic, which violates the assumption

of the Black-Scholes model that returns are normally distributed. We fix this problem from

two perspectives. First, we use NGARCH models to capture the stochastic volatility in

stock returns. Second, we introduce jumps into the dynamics of stock returns to reflect big

shocks in the market.
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(a) Stock Price

(b) Warrant Price

Figure 3.7: Time Series Plots of Stock and Warrant Prices of TTB

Our results show that the NGARCH models successfully remove the volatility clustering

pattern in stock returns. Although the return innovations in the NGARCH-Normal model

still do not follow a normal distribution, the empirical distribution of the fitted innovations

in the NGARCH-Jump model is largely consistent with the distribution implied by the

model assumptions.

In order to compare the pricing performance of different models, we conduct Monte

Carlo simulations to calculate theoretical prices of warrants and compare them with real
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prices. We find that NGARCH models substantially outperform the Black-Scholes model in

most cases, and that they show greater improvement in pricing in-the-money warrants with

longer time to expiration. Whereas the NGARCH-Jump model better tracks the evolution

of the underlying stock prices, it does not differ much from the NGARCH-Normal model

in terms of warrants valuation. Therefore, both stochastic volatility and jump components

are crucial in modeling the dynamics of underlying stocks, but the former plays a more

important role in matching the warrant prices in our sample. Furthermore, the Black-

Scholes model as well as the NGARCH models still displays non-negligible pricing errors

for out-of-the-money warrants, which provides indirect evidence to the existence of bubbles

in the Chinese warrants market.
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