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Abstract

Three Essays on the Role of Unstructured Data in Marketing Research

Ishita Sunity Kumar Chakraborty

2021

This thesis studies the use of firm and user-generated unstructured data (e.g., text and

videos) for improving market research combining advances in text, audio and video pro-

cessing with traditional economic modeling. The first chapter is joint work with K. Sudhir

and Minkyung Kim. It addresses two significant challenges in using online text reviews

to obtain fine-grained attribute level sentiment ratings. First, we develop a deep learning

convolutional-LSTM hybrid model to account for language structure, in contrast to meth-

ods that rely on word frequency. The convolutional layer accounts for the spatial struc-

ture (adjacent word groups or phrases) and LSTM accounts for the sequential structure

of language (sentiment distributed and modified across non-adjacent phrases). Second,

we address the problem of missing attributes in text in constructing attribute sentiment

scores—as reviewers write only about a subset of attributes and remain silent on others.

We develop a model-based imputation strategy using a structural model of heterogeneous

rating behavior. Using Yelp restaurant review data, we show superior accuracy in convert-

ing text to numerical attribute sentiment scores with our model. The structural model finds

three reviewer segments with different motivations: status seeking, altruism/want voice,

and need to vent/praise. Interestingly, our results show that reviewers write to inform

and vent/praise, but not based on attribute importance. Our heterogeneous model-based

imputation performs better than other common imputations; and importantly leads to man-

agerially significant corrections in restaurant attribute ratings.

The second essay, which is joint work with Aniko Oery and Joyee Deb is an

information-theoretic model to study what causes selection in valence in user-generated
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reviews. The propensity of consumers to engage in word-of-mouth (WOM) differs after

good versus bad experiences, which can result in positive or negative selection of user-

generated reviews. We show how the strength of brand image (dispersion of consumer

beliefs about quality) and the informativeness of good and bad experiences impacts selec-

tion of WOM in equilibrium. WOM is costly: Early adopters talk only if they can affect

the receiver’s purchase. If the brand image is strong (consumer beliefs are homogeneous),

only negative WOM can arise. With a weak brand image or heterogeneous beliefs, posi-

tive WOM can occur if positive experiences are sufficiently informative. Using data from

Yelp.com, we show how strong brands (chain restaurants) systematically receive lower

evaluations controlling for several restaurant and reviewer characteristics.

The third essay which is joint work with K.Sudhir and Khai Chiong studies success

factors of persuasive sales pitches from a multi-modal video dataset of buyer-seller inter-

actions. A successful sales pitch is an outcome of both the content of the message as well

as style of delivery. Moreover, unlike one-way interactions like speeches, sales pitches are

a two-way process and hence interactivity as well as matching the wavelength of the buyer

are also critical to the success of the pitch. We extract four groups of features: content-

related, style-related, interactivity and similarity in order to build a predictive model of

sales pitch effectiveness.
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Chapter 1

Attribute Sentiment Scoring with Online
Text Reviews: Accounting for Language

Structure and Missing Attributes

1.1 Introduction

Many firms conduct routine tracking surveys on product/service performance on selected

attributes chosen by managers that they believe drive overall customer satisfaction (Mittal

et al. 1999, Mittal et al. 2001). The summary scores from these surveys are used as dash-

board metrics of overall satisfaction and attribute performance by managers. In many in-

dustries offering “experience goods”, such as restaurants, hotels and (even) nursing homes,

crowd-sourced online review platforms have emerged as an alternative and less expensive

source of scalable, real-time feedback for businesses to listen in on their markets for both

performance tracking as well as competitive benchmarking (e.g., Xu 2019, Li et al. 2019).

Even when not used as a replacement for tracking surveys of performance, such quantita-

tive summary metrics are valuable for managers because consumers use review platforms

when making choices (e.g., Zhu and Zhang 2010, Luca and Vats 2013).

This paper develops a scalable text analysis method by which online review platforms
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that only collect open-ended text reviews can produce attribute level summary ratings1

similar to those who use quantitative attribute level surveys. This involves solving two

novel and challenging sub-problems. First, it requires developing a text mining frame-

work that can convert the rich texture of attribute level sentiment expressed in the text

to a fine-grained quantitative rating scale, that not only captures the valence of the senti-

ment, but also the degree of positivity or negativity in sentiment. The second problem is

that since reviewers self-select which attributes to write about in open-ended text, many

attributes will be missing in unprompted reviews. The challenge is to correctly interpret

“silence,” when a reviewer does not mention an attribute in the review text and impute the

correct sentiment to obtain the aggregate attribute level rating. Our results show that the

magnitude of corrections can be large enough to be managerially significant.2 Further, be-

havioral research has long recognized the importance of the right imputation for missing

values because people do not ignore missing attributes and often make complex and imper-

fect inferences from missing data in evaluations. For example, Slovic and MacPhillamy

(1974) and Peloza et al. (2015) discuss some common types of wrong inferences—higher

weights on common attributes (i.e. attributes for which information is available for all op-

tions) or simply proxy missing attribute score with some unrelated attribute score (extra-

attribute mis-estimation). Gurney and Loewenstein (2019) provides an excellent review

of this topic. While the nature of these inferences may vary, the general takeaway is that

missingness usually worsens choice and decision making. This justifies our interest in

obtaining corrected attribute ratings.3 We next describe the key challenges involved in

1Some review platforms such as Zagat, OpenTable and TripAdvisor ask for numerical attribute ratings
from reviewers before open-ended text. This may obviate the need to convert text to numerical attribute
sentiment scores; but a key disadvantage is that attribute level questions vastly reduce response rates and
quality because of the additional time and cognitive costs on the reviewers (Krosnick 1991, Huang et al.
2015). Therefore many large review platforms such as Yelp, Google and Facebook only obtain an overall
rating and free-flowing, open-ended text feedback. Our approach can provide attribute level ratings on such
platforms.

2Luca (2016) finds that a 1 point change in restaurant ratings leads to a 5-9% change in revenues.
3To assess its value in our specific context, we show using an mTurk experiment (see Online Appendix

Table A1), that consumer choices are more consistent with their true preferences when attribute level ratings
are available. Managers also clearly would prefer their ratings to be valid—to the extent imputations help

2



tackling these two problems and how we address them.

1.1.1 Challenges in Attribute Level Sentiment Scoring from Text

Attribute level sentiment scoring from text involves connecting a specific product attribute

(e.g., food, service) to an associated satisfaction rating. With fine-grained sentiment scor-

ing, we need to convert text to more than just valence (positive, negative, neutral), but also

represent the degree of positivity and negativity (in say a 1-5 point scale). While there

has been some work on sentiment scoring of attribute valence (e.g., Archak et al. 2011),

there has been little work on fine-grained attribute scoring—the focus of our paper. We

now describe the challenges involved relative to extant work in the literature. We note that

the computer science literature in fine-grained sentiment scoring is still evolving and it

remains an open problem in natural language processing (Schouten and Frasincar 2015).

Over the last decade, marketing scholars have extensively used text analysis to iden-

tify topics, customer needs and mentions of product attributes. These papers typically have

used “bag-of- words” approaches such as LDA and lexicons—where the identification of

attributes and sentiments is based on the frequency of sentiment words. LDA applica-

tions include Tirunillai and Tellis (2014), Hollenbeck (2018), Puranam et al. (2017) and

Büschken and Allenby (2016). Archak et al. (2011) use a lexicon method to identify at-

tributes and sentiment valence; but do not address fine-grained sentiment scoring.4 But

bag-of-words based approaches are limited in their ability to adequately score attribute

sentiments. Consider the following examples where sentiment degree is modified, as in

(i) “horrible,” “not horrible,” “not that horrible” and (ii) “delight, “just missed being a

delight”. When words are just counted as in bag-of-words, making the connections be-

obtain valid estimates, they would clearly prefer it. We show that our imputations indeed work better than
other common imputations on a holdout sample, and that the corrections are large enough to be managerially
significant.

4Timoshenko and Hauser (2018) and Liu et al. (2019) use deep learning models that are not based on
word frequencies, but their focus is on attribute and valence identification respectively and hence do not need
to account for language structure issues that need to be addressed in fine-grained attribute sentiment scoring.

3



tween the key sentiment words “horrible” and “delight” with their degree modifiers will

be difficult, without considering how they are grouped adjacently to form phrases—i.e.,

spatial structure.

More generally, in NLP, certain types of sentences are considered “hard” for senti-

ment scoring (Socher et al. 2013). Table 1.1 provides a typology of such “hard” sentences

with examples. Like the examples above which modified sentiment degree, negations

often require accounting for adjacent words, i.e., spatial structure to correctly interpret

both valence and sentiment degree. Further, other types of sentences such as long and

scattered sentences and contrastive conjunctions require accounting for both the spatial

the sequential structure of language, as the sentiment is distributed and modified across

non-adjacent words in a sentence. When there are long sentences with sentiments scat-

tered across attributes, being able to make the right association of the sentiment with the

attribute becomes a challenge; further sentiments get modified along different parts of a

long sentence, and therefore one has to consider these sequences together in inferring sen-

timent. Contrastive conjunctions–words/phrases like “but,” “despite,” and “inspite of” can

reverse the sentiment of a sentence—on either side of the conjunction. Implied sentiments

are challenging because the meaning/sentiment associated with a word lies within a richer

context of its usage.

Table 1.1: Examples of “hard” sentences for attribute sentiment scoring

Type Example

Negations and Sentiment Degree Pizza is good > Pizza is not that good > Pizza is not at all good

Long sentences and Scattered
Sentiments

OK, in fact good, to start with but kept getting worse and wait staff were
unapologetic but manager saved the night.

Contrastive Conjunctions Despite the creativity in the menu, execution was a disappointment

Implied Sentiments The place is a treasure if only you are lucky to be there on the right day

These examples motivate the need to go beyond frequency-based “bag-of-words” ap-

proaches and model the structure of language (in terms of phrases and sequences). In
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our deep learning model, a convolutional layer captures the spatial structure (grouping of

adjacent words), and a Long Short Term Memory (LSTM) layer captures the sequential

structure (sequence of adjacent and non-adjacent phrases). This allows us to improve our

sentiment classification not only in the aggregate on “easy” sentences, but also on the

“hard” sentences.

Accounting for Attribute Silence in Attribute Sentiment Scoring

As described earlier, the current literature on topic identification focuses on the frequency

of mentions across reviews (e.g., Büschken and Allenby 2016) to identify the most com-

mon or novel needs/benefits, attributes desired by consumers/user. The implicit assump-

tion is that topics or attributes that are not mentioned are not important and can be ignored.

We question the premise that importance is the primary reason for why an attribute is

mentioned or not. There can be other reasons for why a reviewer is silent on an attribute.

Some may write only if it can influence or be informative to readers. For example, if there

is high variance among current raters, one’s rating can be influential and informative. Or

if one’s own rating is different from the consensus based on current reviews, one may be

motivated to write a different point of view. There could of course be asymmetry in this

motivation depending on whether the deviation from consensus is positive or negative.

Finally, some raters may choose not to write when the product meets expectations (and

rating would have been a three), but only to praise/vent when they are very satisfied or

dissatisfied.

We develop a model-based strategy that imputes missing sentiment based on observ-

able restaurant characteristics and observable/unobservable reviewer characteristics. We

consider and exploit three key features of the available data in this context in developing

and identifying the structural model: (1) the same restaurant is visited and experienced

by multiple reviewers; given that a restaurant provides similar services to all patrons, we
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assume that all reviewers receive a common latent utility plus idiosyncratic shocks. (2) the

same reviewer visits multiple restaurants, this allows us to identify observable reviewer

heterogeneity and unobserved heterogeneity in rating styles—i.e. how they map experi-

enced utility to attribute level ratings. (3) all reviewers provide an overall rating, so given

multiple observations from a reviewer, we can infer heterogeneous weights of attributes

on overall ratings.

We allow the structural model of rating behavior to account for heterogeneity in rating

styles and weights on attributes driving overall ratings. Specifically, we allow for a non-

linear and heterogeneous mapping from experienced utility to attribute ratings using an

ordinal logit and a heterogeneous weighting of different attributes to explain the observed

overall rating as a regression. The heterogeneity is modeled within a latent class frame-

work. We estimate the model using an EM algorithm, where the missing data on attribute

ratings are imputed based on the model parameters during an iteration and iterated till the

parameters converge.

Since the structural model provides insights on reviewer segments and their behavior, it

not only helps with imputation but also enables us to assess the above conjectured “drivers

of silence” in reviews. We find that there are multiple reviewer segments with different

motivations to write reviews—one segment seeks status, another seeks to vent/praise and a

third is altruistic or wants to voice their opinion. Interestingly, we find that informativeness

and need to vent/praise drives what attributes are mentioned; not attribute importance. We

then validate the imputations from our structural model by showing superior performance

relative to simpler homogeneous models and other ad-hoc imputation rules on holdout

data. Finally, we demonstrate that corrections for attribute silence based on observable

and unobservable heterogeneity leads to significant corrections in average attribute ratings

for a business.

We note that our problem definition for attribute level ratings abstracts away from is-

sues of (1) selection in who chooses to review (e.g., Li and Hitt 2008) and (2) strategic
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review shading by reviewers and/or fake reviews (e.g., Mayzlin et al. 2014, Luca and Zer-

vas 2016) when aggregating ratings. Reviewer selection/review shading issues are relevant

not just for attribute level ratings, but also for overall ratings; as such any approaches to

address these issues for overall ratings should also be applicable for attribute level ratings.

Summarizing, our key contributions are as follows: The paper is the first to do fine-

grained attribute sentiment scoring using text reviews in marketing; i.e., we not only cap-

ture attribute sentiment valence, but also the degree of positivity or negativity in sentiment.

For this, we highlight the need to move beyond word frequency based approaches (lexicon

and LDA) to a deep learning approach that accounts for language structure. Specifically,

we account for the spatial and sequential structure of language using a convolutional-

LSTM model. Second, we find that attribute silence in reviews is driven by need to inform

and need to praise/vent, but not based on the importance that the reviewer itself places on

the attribute. Using a structural model of rating behavior, we develop a model-based impu-

tation for missing attribute ratings. Overall, we note that though the paper is motivated in

the empirical context of online reviews, the problems of generating fine-grained attribute

sentiment scoring from text and the interpretation/correction of attribute silence has broad

application across many settings.

The rest of the paper is organized as follows. §1.2 discusses the related literature. §1.3

describes the problem of attribute sentiment scoring, the challenges and how our model

addresses these challenges. §1.4 describes the structural model of rating behavior, the

estimation strategy, and how the model is used for imputing missing attribute scores. §1.5

describes our data. §1.6 summarizes the results. §1.7 concludes.

1.2 Related Literature

This paper is related to multiple strands of literature in marketing and computer science.

We organize our discussion in two parts.
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1.2.1 Text Analytics on UGC and Online Reviews

Table 1.2 positions our paper with respect to the most relevant literature on online reviews

and user generated content in marketing. Some of the early research on user-generated

(UGC) content in marketing (e.g., Chevalier and Mayzlin 2006, Dhar and Chang 2009,

Duan et al. 2008, Ghose and Ipeirotis 2007, Onishi and Manchanda 2012) uses quantitative

metrics like review ratings, volume and word count to infer the impact of UGC on business

outcomes like sales and stock prices. Though these papers established the importance of

studying UGC and its specific role in experience goods markets, they did not investigate

content in review text.

Another research stream focused on using UGC content in blogs and review forums to

extract insights around customer needs and brand positioning (e.g., Lee and Bradlow 2011,

Netzer et al. 2012, Tirunillai and Tellis 2014, Büschken and Allenby 2016). Archak et al.

(2011) use UGC to measure sentiment valence (not fine-grained sentiment) on specific

product attributes using a lexicon approach and its impact on demand.

Table 1.2: Most Relevant Marketing Literature on Text Analytics

Paper Analysis Unit Sentiment
Analysis
(Y/N)

Sentiment
Granularity

Method Performance
Metric

Attribute
Silence
(Y/N)

Godes and Mayzlin (2004) &
Chevalier and Mayzlin (2006)

Doc NA NA No Text Min-
ing

NA N

Lee and Bradlow (2011) Doc N NA Bag of Words Overall N
Archak et al. (2011) Doc Y/N Binary Semi-

supervised
Overall N

Netzer et al. (2012) Doc N NA Lexical Net-
works

Overall N

Tirunillai and Tellis (2014) Doc Y/N Binary LDA Overall N
Timoshenko and Hauser (2018) Sent N NA CNN Overall N
Büschken and Allenby (2016) Sent N NA Sentence LDA Overall N
Liu et al. (2019) Doc Y Binary CNN, RNN,

LSTM
Overall N

This paper Sent Y 5-level Convolutional-
LSTM

Overall & Hard
Sentences

Y

Doc: Document Sent: Sentence

Fine-grained sentiment analysis for individual attributes is one of the more challenging

variants of the sentiment analysis problem (Feldman 2013, Wang et al. 2010, Nanli et al.
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2012, Gonçalves et al. 2013, Keramatfar and Amirkhani 2019, Balaji et al. 2017, Qazi et al.

2017). Figure 1.1 shows the evolution of sentiment analysis literature, highlighting the

trade-offs of the different approaches. Lexicon or dictionary based methods (Wang et al.

2010, Taboada et al. 2011) are highly interpretable, but rely on carefully hand-crafted

features. They are therefore not scalable. They under-perform in detecting sentiments

in “hard” sentences. Early supervised text classification methods like SVM (Joachims

2002) do not need hand-crafting and are scalable but they need large amounts of labeled

training data (tagged by humans) to reach desired levels of accuracy. Hence deep learning

models (Kim 2014, Socher et al. 2013, Zhou et al. 2015) combined with meaning-infused

word vectors (Pennington et al. 2014, Mikolov et al. 2013) have revolutionized the field of

text mining — they do extremely well on text classification tasks, yet require only much

smaller volume of training data to attain high levels of accuracy. Thus they overcome

the shortcomings of both traditional supervised as well as unsupervised algorithms. A

limitation is that they lack interpretability and so it is hard to understand what is driving

the performance of deep learning models. Recently, marketing scholars have used deep

learning models for text analysis to answer important questions such as need identification

(Timoshenko and Hauser 2018) and the impact of reading reviews on particular attributes

on purchasing decisions (Liu et al. 2019), but their focus is not on fine-grained sentiment

and hence language structure is less important.

We advance the marketing literature on sentiment analysis in two ways: (i) considering

fine-grained attribute sentiment scoring and (ii) moving from “bag-of-words” methods like

LDA and lexicons to deep learning models that account for structural aspects of language.

Hybrid models that combine features of different deep learning architectures can improve

performance on hard tasks (Wang et al. 2016); in that spirit, we motivate and construct

a hybrid convolutional-LSTM model. Further, to understand the key drivers of model

performance, we test our model on various types of hard sentences. In our corpus, nearly

half of the sentences are ‘hard,” justifying the need to account for language structure. By
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Figure 1.1: Sentiment Analysis Methods Evaluation
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Lexicons

Since 1970’s

reporting performance metrics not just overall, but on types of “hard” sentences, we offer

new benchmarks for performance evaluation in future research.

1.2.2 Missing Attributes (Attribute Silence) in Reviews

Our study of attribute silence, i.e. missing attributes in text reviews is primarily related

to the statistics literature on missing data and imputations. Rubin (1976) laid the seminal

framework for analysis of missing data, in which every data point has some likelihood

of being missing. Rubin classifies missing data problems into three groups: “Missing

Completely at Random” (MCAR), “Missing at Random” (MAR), and “Missing Not at

Random” (MNAR). MCAR occurs if the probability of missing is the same for all cases,

i.e., causes of the missing data are unrelated to the data. This assumption is likely violated

in most settings. Most modern imputation models for missing data are based on the MAR

assumption; i.e., the probability of being missing is the same within groups defined by

the observed data. For this strategy to be successful, rich behavioral models (including

those with unobserved heterogeneity) are modeled on the behaviors of interest, such that

the MAR assumption becomes reasonable. While many MAR models are based on ob-
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served heterogeneity, in our setting given the potential unobserved heterogeneity in rating

styles across reviewers, the MAR strategy will be unsuccessful without unobserved het-

erogeneity. Fortunately, in our setting given multiple observations across restaurants and

reviewers, unobserved reviewer heterogeneity can be estimated and the MAR approach

can be applied. If not, then we have an MNAR setting potentially due to unobserved het-

erogeneity. The most common approach is to then introduce new identifying restrictions

by explicitly justifying a model of missingness for the context at hand, and estimate the

joint model of missingness with the behavioral model (Little and Rubin 2019, Mohan and

Pearl 2018). Overall, missing data models are often estimated using Multiple Imputation,

or by likelihood methods. Likelihood based approaches either use Bayesian methods or the

EM algorithm for estimation. Recently, Athey et al. (2018) proposed matrix completion

methods for imputation in big data settings.

In this paper, we develop a structural model of heterogeneous reviewer rating behavior

that allows for both observable and unobservable heterogeneity taking into account the

data generation process. We allow for a rich nonlinear mapping from experienced utility

to five-level rating and weighted mapping of attribute ratings to overall rating behavior.

We use an EM algorithm to estimate the model, with model-based imputation to fill in for

missing attribute ratings during the EM iterations. Ex-post, we use the parameters of the

structural model to assess various conjectures of attribute missingness. We also use the

estimates of the structural model to impute for missing attribute ratings to construct aggre-

gate corrected metrics of restaurant ratings, conditional on the observed characteristics of

restaurants and the observed and unobserved characteristics of reviewers.
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1.3 Converting Text into Numeric Attribute Sentiment

Scores

We first describe the attribute level sentiment analysis problem of converting unstructured

text data in reviews into attribute level sentiment scores. We then describe two methods

of attribute scoring models with text data: (1) the lexicon model and (2) the deep learning

model. Along the way, we also describe various implementation issues and choices that

needs to be made.For completeness, we also estimate some bag-of-words based supervised

machine learning models e.g., Support-Vector-Machine (SVM), Naive Bayes and Logistic

Regression as baseline models as they have been used for text classification in the past.

We also estimated a supervised topic model S-LDA, but do not report the results as it

does not separate attribute and sentiment classes well; a primary requirement for this task.

Aggarwal and Zhai (2012), Sebastiani (2002) provide a good review of these methods.

The problem of attribute level sentiment analysis is to take a document d as input

(in our empirical example, a Yelp review) and identify the various attributes k ∈ K that

are described in d, where K is the full set of attributes. Having identified the attributes

k, the problem requires associating a sentiment score s with every attribute. In solving

the attribute level sentiment problem, we make two simplifying assumptions. First, we

assume that each sentence is associated with one attribute. Occasionally, sentences may

be associated with more than one attribute; in that case, we consider the dominant attribute

associated with the sentence. Like Büschken and Allenby (2016), we find that in our

empirical setting, multiple attribute sentences account for less than 2% of sentences in

our review data, and thus have very little impact on our results. Second, we assume that

the attribute-level sentiment score of a review is the mean of the sentiment scores of all

sentences that mention that attribute. We outline the steps involved in obtaining attribute

level sentiment ratings from text reviews in Table 1.3.
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Table 1.3: Algorithm for Attribute Sentiment Analysis

Algorithm : Derive Attribute scores from Review Text

Input : Review text
s: no of sentences, ws: words in sentence s

Step 0 : Choose relevant sentiment and attribute scale
Step 1: Split review doc rd into sentence vectors of s sentences using standard tokenizers
Step 2: For all s sentences , repeat steps 3 through 7
Step 3: Pre-process the sentence to convert characters to lower-case, remove stop-words and punctuations
Step 4: Pass one sentence at a time into an Attribute Sentiment Classifier AS
Step 5a : AS classifies sentence into an aspect class based on its algorithm
Step 5b: AS classifies sentence into a sentiment class based on its algorithm
Step 6a: Attribute Score −→mean(attribute sentiment across all sentences)
Step 6b: If an attribute is not mentioned in any sentence
s, assign it a missing sentiment score

Most of the steps in table 1.3 are clear, except for the choice of attribute/sentiment

classes (Step 0) and the attribute sentiment classifier used (Step 5). We begin by describing

how we choose the relevant attributes and the sentiment scale in Step 0. We use a 1-5 scale

for sentiment granularity (1: extremely negative, 3: neutral and 5: extremely positive)

as this is comparable to the 5 point rating scale in many review platforms. Also, human

taggers fail in practice to differentiate well between classes when the sentiment granularity

is higher than 5 levels (Socher et al. 2013).

To obtain comparable fine-grained sentiment scores on a managerially relevant set of

attributes across restaurants, we first need to choose a set of attributes on which restau-

rants should be scored on. This is similar to an exploratory phase before conducting a

quantitative survey. For this, we conducted (i) a review of the literature; (ii) an analysis

of the most frequent attribute words in the corpus; and (iii) topic modeling using LDA.

The literature on restaurant evaluation and industry customer satisfaction surveys iden-

tified food quality, employee behavior and wait time (service), basic hygiene, look and

feel (ambiance) and value for money as the most common attributes (Ganu et al. 2009).

We then did frequent word categorization of our review corpus by associating the most

high frequency nouns, noun phrases and select verbs to restaurant-relevant attributes. Be-
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Figure 1.2: Illustration of Attribute-Level Sentiment Analysis

yond the four attributes identified from past literature and industry surveys, we found a

fifth attribute “location” that has words pertaining to parking, convenience and safety of

the restaurant location. Finally, we conducted topic modeling of our review corpus us-

ing LDA. As is common with LDA, these topics combined both restaurant attributes and

consumer sentiments, and given the very high frequency of food related comments, the

topics were disproportionately around food.Büschken and Allenby (2016) note that by

initializing the LDA model with seed-words for a wider range of attributes, one could ob-

tain more balanced topics. Since we only needed to identify relevant topics and not gain

greater balance, using seed-words did not help with identifying additional attributes that

were relevant for a large enough set of restaurants to be used on a platform Overall, we

concluded that the five attributes—food, service, ambiance, value and location captured

the most relevant attributes for a restaurant rating platform.

Figure 1.2 illustrates and clarifies the major steps in attribute sentiment scoring using

an example review. These steps above are the same irrespective of the Attribute Sentiment

Classifier (AS) used in Step 5 of Table 1.3. We next describe the two types of attribute

sentiment classifiers we consider.
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1.3.1 Attribute Sentiment Classifier: The Lexicon Method

We begin with the lexicon-based method because it is highly interpretable, transparent

and very widely used and thus serves as useful benchmark relative to more complicated

models. The method consists of lexicon construction followed by attribute sentiment clas-

sification of text based on dictionary look-ups; i.e. sentences are classified into an attribute

and sentiment class by locating word matches in attribute and sentiment class-specific dic-

tionaries. We explain the method below and discuss its limitations.

1. Lexicon building. Lexicon construction involves creating a dictionary of attribute

words with corresponding attribute labels (e.g., waiter–“service”) and sentiment words

with sentiment class labels (e.g., excellent–“extremely positive”). We first identify the

high-frequency attribute and sentiment words in our corpus to create our vocabulary. We

construct attribute and sentiment class-specific dictionaries, by asking human taggers on

Amazon Mechanical Turk to classify all attribute words into one of the five attributes we

identified in Step 1—food, service, value, ambiance and location and all sentiment words

into one of the five sentiment classes–given we decided to use a 5 point rating scale. Every

word is labeled by 3 distinct human taggers and we retain only those words for which at

least 2 out of 3 taggers agree on the labeling.5

2. Attribute Level Sentiment Scoring. Each review is split into sentences. Using the lexi-

con, each attribute word in the sentence is classified into one of the pre-specified attributes

(or none) and each sentiment word is classified into a 1-5 sentiment rating scale using a

“look-up” or search of the pre-created lexicons. Following this, the steps are similar to

those listed in Table 1.3
5While it is possible to use a previously constructed generic lexicon to label attributes and to assign

sentiment scores, a domain and task specific lexicon improves classification/labeling accuracy. Moreover,
we could not find any existing lexicon that is well-suited for fine-grained sentiment analysis of restaurant
reviews. For e.g., AFINN lexicon (Nielsen 2011) and Stanford Sentiment Treebank (Socher et al. 2013)
have words and phrases with 5-levels of sentiment classification, however, they are built on Twitter and
rotten.tomatoes.com movie review dataset respectively and have limited overlap of words and attributes
with our restaurant domain.
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Despite its simplicity, interpretability and transparency, the method has several limita-

tions. First, lexicon construction is costly in both time and effort, and scales linearly with

number of words. Second and more importantly, the method treats language as simply

a bag-of-words or “fixed phrases” and does not account for various aspects of language

structure. In practice, lexicon methods therefore work fairly well for sentiment identifica-

tion in simple sentences, but perform poorly on “hard” sentences (Liu et al. 2010).

Why the Lexicon Method Fares Poorly with “Hard” sentences. We elaborate further on

why lexicon methods fail to classify hard sentences that we had mentioned in the intro-

duction in Table 1.1 (Socher et al. 2013). This is problematic because “hard” sentences

are close to 50% of sentences in our review corpus. We now explain each of these types.

1. Negations and Sentiment Degree. Sentences which have different degrees of negative

sentiment can be hard to classify without accounting for variable size n-grams. Lexicon

methods typically look at one word at a time and will not be able to obtain sentiment

valence or degree; Even if ad hoc approaches may be used to address standard negations

with bi-grams or tri-grams by hard-coding negation phrases, examples like “Pizza is not

that good,” “Pizza is not at all great,” illustrate that such ad hoc approaches are unlikely

to be effective overall in capturing degree of sentiment. This motivates the use of the

convolutional layer, which handles the spatial structure.

2. Long Sentences and Scattered sentiments. In long sentences consisting of more than

20 words, the degree of sentiment (and even polarity) can change multiple times. As

an example,“ OK, in fact good, to start with but kept getting worse and wait staff were

unapologetic but manager saved the night.” In this sentence, the sentiment flows from

being good to bad to extremely bad and then back to positive. Yelp reviews tend to have

a significant percentage of long sentences. Without sequence history, the classifier cannot

capture sentiment shifts and will classify most of these sentences as neutral due to the

mix of positive and negative sentiment words. More importantly, immediate sentiment

modifiers may be changed by sentiment words that are farther away, so having a “long
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term memory” of what was said before and whether recent sentiment (short-term memory)

should take precedence needs to be considered. The LSTM layer helps with both the

sequencing and the immediate and distant sentiment modifiers, while the convolutional

layer still helps group words into phrases within the long sentence before being fed into

the LSTM layer.

3. Contrastive conjunctions. Sentences which have an X but Y structure often get mis-

classified by sentiment classifiers as the model needs to take into account both the clauses

before and after the conjunction and weigh their relative importance to decide the final

sentiment. An example sentence includes “Despite the creativity in the menu, execution

was a disappointment.” The first half here is extremely positive due to the word creativity,

but the second half moderates it significantly. A good classifier should be able to learn

from both parts of the sentence to arrive at the correct classification. While the convolu-

tional layer identifies phrases before and after the conjunction, the LSTM layer helps with

interpreting the change of meaning after the conjunction.

4. Implied sentiments (sarcasm and subtle negations). These sentences do not have explicit

positive or negative sentiment words but the context implies the underlying sentiment. This

makes the task of sentiment identification extremely hard for all classes of models and

especially for models relying on a specific set of positive or negative words. An example

sentence includes “The place is a treasure if only you are lucky to be there on the right

day.” This is an example of sarcasm, the reviewer uses a positive word like “treasure” but

hints at the extreme variance in the type of experience one can have. There could also

be subtle negations, for example, “The girl managing the bar had to be the waitress for

everyone.” Here the reviewer is complaining about lack of service arising out of shortage

of staff without using any explicit negative word. Given the meaning/sentiment associated

with the work lies in the richer context of its usage, we will empirically assess how much

the spatial and sequential structure helps with accurate classification.
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1.3.2 Attribute Sentiment Classifier: A Deep Learning Hybrid

Convolutional-LSTM Model

Lexicon methods use a constructive algorithm based on pre-coded attributes and sentiment

words in a lexicon to score attribute level sentiment. In contrast, deep learning models are

a type of supervised learning model, where the model is trained using a training dataset by

minimizing a loss function (e.g., the distance between the model’s predictions and the true

labels). The trained model is then used to score attribute level sentiment on the full dataset.

Like deep learning, regression and support vector machines (SVM) are also variations of

supervised learning.

What distinguishes deep learning from regression and support vector machines is that

deep learning seeks to model high-level abstractions in data by using multiple process-

ing layers (the multiple layers give the name “deep”), composed of linear and non-linear

transformations (Goodfellow et al. 2016). Deep learning algorithms are useful in scenarios

where feature (variable) engineering is complex and it is hard to select the most relevant

features for a classification or regression task. For instance, in our task of fine-grained

sentiment analysis, it is not clear which features (combination of variable length n-grams)

is most informative in order to classify a sentence into “good food” or “great service”. The

two key ingredients behind the success of deep learning models for NLP are meaningful

word representations as input and the ability to extract contiguous variable size n-grams

(spatial structure) with ease while retaining sequential structure in terms of word order and

associated meaning.

In this section, we outline the architecture of the model and its intuition and discuss

critical modeling/implementation choices.6 Figure 1.3 shows the general architecture of a

neural network used for text classification. Following pre-processing of text, the first layer

is the embedding layer, where words are converted to numerical vectors by making use

6The technical description is provided in a self-contained online appendix for the interested reader.
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of word embeddings. These embedded numerical vectors are then fed to the succeeding

feature generating layers, which are the core of the deep learning model. In contrast to

older supervised learning methods like SVM which work with the raw data directly as

inputs, these feature generating layers, i.e., the convolutional layer and long short term

memory network (LSTM) layer in our model, extract higher level features important for

classification. The extracted feature vectors are then passed into a logit classifier (soft-

max) that classifies the sentence to the class with highest probability of association.

Embedding Layer and Word Representation. Neural network layers work by per-

forming a series of arithmetic operations on inputs and weights of the edges that connect

neurons. Hence, words need to be converted into a numerical vector before being fed into

a neural network.The simplest method to form numeric vectors from words is a one-hot

representation which means that if there are V words in the vocabulary; each word is rep-

resented as a V ×1 dimensional vector where exactly one of the bits is 1 and rest are zero.

Such a representation is not scalable for large vocabularies and also stores no semantic

information about words. Another option is to only take into account word frequency and

simply convert words into numbers based on some normalized frequency score like tf-idf.

These vectors are called embedding and most well-known embedding algorithms (e.g.,

word2vec, GloVe) are based on the distributional hypothesis— words with similar mean-

ings tend to co-occur more frequently (Harris 1954) and hence have vectors that are close

in the embedding space. The efficiency of the neural network improves manifold if these

initial inputs carry meaningful information about the relationships between words. Hence

the choice of embedding is an important one — we experiment with both embeddings

trained from scratch on our Yelp review corpus as well as a range of pre-trained word em-

beddings like Word2Vec (Mikolov et al. 2013) and GloVe (Pennington et al. 2014) that are

available for all words in our vocabulary.These embeddings have been trained on different

corpus like Wikipedia dumps, Gigaword news dataset and web data from Common Crawl

and have more than 5 billion unique tokens. There are pros and cons for both approaches
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— pre-trained embeddings is a form of transfer learning that eliminates embedding gener-

ation time, but self-trained embeddings may result in higher classification accuracy due to

a more context-relevant vocabulary.

Feature Generating Layers (Convolutional-LSTM). The macro architecture of the neu-

ral network comprises of layers to be included (e.g., feed-forward or convolutional) and

type of interconnections between them. As discussed above, the most challenging aspect

of our task is dealing with different types of hard negations resulting from variable-size

n-grams (e.g., not good, not that great) and shifting polarities (started off well but ended

in a sorry surprise). In many challenging text and image classification problems (Wang

et al. 2016), hybrid models that combine the strengths and mitigate the shortcomings of

each individual model have been found to improve performance. In that spirit, we build a

network consisting of a single convolutional layer with variable-size filters followed by a

Long Short Term Memory (LSTM) layer.

Convolutional layers with different filter sizes specialize in extracting variable-length

n-grams (phrases) associated with relevant attributes and sentiments and have recently

been used successfully in various text analysis applications (Kim 2014, Timoshenko and

Hauser 2018). To improve granular sentiment detection where sequence information is

critical, we follow the convolutional layer with an LSTM layer that processes the features

(phrases) identified from the convolutional layer. LSTM is a variant of the recurrent neu-

ral networks (RNN) that specializes in handling longer contextual information (Hochreiter

and Schmidhuber 1997). An LSTM employs a cell state (long-term memory) and a com-

bination of gates that are like “regulators” of information to constantly evaluate what parts

of the history (in this case n-grams from earlier part of the sentence) need to be forgotten

and what needs to be retained to improve the accuracy of the attribute and sentiment clas-

sification task.For more details on this architecture, see online appendix. As we motivated

in our discussion of “hard” sentences, by taking advantage of the properties of the convo-

lutional layer and LSTM, we expect the hybrid to improve classification accuracy while
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keeping training time low.

Figure 1.3: General Architecture of a Deep Learning Network for Text Classification

Original sentence: The salami burger was way
aboveee expectations, quite big and filling

Processed sentence: salami burger way
above expectations quite big filling

Embedding Layer
e.g., GloVe, word2vec

Feature Generating Layer
e.g., convolutional layer, LSTM

Logit Classifier

Preprocessing

Word Vectorization

Feature Generation

Classification

Classifier. The loss function choice depends on the nature of the classification task.

Since our tasks involve the classification of text into 5 attribute classes and 5 senti-

ment classes, it is a multi-class classification problem. We use the standard loss func-

tion for multi-class classification called Categorical Cross Entropy. Say si represents the

convolutional-LSTM model classification for sentence i and ti represents the ground truth

classification, then the cross entropy loss function can be defined in the following manner

:

Categorical Cross Entropy Loss (CCE) =−
C

∑
i

tilog(si)

1.3.3 Deep Learning Implementation: Important Choices

Word Embeddings. We tested pre-trained embeddings based on word2vec and GloVe with

different numbers of embedding dimensions (e.g., 100, 300) for attributes and sentiment
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classification. Further, we evaluated whether self-trained embeddings from the specific

text corpus can produce superior classification relative to the pre-trained embeddings.

Micro Architecture. The micro architectural decisions in a neural network involve the

number of neurons in each of the layers, the size and number of filters for the convolutional

layer and dimensions of the max pooling function (that concatenates variable-size feature

vectors generated from variable-size convolutional filters). Many of these decisions are

empirically driven but some factors that inform these choices are: sentiment classification

would rely on presence of long-range n-grams, so we would typically chose a mix of

filter sizes for this task ranging from 1-6 grams. In contrast, the attribute classification

task often needs only unigrams and bi-grams (chicken, cola drink, wait time) and hence

simple unigram and bigram filters would be sufficient. Also, since the sequence of n-grams

matters for sentiment classification, ideally we should not use a max pooling layer after the

convolutional layer as the aggregation loses sequential information before being passed to

the LSTM layer. However, a pooling layer is needed to merge variable-size feature maps

generated from the convolutional filters. We balance this tradeoff by max-pooling on the

smallest possible pooling dimension so that we can preserve as much of the sequence

information as feasible in sending input into the LSTM layer.

Model Training. As is standard for deep learning models, the model parameters are

optimized jointly by training the model iteratively on smaller sub-samples of the training

data (mini-batches) and then using the estimation error to improve the model (i.e. change

the weights and biases in small increments) through a feedback loop. We experimented

with mini-batch sizes of 5, 10, 25, 30, 50 and different optimizers. We chose the RMSProp

(Bengio and CA 2015) optimizer because it uses an adaptive learning rate.
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1.3.4 Performance Measures for Model Comparison

The primary metric on which we compare our models is accuracy or hit rate. This metric

is formally defined as:

Accuracy =
t p+ tn

t p+ tn+ f p+ f n
(1.1)

where t p, tn, f p, f n stand for true positives, true negatives, false positives and false nega-

tives respectively. Accuracy is the most common metric that is used for evaluating granular

text classification problems and is a fairly good metric unless there is a class imbalance

issue (i.e. some classes are not well-represented in the training or test dataset). While

we try to maintain class balance in our data sets, equal representation of all classes is

difficult as some classes like food, service appear much more often in Yelp reviews than

other classes. Likewise, moderately positive sentiments are more common than extremely

positive or negative sentiments.

Among the models that do equally well on accuracy, we further evaluate them based

on two types of accuracy metrics that capture not just error-rate but also the type of errors

that occur.

Simple Confusion Matrix for Attribute Classification Accuracy: This confusion matrix

helps to evaluate class-wise accuracy—doing so allows us to assess whether overall higher

accuracy comes only from superior performance in high high-occurrence classes like food

or a class like location that has few attribute words. We can assess whether the model is

able to capture more complex classes like ambiance and service which manifest with a

varied set of attribute words.

Polarity Reversal Confusion Matrix for Sentiment Accuracy: Though the CS literature

typically uses accuracy as a performance metric for the fine-grained (multi-class) senti-

ment classification (Socher et al. 2013, Kim 2014), there can be other useful metrics of

performance. For example, it may be useful to construct a polarity based coarse class:
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positive, neutral, negative and assess accuracy on the coarse classes classification because

confusing sentiment class 1 with 4 or 5 (a polarity reversal) is worse than confusing 1 with

2 (same polarity). With this thought, we construct and report a polarity reversal confusion

matrix for the models that have the best overall accuracy.

We also evaluate model performance on specific hard sentence types (e.g., long and

scattered sentiments, contrastive conjunctions and implied sentiments) that we discussed

earlier in motivating why we account for the spatial and sequential structure of language .

Finally we also assess qualitative factors like model building effort, scalability and inter-

pretability for the various models.

1.4 Analysis Of Structured Ratings Accounting For Miss-

ing Attributes

In the first part of the paper, we converted review text into numerical attribute scores on a

1-5 scale and attributes were coded as “missing” when reviewer is silent on an attribute.

For every review, we also have an overall rating on the restaurant. The challenge is how

to impute the missing attribute ratings to obtain the correct aggregate attribute rating. We

now outline our model-based imputation strategy to correct for attribute silence, before

providing specific details.

We first develop a structural model of rating behavior that allows for (1) nonlinear

mapping from experienced quality to attribute ratings; (2) heterogeneity in rating styles;

and (3) heterogeneity in weights of attribute ratings on the overall restaurant rating. We

then use an iterative two step EM algorithm to estimate the model, where the mapping

from experienced quality to the nonlinear, heterogeneous attribute rating is estimated in

the first step, and the heterogeneous weights that link attribute rating and overall rating

is estimated in the second step. In each iteration, when attribute rating is missing in the
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review, we impute the attribute rating based on the model estimates in the current iteration.

We iterate till the model converges.

The structural model estimates give us insights into reviewer segments and reviewer

rating behaviors. We use the estimates to assess whether our conjectures on attribute

silence has support in the data. We then assess the validity of the model-based imputations

on a holdout sample. Finally, we illustrate that corrections for attribute rating using the

imputations can be substantial.

1.4.1 A Structural Model of Rating Behavior

Every reviewer who writes a review has an experience with the restaurant. Let A∗jk be the

experienced latent quality at restaurant j on the attribute k. The experienced latent utility is

a function of observable restaurant characteristics associated with the attribute X jk and an

idiosyncratic shock that varies across visits.This experienced quality can vary over time t

as a function of observable restaurant characteristics that vary over time, but for simplicity

of notation, we suppress the t subscript in the exposition. Specifically, let

A∗i jk = αkX jk +νi jk

where νi jk follows a Type I extreme value distribution (TIEV).

The mapping from underlying latent utility A∗jk to the 5 point rating scale A jk can be

nonlinear and heterogeneous across reviewers in terms of both observable and unobserv-

ables. Specifically, we formulate the nonlinear mapping from latent experienced utility

A∗i jk to an ordinal rating Ai jk (1-5 scale) as an ordinal logit model, given that we assume

νi jk to be TIEV:

Ai jk = s, if Cg
k(s−1) < A∗i jk +β

g
k Xi ≤Cg

ks (1.2)

where Cg
k(s−1) and Cg

k(s−1) are the cutoffs of reviewer segment g for attribute k, score s
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(Cg
k0 =−∞, Cg

k5 =∞). The thresholds Cg
ks increase monotonically over s. While Xi captures

the effect of observable characteristics on thresholds, the cut thresholds Cg
ks can capture the

unobserved heterogeneity in reviewer’s attribute rating style (for high and low scores) and

differences with respect to attribute expectations, which determine satisfaction.

Further, we observe the overall rating of the restaurant for all reviews. It is natural

to treat the overall restaurant rating as arising from a weighted sum of the ratings on

attributes, allowing for both observable and unobservable reviewer heterogeneity (by same

latent class as for attribute ratings). Specifically, we formulate the ratings equation as

Ri j = γ
g
0 +∑

k
γ

g
k Ai jk + εi j (1.3)

1.4.2 Model Estimation and Missing Attribute Ratings

To the extent that there are no shared parameters across equations (1.2) and (1.3), the two

equations can be estimated independently. However, given the unobserved heterogeneity,

the model needs to be estimated using an iterative two step EM algorithm. Each equation is

estimated in a separate step, then the posterior of the heterogeneity distribution is obtained

using Bayes rule, and the iterations continue conditional on the posterior heterogeneity

from the previous step until there is convergence in the heterogeneity classification of the

reviewers.

In our setting, where reviewers are silent on several attributes, Ai jk is missing in many

reviews for many attributes. In the absence of unobserved heterogeneity, imputation would

be a straightforward prediction based on observable restaurant and reviewer characteris-

tics. However since Ai jk is also a function of unobserved characteristics of reviewer i, the

imputation needs to condition on the unobserved heterogeneity and iterated through the

EM algorithm. Specifically, we use the prediction from the first step (ordinal logit), condi-

tional on the unobserved heterogeneity as the imputation of attribute rating in the second
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step and iterate till convergence.

The predicted probability of the attribute score being s (s∈ 1,2,3,4,5) from the ordinal

logit model of first step is

pg
i jks ≡ Pr(Ai jk = s) = Pr(Cg

k(s−1) < A∗i jk +β
g
k Xi ≤Cg

ks) (1.4)

Based on the estimated β
g
k and Cs, we compute probabilities of each attribute rating

for each k and s for each latent segment g when attribute rating is missing.

We then estimate the rating equation with imputation when attribute ratings are miss-

ing:

Ri j = ∑
g

qg
i

[
γ

g
0 +∑

k
γ

g
k

[
(1−Mi jk)︸ ︷︷ ︸

if present

Ai jk + Mi jk︸︷︷︸
if missing

5

∑
s=1

(spg
i jks)︸ ︷︷ ︸

Expected

]]
+ εi j (1.5)

where Ri j is reviewer i’s star rating for restaurant j, Mi jk is whether the rating for attribute

k is missing. If the attribute rating is present (i.e., Mi jk = 0), we use observed attribute

rating Ai jk, and otherwise, we use expected attribute rating ∑
5
s=1(sPs

i jk) as the input. We

estimate intercept γ
g
0 , attribute importance γ

g
k and probability of reviewer i belonging to

segment g, qg
i . Thus, the parameters to be estimated are Θ = {αk,C

g
ks,γ

g
0 ,γ

g
k ,q

g
i }

To be specific, the EM estimation procedure is the iteration between E (Expectation)

and M (Maximization) steps below.

1. Initialization: Determine initial value of parameters Θ(1) through MLE by assuming

no unobserved heterogeneity across reviewers. Assume that each reviewer is equally

likely to be in each segment (i.e., qg
i =

1
Ng

, where Ng is the number of segments).

2. E step: For reviewer i = 1,2, ...,m, given the nth parameter Θ(n), compute pg(n)
i jks , the

predicted probability of the attribute score of each review.

3. M step: Estimate (n+ 1)th parameters Θ(n+1) by iteratively maximizing the likeli-
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hoods in step 1 and step 2.

(a) Step 1: Attribute Rating

m

∑
i

log(L(α,Cs,π)) =
m

∑
i

log(∑
g

πgLig)

where individual reviewer’s likelihood Lig ≡ Li(α,Cg
s ) = ∏ j ∏

4
l

[
pg

i jk,l−1 −

pg
i jkl

]1(si j=l)
and πg is the segment size.

(b) Step 2: Overall Rating

m

∑
i

log(L(α,Cs,π)) =
m

∑
i

log(∑
g

πgLig)

where Lig ≡ Li(γ
g
0 ,γ

g
k ) = ∏ j φ(εi jk|γg

0 ,γ
g
k )

4. Iterate between E step and M step until convergence.

The E step is internally consistent because the imputation is based on observed and un-

observed heterogeneity conditional on estimates of every iteration. Our imputation strat-

egy works because we have multiple observations on attribute ratings and overall reviewer

ratings—even if some of the attribute ratings are missing. We are able to identify the het-

erogeneity in attribute rating styles (the unobserved thresholds Cg
ks) as long as we have

variation in attribute ratings on a subset of reviews from every reviewer, conditional on

latent experience which are identical across reviewers and vary only by restaurant observ-

ables.

1.4.3 What Drives Attribute Silence?

We conjecture several possibilities for why a reviewer may be silent about some attributes

in a review: Informativeness, Importance, and Praise/Vent need.
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1. Informativeness: Reviewers write on review platforms to share their experience with

others, so one of the major motivations could be to inform or add new information (Berger

2014). For instance, price and location may be written about less because they are not

only search attributes, but prices are usually described categorically on review platforms.

Location information may be often obtained through the address and other information.

Hence such attributes may be described less overall. But even with experience attributes

like food, service and ambiance, there may be variations in motivations across restaurants

and time. For example, a review may be informative if there is high variance in predicted

utility for a restaurant, i.e., there is high variance in past reviewer ratings. Controlling for

variance, if the restaurant’s average attribute rating is very different from the reviewer’s

corresponding rating, the reviewer may also consider it informative to write a review. Em-

pirically, we assess the conjecture testing whether attribute presence (silence) is positively

(negatively) related to (i) variance in past reviewer ratings, and (ii) difference between the

restaurant’s average attribute rating and the reviewer’s rating. Further, we test whether

there is heterogeneity for positive and negative deviations.

2. Importance: A reviewer may be silent about an attribute if it is unimportant for

the reviewer. To assess if attribute silence may vary by its importance on overall ratings

across unobserved segments, we empirically assess whether attribute presence (silence) is

correlated with attribute weights (γg
k ) derived from the structural model controlling for

attribute type.

3. Praise/Vent Need: Some reviewers may feel the need to praise/vent, when highly

satisfied or dissatisfied, but not write when the rating is average (when it is a three). For

this we assess whether silence varied by attribute rating level. To assess this conjecture,

we compare the probability of the attribute score being s when the attribute is missing

(Pr(Ai jk = s|Mi jk = 1) versus when it is present (Pr(Ai jk = s|Mi jk = 0). Let us define a

ratio πs
gk =

Pr(Ai jk=s|Mi jk=0)
Pr(Ai jk=s|Mi jk=1) . If the ratio is larger than 1 (i.e., the probability is larger in the

case of missing), a reviewer who evaluates the attribute as score s is more likely to miss
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the attribute. In other words, πs
gk captures how likely the attribute’s true score is s when

it is missing vs. present. For segment g and attribute k, π l
gk should be larger than 1 when

score l represents satisfaction level that is more likely to be missing.

1.5 Empirical Application

1.5.1 Data

Yelp is a crowd-sourced review platform where reviewers can review a range of local busi-

nesses e.g., restaurants, spas & salons, dentists, mechanics and home services to name a

few. The website was officially launched in a few U.S west coast cities in August of 2005

and subsequently expanded to other U.S cities and countries over the next few years. As

of Q1 2017, Yelp is present in 31 countries, with 177 million reviews and over 5 million

unique businesses listed (Yelp Investor Relations Q4 2018). Given our empirical applica-

tion, we focus on restaurant reviews. Since 2008, Yelp has shared review, reviewer and

business information for select U.S and international cities as part of its annual challenge.

Unique reviewer and business identification numbers in the data helps create a two-way

panel of reviews at reviewer and business level. For each review, we observe overall rating,

textual evaluation and date of posting as well as information about business characteristics

(e.g., cuisine, price range, address, name) and reviewer characteristics (e.g., experience

with Yelp, Elite membership). Table 1.4 summarizes the various data sets we use for

different types of analysis. A discussion on each dataset follows.

Table 1.4: Description of Datasets

Data Size Criteria Purpose

Yelp Restaurant Corpus 1.2 Mn reviews All restaurant reviews Exploratory Analysis
Supervised Learning 2400 sentences Balance of attribute and sentiment classes Training/Testing Supervised Models
Stratified Sample 45,652 reviews Business≥20 reviews Estimating Structural Model

Mix of Business and Reviewer Types
Restaurant Panel 250,000 reviews Restaurants in Stratified Sample Deriving past review characteristics
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1. Exploratory Analysis. We use the full dataset of 1.2 million restaurant reviews

for the exploratory analysis to identify attribute and sentiment classes that we described in

the model section. We created a vocabulary of 8458 words consisting of both sentiment

and attribute words.We excluded stop-words, meaningless phrases and the long tail of

words with occurrence frequency less than 1500 in our corpus. We then did a Parts of

Speech tagging of our word list i.e. we classified our word list into adjectives, adverbs,

nouns and verbs so as to separate attribute and sentiment words. Attribute words are

mainly nouns whereas sentiment words are adjectives and adverbs with some important

exceptions: for instance, some verbs are strong indicators of an attribute. e.g, “greeting”,

“seated”, “served” refer to service and “spent” refers to value. Some adjectives are good

indicators of both attribute and sentiment for e.g. the word “cheap” invariably refers to

price attribute in a negative way whereas some descriptive adjectives strongly refer to

an attribute for e.g., decorated refers to ambiance. Finally human taggers classified the

attribute and sentiment words into attribute and sentiment classes. In our dictionaries, we

only retain those words that have been labeled into a particular class by at least 2 out of

3 taggers.Our attribute and sentiment dictionaries are available upon request. These are

more detailed relative to previous studies (Pak and Paroubek 2010, Berger et al. 2010) that

focus on two (i.e. positive and negative) or three levels (i.e. positive, neutral and negative)

of sentiments.

2. Training and Test Data for Supervised Learning . For supervised learning, we

constructed another data set at the sentence level. Human taggers classify the sentences

into its primary attribute and sentiment level. We ensured this dataset of sentences is

balanced in its representation of all attribute and sentiment classes. 75% of this data was

used for training and the remainder for model validation and testing. See Table 1.5 for the

composition of training and test data sets.

An discussed in §1.3, lexicon methods cannot deal with hard sentence types. Table

1.6 shows the distribution of different sentence types in a randomly sampled subset of
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Table 1.5: Class Balance: Attribute and Sentiment Classes (N: 2400)

Attribute Sentiment
Class Training Data Test Data Class Training Data Test Data
Food 34% 37% Negative 18% 25%
Service 21% 23% Positive 35% 27%
Ambiance 14% 12% Very Negative 11% 9%
Value 11% 10% Very Positive 21% 27%
Location 4% 7% Neutral 15% 11%

sentences from our corpus. 48% of all sentences and 66% of the negative sentences belong

to one of the complex types. Long sentences account for 27% of our data. Given their

empirical importance, we created a special test dataset of hard sentence types to assess

model performance specifically on such sentence types.

Table 1.6: Distribution of Sentence Types (N: 706)

Positive Neutral Negative

Overall 52% 12% 36%

Simple 64% 53% 34% 52%
Implied 6% 5% 32% 15%

Contrastive 7% 20% 11% 10%
Long 26% 24% 28% 27%

3. Restaurant and Reviewer Stratified Sample. To estimate the linkages between

attribute level sentiment and overall ratings, we focus on a stratified sample of reviews. We

ensure that we have multiple reviews by individuals so that we can account for unobserved

heterogeneity in reviewer rating styles. We want multiple reviews on restaurants to ensure

that there are multiple reviewers who obtained similar latent utilities up to a random shock.

We therefore restricted our sample to only individuals that posted at least 5 reviews and

restaurants that have at least 20 reviews.The restriction of 5 or more reviews also allows

us to eliminate human or bot-generated fake reviews, which are mostly generated by users

with one or only a few number of reviews. Luca and Zervas (2016) document that a larger

number of reviews by a Yelp user is negatively correlated to the probability of his reviews

getting filtered as spam by Yelp.
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We then used stratified sampling by restaurant and reviewer types to ensure that various

groups of restaurant types (high and low end; chain and independent) and different types

of reviewers (elite and non-elite; by experience on Yelp) are represented in the data. This

allows us to study how ratings and missing attributes differ by the types.

The sampling leaves us with 45,652 reviews from 2,704 businesses and 19,583 review-

ers. As past restaurant reviews might impact current reviews, we incorporate restaurants’

time-varying features (e.g., variance and mean of past reviews) by extracting all past re-

views for the restaurants in our stratified sample. The full dataset (including all past re-

views for restaurants in our sample) contains 250K reviews. We generate each review’s

time varying variables, including number of past reviews; mean and variance of past star

rating; and mean and variance of past attribute ratings.

Table 1.7 compares the descriptive characteristics of the full data and our final sample

consisting of 45,652 reviews. The mean and median number of reviews per reviewer in

our sample is slightly higher than the population (due to stratification). However, the

reviewers in our sample are fairly similar to the population in terms of average star rating,

experience and length of reviews. Table 1.8 provides the number of businesses, reviews

and the summary of star rating by a restaurant’s price range, chain/independent Our sample

has almost an equal mix of chain and independent restaurants but independent restaurants

get more reviews with higher ratings on average. Low-end and high-end restaurants do not

show much difference in terms of average star rating.

1.5.2 Descriptive Evidence on Attribute Rating Behavior

We now present descriptive evidence on potential drivers of reviewer’s rating behavior to

motivate the choices and assumptions we make in the structural model. We first look at

the impact of observable reviewer (e.g., Elite status7) and restaurant characteristics (e.g.,

7Elite reviewers receive an Elite badge that is displayed on their profile. They also get invited to special
events. Most other observable characteristics are highly correlated with Elite, for e.g., elites are generally
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Table 1.7: Summary Statistics of Full Dataset vs. Sample

Full Sample

Number of Reviews 1.2M 45,652
Number of Reviewers 1.02M 19,583

Mean Median SD Mean Median SD

Star Rating 3.7 3.8 1.09 3.6 3.76 0.92
Number of Reviews per Reviewer 24 5 82 25.15 17 23.2
Reviewer’s Experience on Yelp 58 56 27.5 54.6 51.8 36.2
Review Length (number of characters) 1,109 599 732 709 498 670

Table 1.8: Sample Summary Statistics by Restaurant Type

All By Price Range By Chain
Low-end High-end Chain Non-Chain

Number of Businesses 2,707 1,611 1,096 1,063 1,644
Number of Reviews 45,652 21,066 24586 10,528 35,124
Star Rating: Mean (SD) 3.5 (1.4) 3.4 (1.4) 3.6 (1.4) 2.8 (1.5) 3.7 (1.3)

price range, chain restaurant8) on the distribution of attribute ratings and attribute missing-

ness. Figure 1.4a shows differences between the rating behaviors of Elites and Non-Elites.

X-axis represents each rating or missing indicator. Elites tend to give more moderate rat-

ings (3 and 4 stars) whereas Non-Elites give more extreme ratings (2 and 5 stars) across

attributes. More importantly, Non-Elites tend to miss more attributes in their reviews (es-

pecially ambiance). Such differences suggest Elites might have different motivation to

give ratings than Non-Elites.

Figures 1.4b and 1.4c show how rating behavior differs across low-end ($ and $$ on

Yelp, indicating≤$30 per person) and high-end ($$$ and $$$$ on Yelp; >$30 per person)

restaurants and across chain and independent restaurants respectively. On average, high-

end restaurant reviews have more attributes (less missing) except for location which is

mentioned more in low-end restaurant reviews. The ratings are generally more positive for

high-end restaurants. Chain reviews tend to talk more about service and location, while

more experienced and have more friends.
8We identify restaurants as chains if they have multiple stores by the same name owned by a single firm.
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reviews of independents talk about other attributes. The reviews for chains generally get

an average of (3-star) or below on attributes whereas independents receive more 4 and

5-star attribute ratings.

Beyond the clear differences in attribute rating behavior (silence and valence) based on

observables of restaurants and reviewers, the mapping from experience utilty to attribute

ratings and attribute ratings to weights to obtain an overall rating can vary due to a variety

of unobservables. To accommodate this, we allow for unobserved heterogeneity on these

in our structural model.

1.6 Results

We describe the results in five parts: (i) attribute sentiment classification performance of

various text mining methods; (ii) estimates of the structural model of rating behavior; (iii)

drivers of attribute silence; (iv) validation; and (v) the impact of correcting for attribute

silence.

1.6.1 Attribute Sentiment Classification

We report the performance on attribute sentiment classification in three parts: (1) Overall

classification accuracy; (2) Classification accuracy on “hard” sentene types; (3) polarity

and attribute classification.

Overall Classification Accuracy. We begin by reporting the performance of the var-

ious models in terms of attribute and sentiment classification accuracy on the test dataset

described earlier in the data section. The lexicon based method that relies on carefully

crafted rules and human-tagged lexicons performs better than most supervised machine

learning algorithms and is as good as the convolutional-LSTM in the attribute classification

task. This is because this task is relatively unambiguous and the lexicons are constructed

specific to the domain of restaurant reviews. However, this method does very poorly in the
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Figure 1.4: Differences based on Observable Characteristics

(a) Elites and Non -Elites

(b) Chains and Independent Restaurants

(c) Price Ranges (1-4)
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more complex 5-grained sentiment analysis task. Among supervised algorithms, Support

Vector Machines (SVM) do better than most of the other classifiers in both attribute and

sentiment classification tasks. This is in line with past literature that has shown that SVMs

are the best Machine Learning based text classifiers. The network with only convolutional

layer just matches the performance of the SVM. However, the convolutional-LSTM does

better than all methods in both attribute and sentiment classification tasks. The accuracy

of the convolutional-LSTM in the task of 5-level sentiment classification is 50%—lower

than state of art accuracy 56% reported in (Brahma 2018), but on a different dataset for

which we do not know the differential mix of “hard” versus “easy” sentences in the corpus.

Further, they also do not provide metrics like confusion matrices, which helps assess other

dimensions of classification accuracy.9

Table 1.9: Comparison of Text Mining Methods (I)

Type Method Attribute accuracy Sentiment accuracy

Lexicon Lexicon 68% 31%

Machine Learning SVM 60% 40%
Naives Bayes 43% 39%

Logistic Regression 59% 41%

Deep Learning CNN 62% 41%
LSTM 62% 40%

conv-LSTM (pre-trained) 68% 47%
conv-LSTM (self-trained) 71% 50%

The convolutional-LSTM model with self-trained embeddings does slightly better than

the one using pre-trained Glove embeddings both in terms of attribute and sentiment ac-

curacy. This could be attributed to the slightly more relevant vocabulary generated when

9As an aside, we note that nlpprogress website which tracks state of the art (SOTA) for NLP tasks reports
72% accuracy using Yelp data as of 2019 for the 5 level sentiment task at the review document level. This
is of course different from our 5 level sentence level sentiment task. But as a point of comparison, our
model’s performance for this document level task is 70%— comparable to the previous SOTA paper from
2017 (e.g., Johnson and Zhang 2017). Interestingly, we use a much smaller training data to achieve the same
accuracy. While we make no claims in terms of being state of the art in terms of accuracy, we note that
our classification results are in the ball park of “good” models. Our focus is on the performance on “hard”
sentences.
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Table 1.10: Comparison of Text Mining Methods (II)

Type Method Building Effort Scalability Interpretability

Lexicon Lexicon High Low High

Machine Learning SVM
Naives Bayes Moderate High Low

Logistic Regression

Deep Learning CNN
LSTM Moderate High Low

conv-LSTM (pre-trained)
conv-LSTM (self-trained)

word vectors are trained from scratch on a specific corpus (For corpus differences, see the

appendix at the end).

Classification Accuracy on Hard sentence types. To develop some intuition behind

what drives the performance accuracy of these models, we test these models on simple

and various types of hard sentences. We sampled 100 sentences of each type from the test

dataset. Table 1.11 reports the comparative performance of the deep learning models, the

best supervised machine learning model (SVM) and the lexicon method. As expected, the

hybrid convolutional-LSTM performs better than most other models in all of these tough

classification scenarios and especially in classifying scattered sentiment in long sentences.

Interestingly, the convolutional-LSTM model does significantly better on simple sentences

as well.

Table 1.11: Performance on Hard Sentence Types

Simple Hard(Overall) Scattered Implied Contrastive

Lexicon 46% 17% 17% 18% 16%
SVM 47% 19% 18% 20% 20%
CNN 44% 21% 22% 17% 24%
LSTM 46% 30% 37% 28% 25%
Convolutional-LSTM 52% 34% 41% 31% 28%

Polarity and Attribute Classification. As we mentioned in the section Performance

Measures, though accuracy is a first-order metric for hard problems like granular senti-
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ment detection, we need other measures to refine model choice; especially among models

with similar accuracy scores. Table 1.12 shows that the convolutional-LSTM model using

Glove pre-trained embedding is slightly better than the one using self-trained embedding

(though the overall accuracy is higher for the latter) because it preserves polarity better i.e.

it mostly mis-classifies within the granular sentiment classes (positive, negative, neutral)

and thus has lower polarity reversal.

Table 1.13 assesses attribute classification accuracy. We find that both the

convolutional-LSTM based attribute classifiers using GloVe and self-trained embeddings

do a fairly good job in classifying attributes across classes. Further, their performance is

not driven simply by getting high-frequency classes like food right.

Table 1.12: Polarity Reversal Confusion Matrix (Sentiment Analysis)

CNN Convolutional-LSTM (self trained) Convolutional-LSTM( Glove 300)

True Class Negative Neutral Positive Negative Neutral Positive Negative Neutral Positive

Very Negative 31% 7% 51% 47% 6% 47% 71% 2% 24%
Negative 33% 11% 63% 45% 6% 49% 64% 4% 35%
Neutral 14% 37% 49% 16% 33% 51% 44% 18% 39%
Positive 14% 9% 77% 15% 6% 80% 31% 5% 64%
Very Positive 9% 10% 81% 21% 2% 88% 18% 5% 77%

Table 1.13: Simple Confusion Matrix (Attribute Analysis)

Convolutional-LSTM (self-trained) Convolutional-LSTM (Glove 100)
Predicted \ True food service ambiance value location food service ambiance value location

Food 79% 4% 2% 3% 2% 75% 6% 6% 3% 1%
Service 10% 60% 9% 5% 3% 7% 76% 8% 2% 0
Ambiance 8% 0 58% 3% 10% 2% 3% 77% 2% 2%
Value 10% 2 6% 75% 2% 8% 8% 6% 74% 4%
Location 8% 6% 11% 3% 56% 6% 14% 36% 3% 31%

1.6.2 Structural Model Estimates

Overall, we find a three segment model fits best.10 Segment 1 the smallest segment, con-

stitutes about 9% of the market. Segment 2, the largest segment accounts for 59% of the

market, while Segment 3 constitutes 32% of the market.
10We assessed fit based on BIC for two, three and four segment models.
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Ordinal Logit Model. The estimates of the ordinal logit model that maps latent utility

to attribute ratings is presented in two parts. Table 1.14 presents the mapping between

restaurant observables and true latent attribute level experience. As expected, restaurants

with higher ratings have overall higher latent utility, chains have lower latent utility, and

prices reduce latent utility. The thresholds Cs(s ∈ 2,3,4,5)— the cutoff between score

s− 1 and s of the ordinal logit for each of the three latent segments are shown in Figure

1.6. As expected, these thresholds are monotone and increasing in rating scale, but nonlin-

ear. Getting higher score requires higher-quality experience across attributes as expected,

but the marginal satisfaction required for each score is different across attributes, scores

and reviewer segments. It should be noted that even though the thresholds often appear

parallel, its implications for probability of a given rating for a segment is highly nonlinear

and therefore heterogeneous. This is because there is much higher density in the middle

than at the extremes.

Table 1.14: Structural Model Estimates
Link between Restaurant characteristics and attribute latent utility

food service ambiance value location

Biz price $$ 0.171∗ 0.107∗∗ 0.002 ∗∗∗ 0.036∗∗∗ 0.035∗∗∗

(0.093) (0.051) (0.002) (0.013) (0.016)
Biz price $$$ -0.007 0.306∗∗∗ 0.255∗∗∗ -0.115∗∗∗ 0.356

(0.084) (0.0779) (0.041) (0.030) (0.065)
Biz price $$$$ 0.100∗∗ 0.269∗∗ 0.338∗∗∗ -0.219∗∗∗ 0.650∗∗∗

(0.046) (0.109) (0.053) (0.059) (0.085)
Biz chain -0.388∗∗∗ -0.013 -0.079 ∗∗ -0.225 ∗∗∗ -0.351∗∗∗

(0.089) (0.032) (0.050) (0.036) (0.041)
Biz average stars 0.263∗∗∗ 0.395∗∗∗ 0.249∗∗∗ 0.317∗∗∗ 0.254∗∗∗

(0.051) (0.038) (0.038) (0.018) (0.017)
Previous reviews (Star Rating) 0.338∗∗∗ 0.166∗∗∗ 0.046∗ 0.053∗∗∗ 0.027∗∗∗

(0.063) (0.036) (0.031) (0.016) (0.014)

N 38630 34636 17305 16227 10463

Overall Rating Regression. The weights on the attribute ratings that impact overall

rating for the three latent segments are presented in Table 1.15. Note for ease of interpre-
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Figure 1.5: Structural Model Estimates: Attribute Level Thresholds of Latent Utility by
Segment
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tation, the weights reported have been normalized such as the sum of the weights add to

1. Also, note that the model was estimated without normalization and all coefficients were

estimated as positive.

Table 1.15: Structural Model Estimates
Attribute weights (normalized to sum to 1) on Ratings

Segment 1 Segment 2 Segment 3

Food 0.229 0.322 0.01
Service 0.217 0.173 0.00
Ambiance 0.154 0.180 0.01
Value 0.194 0.163 0.39
Location 0.206 0.162 0.59

Segment size (by Review) 18% 58% 24%
Segment size (by Reviewer) 9% 59% 32%

Segment 1, the smallest at 9%, places the most importance on food in terms of their

overall ratings. Segment 2, the largest at 59% cares not only about food, but also service.

In contrast, for Segment 3, with 32% of reviewers, ratings are driven mostly about price

and location.

Segment Interpretation. Finally, we report the descriptive statistics of each segment in

Table 1.16 to aid interpretation. The smallest segment 1 (9% of reviewers) consists of 65%

elites, writes most often and contributes double their share in reviews (18%). They write

the longest reviews, and include the most number of attributes. They tend to write earlier

than others on average. They tend to be harsher than the average rating of the restaurants

and have relatively low variance of ratings. Given the high percentage of elites, greater

frequency, and more comprehensive and longer reviews, we name them as “status-seeking

regulars.”

In contrast, Segment 3 accounting for 32% of reviewers has no elites, writes least

frequently, contributing only 24% of reviews. The reviewers write the shortest reviews

and include the fewest number of attributes. They tend to write at later stages after others

have provided their reviews. They generally tend to be more generous in their overall
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ratings. Interestingly, they also have the highest variance in their reviews, though they visit

restaurants with high ratings and lower variance. We call them the ‘‘emotive irregulars,”

given their lower frequency, and limited contributions in text reviews. They tend to offer

either very positive or relatively negative reviews.

Finally, the largest segment 2 with 59% of the reviewers has only 26% elites. The

reviewers are in the middle between Segment 1 and 3 in rating behaviors. They write

fewer, shorter reviews and include fewer attributes than segment 1, but more than Segment

3. Their ratings are very similar to the average of the restaurant ratings. We call these

reviewers as the “altruistic mass,” the bulk of the Yelp reviewing community, who write

reviews diligently, but with little expectation of rewards or merely wanting their voice to

be heard.

Table 1.16: Segment Characteristics

Characteristic Status-seeking Regulars Altruistic Mass Emotive Irregulars
Mean (SD) Mean (SD) Mean (SD)

% Elites 65% 26% 0%
Review Length (Chars) 889 (744) 677 (640) 349 (329)
No of Attributes 2.87 (1.1) 2.53 (1) 1.87 (0.83)
No of earlier reviews 22 (34.1) 24.2 (38) 36.7 (47.4)
Experience (Months) 33.6 (25.7) 24.6 (25.1) 16.9 (20)
Reviewer Rating 3.9 (0.4) 3.31 (1) 4.08 (1.2)
Business Rating 3.63 (0.7) 3.47 (1.1) 3.84 (0.7)

Proportion of Missing Attributes by Segment

Food 0.10 0.18 0.22
Service 0.22 0.24 0.32
Ambiance 0.53 0.66 0.73
Value 0.58 0.62 0.89
Location 0.71 0.76 0.90

1.6.3 Drivers of Attribute Silence (Missingness)

With the estimates of the structural model, we now interpret attribute silence of each re-

viewer segment. We conjectured three plausible reasons driving attribute silence: (i) in-

formativeness; (ii) attribute importance; and (iii) need to praise/vent. We assess each of

these conjectures in turn.
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Informativeness. Table 1.17 reports a logistic regression result with attribute presence

as the DV. As conjectured, we expect experience attributes (food, service, ambiance) to be

written more often than search attributes like price (which is a major component of value)

and location. Further, if experience/search attribute is the driver of missingness, food and

service should be missing more often at chains than at other restaurants. In addition to the

attributes, the explanatory variables are positive and negative deviations in past attribute

rating against predicted ratings; and the variance of the past attribute ratings.

The higher positive attribute coefficients (for food, service, ambiance) relative to the

normalized location coefficient of zero, and value support our conjecture that reviewers

write more often on experience attributes and tend to be more silent on search attributes

which can be discovered easily on the site. Further, as expected, variance has a positive

coefficient, supporting our hypothesis that attributes are more likely to be mentioned when

opinions around that restaurant is not settled. Interestingly, for deviations, negative devia-

tions induce the attribute to be mentioned, but vice versa for positive deviations. This is the

case across all segments. Thus there is overall support for the informativeness conjecture.

A subtle point from the results is that people are more likely to share information about

unmet expectations (negative deviations) than positive deviations.

Attribute Importance. First, we compare the probability of missing attribute by seg-

ment in the bottom panel of Table 1.16 with the attribute importance weights of the three

segments reported in Table 1.15. Food and service (and to a lesser extant ambiance) have

the lowest rating of missing. Food, service and ambiance also have among the highest

impact on overall ratings for Segments 1 and 2. But for segment 3, even though food and

service do not drive overall ratings, they still are the most written about attributes. Simi-

larly, even though value and location impact overall rating for Segment 3 these are still the

most missing attributes in text reviews. Thus there is not a clear pattern that attribute miss-

ingness is driven by the importance of that attribute. To test this formally, we conducted

a logistic regression with attribute presence as the DV and attribute importance as an ex-
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Table 1.17: Impact of Informativeness on Attribute Presence (Segment-wise)

Dependent variable:

Attribute Presence

(1) (2) (3)

Intercept 0.580∗∗∗ 0.555∗∗∗ 0.183∗∗∗

Food 0.153∗∗∗ 0.169∗∗∗ 0.273∗∗∗

Service 0.130∗∗∗ 0.134∗∗∗ 0.245∗∗∗

Ambiance −0.035∗∗∗ 0.017∗∗∗ 0.063∗∗∗

Value 0.028∗∗∗ 0.030∗∗∗ −0.020
Chain 0.104∗∗∗ 0.078∗∗∗ 0.079∗∗∗

Food × Chain −0.129∗∗∗ −0.077∗∗∗ −0.187∗∗∗

Service × Chain −0.065∗∗∗ −0.056∗∗∗ −0.103∗∗∗

Ambiance × Chain −0.101∗∗∗ −0.112∗∗∗ −0.070∗

Value × Chain −0.091∗∗∗ −0.067∗∗∗ 0.027
Variance 0.061∗∗∗ 0.059∗∗∗ 0.068∗∗∗

Positive Difference −0.378∗∗∗ −0.366∗∗∗ −0.241∗∗∗

Negative Difference 0.077∗∗∗ 0.086∗∗∗ 0.167∗∗∗

N 136,600 67,255 60,422
8,923

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Positive Difference = ‖Actual-Own‖.I(Actual > Own),
Negative Difference = ‖Actual-Own‖.I(Actual < Own)
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planatory variable along with additional control variables. Interestingly, we do not find

a significant positive effect on attribute importance. In fact, the regression results show

a consistent negative effect. Thus our results question the conventional wisdom, and the

implicit assumption underlying many topic models, that the frequency of occurrence of

topics is implicitly assumed to be related to its importance. However, we temper our con-

clusion around importance, because food and service which are most present may also be

the most important in driving the decision to visit a restaurant, but our estimated attribute

importance is conditional on visit.

Table 1.18: Impact of Importance on Attribute Presence (Segment-wise)

Dependent variable:

Attribute Presence

(1) (2) (3)

Intercept 0.597∗∗∗ 0.319∗∗∗ 0.317∗∗∗

Food 0.612∗∗∗ 0.577∗∗∗

Service 0.492∗∗∗ 0.448∗∗∗

Ambiance 0.136∗∗∗ 0.146∗∗∗

Value 0.122∗∗∗ 0.157∗∗∗

Importance −0.146∗∗∗ −0.132∗∗∗ −0.127∗∗∗

Importance × Food 0.084∗∗∗

Importance × Service 0.134∗∗∗

Importance × Ambiance −0.034
Importance × Value −0.087∗∗∗

Observations 148,605 148,605 148,605
Log Likelihood −106,713.200 −87,654.920 −87,518.190
Akaike Inf. Crit. 213,430.400 175,321.800 175,056.400

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Praise/Vent Need. As discussed earlier, we report the missing odds as the ratio πs
gk

defined as Pr(Agk=s|Mgk=1)
Pr(Agk=s|Mgk=0) for each attribute by segment as a function of predicted sentiment

level in Figure 1.6. The patterns of attribute silence differ by attributes and by segment.

For food, service and ambiance, all three segments tend to be more silent when they are

dissatisfied, and write more when they are satisfied. However, segment 3 which places
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the most importance on location and value is more likely to write about these attributes

when they are dissatisfied. This seems consistent with our label for them —as emotive

irregulars. They don’t write often, but they write when they are very satisfied with food,

service and ambiance, but dissatisfied with value and location. This may also explain the

higher variance in their overall ratings.

In summary, the information value of reviews play a significant role in the motivation

to write about attributes across all segments. We also found the motivation to both praise

good performance and vent about bad performance, but this varied across segments and

attributes. For staple features like food, service and ambiance, all three segments are

more likely to write when satisfied and less likely to write when dissatisfied. Overall, this

might explain in general why reviews tend to be skewed to be more positive on rating

sites—if this also translates to selection into who writes reviews. However segment 3

is likely to vent more when dissatisfied about two attributes that drive its ratings—value

and location. The lack of a strong link between importance and mentions in reviews of

attributes suggests that online reviews may not be as complete a source of topic and need

identification as previously believed. However, we note that this could be because our

attribute importance estimate are conditional on visit to restaurants, and may not account

for its importance in decision to visit the restaurant. At the very least, our results suggest

that we might want to be circumspect in the use of frequency of mentions as a proxy for

benefit or need importance and explore this issue in future research.

1.6.4 Validation of Imputation

We validate our model-based imputation approach in Table 1.19 by assessing the ability

to predict attribute ratings on a holdout sample, relative to no segmentation, where we

assume reviewers have homogeneous rating styles, and ad-hoc imputation approaches,

where reviewers who missed attribute ratings experienced average (score 3) or very low
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Figure 1.6: Odds(π) of attribute missing in reviews as a function of sentiment level
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(score 1) or very high (score 5) level of satisfaction. To be specific, we compare the

predicted attribute ratings vs. observed rating if an attribute rating is present on hold-out

sample (10% of the observations). The overall RMSE across all attributes is lower for our

model relative to the benchmark models. Even when the RMSE is compared by attribute,

we find that our model does better on all attributes, except location, where a uniform

imputation of 3 can get slightly better prediction. Given the large share of missing data for

location, the model identification was the weakest for this attribute. However, for all the

other attributes the imputation from the model indeed does better.

Table 1.19: Model Fit: Root Mean Squared Error (RMSE) across Imputations

Attribute Our method No Heterogeneity Fixed Imputation Scores

Score 1 Score 3 Score 5

Overall 0.689 0.932 1.879 0.778 1.211
Food 0.699 0.881 2.631 0.973 1.323
Service 0.891 0.967 2.304 0.939 1.587
Ambiance 0.578 1.169 1.768 0.711 0.960
Value 0.664 0.924 1.534 0.706 1.132
Location 0.613 0.717 1.161 0.564 1.055

1.6.5 Correction for Attribute Silence in Attribute Ratings

We illustrate how correcting for attribute silence through imputation at the individual re-

view level can impact overall attribute rating for a restaurant. We see that correction for

missing attributes has significant impact on attributes that are missing more frequently:

value and location in general, and food for chain restaurants. The correction could be ei-

ther upward or downward depending on attribute, restaurant type and reviewer type. For

example, at an independent restaurant in Phoenix where most reviewers are found to re-

main silent about service at higher satisfaction levels, observed service ratings are lower

than actual service ratings after imputing for missing attribute ratings. Then, correction

results in higher service ratings than observed ratings (Figure 1.7a). Food and ambiance
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Figure 1.7: Change in Average Attribute Rating
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(a) Independent restaurant in Phoenix
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(b) Chain restaurant in Las Vegas

scores barely change, and value and location scores slightly go up after imputation for this

restaurant. In Figure 1.7b, we illustrate a chain restaurant in Las Vegas where many of the

reviewers miss food and location attributes, when satisfied, and miss value rating when

dissatisfied. Here food and location scores to go up and value score to go down. Overall

this shows that our imputation approach based on restaurant observables, rater observable

and unobservable heterogeneity is extremely flexible in its imputations and the ability to

correct for missing attribute ratings.

Table 1.20: Impact of Imputation on Attribute Ratings

Average Correction % of corrections ≥ 0.5

Chain Independent Chain Independent

Food 0.33 0.12 22% 1%
Service 0.24 0.32 13% 16%
Ambiance 0.83 0.62 83% 62%
Price 1.07 0.83 92% 91%
Location 1.29 1.16 92% 95%
N: 2719
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1.7 Conclusion

The paper addresses the general problem of using unstructured text data to generate quan-

tifiable market feedback typically obtained through surveys; the specific application is to

use restaurant reviews to generate attribute level ratings of restaurants. The paper ad-

dresses two novel and challenging problems around online text reviews: (i) convert text

into fine-grained numerical sentiment scores on pre-specified attributes (e.g., food, ser-

vice) by accounting for language structure; and (ii) accounting for attribute silence in

attribute sentiment scoring. For the first problem, the it uses a deep learning convolution-

LSTM model that exploits the spatial and sequential structure of language to improve

sentiment classification, especially on known types of “hard” sentences in NLP. For ad-

dressing attribute silence, the paper develops and estimates a structural model of reviewer

rating behavior that takes into account the data generating process to develop a model-

based imputation procedure to address attribute silence. Overall, the paper illustrates the

value of combining “engineering” thinking underlying machine learning approaches with

“social science” thinking from econometrics to answer novel marketing questions.

Substantively, the paper identified three segments of reviewers—the smallest but most

active reviewers (”Status Seeking Regulars,”) the largest segment (”Altruistic Mass,”) who

review without reward expectations, and ”Emotive Irregulars,” who review infrequently,

but write about attributes they are extremely satisfied or dissatisfied. Our insights around

attribute silence in reviews shows that informativeness and need to praise/vent drive more

of the writing than the importance of the attribute. Not only does this contribute to the

literature on why people engage in online word of mouth (Berger 2014), it also has impli-

cations for using reviews as a source of data for needs/benefits identification. In particular,

contrary to conventional wisdom, the frequency of mentions of a benefit or a topic may

not necessarily be a proxy of its importance.
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We conclude with a discussion of some suggestions for future research. First from the

machine learning perspective, the research around improving performance on “hard” sen-

tences needs to be pursued to further improve accuracy; while the performance improved

for all of the hard sentence types there is more room for improvement. It would be useful to

consider how recent methods such as BERT or GPT can improve on the fine-grained sen-

timent scoring problem for ‘’hard” sentences. From the substantive/econometric perspec-

tive, it would be useful to more systematically understand the drivers of attribute silence.

While our current results offer suggestive evidence for our conjectures, a more systematic

causal investigation of the attribute level motivations can further enrich the literature on

the drivers of WOM. It would also be worth combining our content analysis at the attribute

level with work on fake reviews/review shading to get a richer understanding of how to

correct for these issues in tracking WOM.
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Chapter 2

When do consumers talk?

2.1 Introduction

Many consumption decisions are influenced by what we learn from social connections,

driving the explosion of user-generated information online. Indeed, empirical research

shows that on average higher reviews tend to increase sales (Chevalier and Mayzlin (2006),

Luca (2016), Liu et al. (2019)). This paper investigates, both theoretically and empirically,

a strategic motive behind providing reviews, and explores how strategic communication

drives the selection of user-generated content differentially, depending on the strength of

the brand image.

We find a striking pattern for restaurant reviews on Yelp.com: On a 5-star scale, the

modal rating is 1 star (46.9% in our data) for national established chain restaurants, but 4

or 5 stars for comparable independent restaurants (41.2%) in the same categories. Unless

there are large systematic quality differences between chain and independent restaurants,

this finding suggests positive or negative selection of content due to differences in the

propensity to review after a positive versus a negative experience at these different types

of restaurants. A selection effect has significant implications on how review data is in-

terpreted by potential customers, and therefore on their purchase decisions and the firm’s
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revenues.1 The goal of this paper is to shed some light on drivers of these selection effects.

We develop a model of word-of-mouth (WOM) communication that explains how pos-

itive or negative selection of WOM information arises in equilibrium. We identify two

determining factors: strength of brand image, measured by the dispersion of consumer

beliefs about product quality, and the informativeness of good and bad experiences.

Formally, we consider a monopolist who is launching a new product of uncertain qual-

ity. Some early adopters in the market get a chance to try the product and receive a private

noisy binary signal of quality.2 Then, the monopolist announces a net price for the prod-

uct. In practice, the net price represents the price that potential consumers pay to purchase

the product, which may be a combination of the posted price, promotions, extra benefits,

etc. An early adopter can choose to share her product experience (signal) with a poten-

tial consumer, and influence his purchase decision. We characterize positive and negative

WOM behavior in pure-strategy perfect Bayesian equilibria.

Our key premise is that writing reviews is costly, and early adopters share their ex-

perience only if they can instrumentally affect the purchase decision of the receiver of

the message. This assumption is motivated by research in psychology and marketing that

highlights two complementary functions of WOM: First, WOM helps consumers acquire

information when they are uncertain about a purchase decision. Second, people engage in

WOM to enhance their self-image, causing them to share information with instrumental

value because this improves the image of the sharer as being smart or helpful.3,4

Given this assumption, the early adopter has to first take into account the probability

with which the receiver of her message is also an early adopter — in which case WOM

1Reviews are well-known to be skewed (see Schoenmüller et al. (forthcoming)). Chevalier and May-
zlin (2006) and Fradkin et al. (2015) document positive skews in user ratings for books and home rentals,
respectively.

2We do not model the purchase decision of early adopters in the main model, but discuss a possible
dynamic extension when early adopters in the current period are followers from the previous period (Sec-
tion 2.5.1).

3See Berger (2014) for a survey. The early adopter’s incentive to share only instrumentally valuable
information is also consistent with the persuasion motive of WOM, discussed in Berger (2014).

4Gilchrist and Sands (2016) instead consider WOM that brings pleasure in itself.
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has no value — or is a consumer who has not tried the product yet (a follower). Next, in

the case of a receiver who is a follower, what is important is his purchase decision in the

absence of any WOM: This is determined by the price and the brand image defined by the

distribution of followers’ prior beliefs about quality. If a follower was likely to buy (not

buy) given the brand image and the price only, then there is no reason for an early adopter

to engage in positive (negative) WOM after a good (bad) experience, but she may affect

the follower’s action through negative (positive) WOM after a bad (good) experience.

The price set by the firm directly affects the follower’s ex ante purchase decision,

which indirectly affects WOM. For instance, by setting a high (low) price, followers are

less (more) likely to buy ex ante, causing early adopters to engage in positive (negative)

WOM. The strength of the brand image plays a critical role for how the monopolist sets

the profit-maximizing price: If the brand image is well-entrenched, then all followers have

the same identical beliefs about quality. So, the firm and early adopters can anticipate

the followers’ decision after receiving a message. But, if the brand is less-known or new,

then followers don’t know exactly what to expect resulting in heterogeneous beliefs about

quality for idiosyncratic reasons. Then early adopters cannot predict the followers’ deci-

sions; some followers might buy after hearing positive WOM, while others might not buy

despite positive news. This uncertainty crucially impacts the optimal pricing decision and

the decision to engage in WOM in equilibrium.

First, we find that for well-entrenched brands, positive WOM cannot arise. If the

fraction of new adopters is small, it is optimal for the firm to induce negative WOM.

Intuitively, this is driven by the way “no WOM” is interpreted. If followers expect only

negative experiences to be shared, then no WOM becomes a positive signal. With few early

adopters, no WOM is observed with high probability, and so an equilibrium with negative

WOM only is optimal for the firm. If the fraction of early adopters is above a threshold,

then the number of early adopters with a negative signal increases, which decreases the

benefit of a negative WOM equilibrium. In this case, the unique equilibrium involves no
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WOM.

Second, we consider followers with heterogeneous beliefs. If the brand image is strong

and close to well-entrenched, then only negative WOM can occur in equilibrium. If the

brand image is weak, the type of WOM in equilibrium depends on the distribution of an

early adopter’s signal conditional on quality. We focus on equilibria when the fraction of

new adopters is small. For the intuition, consider two extreme signal structures. If the

signal structure is a “good news” process in that a positive experience is a strong signal

for good quality, but a negative experience occurs with both good and bad quality, then

the firm optimally sets a price that induces positive WOM. Conversely, for a “bad news”

process, where a negative experience is very informativethe firm optimally induces only

negative WOM.

Finally, using restaurant review data from Yelp.com and data on restaurant chains, we

verify that our theory is consistent with empirical observation. We posit that consumers are

likely to have homogeneous beliefs about restaurants that belong to a chain like Dunkin’

with a strong brand image, but heterogeneous beliefs about independent restaurants like a

new local coffee shop in New Haven. Controlling for restaurant characteristics (cuisine,

price-range, location) and user characteristics (platform experience, average past ratings),

our regression shows that being a chain restaurant results in approximately a 1-star reduc-

tion in every rating received relative to a similar independent restaurant. We also show that

the propensity of a review being negative increases with the age of brand and the number

of stores which can be thought of as proxies for brand strength. Our textual analysis of

reviews further shows that reviewers are more likely to talk about prior beliefs (or expec-

tation) when reviewing chain restaurants, especially in negative reviews, whereas they are

more likely to anchor positive reviews of independent restaurants around the concept of

novelty.
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2.2 Literature Review

Our paper is substantively related to the research on diffusion of information through word-

of-mouth, pioneered by Bass (1969). WOM can occur via platforms, social networks or

traditional networks. Most early papers in this area treat WOM as a costless mechanical

process, and focus on how the social network structure affects information percolation

about the existence of a product: See for instance Galeotti (2010) or Galeotti and Goyal

(2009).5

We contribute to the more recent literature that considers the strategic motive of con-

sumers to engage in costly WOM. Campbell et al. (2017) focus on how the firm should

balance WOM and advertising if consumers’ incentive to talk stems from a desire to sig-

nal social status. They find that advertising crowds out consumers’ incentives to engage

in WOM. Other authors focus on WOM and referral programs. In Biyalogorsky et al.

(2001) a firm can encourage WOM through the price or a referral program. Unlike in

our model, a reduced price induces senders to talk because it “delights” them. Kornish

and Li (2010) also consider the trade-off between referral rewards and pricing in a model

where the sender cares about the receiver’s surplus. Kamada and Öry (2017) consider

a contracting problem in which the incentive to talk is driven by externalities of using a

product together. They show that offering a free contract can make WOM more attractive

since receivers are more likely to start using the product. We consider WOM not about the

existence of a product, but about the experience. Early adopters engage in costly WOM

only if their information has instrumental value and can affect the follower’s action, and

we characterize the connection between the firm’s brand image and WOM.6

5Similarly, Leduc et al. (2017) study the diffusion of a new product when consumers learn about the
quality in a network and the firm can affect the diffusion through pricing and referral incentives. Campbell
(2013) instead analyzes the interaction of advertising and pricing. See also Godes et al. (2005) for a survey
of the literature.

6The incentive to talk in our paper is similar to the incentive to search in Mayzlin and Shin (2011):
The marginal value of information must be larger than the marginal cost of information dissemination or
acquisition, respectively.
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There is a growing empirical literature that studies the impact of review statistics, like

volume, valence (positive or negative) and variance, on business outcomes (e.g., sales).7

Luca (2016) finds that a one-star increase in Yelp ratings can decrease revenue by 5-9 per-

cent. Chintagunta et al. (2010) show that an improvement in reviews leads to an increase

in sales for movies and Seiler et al. (2017) documents that micro blogging has an impact

on TV viewership. More specifically, the asymmetric impact of valence on profit-relevant

outcome variables has been studied in some empirical contexts. Mittal et al. (1998) finds

that negative information has larger impact on consumer purchase decisions compared to

positive information. Chevalier and Mayzlin (2006) find that negative reviews have a larger

effect on sales than positive reviews.8 While the asymmetric impact of valence has been

observed in several contexts, the literature does not explain what drives this asymmetry.

To the best of our knowledge, our paper is the first to provide an information-theoretical

foundation for what determines valence of WOM and user-generated reviews, and to offer

an explanation for the asymmetry observed empirically. We highlight how asymmetry in

the propensity to engage in WOM can be driven by the dispersion of consumer beliefs

about quality and the firm’s pricing decision. The only other paper that studies different

propensities to review after positive versus negative experiences is by Angelis et al. (2012),

who argue using experimental evidence that consumers with a strong self-enhancement

motive generate a lot of positive WOM, and transmit more negative WOM about other

peoples’ experiences: Differences in valence simply arise from differences in the type of

people who choose to be early adopters. Chakraborty et al. (2019) also study selection in

reviews using text analysis, but their focus is primarily on what drives content selection

among different types of reviewers.

7For example, Nosko and Tadelis (2015), Dhar and Chang (2009) and Duan et al. (2008) show that
the volume of reviews matter (rather than the rating), and Sun (2012) show that high variance in reviews
corresponds to niche products, valued highly by some buyers but not by others. Onishi and Manchanda
(2012) show a positive impact of blogging on sales.

8Also, Godes (2016) studies how the type of WOM affects the incentives of firms to invest in product
quality.
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We also contribute to the empirical literature on the relationship between branding and

WOM. Luo (2009) finds that negative word of mouth has a medium-term and long-term

effect on brand equity. Thus, even big established brands should be concerned about neg-

ative WOM and should try to understand how WOM evolves. Hollenbeck (2018) shows

that value of franchising has declined with the rise of review platforms and thus small

brands can now compete equally with larger brands. Unlike our paper, Hollenbeck (2018)

does not address the issue of selection of reviews. His data indicates that differences in

reviews can be broadly attributed to differences in quality, both for chain and non-chain

hotels. However, since chain hotels systematically solicit WOM reviews from regular

repeat customers, this may effectively eliminate potential negative selection.

2.3 Model

A firm produces a new product at a normalized marginal cost of zero. The quality

θ ∈ {H,L} of the technology is high (H) with probability φ0 ∈ [0,1], and is unknown to

the firm.9 The firm faces a continuum of consumers of measure 1. A fraction β ∈ [0,1] of

consumers are early adopters (he) who try the product first and observe a realized quality

signal q∈{h, `}.10 Given the type of technology θ , the realized quality q is drawn indepen-

dently such that Pr(q= h|θ =H) = πH and Pr(q= h|θ = L) = πL where 1≥ πH > πL≥ 0.

The remaining fraction 1−β of consumers are called followers (she). Followers have not

tried the product, and make their purchase decisions based on the expected quality.

Brand Image. It is useful to think of the consumer beliefs φ as reflecting the brand image.

This is consistent with the standard interpretation, that consumer beliefs make up brand

images which in turn influence consumer purchase decisions. For instance, Kotler (2000)

writes: “A belief is a descriptive thought that a person holds about something. Beliefs

9Section 2.5.2 considers a privately informed firm.
10We can think of these early adopters as people who get introductory trial coupons or are invited for a

soft launch of a restaurant.
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may be based on knowledge, opinion, or faith (...) manufacturers are very interested in the

beliefs that people have about their products and services. These beliefs make up product

and brand images, and people act on their images.”11

The distribution of these beliefs can therefore reflect the strength of the brand image

– how consistent followers’ knowledge is about φ0. For products of a firm with a strong

well-established brand image, it is reasonable to assume that consumers all know and

agree on what to expect; in other words, followers observe φ0. In that case, we say that

beliefs are homogeneous and firm has a well-entrenched brand image. However, if the

brand is less known or new, then followers are unlikely to know what φ0 is, or in other

words, followers can have different prior beliefs about the quality of the technology θ . To

capture this idea, we assume consumers’ priors φ are distributed according to a cdf F on

[0,1] with EF [φ ] = φ0 where F is independent of the actual quality. Formally, we analyze

the following two cases separately:

• Homogeneous priors: All followers have the same prior belief (F(φ) = 1(φ ≥ φ0)).

This case reflects well-entrenched brands, where consumers know exactly what

quality to expect. An example would be an outlet of a well-established chain like

Dunkin’.

• Heterogeneous priors: Followers have idiosyncratic prior beliefs. We assume that

F is continuous. This case will allow us to distinguish between strong and weak

brand images based on the dispersion of buyer beliefs. See Section 2.4.2 for the

formal definitions. To illustrate, a new independent coffee shop is likely to have a

weak brand image and is therefore subject to dispersed idiosyncratic beliefs. Bigger

chains, in turn, are likely to have more concentrated prior beliefs – in the extreme

case being close to a well-entrenched brand image.

11Ke et al. (2020) model brand strength as dispersion of beliefs focusing on positioning rather than vertical
quality.
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Word-of-mouth Communication. Followers can potentially get information via word-

of-mouth from early adopters. We assume that consumers are randomly matched in pairs.

Thus, any consumer is matched to an early adopter with probability β . One can think of

this as representative consumers who are most recently active on the review platform and

want to leave a review for the next consumer who is visitng the platform, or individuals

meeting off-line.12 When consumers meet they do not know if they are matched to an

early adopter or a follower.

Early adopters who have already consumed the product can obtain utility from sharing

their signal with followers. We capture the incentives to engage in word-of-mouth with the

following utility representation: Given his realized quality is q ∈ {h, `}, an early adopter’s

message space is Mq := {q, /0}, i.e., communication is verifiable.13 Engaging in WOM

(m = q) entails a cost c > 0. An early adopter gets utility r > 0 if q = h and the matched

consumer buys, or if q = ` and the matched consumer does not buy. Put differently, the

early adopter receives positive net utility from talking relative to not talking

1. either if q = h, he sends a message m = h, and the follower buys, but would not have

bought with m = /0 or

2. if q = `, he sends a message m = `, and the follower does not buys, but would have

bought with m = /0.

Our modeling is motivated by the self-enhancement and persuasion motives to talk for

early adopters, and the information acquisition motive of followers, as described in Berger

(2014). He argues that when people care about impression management, they are “more

likely to share things that make them look good rather than bad.” Importantly, the early

adopter does not care about the ex-post quality realization of the follower. Instead he only

cares about sending a message that is useful to the receiver in the interim for her purchase
12The case in which one review is read by more than one follower, is discussed in Section 2.5.3.
13We do not consider review manipulation as in Mayzlin et al. (2014), Luca and Zervas (2016), and He

et al. (2020).
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decision. So, talking can be effectively interpreted as the early adopter’s impression man-

agement or self-enhancement and r is the early adopter’s utility of an enhanced self-image

from providing information of instrumental value.14 Because messages are verifiable, the

utility specification above reflects also the persuasive motive, where a sender engages in

word-of-mouth to influence others and change their action. 15

Timing and payoffs. The game proceeds as follows:

0. Some early adopters experience a quality realization q.

1. The firm chooses price p.

2. Early adopters decide whether to engage in WOM by sharing m ∈Mq.

3. Each follower updates her belief about θ , and decides whether to buy or not.

We do not model how early adopters came to try the product in the first place, because we

want to focus on the incentive to engage in WOM. In Section 2.5.1, we discuss how our

baseline model can be extended to a dynamic setting in which today’s followers become

tomorrow’s early adopters.

Histories, strategies, and equilibrium. A firm’s strategy comprises a price p ∈ [0,1]. An

early adopter’s set of histories is H a = [0,1]×{h, `} and his WOM strategy µ : H a→

M := Mh∪M` maps the price and signal q ∈ {h, `} to a message, where supp(µ(p,q)) =

{q, /0}. A follower’s history is in H f = [0,1]×M× [0,1] and her purchasing strategy

α : H f→ {buy,not buy} maps p, the message received m ∈M and her prior φ to a pur-

chasing decision. We consider perfect Bayesian equilibria (PBE) in pure strategies. A

PBE comprises a tuple {p,µ,α, φ̂} such that all players play mutual best-responses given

their beliefs about θ , where φ̂(φ ,m) describe a follower’s posterior belief given prior φ

14Restaurant reviewers on Yelp.com cite simplified decision-making for first-time visitors as one of the
reasons for writing a review. See Carman (2018).

15This is also consistent with the Gricean maxims proposed in Grice et al. (1975) that when engaging in a
conversation, people should make it relevant to the audience and provide enough information, but not more
than required. We thank Kristin Diehl and Gizem Ceylan-Hopper for pointing us to this reference.
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and message m. Let µq(p) ∈ {0,1} denote the probability with which an early adopter,

who sees signal q and price p, engages in WOM in equilibrium. We omit p and write µq

if there is no ambiguity.

Let ξ := c
r . We assume 1−β > ξ , to rule out the trivial case of early adopters never

engaging in WOM because they are unlikely to face a follower.

2.4 Equilibrium Characterization

We proceed by backwards induction and start with the sub-game after the price is set.

We call this the “WOM subgame” and its equilibria “WOM equilibria.” Proofs are in the

Appendix.

2.4.1 Word-of-Mouth subgame

Purchase decision of a follower: It is optimal for a follower with prior φ and message m

to purchase if and only if her expected utility from purchasing exceeds the outside option:

φ̂(φ ,m)πH +(1− φ̂(φ ,m))πL− p≥ 0.

Let Φ(p) denote the posterior belief that makes a follower indifferent between buying and

not, i.e.,

Φ(p) :=
p−πL

πH−πL
.

Then, a follower’s best response is

α(p,φ ,m) =


buy if φ̂(φ ,m)> Φ(p)

buy or not buy if φ̂(φ ,m) = Φ(p)

not buy otherwise

. (α)
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A follower’s posterior belief after message m ∈ {h, `} is φ̂(φ ,h) = φπH
φπH+(1−φ)πL

and

φ̂(φ , `) = φ(1−πH)
φ(1−πH)+(1−φ)(1−πL)

, respectively. If the early adopter sends no WOM message

(m = /0), then the posterior depends on the equilibrium strategy of the early adopter cap-

tured by µh and µ`, so by Bayes’ rule:

φ̂(φ , /0) =
φ [1−β +β (πH(1−µh)+(1−πH)(1−µ`))]

1−β +φβ (πH(1−µh)+(1−πH)(1−µ`))+(1−φ)β (πL(1−µh)+(1−πL)(1−µ`))
.

Note that φ̂(φ ,h)≥ φ̂(φ , /0)≥ φ̂(φ , `), but φ̂(φ , /0) can be higher or lower than the prior φ .

The follower gets “good news” about the product if φ̂(φ ,m) > φ and “bad news” if

φ̂(φ ,m)< φ .16

Followers’ posterior beliefs φ̂(φ ,m) and strategy α define thresholds, such that after a

message m, a follower purchases only if his prior is above this threshold. Let φ̄(p) be such

that after m = `, it is optimal to buy if and only if φ ≥ φ̄(p), i.e.,

φ̄(p) =
1

1−πH
1−πL

1−Φ(p)
Φ(p) +1

.

Similarly, let φ(p) be such that after m = h, it is optimal to buy if and only if φ ≥ φ(p),

i.e.,

φ(p) =
1

πH
πL

1−Φ(p)
Φ(p) +1

.

Finally, let φ̃(p;(µh,µ`)) be such that after m = /0, it is optimal to buy if and only if

φ ≥ φ̃(p;(µh,µ`)), i.e.,

φ̃(p;(µh(p),µ`(p))) =
1

1+ 1−β+β (µh(p)(1−πH)+µ`(p)πH)
1−β+β (µh(p)(1−πL)+µ`(p)πL)

1−Φ(p)
Φ(p)

,

given message strategy (µh(p),µ`(p)). Figure 2.1 summarizes these thresholds which

characterize the follower’s best response α . We call a WOM equilibrium

16m∈ {h, `} is verifiable and m= /0 is on-path since a follower is matched to another follower with positive
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0 1φ̄(p)φ(p) φ̃(p;(mh,m`))Φ(p)

depends on equilibrium playeddon’t buy
even if m = h

buy
even if m = `

buy if no message

Figure 2.1: Followers’ decisions for given prior beliefs

1. full WOM equilibrium if µh = µ` = 1. Then, φ̃(p;(1,1)) = Φ(p);

2. no WOM equilibrium if µh = µ` = 0. Then, φ̃(p;(0,0)) = Φ(p);

3. negative WOM if µh = 0,µ` = 1. Then,

Φ(p)≥ φ̃(p;(0,1)) =
1

1+ 1−β+βπH
1−β+βπL

1−Φ(p)
Φ(p)

;

4. positive WOM if µh = 1,µ` = 0. Then

Φ(p)≤ φ̃(p;(1,0)) =
1

1+ 1−β+β (1−πH)
1−β+β (1−πL)

1−Φ(p)
Φ(p)

.

The absence of WOM (m= /0) means “good news” in a negative WOM equilibrium, but

“bad news” in a positive WOM equilibrium. The number of early adopters β determines

the informativeness of m = /0. It is a weaker signal, the less likely a follower is matched to

an early adopter (β small).

Early adopter’s WOM decision: Assume F has no mass point at the thresholds

φ(p),φ(p), φ̃(p;(µh,µ`)) for µh,µ` ∈ {0,1}. Then, an early adopter who observes q = h

probability.
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weakly prefers to engage in WOM whenever

(1−β )r
(
F(φ̃(p;(µh,µ`)))−F(φ(p)))

)︸ ︷︷ ︸
benefit of talking if q=h

≥ c︸︷︷︸
cost of talking

.

Similarly, if q = `, an early adopter weakly prefers to engage in WOM whenever

(1−β )r
(
F(φ̄(p))−F(φ̃(p;(µh,µ`))︸ ︷︷ ︸
benefit of talking if q=`

≥ c︸︷︷︸
cost of talking

.

To characterize the WOM equilibrium, we call followers

• pessimistic, whenever F (Φ(p))−F(φ(p))≥ ξ

1−β
≥ F(φ̄(p))−F (Φ(p));

• optimistic, whenever F(φ̄(p))−F (Φ(p))≥ ξ

1−β
≥ F (Φ(p))−F(φ(p));

• uninformed whenever F (Φ(p))−F(φ(p)), F(φ̄(p))−F (Φ(p))≥ ξ

1−β
;

• well-informed whenever F (Φ(p))−F(φ(p)), F(φ̄(p))−F (Φ(p))≤ ξ

1−β
.

Importantly, this definition is independent of the WOM equilibrium played.

[WOM sub-game] Let price p be such that F has no mass point at φ(p), φ(p),

φ̃(p;(µh,µ`)) for µh,µ` ∈ {0,1}. There exist thresholds β̂ neg(p), β̂ pos(p)> 0 such that

1. A full WOM equilibrium exists if and only if followers are uninformed.

2. A no WOM equilibrium exists if and only if followers are well-informed.

3. A negative WOM equilibrium exists for all β ∈ [0,1] if followers are optimistic.

For β < β̂ neg(p), a negative WOM equilibrium does not exist if buyers are not

optimistic.

4. A positive WOM equilibrium exists for all β ∈ [0,1] if followers are pessimistic.

For β < β̂ pos(p), a positive WOM equilibrium does not exist if buyers are not pes-

simistic.
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An early adopter incurs the WOM cost only if the followers’ decision is affected with a

sufficiently high probability. Thus, with pessimistic followers, early adopters with a pos-

itive experience have a strong incentive to talk, while those with a negative experience

have a weaker incentive. Indeed, in that case, a positive WOM equilibrium exists and

m = /0 is bad news. Similarly, with optimistic priors a negative WOM equilibrium exists.

With well-informed followers, a large proportion of followers cannot be influenced, im-

plying that there is no WOM. Analogously, with uninformed followers, the unique WOM

equilibrium entails full WOM.

Multiplicity arises for large β . For example, with pessimistic followers, in a positive

WOM equilibrium, m = /0 is bad news and is almost equivalent to m = `. Thus, a negative

WOM equilibrium also exists. The case when F has mass-points at the thresholds, is

considered in the proof of Proposition 2.4.2.

2.4.2 Main results

Finally, we consider the full game including the firm’s pricing decision. Define π(φ0) :=

φ0πH +(1−φ0)πL to be the firm’s belief that an early adopter has a good experience.

Homogeneous priors

[Homogeneous priors or well-entrenched brand image] Let F = 1(φ ≥ φ0). In any pure-

strategy equilibrium, negative WOM can be sustained in equilibrium if and only if

β ≤ β̄
hom :=

(1−φ0)φ0(πH−πL)
2

(1−π(φ0))(π(φ0)− (φ0π2
H +(1−φ0)π

2
L))

.

No WOM can be sustained if and only if β ≥ β̄ hom. No other WOM equilibria can be

sustained.

Intuitively, for a well-entrenched brand (if all followers have the same belief), the firm

can set a price low enough such that all followers buy in the absence of WOM. The firm
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cannot improve upon this. For small β , the firm can increase the price if m = /0 is a weak

good signal, which is the case in a negative WOM equilibrium. Followers who receive a

negative signal will not buy, but for small β , there are only few such followers. If β is

large, negative WOM is not worthwhile because too many followers receive the negative

signal. Positive WOM is worthwhile only if the firm can charge a higher price to followers

with a positive message. However, this is dominated by no WOM, where all consumers

buy.

Heterogeneous priors

Next, consider heterogeneous priors, with continuous F . Denote the set of profit-

maximizing prices by

P∗ = arg max
p∈[0,1]

p(1−F(Φ(p))).

Note that P∗ 6= /0 because the prices in the set are maximizing a continuous function on a

compact set. We first focus on two cases:

1. Strong brand image: For all p ∈P∗, F(Φ(p))< ξ .

2. Weak brand image: For all p ∈P∗, F(Φ(p))> ξ .

For a product with a strong brand image, consumers have relatively concentrated beliefs

so that any static profit-maximizing price can incentivize most buyers to buy. Put differ-

ently, there are not many buyers who can be convinced to buy as a result of receiving

positive WOM. Note that the homogeneous prior (or well-entrenched brand image) case

is the limit of strong brand image distributions, and indeed no positive WOM can occur.

[Heterogeneous priors: Strong and weak brand image]

1. If the firm has a strong brand image, then for sufficiently small β , any pure strategy

equilibrium entails no positive WOM.
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2. If the firm has a weak brand image and πL = 0, then for sufficiently small β , any

equilibrium entails positive WOM.

If the profit maximizing price is unique, i.e. P∗ is a singleton, then there is a unique

(generically in ξ ) equilibrium. In this case, we can fully characterize the equilibrium for

sufficiently small β . The characterization also highlights the role of the signal structure

induced by the early adopter’s experience. [WOM under heterogeneous priors] Consider

P∗ = {p∗}. For thresholds ξ := F(φ(p∗)−F(Φ(p∗)),ξ := F(Φ(p∗))−F(φ(p∗) > 0

and sufficiently small β , there is a generically unique pure strategy equilibrium with the

profit maximizing price being close to p∗. If ξ < min{ξ ,ξ}, it entails full WOM. If

ξ > max{ξ ,ξ}, no WOM arises. If ξ > ξ and for ξ ∈ (ξ ,ξ ), it entails negative WOM.

If ξ < ξ and ξ ∈ (ξ ,ξ ), it entails positive WOM. Intuitively, as β → 0, under any WOM

regime, the demand converges uniformly to 1−F(Φ(p). Hence, the profit maximizing

price in any equilibrium converges to p∗. The type of WOM is determined by where

ξ lies, relative to F(Φ(p∗))−F(φ(p∗) and F(φ(p∗)−F(Φ(p∗)). With heterogeneous

priors, we focus on small β due to the richness of equilibria, and because WOM is most

relevant for new products where the number of adopters is still small.

To understand the role of the signal structure, consider the example of F = U [0,1].

Then, ξ = πH(πH−2πL)
2(πH−πL)(2−πH−2πL)

and ξ = πH(πH−2πL)
2(πH−πL)(πH+2πL)

, so ξ > ξ ⇔ 2πL > 1−πH . Think

about two limiting cases. Suppose πL ≈ 0, i.e., it is unlikely for a bad firm to be able to

generate a good experience. Hence, q = h is particularly informative since it fully reveals

that θ = H: Examples are categories like independent restaurants where the consumer is

discerning and is looking for specialized qualities. In such situations, negative WOM is

never optimally induced by the firm, but positive WOM is induced for an intermediate

range of WOM costs. For πL = 0 we have ξ = πH
2(2−πH)

< ξ = 1
2 and ξ is increasing in

πH . Thus, positive WOM is optimal for a wider range of costs if πH is also small. Next,

suppose πH ≈ 1. Then, a good firm can generate a positive experience with high likelihood.
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Here, q = l is particularly informative. Car rentals might fall into this category: Customers

are happy as long as no major quality flaws such as cleanliness or terrible service occur.

In this case, ξ = 1
2(1−πL)

> ξ = 1−2πL
2(1+πL−2π2

L)
and ξ −ξ is increasing in πL. Now, negative

WOM is optimal for a wider range of costs if πL is large. Finally, if πH < 2πL, then the

firm induces no WOM because no signal is sufficiently informative about quality.

2.5 Extensions

Our baseline model is kept as lean as possible to highlight our main results, that we then

test in the data. In this section, we discuss how far our results generalize in various dimen-

sions.

2.5.1 Dynamics

We consider a single round of WOM decisions followed by purchasing decisions. A natu-

ral extension is to allow for dynamics, where followers today may in turn engage in WOM

tomorrow. Consider the following alternative model. As before, there is a unit mass of

consumers, and the prior belief about the firm’s unknown product quality, at the start of

the game, is given by φ 0 = φ ∼ F . Time t = 0,1,2, . . . is discrete. At t = 0, a fraction β 0

of early adopters tries the product for free. In every subsequent period t, early adopters

comprise the early adopters from period 0 and all followers who have adopted up to period

t. The timing of the dynamic game is the natural analog of the static game of the baseline

model, and proceeds as follows:

1. In every period t, a consumer is randomly chosen to be a potential reviewer (engage

in WOM), and a fraction ∆ > 0 of consumers is picked at random to be potential

followers.

2. The firm sets a period-t net price pt .
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3. If the chosen potential reviewer is not an early adopter, then there is no WOM in

period t. If he is an early adopter, then he has experienced a quality signal q in

some period prior to t, and can decide whether to share it or not. Payoffs of early

adopters in any period t are analogous to those in the baseline model, i.e., he receives

a benefit r
∆

from every follower who adopts in that period. Formally, he engages in

WOM after experiencing q = h whenever

(1−β
t)r(F(φ̃(pt ;(µh(pt),µ`(pt))))−F(φ(pt)))≥ c

and engages in WOM after experiencing q = ` whenever

(1−β
t)r(F(φ(pt))−F(φ̃(pt ;(µh(pt),µ`(pt)))))≥ c,

4. Finally, potential followers in period t decide whether to buy or not based, on their

updated belief about quality. Again, analogous to our baseline model, this belief of

a follower in period t can be calculated by Bayes’ rule, using the consumer belief

from period t−1 and the WOM message (or lack of WOM) in period t.

In this setting, both the distribution of priors φ t and the fraction of early adopters β t are

changing over time, but the equilibrium outcome in each period is derived exactly as in

our baseline model. Thus, the results in Proposition 2.4.2 generalize. In equilibrium,

negative WOM arises early on, followed by no WOM later when β t exceeds a threshold.

The results in Propositions 2.4.2 and 2.4.2 are valid in periods in which β t is sufficiently

small, given the distribution of period-t priors φ t .

2.5.2 Private firm type

In the baseline model, we assumed that the firm was unaware of its quality when it set its

price. This captures situations where the firm is launching an entirely new product and

71



does not know about product efficacy prior to a large-scale launch. However, in other set-

tings, the firm may be aware of its quality at the time of its pricing decision. In this section,

we consider a straightforward extension, now with private information. For simplicity, we

focus on situations with few early adopters (small β ), and the uniform distribution in the

case of heterogeneous priors.

If a firm has private information about quality, then it can, in principle, signal this

information through its price, and followers may update their beliefs about the firm’s type.

However, such signaling via prices cannot arise in a pure-strategy equilibrium, i.e., there is

no fully separating equilibrium.17 To see this, note that in a fully separating equilibrium,

all buyers are willing to buy at any price p≤ πH . Thus, if pH > pL, then the L-firm wishes

to deviate to offering pH . If pL > pH ≥ πL, then no one buys at the price pL and the L-

firm can increase profits by deviating to pH . Consequently, any pure-strategy equilibrium

must be pooling, that is both firm types choose the same price. In such an equilibrium, the

posterior belief is independent of the observed price. We characterize the unique pooling

equilibrium in which the H-type firm maximizes its profits. This equilibrium has similar

features to the equilibrium constructed in Section 2.4. In particular, the WOM subgame is

identical and Lemma 2.4.1 applies. However, the profit function differs, as a θ -type firm

can now calibrate demand using its private information about its quality. The following

proposition is the analog to the results in the baseline model.

1. Consider a setting with homogeneous priors. For sufficiently small β , firms induce

a negative WOM equilibrium in any pooling equilibrium.

2. Consider a setting with heterogeneous priors and F =U [0,1]. For sufficiently small

β , in the H-optimal pooling equilibrium, given the same cutoff costs ξ and ξ as

Proposition 2.4.2, the equilibrium entails full WOM if ξ ≤min{ξ ,ξ} and no WOM

if ξ ≥max{ξ ,ξ}. Furthermore,

17We conjecture that a semi-separating may exist if we allowed for mixed strategies.
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• if 2πL ≥ 1−πH , then ξ ≥ ξ and for ξ ∈ [ξ ,ξ ] the equilibrium entails negative

WOM,

• if 2πL ≤ 1−πH , then ξ ≤ ξ and for ξ ∈ [ξ ,ξ ] the equilibrium entails positive

WOM.

To summarize, only the profit-maximizing price differs from the setting with symmetric

information. All WOM equilibria are unchanged.

2.5.3 More than one follower

In a platform like Yelp, a single review is read by multiple potential consumers. In our

model, if an early adopter is matched to not one, but n> 1 followers whose prior beliefs are

drawn from a distribution F , the analysis is identical, but with ξ replaced by ξ

n . Thus, the

more followers can see a review, the more word of mouth we expect. However, the type of

word of mouth is unaffected by the number of followers n that one receiver speaks to. Note

that, in this argument, we do not take into account that followers might be receiving more

than one message. Instead, an early adopter is chosen at random to have the opportunity

to review and n followers read the review.

2.5.4 Idiosyncratic value

Finally, one might wonder how the results would change if the potential customer base

had idiosyncratic preferences over different products (horizontal differentiation). Suppose

that the expected utility of a follower of purchasing the product at price p is

φ̂(φ ,m)πH +(1− φ̂(φ ,m))πL + ε− p≥ 0

where ε is a taste parameter distributed according to a distribution G. The cutoff beliefs

Φ(p,ε), φ(p,ε) and φ(p,ε) are functions of the realized ε and we need to categorize
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WOM equilibria as

• pessimistic, whenever
∫

F (Φ(p,ε))− F(φ(p,ε))dG(ε) ≥ ξ

1−β
≥
∫

F(φ̄(p,ε))−

F (Φ(p,ε))dG(ε);

• optimistic, whenever
∫

F(φ̄(p,ε))− F (Φ(p,ε))dG(ε) ≥ ξ

1−β
≥
∫

F (Φ(p,ε))−

F(φ(p,ε))dG(ε);

• uninformed whenever
∫

F (Φ(p,ε)) − F(φ(p,ε))dG(ε),
∫

F(φ̄(p,ε)) −

F (Φ(p,ε))dG(ε)≥ ξ

1−β
;

• well-informed whenever
∫

F (Φ(p)) − F(φ(p))dG(ε),
∫

F(φ̄(p)) −

F (Φ(p))dG(ε)≤ ξ

1−β
.

Using this definition, Lemma 2.4.1 can be generalized. However, Proposition 2.4.2, only

holds if the taste parameter is a point-distribution as well. An analogous argument to

Proposition 2.4.2 (i) can be made only if tastes are not too dispersed. Hence, the interac-

tion between horizontal and vertical differentiation add some complications, but the forces

uncovered in Section 2.4 remain present even when we allow for some limited idiosyn-

cratic taste.

2.6 Empirical Evidence

Our analysis shows that the selection of positive versus negative WOM can depend on two

factors: the strength of the brand image (how dispersed priors are) and the informativeness

of negative/positive experiences. A stark and testable prediction is that with homogeneous

priors, i.e. if the brand name is close to well-entrenched, no positive WOM can arise

(Propositions 2.4.2 and 2.4.2). In contrast, for weak brands with “good news processes”,

positive WOM arises in any equilibrium (Proposition 2.4.2). In this section, we examine
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these testable implications with data. The case of Yelp.com is closer to the scenario of

multiple followers that we discuss in Section 2.5.3.

2.6.1 Restaurant Industry and Review Platforms

Restaurant review platforms present a good setting to validate our theoretical predictions.

Restaurants are experience goods whose quality cannot be fully ascertained a priori (Nel-

son 1970, Luca 2016) and people often rely on recommendations from their social con-

tacts.18 Moreover, the restaurant industry allows us to distinguish cleanly between ho-

mogeneous and heterogeneous priors. Prior beliefs about restaurant quality naturally vary

across consumers, and the extent to which consumers agree depends on how they inter-

pret the visible characteristics of a restaurant: the brand name, cuisine, chef, etc. In this

context, national chains like Subway or Domino’s Pizza have invested millions of dollars

to create a well-entrenched brand image with a clearly communicated brand promise and

product portfolio. We can thus expect people to have homogeneous beliefs about the qual-

ity of such chain restaurants. In contrast, the industry also has smaller, independent restau-

rants that are typically one-store entities that cannot build such a clear reputation, and must

start out with more variance in consumer beliefs about their quality. We thus expect people

to have heterogeneous beliefs about the quality of independent restaurants. Existence of

these two types of restaurants is critical to testing the predictions of our model. Moreover,

unlike some other product categories which also have active review forums (like hotels,

cars or movies), restaurants are quite local, without strong loyalty programs. Hence, it is

reasonable to assume that reviewers are motivated to engage in WOM because they want

to be providers of useful instrumental information, rather than by loyalty rewards or other

1894 % of US diners are influenced by online reviews as per the Trip Advisor “Influences in Diner
Decision-Making” survey 2018. BrightLocal’s 2017 Local Consumer Review Survey estimated this number
at 97 %
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external incentives.19

2.6.2 Data Description and Summary Statistics

We construct our dataset from the Yelp Data Challenge 2017 and separate chain restaurant

data. The Yelp dataset has business, review and reviewer information for restaurants in

several US and some Canadian cities (majorly Pittsburgh, Charlotte, Las Vegas, Cleveland,

Phoenix and Montreal) between the years 2004-2017. Every review in this dataset has a

unique identifier, an overall rating, review text and timestamp. Reviews can be linked

to a specific reviewer and business through unique business and reviewer identifiers. For

every business, we know the name and exact location. Likewise, for every reviewer we

have information like when they joined the platform, how many years they have been part

of the Yelp Elite program, number of friends and fans and how many compliments they

have received. We augment this dataset with other business characteristics like whether

the business is a chain or not (chain dummy), and for chains we add the age of the brand

and number of stores of the brand in US (from Statista.com and company websites). We

also derive the cuisine variable for a restaurant using information from corporate reports

for chains and name-matching for independent restaurants.20

The restaurants in the data cover a huge variety of cuisines; we restrict attention to

cuisines for which there exist both independent restaurants and chains. We identify 72

chains and cluster them based on two dimensions, age of the chain and number of stores in

the United States. Seven are classified as national established chains with a median brand

age of 62 years and median spread of 15K stores per chain (in US). These seven chains are

Burger King, Domino’s Pizza, Dunkin’ Donuts, KFC, McDonald’s, Pizza Hut and Sub-

19Yelp.com in fact recognizes this self-enhancement motive of users, and encourages users to interact and
build a community, through programs like Yelp Elite. We do however find some evidence that sometimes
reviewers review to give feedback to the restaurant or a particular server.

20Independent restaurants often have the cuisine in their name for e.g., Otaru Sushi or Mooyah Burgers.
We ignore restaurants for which we cannot identify the cuisine.
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way.21 We have 30,419 reviews from 2834 such national established chain stores. There

are two additional clusters that we combine in a category that we call less established

chains. These are either old brands with limited coverage e.g., Carl’s Jr and Chick-fil-A or

relatively newer brands and cuisines e.g., Applebee’s Neighborhood Grill & Bar, Red Lob-

ster and Chipotle. Their median brand age is 50 years and coverage is 1000 stores across

US. We have 86,359 reviews from 2913 less established chains. Most of the national

established chains are sandwich, pizza, burger joints and coffee shops whereas the less es-

tablished chains have a wider variety of cuisines e.g., “delis”, “chinese”, “breakfast” and

“steak”. To ensure fair comparison, we chose independent restaurants serving the same

cuisines by name-matching on “sandwich”, “pizza”, “burger”,“steak”, “deli”, “breakfast

(or brunch)”, “chinese” and “coffee” categories. This gives us a total of 307,622 reviews

from 6228 independent restaurants. Refer to Table 2.1 for a summary of the characteristics

of the different restaurant types.

2.6.3 Supporting Evidence from Data

Rating Distribution Of Chain and Independent Restaurants

We start with describing the raw data by presenting some summary statistics, and distri-

butions of ratings for different types of restaurants. We calculate two review statistics: the

average review-level star rating and the average store-level star rating. We can see from Ta-

ble 2.1 that review-level average ratings for independent restaurants tend to be higher (3.8)

compared to national established chains (2.3) or less established chains (3.1). Moreover,

for the independent restaurants, the average store-level star rating (3.56) is lower than av-

erage review-level star rating (3.8). Thus, “good” independent restaurants seem to receive

disproportionately many reviews relative to “bad” independent restaurants. In contrast,

21Table 5.1 has some more details about these chains like revenue, brand value and proportion of positive,
negative and neutral word of mouth
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the average store-level star rating of national established chains (2.46) is higher than the

average review-level star rating (2.34). Thus, “good” established chain restaurants receive

disproportionately fewer reviews relative to “bad” restaurants. This difference suggests a

differential propensity to review chains and independent restaurants, conditional on bad or

good experiences.

We also look at the full distribution of ratings for independent restaurants and national

established chains in the dataset. Figure 2.2 shows that national established chains re-

ceive a large number of 1-star reviews whereas independent restaurants receive mostly 4

and 5 star reviews. The distribution for less established chains is somewhere in between.

This is consistent with our theoretical predictions: Recall that Proposition 2.4.2 suggests

that in case of homogeneous priors, we should expect negative word-of-mouth. As we

argued above, consumers are likely to have homogeneous prior beliefs about national es-

tablished chains, and more heterogeneous beliefs for independent restaurants, and so our

model would predict that national established chains have overwhelmingly negative re-

views. The figure also shows the distribution of reviews separately for the first year after a

restaurant appears on Yelp (light grey histogram). We do this to stay closer to our theoret-

ical assumption of small β . The patterns are qualitatively similar.

Table 2.1: Summary Statistics of Independent and Chain Restaurants

Independent National Chains Less Estd Chains

Mean Median SD Mean Median SD Mean Median SD

Age of Brand (Yrs) NA 63 62 13 50 48 18
Stores in US (’000) NA 15.8 15 5.9 1.9 1.0 2.5
Age of Store (Yrs) 3.4 3 2.9 2.9 3 2.3 3.9 4 2.8
Store Rating 3.54 3.91 0.55 2.46 2.27 0.7 2.9 3.1 0.6
Review Rating 3.8 4 1.3 2.3 2 1.5 3.1 3 1.5

No of Stores in Data 6228 2834 2913
No of Reviews in Data 307,622 30,419 86,359

Note: Store Rating is the average of the aggregate ratings at the individual store-level. Review rating is simply the average of all
reviews. Thus, store rating gives equal weight to stores irrespective of review count. Differences in means are statistically significant

(p < 0.00001).

A natural question is whether the difference in star ratings can be mainly attributed to
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Figure 2.2: Histograms of Star Ratings: Independent versus Established National Chains

(a) Independent Restaurants (b) National Established Chains

quality differences. First, many chain restaurants repeatedly ranked higher on customer

satisfaction by American Customer Satisfaction Index Survey (ACSI).22 ACSI index and

revenue data for some of the largest chains are summarized in Table 5.1 in the online

appendix. Further, many of these chains have continued to show revenue and profitability

growth over the years according to the Quick Service Restaurants Reports 2009-2018.

Finally, the number of years that the restaurants are active in the data (in Table 2.1) is

comparable across segments, suggesting that exit of low quality independent restaurants

cannot explain the high average reviews of independent restaurants.

Impact of the Chain and Brand Effect on Restaurant Ratings

The differences in distributions of ratings noted above may be driven by many factors

such as cuisine, location-specific heterogeneity or reviewer experience. We estimate the

22The American Customer Satisfaction Index (ACSI) measures the satisfaction of U.S. household
consumers with the quality of products and services by surveying roughly 300,000 consumers—
https://www.theacsi.org/about-acsi.
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impact of being a chain restaurant on the overall rating of a restaurant, controlling for

several restaurant and user characteristics — price range, cuisine, city as well as reviewer’s

platform experience, Elite program membership and reviewer-specific rating leniency. We

specify

Ri jt = β0 +β1 Chain j +β2X j +β3Ui + εi jt (2.1)

where Ri jt denotes the rating of restaurant j by reviewer i at time t, Chain j captures

whether restaurant j is a chain or not, X j includes the restaurant price range,23 cuisine and

city, and Ui captures reviewer-specific variables such as user experience in years, an Elite

dummy and reviewer average rating from other reviews. As another consistency check for

our theory, we separately estimate the impact of brand age and number of stores (cover-

age) since these can be proxies for the strength of the brand image and can determine the

dispersion of consumer beliefs.

Ri jt = β0 +β1 Brand age jt +β3 No of stores jt +β2X j +β3Ui + εi jt (2.2)

Here Brand age jt measures the age of chain j (only applicable for chains) at time t, and

no of stores jt is the number of stores of the chain j in US at time t. Table 2.2 (1) shows that

being a chain restaurant results in getting about 1 star less than a comparable independent

restaurant.24 Further, Table 2.2 (2) shows that the propensity to write a negative review

increases with age of brand and number of stores; a 50 year old brand with thousands of

stores will receive 0.5 less stars as compared to a new chain with very few stores. The

chain and brand age effects are quite resilient controlling for different user characteris-

tics (4 and 5 in Table 2.2), though the magnitude of the chain effect is slightly reduced

when we account for reviewer-specific leniency (average of reviewer’s ratings on other

23Price is not the absolute price but rather a user’s perception of restaurant’s price range.
24We also ran the same regression (2.1) with only first-year reviews and the coefficients remain similar.
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restaurants).25

We also estimate the impact of the chain effect on the number of positive, negative and

neutral reviews at a business level. In particular, we run the three specifications

Count(Rev)g jt = β0 +β1 Chain j +β2X j +β3Ui + ε jt , (2.3)

where Count(Rev)g jt denotes the number of reviews of type g (positive, negative or neu-

tral) that a restaurant j receives in the first year and over its lifetime on the platform. The

reviewer characteristics Ui j are averaged across all reviewers of a restaurant j. The results

are summarized in Table 2.3. A chain restaurant receives 8 less positive reviews in its first

year than a comparable independent restaurant and 26 less positive reviews over its entire

lifetime. Coupled with the fact that chains are less likely to receive any type of reviews,

this is a large number of reviews and can sufficiently alter the search outcomes in a plat-

form like Yelp.com where users rely mostly on average ratings and more recent reviews

for sorting.

[

Brand Image and Beliefs: Textual Analysis of Reviews

Our premise is that the overwhelmingly negative WOM observed in chains is driven by

the existence of homogeneous consumer beliefs about the brand: Negative reviews re-

flect deviations from what consumers collectively expect from the chain. For independent

restaurants, consumers know that they do not share the same expectations, so the reference

to expectations is less meaningful. If this premise is correct, a higher proportion of reviews

from chain restaurants should contain words related to expectation or belief as compared

to independent restaurants. Moreover, we hypothesize that these words are more likely to

25There could be an impact of local competition. However, it is not straightforward to define the compe-
tition set for a restaurant. So instead, we control for location(city) that captures some of this effect.
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Table 2.2: Impact of Chain Dummy and Brand on Star Ratings

Dependent variable: Overall Rating

rev stars

(1) (2) (3) (4) (5)

Chain Dummy -1.061*** -1.062*** -1.021***
(0.0641) (0.0633) (0.00958)

Brand Age(Yrs) -0.0104*** -0.0106***
(0.000166) (0.000159)

No of Stores (US) -0.0000435*** -0.0000380***
(0.000000871) (0.000000831)

Age of Store(Yrs) -0.0103** -0.00834* -0.0113*** -0.0119*** -0.0142***
(0.00329) (0.00365) (0.000813) (0.000865) (0.000807)

Price Range
$$ -0.144*** -0.143*** -0.130*** -0.148*** -0.133***

(0.0338) (0.0334) (0.00585) (0.00563) (0.00543)
$$$ 0.0477 0.0434 0.0725*** 0.170*** 0.186***

(0.0627) (0.0628) (0.0128) (0.0131) (0.0126)
$$$ 0.161* 0.153* 0.196*** 0.267*** 0.293***

(0.0755) (0.0751) (0.0149) (0.0151) (0.0146)
Price Range × Chain
$$ × Chain 0.255*** 0.258*** 0.255***

(0.0595) (0.0588) (0.0122)
$$$ × Chain 0.704** 0.700** 0.654***

(0.245) (0.242) (0.0556)

$$$ × Chain 0.724*** 0.732*** 0.614***
(0.162) (0.156) (0.0679)

Select Cuisines
burger -0.0531 -0.0548 -0.0694** 0.184*** 0.136***

(0.0905) (0.0895) (0.0242) (0.0259) (0.0247)
chicken -0.0563 -0.0549 -0.0232 0.0328 0.0459

(0.0837) (0.0831) (0.0282) (0.0296) (0.0283)
chinese -0.165* -0.162* -0.167*** -0.470*** -0.482***

(0.0741) (0.0736) (0.0354) (0.0378) (0.0357)
coffee 0.296*** 0.293*** 0.275*** 0.534*** 0.482***

(0.0732) (0.0724) (0.0245) (0.0261) (0.0249)
dessert 0.407*** 0.401*** 0.376*** 0.314*** 0.291***

(0.0659) (0.0654) (0.0277) (0.0288) (0.0275)
pizza -0.116 -0.114 -0.0855*** 0.157*** 0.143***

(0.0750) (0.0744) (0.0244) (0.0261) (0.0249)
sandwich 0.107 0.103 0.111*** 0.243*** 0.218***

(0.0668) (0.0655) (0.0245) (0.0262) (0.0251)
Reviewer characteristics
Yelp Experience 0.0000620 -0.000126

(0.000229) (0.000110)
Elite Years 0.0263*** 0.0245***

(0.00194) (0.00209)

N 418653 415423 418653 415423 418653
adj. R-sq 0.096 0.097 0.106

User Fixed Effect N N Y N Y

Note: Standard errors clustered by business ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: Restaurant controls include restaurant price range, cuisine and city, where the price range is calculated from user perceptions of

a restaurant’s price range. User controls include user experience in years, an Elite dummy and reviewer average rating from other
reviews. To account for competition we further control for the city location of the restaurant. Specification (1) measures the chain

effect without reviewer controls, (2) with reviewer controls, (3) with reviewer fixed effect, (4) and (5) measures the differential impact
of brand age and no of stores for a chain brand. (4) and (5) establish that the chain effect is mainly driven by brand strength.
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be present in negative reviews of chain restaurants.

To verify these hypotheses, we examine the textual content of a subset of randomly

selected 750 reviews. We are interested in how the review text differs for positive (4-5

stars), negative (1-2 stars) and neutral (3-star) reviews of chains and independent restau-

rants. We create a custom dictionary of expectation words and use it to look for instances

when people mention prior beliefs and expectations in the review text. Examples of these

words would be “expect”, “past”, “improve”, “decline” to name a few. We also use the pre-

built LIWC dictionary (Pennebaker 1997) to identify mentions of discrepancies in review

text which capture deviation from expectations.26 LIWC is a widely-used dictionary in

psychology and marketing and examples of discrepancy words include “should”, “could”,

“would have”. Together, our custom dictionary of expectation and the LIWC discrepancy

keyword list would be able to identify instances of mentions of past notions and devia-

tions from belief. We also construct a custom dictionary of novelty which would identify

mentions of being “surprised” or “new experiences.”

Table 2.4 shows the proportion of reviews, by restaurant type and valence, that contain

mentions of expectation, novelty and discrepancy. We can see that negative reviews of

chains are most likely to have expect words (33% of all negative chain reviews). How-

ever, positive reviews of chains are also more likely to have expect words in comparison

to independent restaurant reviews (25% versus 16-18% in independent restaurants). This

is consistent with our assumption of homogeneous and strong priors for branded chain

restaurants. Neutral reviews in general contain more expect words (which is not surprising

as a 3-star most often means that the restaurant met expectations). Similarly, discrepancy

words are more likely to be present in negative reviews. Novel words are most often found

in positive reviews of independent restaurants and negative reviews of chains which means

that people generally want to mention positive surprises for independent restaurants (for

which they have uncertain priors), but report only negative surprises for chains. Interest-

26See Appendix Table 5.2 for our dictionaries of expectation,novelty and employee words.
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ingly, employees are mentioned the most in negative chain reviews suggesting that, people

often review to complain about an employee (in chains), as this is the only uncertain aspect

of their visit to an established chain restaurant.

Table 2.4: Presence of Expectation, Novelty and Discrepancy Words

Chain (Proportion of Reviews) Independent (Proportion of Reviews)

N Expect Novel Employee Discrep N Expect Novel Employee Discrep

Negative 42 0.33 0.33 0.35 0.73 90 0.18 0.21 0.25 0.75
Positive 70 0.25 0.28 0.24 0.47 378 0.16 0.33 0.2 0.61
Neutral 46 0.3 0.41 0.3 0.65 125 0.27 0.3 0.19 0.78

Expect stands for presence of expect words. Likewise, Novel, Employee and Discrep stands for presence of novelty, staff-related and
discrepancy words.

Robustness: Verified Reviewers

It is widely known that fake reviews are common on many review platforms including

Yelp.com (see e.g. Luca and Zervas (2016)). While the long-term negative impact of fake

reviews seems to be limited (see He et al. (2020)), Mayzlin et al. (2014) document that,

in the hotel industry, chains have a higher propensity of receiving fake negative reviews

when the neighborhood includes more independent hotels.

Our dataset excludes all reviews that were identified by the Yelp filter to be fake, but the

filter is likely not able to filter out all fake reviews. To show that the observed differences

in valence cannot be completely attributed to chains receiving more fake negative reviews,

we re-run our analysis with a subset of reviews written by Yelp-verified Elite Reviewers,

which are guaranteed to be genuine. First note that Table 2.5 shows that there are no

major differences between Elites and Non-Elites in the type of restaurants they reviewed:

Both groups review an almost equal proportion of chains and high-end restaurants (at least

for the cuisines we are studying i.e. “sandwich”, “pizza”, “burger”, “delis”, “coffee” etc.

mentioned earlier). Elites, do write slightly more positive reviews (average Elite rating is

3.7 compared to 3.4 for Non Elites) and tend to review newer restaurants (average age of
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restaurant reviewed by Elites is 3.1 years whereas for Non Elites it is 3.6 years). Table 2.6

summarizes the analogous results to Table 2.2 with only Elite reviews. In spite of the fact

that Elites write more positive reviews, the reviews for chain restaurants are still 0.5 stars

lower than comparable independent restaurants. Thus, our results are robust and remain

qualitatively similar for a pool of verified reviewers.

Table 2.5: Elite and Non Elite Reviewers

Rating (Mean) StoreAge
(Mean)

Experience
(Mean)

% Chains % High-End

Elite 3.7 3.1 82 26.3% 10.7%
Non Elite 3.4 3.6 61 27.1% 10.4%

2.7 Conclusion

We propose a theoretical model of strategic WOM that explains how positive and negative

WOM arises in equilibrium. We highlight two factors that determine selection of positive

versus negative WOM — the strength of the brand image as measured by the dispersion

of beliefs about quality, and the informativeness of good and bad experiences. The brand

image affects how many customers the firm can attract given its profit-maximizing price,

which in-turn impacts how many consumers can be influenced by WOM.

On platforms like Yelp.com, users rely mostly on average ratings to sort. A practi-

cal implication of our results is that since the propensity to review varies after good or

bad experiences based on the brand image, average reviews are not a reliable measure of

quality 27. More specifically, WOM needs to be interpreted differently for different types

of restaurants, and it can be problematic to use only rating comparisons on review plat-

forms to make purchasing decisions. Solutions can be to incentivize all consumers to write

27Jin et al. (2018) also highlight the disadvantages of focusing on average ratings alone and define an
adjusted average that accounts for reviewer heterogeneity and past ratings
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Table 2.6: Impact of Chain Dummy and Brand on Star Ratings (For Elites)

Dependent variable:

rev stars

OLS

(1) (2) (3) (4)

Chain Dummy -0.539∗∗∗ -0.538∗∗∗

(0.012) (0.012)

Brand Age (Yrs) -0.001∗∗ -0.001∗∗

(0.0005) (0.0005)

No of Stores -0.00003∗∗∗ -0.00003∗∗∗

(0.00000) (0.00000)

Age of Store (Yrs) 0.011∗∗∗ 0.005∗∗∗ 0.008∗∗∗ 0.002
(0.001) (0.001) (0.001) (0.001)

Price Range

$$ -0.107∗∗∗ -0.108∗∗∗ -0.106∗∗∗ -0.107∗∗∗

(0.010) (0.010) (0.010) (0.010)

$$$ 0.147∗∗∗ 0.158∗∗∗ 0.185∗∗∗ 0.198∗∗∗

(0.021) (0.021) (0.021) (0.021)

$$$$ 0.334∗∗∗ 0.356∗∗∗ 0.373∗∗∗ 0.396∗∗∗

(0.024) (0.024) (0.024) (0.024)

Observations 90,588 90,588 90,588 90,588
R2 0.064 0.069 0.073 0.077
User Characteristics N Y N Y

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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reviews, or to present more sophisticated aggregated ratings that control for systematic se-

lection in reviews.

Finally, our research has important implications for understanding the link between

“conversational motives” and outcomes like valence. We find that the text in the reviews

can help identify the motivation of the reviewer (expectation deviance or reporting novel

experiences). Text analysis can be useful more generally to identify drivers of selection

issues in reviews, and to control for them.

We leave the questions around optimal design of review aggregation mechanisms and

a broader understanding of WOM motives for future research.
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Chapter 3

What makes sales pitches work? Using
Multi-Modal Video Data to Uncover

Success Factors

3.1 Introduction

Sales force recruitment and training is a key spending area for US firms across industries.

A Deloitte 2016 study finds that the cost-per-hire metric for US firms has gone as high

as $4000 1. Moreover, in complex jobs like sales, there is also a significant ramp-up

cost for new employee on-boarding. US firms spend close to 15 billion each year on

salesforce training and reducing salesperson onboarding time remains one of the major

concerns of Chief Sales Officers across the country 2. This is especially critical given the

high attrition rate for salespeople across organizations which means frequent hiring and

training expenditures3. Inspite of proliferation of new types of selling channels, the sales

pitch which comprises of a buyer-seller limited-time interaction still remains an important

1https://www.prnewswire.com/news-releases/bersin-by-deloitte-us-spending-on-recruitment-rises-
driven-by-increased-competition-for-critical-talent-300070986.html

2https://www.brainshark.com/sites/default/files/cso-insights-2016-sales-enablement-optimization-
study.pdf

3The 2016 Sales Performance Optimization Study finds that the average turnover rate is 16.3 % and more
than 40 % of organizations report that they need more than 10 months to ramp up a new sales personnel
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element of the selling process. Often times, the sales pitch is the first interaction of a

buyer with a company and the salesperson’s behavior determines the long-term financial

relationship between two firms. Hence, companies spend a lot of resources to train their

salesforce in mastering sales pitches using a mix of classroom, field and role-play oriented

training programs. Moreover, a key component of recruitment or training programs is

evaluation i.e., companies need in-house or external experts to recruit the right candidates

and evaluate their progress through the training process. In this paper, we propose to

develop an automatic salesforce assessment tool combining the rich literature on sales

tactics and persuasion in marketing and the recent advances in the areas of multi-modal

data analysis (textual, audio and visual) in computer science. Our research objectives are

two fold: First, we want to develop an automated assessment tool that can be used for both

initial screening of salespersons during recruitment as well as monitoring their progress

throughout the sales training program. Second, we want to advance the personal selling

literature by identifying underlying seller behaviors that lead to the success of certain

influence tactics with certain types of buyers using videos that capture the entire sales

interaction.

3.2 Related Literature

Our work is connected to several strands of literature — the marketing and personal selling

literature on influence tactics in sales, the psychology and economics literature on persua-

sion and the current computer science literature that connects audio and textual elements

to personality and orientation.

Our salesforce assessment tool uses a feature set of variables derived from the market-

ing literature on personal selling (Sheth 1976, Frazier and Summers 1984, Spiro and Weitz

1990) that has identified the importance of content, style and adaptability (similarity be-

tween buyer and seller) as the most important factors determining sales success. Content
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is defined as the actual product utilities that the seller offers and buyer demands while

style is defined as the “format, ritual and mannerism” that the buyer and seller adopt in

their interaction. The definition of style has been more abstract and there are no unifying

models of style, however, it is largely understood as elements of language (e.g., noun-verb

ratio, no of personal pronouns used) as well as some non-lingustic elements like speech

rate, energy in the voice as well as kinesics like hand movements and gestures (Williams

and Spiro 1985, Pennebaker et al. 2001). These variables are extremely hard to measure

in the absence of recorded videos of buyer-seller interactions and technology to precisely

measure these constructs. Likewise, research on similarity or adaptability has been largely

inconclusive (Churchill et al. 1975, Evans 1963) due to the absence of similarity measures

beyond the demographic characteristics of buyers and sellers.

The main contribution of our paper lies in quantifying the impact of communication

style (of the buyer-seller interaction) and buyer-seller similarity using textual and audio

data while controlling for content and characteristics of the dyad. Also, we will study the

impact of style at different stages of a sales pitch. Wilson (1976) is one of the early papers

that lays out the different stages of a buyer-seller interaction namely source legitimiza-

tion, information exchange or problem identification, attribute delineation, attribute value

negotiation and relationship maintenance. In line with this, we measure impact of con-

tent, style and similarity during introduction, need identification, presentation, objection

handling and closure phases of a buyer-seller negotiation. Different tactics could be more

important at different stages of the sales pitch. For example, being confident and energetic

at the start could be effective but probably a more calm, interactive approach works during

the display stage and the later objection handling phases.

Non-verbal communication has been extensively studied in behavioral sciences (Jones

and LeBaron 2002, Mehrabian 2017). Some of these studies have also studied the relative

importance of different modalities like voice or text for persuasion outcomes (Scherer et al.

1973, Van Zant and Berger 2020, Wang et al. 2021). Our work also compliments some
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recent studies on persuasion in computer science (Longpre et al. 2019, Shmueli-Scheuer

et al. 2019) and business (Manzoor et al. 2020) that look at textual and audio-visual data.

However, these studies have typically looked at persuasion as a one-shot construct and

have not focused on different stages of the process. Also, most of these studies focussed on

persuasion in the domain of social media videos that are typically one-sided. On the other

hand, a buyer-seller interaction is a two-way communication where the role of interactivity

and adaptability is a key factor over and above the message content and delivery (which

are both characteristics of the persuader).

3.3 Background and Data

In order to build a predictive model of persuasion for buyer-seller interactions, we need

training data that has been pre-labeled by human taggers. We use a unique data source

of buyer-seller role-plays that give us the flexibility of a lab study while giving incentives

to both buyers and sellers to put their best foot forward. Our data comes from the sales

lab of a large research institution where student sellers engage in a 20 min conversation

with a buyer who is a seasoned sales professional within their organization. During this

conversation, the seller tries to persuade the buyer to sign a contract with their company for

a technology related product. The duration of the interaction is fixed and sellers and buyers

are both briefed about the product and scenario beforehand. This interaction is not only

a grading component for the students but can also result in an internship with the buyer’s

firm. Thus, the buyers take part in this role-play to evaluate good prospective salespeople.

Thus, both buyers and sellers have a real incentive to participate in this interaction.

During the exchange, the buyer-seller interactions are rated by experienced judges

(who are sales professors at the university) on the National Collegiate Sales judgement

criteria ( See Fig 3.1). The judges rate the sellers based on the following stages of the

interaction:
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1. Introduction: This is the stage where the seller greets the buyer and tries to engage

in small talk in order to understand the buyer better and build a rapport. This stage

typically comprises of the first 2-3 mins of a conversation

2. Need Identification: This stage follows the introduction stage. Here, the seller digs

deeper into the problem areas for the buyer’s organization and tries to uncover im-

plicit and explicit needs. Sellers typically spend 6-8 minutes for need identification

3. Presentation: This is where sellers present their product to the buyers, usually they

would give a demo of the software and describe key features and how it can meet

the needs of their organization. This stage typically consists of 2-5 minutes.

4. Objection Handling: In this stage, the buyer raises objections about the product and

the seller has to put forth counter arguments. The length of this stage is normally

4-5 minutes, however sometimes this continues for longer and the seller runs out of

time.

5. Closure: In this stage, the buyer makes a decision and the duo decides on next steps

The judges also give 3 overall scores : persuasion (whether the seller makes a per-

suasive pitch), confidence (overall confidence level of the seller) and enthusiasm ( did the

seller come across as energetic). All the scores are on a scale of 1-10 where 10 is the

highest score. Our data comprises of all the judge scores as well as the actual videos of

the buyer-seller interaction. We then use AWS Transcribe to extract time-stamped text

transcripts of this exchange. Thus, the full dataset is multi-modal — it includes video

(which has both audio and visual components) as well as text (from the transcripts) and an

associated judge scoring matrix.
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3.3.1 Buyer Types

We also tag the videos to capture some buyer characteristics like gender, experience and

orientation. We use the definitions of buyer orientations as described in Sheth (1976). A

relationship oriented buyer is warm, friendly and cares more about building a long-term

relationship through the sales process. On the other hand, a transaction oriented buyer is

more task-focused and goal-oriented and likely to have a more serious demeanour. We

use human taggers to evaluate the interactions and categorize buyers into relationship and

task-oriented.

3.3.2 Descriptive statistics

We use 190 videos that comprise of the finale interviews across the years 2018-19 (the

toughest part of the college challenge). This is done to ensure that the interactions are very

close to real sales conversations. We have a unique seller in each video and 24 buyers

who take turns to interact with the students. These videos are then evaluated by a panel

of expert judges (each video is evaluated by 9-10 judges). Overall, 261 expert judges

have scored these videos resulting in 1752 evaluations. The inter-judge agreeability for

the persuasion score is high (Krippendorff’s alpha = 0.72) and thus we can use this as a

reliable outcome variable to train an ML model. Table 3.1 shows some summary statistics

of the scoring dataset. The judges score the videos on a scale of 1- 10 (however, the

minimum score is 7 across all our videos). For the purpose of building a binary predictive

model of persuasion, we segment videos into high persuasive and low persuasive videos.

High Persuasive videos have a score greater than the median score (8.5). These are also

the students who usually land the internships. Like we can see in Table 3.1, we have 94

high persuasion videos and 97 low persuasion videos in our dataset which ensures a good

class balance. Overall, high persuasion pitches have higher scores across all dimensions

and especially for the objection handling and display stages. We now look at differences
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Figure 3.1: NSC Judgement Criteria
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in interactivity and some select linguistic and audio features in high and low persuasive

pitches in Table 3.2. We discuss these features in more detail in the empirical framework

section. Successful pitches are in general more interactive (higher average number of

turns). They involve fewer long monologues by the buyer or seller. The word count is

somewhat higher for the successful pitches and they are more energetic.

Table 3.1: Persuasive versus Non-Persuasive Videos (Content)

Mean (SD)

Type of Video Intro Needs Display Objections Communication Confidence N

Persuasion ( High) 8.9 (0.38) 8.9 (0.35) 9 (0.42) 8.7 (0.44) 9.1 (0.32) 9.25 (0.39) 94.00
Persuasion (Low) 8.5 (0.43) 8.5 (0.44) 8.4 (0.52) 8.0 (0.43) 8.6 (0.42) 8.57 (0.54) 97.00

No of sellers 337
No of buyers 24
No of judges 381

Table 3.2: Interactivity and Textual/Audio Features

Type of Video Turns Buyer M (sec) Seller M (sec) Buyer WC Seller WC Energy

Persuasion ( High) 58 (14) 76 (34) 46 (17) 1349 (321) 1432 (313) 0.05 (0.03)
Persuasion (Low) 54 (12) 89 (43) 53 (89) 1270 (319) 1373 (322) 0.04 (0.02)

Buyer(Seller) M is the maximum duration of a buyer (seller) monologue. Buyer(Seller) WC is the total number of words spoken by
the buyer and seller respectively. These measures are derived from the transcript of the conversations. Energy is captured from the

voice of the seller.

3.4 Empirical Framework

The prediction outcome variable of interest is the binary persuasive construct (High or

low persuasion). The gold standard is a model that predicts whether an interaction is

persuasive or not based on the scores of the judges. Our goal is to build a predictive model

that incorporates the textual, audio and visual features in our video data to come up with a

persuasion scoring tool that matches the accuracy of human raters.

We hypothesize that four types of features impact persuasion: content of the message,

style of delivery, interactivity and similarity between buyer and seller (in terms of static
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and stylistic elements). The first two feature groups (content and style) are seller-driven

whereas the third and fourth feature groups (interactivity and similarity) are a function of

both buyer as well as seller.

• Content: This comprises of the substantive, topic-oriented aspects of the message

excluding any stylistic elements. We run a topic model on our entire conversation

transcript data and find 4 important topics that are discussed in these interactions.

They are closely related to the four different stages of the conversation. These in-

clude topics around Greeting and Pleasantries. These generally occur during the

beginning of the conversation and involve words and phrases like “Hey”, “Good

Morning”, “weather”. As the conversation proceeds, the other topics that get men-

tioned can be categorized into Busines, Technology and Pricing. The Business topic

is related to the buyer’s business problem and include words like “salesperson”,

“manager”, “growth” and “profitability”. The Technology topic is about the more

technical aspects of a product (as the scenario involves selling a technology product)

and consists of words like “app”,“cloud”, “infrastructure” to name a few. Pricing

topic is about the cost of set-up and payment terms and conditions. In Table 3.3 we

summarize the top words for each of the topics. The content-related features include

the proportion of each topic mentioned by a seller during the interaction.

• Style: This comprises of both verbal as well as non-verbal communication cues.

Hence, it is extracted from textual, audio and visual features of the data. Textual

features that are indicative of style include verbosity (no of words per sentence), non-

verb ratio, various parts of speech used (e,g., prepositions, verbs, adverbs), positive

and negative emotion words, words signifying certainty as well as tentativeness (e.g.,

absolutely, perfectly, obviously, maybe, could be, try ), assent words (yeah, yes, of

course) to name a few. We use the LIWC dictionary (Pennebaker et al. 2001) to

extract these stylistic elements from the transcripts of the interaction. LIWC has
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Table 3.3: Most common words for each content class

Technology Business Greeting Pricing

laptop salesforce come chargeable
security decision makers hey buy
mobile business morning prices
pipeline leads meet discount

data quoting weather monetary
storage customers sunny expenditure
cloud sales week subscriptions
digital communication thank you budgeted

transformation employees yankee wallet
electronic problems holidays cost
screenshot territories spring break expensive

licenses ownership christmas pay
firewalls people business card dollars
emails agents traditions worth
video company greeted price

licensing potential client thanksgiving money
website insurance cooking

touchscreen manager enjoyed
login oversee breakfast

leaderboards monthly reports Friday
printout team family

technologies region
usb visibility

kiosk growth
android profitability
versions promotion
charts revenues

database forecasting
mobility goal
phone supervisors

app premium
tablet competitive

dashboard due diligence
computer reps

tool trajectory
elaborating

underperforming
policy holder
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been widely used in social sciences to quantify stylistic elements of language. In

voice, style is mainly conveyed by energy, pitch, speech rate and voice modulation.

We use the pyaudio library in Python to extract voice features. Visual elements that

can communicate style include hand movements (velocity and amplitude) as well as

body postures.

• Interactivity: This measures whether the dialogue involves active participation from

both seller and buyer. A highly interactive conversation would include higher no of

turns and would not have long monologues from either the buyer or seller.

1. Turns: This is the simply the no of times the conversation moves from buyer

to seller and vice-versa.

2. Buyer Seller Share of Voice (SOV): This is the ratio of the speaking time of the

buyer versus the speaking time of the seller. Even if the conversation has many

turns, it might be the case that one speaker has long monologues whereas the

other speaker just nods or says shorter sentences. Thus, over and above turns,

this metric captures the participation of both speakers.

3. Buyer (Seller) Max Monologue: This captures the longest time duration during

which either party speaks uninterrupted.

• Similarity : We measure similarity in terms of both static characteristics of buyer

and seller (e.g., gender and age) as well as stylistic factors that we notice during the

interaction. The style similarity between buyer and seller is operationalized as the

Euclidean distance between the style vectors of the buyer and the seller where each

style vector has language and audio-visual elements extracted from the interaction

videos.
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Table 3.4 summarizes the textual, audio and interactivity features that we extract for

quantifying linguistic style and measuring stylistic similarity between the buyer and the

seller.

Table 3.4: Textual, Audio and Interactivity Features

Type Modality Feature Explanation

Style Text Words per sentence This measures how verbose the sentences are
Style Text Complex words Using words that have more than 6 letters
Style Text Parts of speech Proportion of verbs, aux verbs, adjectives and prepositions
Style Text Individualistic “I”, “I’m”, “me”, “my”
Style Text Collaborative “we”, “us”, ”both”
Style Text Assent “yes”, “obviously”, “yeah”
Style Text Filler Words “hmm”, “aah”,“huh”
Style Text Certainty “ofcourse”, ”definitely”, ”absolutely”,”confident”, “sure”
Style Text Tentativeness “maybe”, ” could be”, ” likely”
Style Text Emotional Words Positive and Negative Sentiments
Style Text Politeness “please”, “Thanks”, “grateful”
Style Text Questions Question Marks, “how”,“when”, “Where”
Style Text Thinking/Insight “think”, “most likely”
Style Text Cause “because”, “reason”, “causes”, “therefore”
Style Text Difference “but”, “yet”,” disagree”
Style Text Achieve “success”, “win”, “launch”, “therefore”
Style Audio Energy Measures how energetic or enthusiastic the seller is
Style Audio Speech Rate No of words per sec
Style Audio Brightness The Spectral Centroid measures whether the voice is bright or dull
Style Audio Voice Modulation No of times the voice signal goes from low to high and vice versa
Interactivity NA Turns No of turns in the buyer-seller conversation
Interactivity Audio Buyer Max Monologue The maximum duration (in secs) during which the buyer talks uninterrupted
Interactivity Audio Seller Max Monologue The maximum duration (in secs) during which the seller talks uninterrupted
Interactivity Audio buyer Seller SOV Ratio of time buyer speaks to seller speaks

3.5 Results

In this section, we discuss the performance of models that use different combinations of

features for prediction. We try a range of predictive machine learning algorithms like

SVM, Logistic Regression and Random Forest but report the Logistic Regression results

as it is the best performing model. We then do a variable importance study to understand

what features are driving the outcome decisions of the machine learning model. Finally,

to understand the heterogeneous impact of different content, style and interactivity related

measures on different types of buyers, we repeat the analysis for specific groups of buyers

(Male vs Female buyers and Relationship-oriented vs Transaction Oriented buyers).

100



In Table 3.5, we summarize the performance of the Logistic Regression based models.

The gold standard model is the one that predicts persuasiveness based on the scores that

judges give at different stages of the interaction. Such a model is able to predict persua-

sion with an 82 % accuracy. Since it is a binary classification task, the baseline accuracy

is 50% which is the probability of identifying the correct class by random guessing. We

fist build simple models that capture only one set of features (content, style, interactivity).

The model that only uses content features is as good as a random guessing model. How-

ever, models that incorporate stylistic and interactive features perform better on accuracy,

precision as well as recall measures. The model based on stylistic features achieves an F1

score of 61%. The audio features improve the prediction accuracy of the model and com-

bining all textual and audio features gives an accuracy of 63 % ( i.e. 26 % improvement

over random guessing).

Table 3.5: Performance Comparison

Model Feature Set Accuracy Precision Recall F1

Logistic Regression Content 50% 50% 52% 51%
Logistic Regression Style 61% 59% 70% 64%
Logistic Regression Interactivity 56% 54% 85% 66%
Logistic Regression Style + Content + Interactivity (Only Text) 54% 52% 70% 60%
Logistic Regression Audio 57% 55% 57% 56%
Logistic Regression Style + Content + Interactivity (Text+ Audio) 60% 59% 63% 61%
Logistic Regression All Features ( Text + Audio) 63% 60% 74% 68%
Logistic Regression Judge Scores ( Gold standard) 83% 82% 82% 82%

In Table 3.6, we describe the most important variables by models. In the prediction

model based on scores of human judges, the objection handling and display stages are

mainly driving the prediction outcomes which means these are the most important stages

of the buyer-seller interaction. Among content-based features, topics related to pricing

and business are most important. Among stylistic features in the text, Buyer certainty (that

captures buyer’s confidence and authoritativeness) is the most predictive feature followed

by the use of adjectives, collaborative words (like “we”) and words that signal agreement

(“yeah”,“yes”). Among the audio features, the most predictive feature is the Energy in the

first 5 minutes of the conversation followed by the overall energy during the interaction.

101



In the model that takes all textual, audio and interactive elements as input, the most pre-

dictive features are conversation turns, overall Energy, content around Pricing and Buyer’s

certainty (which could be interpreted as confidence).

Table 3.6: Variable Importance

Model Most Important Features (Variable Importance Measure)

Judge Scores Objection(0.87), Display (0.62), Non Verbal (0.31),
Verbal Comm (0.28), Introduction (0.23)

Content Price (0.17), Business (0.11)
Style Buyer certain (0.57), Buyer adj (0.56),Buyer we (0.31), Buyer assent (0.11)
Audio Energy 5 (0.144), Energy (0.002)
All Features Turns (Interactivity), Energy (Voice), Price (Content), Buyer Certainty(Style)

We now split the data into interactions that involve male buyers and female buyers. We

then run the same model on these two subsets of data and derive variable importance mea-

sures. Likewise, we run the same model on two subsets of data that include transaction-

oriented versus relationship oriented buyers. This analysis helps us to understand if factors

that lead to persuasiveness are different for different types of buyers. Table 3.8 summa-

rizes the key insights. We find that male buyers are more content driven; especially pricing

related discussions are very important to persuade them. They value a style that is both

confident (seller shows certainty) as well interactive. It is important for the seller to be

energetic in the first 5 minutes of the conversation. For female buyers, the more important

features are related to style and interactivity. They especially like a collaborate tone which

is energetic and bright.

Relationship oriented buyers care more about interactivity. While both types value

style, they prefer different types of styles. Relationship oriented buyers like a warm and

interactive style. The energy at the start of the conversation is the most important feature

for them. Overall, they value interactivity a lot and prefer the use of “we” words and like

to hear questions. On the other hand, the transaction oriented buyers like an insightful,

rational and confident style shich involves questions and comparisons. They also like to
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hear achievement related words like “win”, “success” and “goal”.

Table 3.7: Variable Importance by Buyer Type (I)

Male Buyers Female Buyers

Pricing (Content) Cause (Text Style)
Certainty (Text Style) Energy ( Audio Style)
Energy in first 5 mins (Audio Style) “We” words (Text Style)
Assent/Agreement (Text Style) Certainty (Text Style)
Buyer Seller SOV (Interactivity) Voice Brightness (Audio Style)
Technology (Content) Drive (Text Style)
Insight (Text Style) Greeting (Content)
Business (Content) Questions (Interactivity)

Table 3.8: Variable Importance by Buyer Type (II)

Relationship Oriented Transaction Oriented

Energy in first 5 mins (Audio Style) Insight (Text Style)
Certainty (Text Style) “You” and “I” words (Text Style)
Energy in first 5 mins (Audio Style) “We” words (Text Style)
Assent/Agreement (Text Style) Filler words (Text Style)
Technology (Content) Cause (Text Style)
Questions (Interactivity) Comparison (Text Style)
Buyer Seller SOV (Interactivity) Questions (Interactivity)
“We” words (Text Style) Buyer Seller SOV (Interactivity)
Cause (Text Style) Achieve words (Text Style)

3.6 Conclusion and Future Work

Overall, we find that combining different modalities (like text, audio, interactivity) im-

proves the prediction of persuasiveness for buyer seller transactions. Using our prediction

models and variable importance measures, we can see that being interactive, confident

(certain), collaborative and energetic are very important for the success of a sales pitch

while there are some interesting differences based on buyer gender and orientation. We

think that incorporating visual features ( like hand movements and posture) would improve

the prediction power of our models. We also believe that coming up with a metric of sim-
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ilarity (for buyer and seller style) and using this as a feature in our model can improve

performance. Finally, we want to do this analysis at every stage of the negotiation process

to specifically understand what types of behaviors lead to success at different stages. This

would be an important incremental contribution over existing work in this domain. We

wish to incorporate these ideas into our future work.
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Chapter 4

Appendix to Chapter 1

4.1 Mturk Experiment

In this section, we describe the Mturk Experiment we run to motivate the importance of

attribute level ratings. First, to establish that enhanced ratings are useful for customers to

make better decisions, we conducted a 2×2 between subjects study on MTurk with 165

participants. Both the treatment and control groups are shown 4 restaurant reviews and

asked to chose a restaurant. Every restaurant is extremely good at one of the attributes—

food, service, price or ambiance and average on other attributes. The only additional in-

formation given to the treatment group is enhanced attribute level ratings. See Fig 4.1

for details of the study design. We compare the treatment and control groups on two

parameters— match and attention. We consider a match when a person’s restaurant choice

matches with their separately elicited preference i.e. a person who says she values food

chooses the restaurant that has excellent food and so on. We get our measure of attention

based on whether the survey respondent correctly answers the attention check question (

Q: How many restaurant choices did you have in the previous question ?) that we ask soon

after the restaurant choice question. We show in Table 4.1 that providing attribute senti-

ment scores in addition to text significantly improves the ability of customers to choose
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restaurants consistent with their separately elicited preferences over restaurant attributes.

There is also a significant positive impact on attention. The fact that the treatment group

is more attentive and makes choices more consistent with preferences shows that attribute

level ratings reduce the cognitive burden of consumers and help them in decision making.

Table 4.1: Match and Attention Comparison: Treatment (Attribute Scores)

N Mean (SD)
Match Attention

Treatment 74 0.7 (0.46) 0.94 (0.46)
Control 90 0.38 (0.49) 0.83(0.49)

p<0.01 p<0.05

4.1.1 LDA

We use document level LDA as an exploratory study of which topics are discussed in

reviews. We also use SLDA (supervised LDA) for extracting better topics. LDA and

SLDA results are shown below in Fig 4.2

4.2 A Hybrid CNN-LSTM Deep Learning Architecture

In this section, we include a more detailed discussion of the two most important layers of

the hybrid CNN-LSTM: the convolutional layer and the long short term memory layer.

Convolution Layer. The first feature generating layer in our architecture that follows

the embedding layer is the convolution layer. Convolution refers to a cross-correlation

operation that captures the interactions between a variable sized input and a fixed size

weight matrix called filter (Goodfellow et al. 2016). A convolutional layer is a collection

of several filters where each filter is a weight matrix that extracts a particular feature of

the data. In the context of text classification, a filter could be extracting features like

bi-grams that stand for negation e.g. not good or unigrams that stand for a particular

attribute e.g. chicken. The two key ideas in a convolutional neural network are weight-
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Figure 4.1: Mturk experiment: Importance of attribute sentiments

(a) Treatment Group

(b) Control Group
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Figure 4.2: LDA and SLDA topics

(a) LDA topics for Yelp review corpus (with seed words)

(b) SLDA topics for Yelp review corpus
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sharing and sparse connections. Weight-sharing means using the same filter to interact

with different parts of the data and sparse connection refers to the fact that there are fewer

links between the neurons in adjacent layers. These two features reduce the parameter

space of the model to a great extent thereby lowering the training time and number of

training examples needed. Thus, CNN-based models take relatively little time to train

compared to fully-connected networks or sequential networks. Training a CNN involves

fixing the weight matrix of the shared filters by repeatedly updating the weights with the

objective of minimizing a loss function that captures how far the predicted classification

of the model is from the true class of training data.

An embedded sentence vector of dimension n×d enters the convolution layer. Filters

of height h (where filter height denotes length of n-gram captured) and width d act on the

input vector to generate one feature map each. For illustration purposes, let us consider

a filter matrix F of size h× d that moves across the entire range of the input I of size

n× d, convolving with a subset of the input of size h× d to generate a feature map M

of dimension (n−h+1)×1. A typical convolution operation involves computing a map

by element-wise multiplication of a window of word vectors with the filter matrix in the

following manner:

M(i,1) =
n−h+1

∑
i=1

h

∑
m=1

d

∑
n=1

I(i+(m−1),n)F(m,n) (4.1)

When there is a combination of filters of varying heights (say 1,2,3 etc.), we get feature

maps of variable sizes (n,n−1,n−2 and so on).

Max-pooling and flattening operations are performed to concatenate variable size fea-

ture maps into a single feature vector that is passed to the next feature generating layer.

The role of the convolutional layer in this model is to extract phrase-level location

invariant features that can aid in attribute and sentiment classification. A feature map

emerging from a convolution of word vectors can be visualized as several higher-order

109



representations of the original sentence like n-grams that capture negation like “not good”

or “not that great experience” or n-grams that describe an attribute like “waiting staff”

or “owner’s wife.” The number of filters to be used, N f is fixed during hyper parameter

tuning. Feature maps from all filters are passed through a non-linear activation function

a f with a small bias or constant term b to generate an output that would serve as input for

the next stages of the model.

Oi = a f (Mi +b) (4.2)

The function f here can be any non-linear transformation that acts on the element-wise

multiplication of the filter weights and word vectors plus a small bias term b. We use

Rectified Linear Units (RELU) that is more robust in ensuring the network continues to

learn for longer time periods compared to other activation functions like the tanh function

(Nair and Hinton 2010). This activation function has the following format:

RELU(x) = max(0,x) (4.3)

This activation function sets all negative terms in the feature maps to zero while preserving

the positive outputs.

Figure 4.3 shows the structure of the convolution layer, the convolution operation re-

spectively and a sample visualization of a feature map. During the course of training, each

filter specializes in identifying a particular class. For instance, the filter in Figure 4.3 (c)

has specialized in detecting good food.

Long Short Term Memory (LSTM) layer. The concatenated feature maps from the

convolution layer are next fed into a Long Short Term Memory (LSTM) layer. LSTM is

a special variant of the recurrent neural networks (RNN) that specialize in handling long-

range dependencies. RNNs have a sequential structure and hence they can model inter-

dependencies between the current input and the previous inputs using a history variable
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Figure 4.3: Convolutional Neural Network

(a) CNN filters and hyper parameters

(b) Convolution Operation

(c) Visualization of a feature map
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that is passed from one time period to the next. However, in practice, RNNs fail to do

text classification tasks better than CNNs due to the “vanishing gradient” problem which

causes a network to totally stop learning after some iterations (Nair and Hinton 2010).

Vanishing gradients in the earlier layers of a recurrent neural network mainly result from a

combination of non-linear activation functions like sigmoid and small weights in the later

layers. LSTMs solve this problem by using a special memory unit with a fixed weight self-

connection and linear activation function that ensures a constant non-vanishing error flow

within the cell. Further, to ensure that irrelevant units do not perturb this cell, they employ

a combination of gate structures that constantly make choices about what parts of the

history need to be forgotten and what needs to be retained to improve the accuracy of the

task at hand (Hochreiter and Schmidhuber 1997). This architecture has shown remarkable

success in several natural language processing tasks like machine translation and speech

to text transcription.

Figure 4.4 is a comparison of RNN and LSTM architectures. In an RNN, the output

at a particular time t is fed back into the same network in a feedback loop. In this way, a

new input xt interacts with the old history variable ht−1 to create the new output ot and the

a new history variable ht . This is like in a relay race where each cell of the network passes

on information of its past state to the next cell (but each cell is identical, and therefore it is

equivalent to passing on the information to itself). The Long Short Term Memory (LSTM)

cell differs from the RNN cell on two important aspects—the existence of a cell state Ct

(the long term memory) and a combination of gates that regulate the flow of information

into the cell state. The cell state is like a conveyor belt that stores the information that the

network decides to take forward at any point in time t. Gates are sigmoidal units whose

value is multiplied with the values of the other nodes. If the gate has a value of zero, it

can completely block the information coming from another node whereas if the gate has a

value ∈ (0,1), it can selectively allow some portion of the information to pass. Thus, gates

are like “regulators” of what information flows into and remains active within the system.
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Figure 4.4: Comparison of RNN and LSTM cells (Goodfellow et al. 2016)

(a) RNN cell

(b) LSTM cell

(c) Unrolled RNN and LSTM networks
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The LSTM has three gates — a forget gate GF , an update gate GU and an output gate GO.

Suppose xt represents the input to the LSTM at a particular time t and ht−1 denotes

the hidden state (or history) that is stored from a previous time period. At the first stage,

the forget gate decides what part of the previous state needs to be forgotten or removed

from the cell state. For instance, in a long sentence, once the LSTM has figured out that

the sentence is primarily about the taste of a burger, it might chose to remove useless

information regarding weather or day of the week that says nothing about food taste. The

transition function for the forget gate can be represented as :

ft = σ(Wf [̇ht−1,xt ]+b f ) (4.4)

This equation is a typical neural network equation that involves an element-wise mul-

tiplication of a weight function with the hidden state ht−1 and current input xt followed by

the addition of a bias term and subsequent non-linearity. The other transition functions of

the LSTM include an update function and an output function. The update function decides

what part of the current input needs to be updated to the cell state. The output function

first determines the output ot for the current time period and subsequently, the new hidden

state ht that is passed to the next time period by selectively combining the current output

and cell state contents that seem most relevant.

it = σ(Wi[ht−1,xt ]+bi) (4.5)

C̃t = tanh(Wc[ht−1,xt ]+bc) (4.6)

Ct = ( ftCt−1 + itC̃t) (4.7)

ot = σ(Wo[ht−1,xt ]+bo) (4.8)

ht = ot tanh(Ct) (4.9)
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All the weight matrices Wf , Wi, Wc and Wo are shared across different time steps. Thus,

training an LSTM basically involves training these shared weight matrices by optimizing

over a loss function.

4.2.1 Additional Performance Metrics

In this section, we describe some additional performance metrics that were excluded in the

main text for brevity. These include some objective metrics like precision and recall (de-

rived from the confusion matrices) and some practical considerations like model building

effort, scalability and interpretability.

Precision and Recall See tables 4.2 and 4.3 to see how different models perform on

metrics like precision, recall and F1 score.

Table 4.2: Precision and Recall (Sentiment Classification)

CNN CNN-LSTM (self-trained) CNN-LSTM (Glove 300)

Class Precision Recall F1 Precision Recall F1 Precision Recall F1

Very Negative 38% 22% 28% 43% 24% 31% 30% 28% 29%
Negative 51% 27% 35% 52% 38% 44% 44% 59% 51%
Neutral 34% 37% 35% 46% 33% 39% 36% 18% 24%
Positive 34% 60% 43% 37% 68% 48% 40% 63% 49%
Very Positive 52% 40% 45% 67% 44% 53% 80% 58% 67%

Table 4.3: Precision and Recall (Attribute Analysis)

CNN-LSTM (self trained) CNN-LSTM (Glove 100)

Class Precision Recall F1 Precision Recall F1

ambiance 60% 58% 59% 55% 77% 64%
food 83% 79% 81% 86% 75% 80%
location 57% 56% 56% 73% 31% 43%
service 80% 60% 69% 71% 76% 73%
price 72% 75% 74% 76% 75% 76%

Model Building Time Lexicon models take approximately 175-180 hours of construc-

tion time. Most of the time is spent on human-tagging of the 8575 attribute and sentiment

words into specific classes using Amazon’s Mechanical Turk. Similarly, the creation of

training and test data sets for the supervised learning algorithms takes approximately 100
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hours.A human tagger takes around 1 minute to classify every word and 2-3 minutes to

classify full sentences However, once created, we could use the same dataset to train and

test a variety of machine learning and deep learning classifiers (e.g., SVM, Random Forest,

Naive Bayes, CNN, LSTM and CNN-LSTM). After generating the training data, super-

vised learning models (including the deep learning models) need time for hyper parameter

tuning and model training. Though this is an iterative process, all deep learning models

take less than 10 minutes (in a quad core processor) for completing one training cycle and

hence model calibration can be completed in 6-7 hours. Thus, model building is time-

consuming for all algorithms but is a one-time activity.

Scalability The more time-sensitive metric is scalability i.e. the time required for a

trained model to classify new examples. With respect to the scalability metric, the deep

learning classifiers clearly outperform the lexicon based classifiers with the machine learn-

ing classifiers in between the other two. The main reason is the “look-up” method em-

ployed by lexicon based methods. Every word in a sentence needs to be sequentially

searched through the entire lexicon to determine its class. Hence, the lexicon methods

need several hours to classify our corpus of 27,332 reviews comprising of 999,885 sen-

tences. On the other hand, deep learning models are able to classify our entire review

dataset comprising in approximately 18- 20 minutes.

Interpretability refers to how well a machine classifier can explain the reasoning or

logic behind its classifications (Doshi-Velez and Kim 2017). In general, text mining meth-

ods differ in their strengths and weakness across various dimensions, there is no one

method that is superior in all dimensions. Though the CNN-LSTM model outperforms

all the other models in accuracy and scalability, however, it falls short in terms of inter-

pretability with respect to lexicon methods.
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Chapter 5

Appendix to Chapter 2

5.1 Appendix: Data

5.1.1 Top National Chains (2017)

Table 5.1 presents some key details about the nationally established chains we study in

our analysis. All data is for the year 2017. Negative WOM stands for share of negative

reviews (1-2 star reviews), PWOM is the share of positive reviews (4-5 stars) and Neutral is

share of 3-star reviews. The table shows that while there are some chains like McDonald’s

that have both lower ACSI scores as well as higher proportion of negative reviews, most

other chains like Subway, Domino’s Pizza, Papa John’s and Pizza Hut have a very high

proportion of negative reviews inspite of having good ACSI scores. The regression results

in Table 2.2 remain similar if we exclude McDonald’s. The chain dummy in that case is

-0.91 and significant.
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5.1.2 Dictionary for expectation and novelty words

Table 5.2 is the dictionary we used to count occurrences of compare and novel words.

Table 5.2: Custom Dictionaries

Expect Novel Employee

anticipate curiosity back office
belief curious bartender
brand fresh boy
change innovative desk
changed learn employee
consistent new front desk
contrary novel girl
declined now reception
deteriorate offbeat receptionist
exceed recent staff
expect surprised waiter
expectation unique waitress
expected unusual wait-staff
image weird
improve
improved
inconsistent
met
notion
past
prior
recall
remember
reputation
standard
standards
unexpected
worsen

5.2 Appendix: Proofs

5.2.1 Proof of Lemma 2.4.1

Let price p be such that F has no mass point at the belief thresholds φ(p), φ(p),

φ̃(p;(µh,µ`)) for µh,µ` ∈ {0,1}.

In a full WOM equilibrium, a follower purchases after an /0-message iff φ ≥ Φ(p). It

exists iff an early adopter wants to talk after both q = `,h, i.e., exactly iff followers are

uninformed.
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Analogously, a no WOM equilibrium exists iff an early adopter does not want to talk

regardless of his signal, i.e., exactly iff followers are well-informed.

In a negative WOM equilibrium, φ̃(p;(0,1))≤Φ(p) is decreasing in β . It exists iff an

early adopter does not want to talk with q = h, and wants to talk otherwise, i.e.,

β ∈ Bneg(p) :=
{

β ∈ [0,1]|F(φ̃(p;(0,1)))−F(φ(p))≤ ξ

1−β
≤ F(φ̄(p))−F(φ̃(p;(0,1)))

}
.

For optimistic followers, Bneg(p) = [0,1], so negative WOM equilibria always exists.

If followers are not optimistic, since lim
β→0

φ̃(p,(0,1)) = Φ(p) and lim
β→0

ξ

1−β
= ξ , there

exists a threshold β̂ neg(p) > 0 such that β ≤ β̂ neg(p) =⇒ β /∈ Bneg(p). So, for β ≤

β̂ neg(p), negative WOM equilibria cannot exist.

Analogously, in a positive WOM equilibrium, φ̃(p;(1,0)) ≥ Φ(p) is increasing in β

and it exists iff

β ∈ Bpos(p) :=
{

β ∈ [0,1]|F(φ̄(p))−F(φ̃(p;(1,0)))≤ ξ

1−β
≤ F(φ̃(p;(1,0)))−F(φ(p))

}
.

Hence, a positive WOM equilibrium always exists if followers are pessimistic and does

not exists if β ≤ β̂ pos(p) for β̂ pos(p)> 0.

5.2.2 Proof of Proposition 2.4.2

The demand function depends on the WOM equilibrium played. In a full WOM equilib-

rium, the demand, defined as the probability of a follower buying, is given by

Dfull(p) = (1−β )(1−F(Φ(p)))+β (π(φ0)(1−F(φ(p)))+(1−π(φ0)) (1−F(φ̄(p)))).

With no WOM,

Dno(p) = 1−F(Φ(p)).
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With negative WOM,

Dneg(p) = (1−β +βπ(φ0)) (1−F(φ̃(p;(0,1))))+β (1−π(φ0))(1−F(φ̄(p))).

With positive WOM,

Dpos(p) = (1−β +β (1−π(φ0)))(1−F(φ̃(p;(1,0))))+βπ(φ0)(1−F(φ(p))).

The price p determines whether followers are optimistic, pessimistic, well-informed,

or uninformed, and Lemma 1 then pins down the type of WOM when no threshold is φ0,

which we analyse separately. We compute cutoffs pneg, ppos such that p < pneg ⇔ β ∈

Bneg(p) and p < ppos⇔ β ∈ Bpos(p).

1. If φ0 < φ(p), then F(φ(p)) = F(φ̄(p)) = F(Φ(p)) = 1. Followers are well-

informed. No WOM is the unique equilibrium. Since profits are zero, the firm

never induces this case.

2. If φ(p)< φ0 < Φ(p), then F(φ(p)) = 0 < F(Φ(p)) = F(φ̄(p)) = 1. Followers are

pessimistic. A positive WOM equilibrium exists for all β ∈ [0,1]. Negative WOM

arises iff F(φ̃(p;(0,1))) = 0 or φ̃(p;(0,1)) = φ0 which is satisfied iff

φ̃(p;(0,1))≤ φ0 ⇔ β ≥ Φ(p)−φ0

Φ(p)−φ0 +(1−Φ(p))φ0πH−Φ(p)(1−φ0)πL
=: β̂

neg(p).

Otherwise, F(φ̃(p;(0,1))) = 1. Hence, Bneg(p) =
(
β̂ neg(p),1−ξ

]
and β̂ neg(p)> 0

if Φ(p)> φ0 because the denominator is strictly positive.

Finally, let ppess be such that p < ppess⇔ φ(p)< φ0. It is defined implicitly by φ0 =

φ(ppess) or ppess =
φ0π2

H+(1−φ0)π
2
L

φ0πH+(1−φ0)πL
. β̂ neg(p) is increasing in p and hence, β ≥ β̂ neg(p)
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iff

p≤ pneg :=
φ0(πH−πL)(1−β (1− (πH +πL)))−β (1−πL)πL +πL

1−β (1− (φ0πH +(1−φ0)πL))
.

One can show that for all β > 0, ppess > pneg, so at any p < pneg priors are pes-

simistic, but a negative WOM equilibrium can exist.

3. If φ0 = φ(p), either a no or positive WOM equilibrium is played as 2.

4. If Φ(p) < φ0 < φ̄(p), then F(φ(p)) = F(Φ(p)) = 0 < F(φ̄(p)) = 1, i.e., follow-

ers are optimistic. Full or no WOM equilibrium cannot exist. A negative WOM

equilibrium exists for all β ∈ [0,1]. Positive WOM exists iff F(φ̃(p;(1,0))) = 1 or

φ̃(p;(1,0)) = φ0 which is satisfied iff

φ̃(p;(1,0))≥ φ0 ⇔ β ≥ φ0−Φ(p)
φ0−Φ(p)+Φ(p)(1−φ0)(1−πL)− (1−Φ(p))φ0(1−πH)

=: β̂
pos(p)

Otherwise, F(φ̃(p;(1,0))) = 0. β̂ pos(p) > 0 for φ0 > Φ(p) for the same reason as

β̂ neg(p)> 0 when followers are pessimistic. Hence, Bpos(p) =
[
β̂ pos(p),1−ξ

]
.

Finally, let popt be such that p < popt ⇔ Φ(p) < φ0. It is defined implicitly by

φ0 = Φ(popt) or popt = φ0πH +(1− φ0)πL. β̂ pos(p) is decreasing in p and hence,

β ≥ β̂ pos(p) iff

p≥ ppos :=
φ0(πH−πL)(β (πH +πL)−1)+πL(βπL−1)

β (φ0(πH−πL)+πL)−1

One can show that for all β ∈ (0,1], ppos < popt, i.e., if p < popt, both positive and

negative WOM equilibria exist. Further, ppess > popt because x 7→ x2 is convex and

pneg > popt, i.e., the firm always sets the price as close as possible to pneg (ppess) to

induce negative (positive) WOM where followers are pessimistic.
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5. If φ0 = Φ(p), both positive and negative WOM equilibria exist for all β > 0, since

φ̃(p;(0,1))< φ0 < φ̃(p;(1,0)) for β > 0.

6. If φ0 > φ̄(p), then F(φ(p)) = F(Φ(p)) = F(φ̄(p)) = 0. Followers are well-

informed. No WOM is the unique equilibrium. Such beliefs are induced iff

p < pwell :=
π(φ0)− (φ0π2

H +(1−φ0)π
2
L)

1−π(φ0)

7. If φ0 = φ̄(p), then either no one talks as in 6, or negative WOM arises as in 4.

Lastly, we compare profits. In a positive WOM equilibrium given p, profits are

Π
pos(p) := p Dpos(p) = p βπ(φ0).

It is then straightforward to compute the maximal profit when positive WOM is induced is

Πpos(ppess) = β (φ0π2
H +(1−φ0)π

2
L).

Analogously, with negative WOM the maximum profit is

Πneg(pneg) = (1−β )π(φ0)+β (φ0π2
H +(1−φ0)π

2
L))

> Πpos(ppess) for β < 1.

The maximal profit with no WOM is Πno(pwell) = pwell. Negative WOM is an equilibrium

iff Πneg(pneg) ≥ Πno(pwell) ⇔ β ≤ β̄ hom, and no WOM iff β ≥ β̄ hom. No other WOM

equilibria can exist.

First, define for any p ∈P∗, ξ (p) := F(φ(p))−F(Φ(p)) and ξ (p) := F(Φ(p))−

F(φ(p)). Further, for any given β > 0 and w ∈ {full,no,neg,pos}, define

P̂w(β ) := argmax
p

Dw(p)p.
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Note that as β → 0, P̂w(β ) converges to P∗.

1. With a strong brand image, it follows immediately that ξ > ξ (p) for all p ∈P∗.

Further, for any ε > 0, there exists a β̄ so that for all β < β̄ and p̂ ∈ P̂w(β ), there

exists a p∗ ∈P∗ so that |p∗− p̂|< ε . Hence, for sufficiently small β ,

ξ > F(Φ(p̂))−F(φ(p̂))

for all p̂ ∈ P̂w(β ) with w ∈ {full,no,neg,pos}. Thus, there is no profit maximizing

equilibrium price that induces positive WOM.

2. With a weak brand image and πL = 0, we have that for all p ∈ P∗, ξ (p) =

F(Φ(p)) > ξ . Again, for any ε > 0, there exists a β̄ so that for all β < β̄ and

p̂ ∈ P̂w(β ), there exists a p∗ ∈P∗ so that |p∗− p̂|< ε . Thus, for sufficiently small

β

ξ < F(Φ(p̂))−F(φ(p̂))

for all p̂ ∈ P̂w(β ) with w ∈ {full,no,neg,pos}. Thus, in any PBE positive WOM

must occur.

Given a WOM regime w ∈ {full,no,neg,pos}, the firm maximizes max
p

pDw(p).

Dw(p) uniformly converges to 1−F(Φ(p)). Thus, for sufficiently small β , any profit-

maximizing price is arbitrarily close to p∗. Denote an arbitrary sequence of solutions by

pw(β ). Let ξ :=F(φ(p∗))−F(Φ(p∗)) and ξ :=F(Φ(p∗))−F(φ(p∗)). If ξ <min{ξ ,ξ},

then for sufficiently small β

ξ <min{(1−β )(F(φ(pw(β )))−F(Φ(pw(β )))),(1−β )(F(Φ(pw(β )))−F(φ(pw(β ))))},

so that followers are well-informed, and Lemma 2.4.1 implies the unique equilibrium fea-

tures no WOM.
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The other three cases ξ > max{ξ ,ξ}, ξ > ξ > ξ , ξ > ξ > ξ , follow analogously.

Proof of Proposition 2.5.2 We characterize the pooling equilibrium in which the H-

type firm maximizes its profits. Because the price is not informative on equilibrium path,

beliefs of the followers and early adopters are the same on equilibrium path whether or not

the firm has private information. Hence, Lemma 2.4.1 applies unchanged. However, the

induced demand functions faced by an θ -type firm are now different, as the firm knows

that it is a θ type. Thus, for an equilibrium price p∗, the demand faced by a θ -type firm in

a no, full, negative, and positive WOM equilibrium, respectively is:

Dno(p;θ) = 1−F(Φ(p))

Dfull(p;θ) = β (πθ (1−F(φ(p)))+(1−πθ ) (1−F(φ̄(p))))

+(1−β ) (1−F(Φ(p))),

Dneg(p;θ) = (1−β +βπθ ) (1−F(φ̃(p;(0,1))))+β (1−πθ )(1−F(φ̄(p)))

Dpos(p;θ) = (1−β +β (1−πθ ))(1−F(φ̃(p;(1,0))))+βπθ (1−F(φ(p))).

1. We start with the case of homogeneous priors F = 1(φ ≥ φ0). Since the WOM stage

is identical to the baseline case, points 1-7 of the proof of Proposition 2.4.2 apply here too.

However, the profits are different. The maximal profit of and H-type firm when positive

WOM is induced is given by

Πpos(ppess;H) := ppess βπH =
φ0π2

H+(1−φ0)π
2
L

π(φ0)
βπH .

The maximal profit of an H-type firm when negative WOM is induced is given by

Πneg(pneg;H) := pneg (1−β +βπH))

= φ0(πH−πL)(1−β (1−(πH+πL)))−β (1−πL)πL+πL
(1−β+βπ(φ0))

(1−β +βπH)

> Πpos(ppess)
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for sufficiently small β . The maximal profit with no WOM is given by

Πno(pwell;H) := π(φ0)−(φ0π2
H+(1−φ0)π

2
L)

1−π(φ0)
< Πneg(pneg;H)

for sufficiently small β . Hence, for sufficiently small β > 0, there can only be negative

WOM. No other WOM equilibria can be sustained.

2. For the uniform distribution, F is the identity function. Again an analogous argu-

ment to the proof of Proposition 2.4.2 can be applied with the adjusted demand and profit

functions. Note, that the profit-maximizing price as β tends to zero is, however, identical

and equal to πH
2 . Hence, the exact same proof can be applied.
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Büschken J, Allenby GM (2016) Sentence-based text analysis for customer reviews. Marketing
Science 35(6):953–975.

Campbell A (2013) Word-of-mouth communication and percolation in social networks. American
Economic Review 103(6):2466–98.

Campbell A, Mayzlin D, Shin J (2017) Managing buzz. The RAND Journal of Economics
48(1):203–229.

Carman A (2018) Why do you leave restaurant reviews? The Verge
URL https://www.theverge.com/2018/4/10/17215784/
whyd-you-push-that-button-yelp-tripadvisor-reviews-restaurant,
accessed July 27, 2020.

127

https://www.theverge.com/2018/4/10/17215784/whyd-you-push-that-button-yelp-tripadvisor-reviews-restaurant
https://www.theverge.com/2018/4/10/17215784/whyd-you-push-that-button-yelp-tripadvisor-reviews-restaurant


Chakraborty I, Kim M, Sudhir K (2019) Attribute sentiment scoring with online text reviews:
Accounting for language structure and attribute self-selection. Cowles Foundation Discussion
Paper .

Chevalier JA, Mayzlin D (2006) The effect of word of mouth on sales: Online book reviews.
Journal of marketing research 43(3):345–354.

Chintagunta PK, Gopinath S, Venkataraman S (2010) The effects of online user reviews on movie
box office performance: Accounting for sequential rollout and aggregation across local mar-
kets. Marketing Science 29(5):944–957.

Churchill GA, Collins RH, Strang WA (1975) Should retail salespersons be similar to their cus-
tomers. Journal of Retailing 51(3):29.

Dhar V, Chang EA (2009) Does chatter matter? the impact of user-generated content on music
sales. Journal of Interactive Marketing 23(4):300–307.

Doshi-Velez F, Kim B (2017) Towards a rigorous science of interpretable machine learning. arXiv
preprint arXiv:1702.08608 .

Duan W, Gu B, Whinston AB (2008) Do online reviews matter?—an empirical investigation of
panel data. Decision support systems 45(4):1007–1016.

Evans FB (1963) Selling as a dyadic relationship–a new approach. American Behavioral Scientist
6(9):76–79.

Feldman R (2013) Techniques and applications for sentiment analysis. Communications of the
ACM 56(4):82–89.

Fradkin A, Grewal E, Holtz D, Pearson M (2015) Bias and reciprocity in online reviews: Evi-
dence from field experiments on airbnb. Proceedings of the Sixteenth ACM Conference on
Economics and Computation, 641–641 (ACM).

Frazier GL, Summers JO (1984) Interfirm influence strategies and their application within distri-
bution channels. Journal of Marketing 48(3):43–55.

Galeotti A (2010) Talking, searching, and pricing*. International Economic Review 51(4):1159–
1174.

Galeotti A, Goyal S (2009) Influencing the influencers: a theory of strategic diffusion. The RAND
Journal of Economics 40(3):509–532.

Ganu G, Elhadad N, Marian A (2009) Beyond the stars: improving rating predictions using review
text content. WebDB, volume 9, 1–6 (Citeseer).

Ghose A, Ipeirotis PG (2007) Designing novel review ranking systems: predicting the usefulness
and impact of reviews. Proceedings of the ninth international conference on Electronic com-
merce, 303–310 (ACM).

Gilchrist DS, Sands EG (2016) Something to talk about: Social spillovers in movie consumption.
Journal of Political Economy 124(5):1339–1382.

Godes D (2016) Product policy in markets with word-of-mouth communication. Management Sci-
ence 63(1):267–278.

Godes D, Mayzlin D (2004) Using online conversations to study word-of-mouth communication.
Marketing science 23(4):545–560.

Godes D, Mayzlin D, Chen Y, Das S, Dellarocas C, Pfeiffer B, Libai B, Sen S, Shi M, Verlegh P
(2005) The firm’s management of social interactions. Marketing Letters 16(3):415–428.

128
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