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Abstract

Well-Distributed Sequences: Number Theory, Optimal Transport, and Potential Theory

Louis Brown

2021

The purpose of this dissertation will be to examine various ways of measuring how uniformly

distributed a sequence of points on compact manifolds and finite combinatorial graphs can

be, providing bounds and novel explicit algorithms to pick extremely uniform points, as

well as connecting disparate branches of mathematics such as Number Theory and Optimal

Transport. Chapter 1 sets the stage by introducing some of the fundamental ideas and

results that will be used consistently throughout the thesis: we develop and establish Weyl’s

Theorem, the definition of discrepancy, LeVeque’s Inequality, the Erdős-Turán Inequality,

Koksma-Hlawka Inequality, and Schmidt’s Theorem about Irregularities of Distribution.

Chapter 2 introduces the Monge-Kantorovich transport problem with special emphasis on

the Benamou-Brenier Formula (from 2000) and Peyre’s inequality (from 2018). Chapter

3 explores Peyre’s Inequality in further depth, considering how specific bounds on the

Wasserstein distance between a point measure and the uniform measure may be obtained

using it, in particular in terms of the Green’s function of the Laplacian on a manifold. We

also show how a smoothing procedure can be applied by propagating the heat equation on

probability mass in order to get stronger bounds on transport distance using well-known

properties of the heat equation. In Chapter 4, we turn to the primary question of the thesis:

how to select points on a space which are as uniformly distributed as possible. We consider

various diverse approaches one might attempt: an ergodic approach iterating functions with

good mixing properties; a dyadic approach introduced in a 1975 theorem of Kakutani on

proportional splittings on intervals; and a completely novel potential theoretic approach,

assigning energy to point configurations and greedily minimizing the total potential arising

from pair-wise point interactions. Such energy minimization questions are certainly not

new, in the static setting—physicist Thomson posed the question of how to minimize the

potential of electrons on a sphere as far back as 1904. However, a greedy approach to uniform

distribution via energy minimization is novel, particularly through the lens of Wasserstein,



and yields provably Wasserstein-optimal point sequences using the Green’s function of the

Laplacian as our energy function on manifolds of dimension at least 3 (with dimension 2

losing at most a square root log factor from the optimal bound). We connect this to known

results from Graham, Pausinger, and Proinov regarding best possible uniform bounds on

the Wasserstein 2-distance of point sequences in the unit interval. We also present many

open questions and conjectures on the optimal asymptotic bounds for total energy of point

configurations and the growth of the total energy function as points are added, motivated

by numerical investigations that display remarkably well-behaved qualities in the dynamical

system induced by greedy minimization. In Chapter 5, we consider specific point sequences

and bounds on the transport distance from the point measure they generate to the uniform

measure. We provide provably optimal rates for the van der Corput sequence, the Kronecker

sequence, regular grids and the measures induced by quadratic residues in a field of prime

order. We also prove an upper bound for higher degree monomial residues in fields of prime

order, and conjecture this to be optimal. In Chapter 6, we consider numerical integration

error bounds over Lipschitz functions, asking how closely we can estimate the integral of a

function by averaging its values at finitely many points. This is a rather classical question

that was answered completely by Bakhalov in 1959 and has since become a standard example

(‘the easiest case which is perfectly understood’). Somewhat surprisingly perhaps, we show

that the result is not sharp and improve it in two ways: by refining the function space and

by proving that these results can be true uniformly along a subsequence. These bounds

refine existing results that were widely considered to be optimal, and we show the intimate

connection between transport distance and integration error. Our results are new even

for the classical discrete grid. In Chapter 7, we study the case of finite graphs—we show

that the fundamental question underlying this thesis can also be meaningfully posed on

finite graphs where it leads to a fascinating combinatorial problem. We show that the

philosophy introduced in Chapter 4 can be meaningfully adapted and obtain a potential-

theoretic algorithm that produces such a sequence on graphs. We show that, using spectral

techniques, we are able to obtain empirically strong bounds on the 1-Wasserstein distance

between measures on subsets of vertices and the uniform measure, which for graphs of large

diameter are much stronger than the trivial diameter bound.
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Chapter 1

Introduction

1.1 Equidistribution

This chapter is comprised of a survey of results in the theory of uniform distribution, we

refer to [10,44,47,78] as good points of reference. In this thesis we are interested in studying

point sequences which are evenly distributed in Euclidean space and manifolds; we will start

in the unit interval and then explore higher dimensional spaces and general manifolds, and

we will conclude this study in the setting of finite graphs. If we are told to pick N points

on the unit interval which are as evenly spread out as possible, this is very easy: simply

choose 0/N, . . . , (N − 1)/N . But if we do not know N in advance—if we are tasked with

constructing an infinite sequence of points which, no matter how far into the sequence we go,

the points are consistently spread out evenly—this turns out to be a very difficult challenge.

Before we can discuss such sequences of points, we must specify what exactly being “evenly

distributed” means. Here we summarize a variety of different ways to characterize regularity

of point sequences on [0, 1] (all of which are mutually connected), after which we present

two particular sequences which perform excellently by all of these notions: the Kronecker

sequence and the van der Corput sequence.

• Combinatorial. For every n ∈ N, the set {x1, . . . , xn} has the property that for

every interval J ⊂ [0, 1], the number of elements in J is |J | ·n with a very small error.

• Analytical (Erdős-Turán [49,50]). The sequence has the property that {x1, . . . , xn}



satisfy favorable exponential sum estimates on expressions of the form

n∑
k=1

1

k

∣∣∣∣∣
n∑
`=1

e2πikx`

∣∣∣∣∣ and
n∑
k=1

1

k2

∣∣∣∣∣
n∑
`=1

e2πikx`

∣∣∣∣∣
2

.

The exponential sum
∑n

`=1 exp(2πikx`) is ‘small’ for ‘small’ values of k.

• Numerical (Koksma-Hlawka [69]). The set {x1, . . . , xn} is a good set for numerical

integration: we have ∫ 1

0
f(x)dx ∼ 1

n

n∑
k=1

f(xk)

with a ‘small’ error for ‘smooth’ functions f .

• Geometric (Roth [116]). The two-dimensional set

{(
i

n
, xi

)
: 1 ≤ i ≤ n

}
⊂ [0, 1]2

is regularly distributed in the unit square: every cartesian box [a, b] × [c, d] contains

roughly (b− a)(d− c)n elements with a small error (see Fig. 3).

The problem of picking sets and sequences of points which are well-behaved with respect

to these metrics has been intensively studied for over a century starting with the seminal

paper of Weyl [152]. We refer to the foundational results [1, 8, 18, 20, 49, 50, 69, 116, 121],

the survey paper [17] and the textbooks [10, 36, 44, 47, 78] (also with regard to various

different ways of interpreting the notion of ‘small’ and ‘smooth’ in the above statements

and to which extent they are connected to one another). We will begin by considering

the ‘Combinatorial’ notion: discrepancy. But first, it will be convenient to introduce the

notion of equidistribution, which will be key to the main content of this thesis. As the

name suggests, equidistribution refers to being evenly sampled throughout a measure space.

More specifically, we will call a sequence of points xn ∈ [0, 1) equidistributed or uniformly

distributed over the unit interval [0, 1) if the following holds for all α ∈ [0, 1):

lim
N→∞

# {1 ≤ i ≤ N : xn ≤ α}
N

= α.

2



In other words, the sequence should, in the limit, have the “correct” portion of its points

located in each interval [0, α], where “correct” means “equal to the measure of that interval.”

Of course, this also guarantees the sequence has the correct portion of its points in each

interval [α, β] as well. Equidistributed sequences are particularly useful for performing

numerical integration. A classic instance of an equidistributed sequence, which we will

use as a recurring example throughout this chapter, is the Kronecker sequence xn ≡ nα

(mod 1), where α is badly approximable. Bad approximability of α means that that there

is some c > 0 such that, for all integers p, q, we have

∣∣∣∣α− p

q

∣∣∣∣ > c

q2
or, equivalently, |qα− p| > c

q
.

α is called “badly approximable” because fractions with small denominator cannot get too

close to α (or, equivalently, small integer multiples of α are not too close to integers). Note

that we can also think of this definition in terms of the unit circle: the distance from qα to

the nearest integer p is proportional to the angle between the point qα (mod 1) of the way

around the circle and (1, 0). Better yet, we can replace this with the Euclidean distance

between the two points ∣∣e2πiqα − 1
∣∣ = 2 |sin(πqα)| .

Since sinx satisfies the two-sided bound 2x/π ≤ sinx ≤ x for x ∈ [0, π/2], our definition

is equivalent to the condition that
∣∣e2πiqα − 1

∣∣ > c/q. By default we look at the Kronecker

sequence for α =
√

2, which we quickly prove here is badly approximable: Suppose

∣∣∣q√2− p
∣∣∣ = ε ≤ 1

3

for some positive p, q ∈ N. Since ε ≤ 1/3 we must have q < p, or else we would have

q
√

2− p ≥ p(
√

2− 1) ≥
√

2− 1 >
1

3
.
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Similarly, since q
√

2− p ≥ −1/3 we must have q > p/4. Then

q
√

2 + p < p(
√

2 + 1) < 3p.

Thus, multiplying out,

∣∣2q2 − p2
∣∣ =

∣∣∣(q√2− p)(q
√

2 + p)
∣∣∣ < 3pε.

x1

x2

x3

x4

x5

x6

x7

Figure 1.1: The first 7 terms of the Kronecker sequence with α =
√

2

But the left-hand side is a positive integer and thus must be at least 1. Therefore ε is

at least (3p)−1 > (12q)−1 and
√

2 is badly approximable. There is a large body of work

studying badly approximable numbers (see [102, 122, 123]). In particular, Perron explicitly

constructs many badly approximable numbers and vectors, such as algebraic points on

Veronese curves (α, . . . , αn) for α algebraic of degree n + 1 and Schmidt’s papers take an

interesting game-theoretic approach to badly approximable numbers. The most well-studied

class of badly approximable numbers are the quadratic irrationals—the argument above for
√

2 works just as well if 2 is replaced by any other natural number which is not a perfect

square. In fact, there is a more general principle here: it is well known that a number is badly

approximable precisely if the coefficients of its continued fraction expansion are bounded

(see e.g. [120]). Of course, any periodic (or eventually periodic) sequence is bounded. It is

also a classic theorem that a number has eventually periodic continued fraction coefficients

if and only if it is a quadratic irrational—the forward direction is a result of Euler, and

the converse of Lagrange. Thus, we immediately have that all quadratic irrationals are
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badly approximable. It is known that the set of badly approximable numbers has Lebesgue

measure 0. We refer to the seminal 1994 paper by Beck for much more on the matter [9].

While we could prove equidistribution of the Kronecker sequence directly, we will hold

back until we have developed a particularly useful method for doing so in the next section.

We introduce another classic example of an equidistributed sequence: the van der Corput

sequence, where xn is the rational number whose binary expansion, when the bimal point

is removed and the bits reversed, is simply the binary expansion of n.

0

1

1
2

2

1
4

3

3
4

4

1
8

5

5
8

6

3
8

7

7
8

8

Figure 1.2: The first 8 elements of the van der Corput sequence.

Another way of thinking of the van der Corput sequence is that it greedily places a point

at the midpoint of the largest gap so far. However, this interval is certainly not unique,

so the question is ultimately which interval to fill in; it is not hard to see that, for poor

choices of intervals, the sequence may not be equidistributed at all (see Chapter 4, §1.1).

Thus, there is quite a bit of subtlety in the way van der Corput manages to pick these

intervals. In fact, the van der Corput and Kronecker sequences are, in a precise sense, the

most equidistributed sequences possible, in that they distribute uniformly at the optimal

rate on all of the metrics listed at the beginning of the chapter (up to constants, see §3).

1.1.1 Fejér’s Theorem

We pause here to recall a basic but important fact of Fourier analysis, which will be key

to proving Weyl’s Criterion in the following section: Fejér’s Theorem, originally proved by

Lipót Fejér in 1900. The Fejér kernel is defined as

ψm(x) =
∑

|k|≤m−1

(
1− |k|

m

)
e2πikx

For x /∈ Z, this summation can alternatively be written as

ψm(x) =
1

m

(
sin(mπx)

sin(πx)

)2

=
1

m

(
1− cos(2πmx)

1− cos(2πx)

)
,
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a fact which can be readily verified by expanding the right-hand expression(s) out in terms

of trigonometric polynomials. (In fact, we may continuously extend the expression using

l’Hôpital’s Rule so that the equation holds for integers as well.) Notably, this means ψm is

even and everywhere non-negative. Observe further that ψm has mean 1:

∫ 1

0
ψm(x)dx = ψ̂m(0) = 1.

We also recall the convolution of two integrable 1-periodic functions,

(f ∗ g) (x) =

∫ 1

0
f(t)g(x− t)dt.

Convolution simply acts on the Fourier coefficients by point-wise multiplication,

(̂f ∗ g)(k) = f̂(k)ĝ(k).

In particular, convolving with the Fejér kernel yields

̂(f ∗ ψm)(k) =
∑

|k|≤m−1

(
1− |k|

m

)
f̂(k)e2πik,

which has a natural interpretation as the mean of the first m partial sums of the Fourier

series of f . In fact, as m→∞ this converges to f .

Theorem (Fejér’s Theorem [54]). If f : T→ R is continuous, then the sequence of convolved

functions f ∗ ψm converges uniformly to f as m→∞.

Proof: Summarized from [54]. Since f is continuous on a compact space, it is uniformly so.

Thus, for any ε > 0, there exists δ ∈ (0, 1) such that, for all x, y ∈ T with |x − y| < δ, we

have |f(x)− f(y)| < ε. We write

Sm(x) = (f ∗ ψm)(x) =
1

m

∫
T
f(t)

(
1− cos(2πm(x− t))
1− cos(2π(x− t))

)
dt.

Then, for any x ∈ T, we may break up the integral into two pieces: the region within δ of

x, and the region that is not–call these A and B, respectively. Since f is continuous on a
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compact space, it attains some maximum value M = ‖f‖L∞ . Then we may bound

∣∣∣∣ 1

m

∫
B
f(t)

(
1− cos(2πm(x− t))
1− cos(2π(x− t))

)
dt

∣∣∣∣ ≤ 1

m
· 2M

1− cos(2πδ)
.

In particular, the right hand side does not depend on x and goes to 0 as m → ∞. Thus,

it suffices to consider region A. By construction, for all y ∈ A we have |f(x) − f(y)| < ε.

Thus, the integral over A can be bounded as

∣∣∣∣∫
A
f(t)ψm(x− t)dt− f(x)

∫
A
ψm(x− t)dt

∣∣∣∣ ≤ ε∫
A
ψm(x− t)dt.

Finally, we bound
∫
A ψm(x− t)dt. By the same argument as above, we see that

lim
m→∞

∫
B
ψm(x− t)dt = 0,

and since ψm is even we can write

∫
A
ψm(x− t) +

∫
B
ψm(x− t)dt =

∫
T
ψm(x− t)dt =

∫
T
ψm(t)dt = 1,

concluding the argument.

1.2 Weyl’s Criterion

Given a sequence of points xn ∈ [0, 1), we define

µN =
1

N

N∑
n=1

δxn ,

i.e. µN is the distribution with point masses of equal weight 1/N placed at each of the first

N terms of the sequence. Then we may take the Fourier transform of µN ,

µ̂N (k) =
1

N

N∑
n=1

e−2πikxn .
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Observe here that, since µ̂(k) is the average of numbers on the complex unit circle, we have

|µ̂(k)| ≤ 1. We also point out that µ̂N (−k) = µ̂N (k), and consequently |µ̂(k)| = |µ̂(−k)|.

Weyl’s Criterion gives a beautifully simple necessary and sufficient condition for xn to be

uniformly distributed, in terms of the µ̂N (k):

Theorem (Weyl’s Criterion [152]). The following are equivalent:

1. xn is equidistributed.

2. For all properly Riemann-integrable f ,

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0
f(x)dx.

3. For all k 6= 0,

lim
N→∞

µ̂N (k) = 0.

Proof: Summarized from [78]. (1) =⇒ (2)

Consider the characteristic function on the interval [a, b]

1[a,b](x) =


1 x ∈ [a, b]

0 else

.

We may rephrase our definition of equidistribution as follows: for all a, b ∈ [0, 1),

lim
N→∞

N∑
n=1

1[a,b](xn)

N
=

∫ 1

0
1[a,b](x)dx

since the integral is simply b − a. Thus, (2) holds for characteristic functions, and since

the condition is linear in f it also holds for linear combinations of characteristic func-

tions, i.e. step functions. Since every Riemann-integrable function can be arbitrarily well-

approximated (in the L1 norm) by step functions from both above and below, which in turn

bound the sum on the left-hand side of (2), we obtain the desired result.
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(2) =⇒ (3)

If we expand out condition (3) with the definition of the Fourier transform, we get

lim
N→∞

1

N

N∑
n=1

e−2πikxn = 0 =

∫ 1

0
e−2πikxdx

for all k 6= 0. This is precisely the equation in condition (2), with f(x) = e−2πikx.

(3) =⇒ (1)

By Fejér’s Theorem, we can approximate any f continuous on T arbitrarily well (in the L∞

norm) by trigonometric polynomials, linear combinations of the e2πikx. Then, let g be a

trigonometric polynomial such that ‖f − g‖L∞ < ε. By the triangle inequality we have

L =

∣∣∣∣∣ 1

N

N∑
n=1

(f(xn)− g(xn))

∣∣∣∣∣ ≤ 1

N

N∑
n=1

|f(xn)− g(xn)| < ε.

By (3), we have that condition (2) holds for g. So, applying another triangle inequality,

∣∣∣∣∣
∫ 1

0
f(x)dx− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤
(∣∣∣∣∫ 1

0
(f(x)− g(x))dx

∣∣∣∣+

∣∣∣∣∣
∫ 1

0
g(x)dx− 1

N

N∑
n=1

g(xn)

∣∣∣∣∣+ L

)

≤ ε+

∣∣∣∣∣
∫ 1

0
g(x)dx− 1

N

N∑
n=1

g(xn)

∣∣∣∣∣+ ε.

Applying the limit as N →∞ to both sides, the middle term on the right-hand side vanishes.

Since we can pick g so that ε is arbitrarily small, we have that condition (2) holds for f .

Finally, we may approximate the characteristic function of an interval arbitrarily well (in

the L1 norm) from both above and below by continuous functions, and so we conclude that

condition (1) holds.

Remarks.

• We may interpret condition (2) as confirmation that equidistributed sequences are

good for numerical integration–if we simply average our function values on sufficiently

many terms, we can get arbitrarily close to the true integral. In fact, this statement

means that the µN weakly converge to dx. Note however that we have no guarantees

on the speed of such a convergence (and thus, how many terms to take before we
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can be satisfied with our numerical approximation of an integral). Investigating this

matter will require more sophisticated machinery quantitatively measuring how far

off the µN are from dx, which we will begin developing in the following section.

• This observation yields an intuitive interpretation of Weyl’s Criterion as well: the

Fourier coefficients d̂x(k) = 0 for all k 6= 0, and thus the same should be true of µ̂N (k)

in the limit. For any probability measure µ on the unit interval, we have µ̂(0) = 1

by definition, so we may comfortably restrict ourselves to considering k 6= 0. More

formally, applying Parseval’s Theorem to the inner product of f with the measure µ,

∫ 1

0
fdµ =

∑
k∈Z

f̂(k)µ̂(k),

so if we want µ to integrate arbitrary Riemann-integrable f correctly (i.e. the same

way dx does,) we must have that all non-zero Fourier coefficients of µ are 0, because

f̂(0) =

∫ 1

0
fdx.

• Alternatively, we may view this geometrically:

µ̂N (k) =
1

N

N∑
n=1

e−2πikxn

is simply the average of the first N terms of the sequence, embedded on the complex

unit circle by the map x 7→ e−2πikxn that wraps the unit interval around it k times.

For the sequence to be equidistributed, these averages must cancel nicely and converge

to 0 for any fixed k.

We may now easily demonstrate the Kronecker sequence’s equidistribution with nothing

more than the geometric series formula and the triangle inequality:

|µ̂N (k)| =

∣∣∣∣∣ 1

N

N∑
n=1

e−2πiknα

∣∣∣∣∣ =
1

N

∣∣∣∣1− e−2πikNα

1− e−2πikα

∣∣∣∣ ≤ 2

N

∣∣∣∣ 1

1− e−2πikα

∣∣∣∣ ,
which certainly converges to 0 as N →∞ since α is fixed. Note that we have not actually
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used α’s bad approximability yet: all we needed here was that α is irrational, so that

1−e−2πikα 6= 0. Bad approximability tells us something much stronger: that |1−e−2πikα| >

c/k, which will be necessary to make strong quantitative bounds on how equidistributed the

sequence is–but first, we must make precise what this means.

1.3 LeVeque’s Inequality

We now introduce one particular way of measuring the regularity of a sequence. We let the

discrepancy DN of a sequence be

DN = sup
interval J⊂[0,1)

∣∣∣∣# {1 ≤ n ≤ N : xi ∈ J}
N

− |J |
∣∣∣∣ .

For convenience, we will slightly overload the terminology here and also refer to the term

inside the supremum as the discrepancy of the interval J . This quantity is trivially bounded

above by 1, so the supremum certainly exists. We could identify the points 0, 1 and instead

take the supremum over arcs of the circle, and this is in fact an equivalent definition. We

can see this by noting that any arc containing 0 has as its complement an arc which does

not, and thus corresponds to an interval in [0, 1). Moreover, the discrepancy of an arc J

and its complement Jc are equal, since

∣∣∣∣# {1 ≤ n ≤ N : xi ∈ Jc}
N

− |Jc|
∣∣∣∣ =

∣∣∣∣(1− # {1 ≤ n ≤ N : xi ∈ J}
N

)
− (1− |J |)

∣∣∣∣ .
As an immediate corollary of this, we have that DN is translation-invariant, i.e. adding a

constant α to a sequence on the unit interval (mod 1) preserves its discrepancy. With this

alternate definition in mind, it is easy to see that, for any arc J , we can find an arc with

discrepancy at least as large whose endpoints lie on terms in the sequence:

• If

# {1 ≤ n ≤ N : xi ∈ J}
N

> |J |,

then we may shrink J to the largest closed arc inside it with endpoints on terms of the

sequence. This arc contains the same number of terms as J , and has smaller length,
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so the discrepancy will be greater.

• Similarly, if

# {1 ≤ n ≤ N : xi ∈ J}
N

≤ |J |,

then we may expand J to the smallest open arc containing it with endpoints on terms

of the sequence. This arc contains the same number of terms as J , and has greater

length, so the discrepancy will be greater.

Using the same complementing trick as before, this also tells us that, for any interval J ,

we can find an interval with discrepancy at least as large whose endpoints lie on terms of

the sequence. Since there are only finitely many intervals whose endpoints are in the first

N terms of the sequence, this supremum is achieved and can be simplified to a maximum.

Specifically, we can compute the discrepancy as follows:

Theorem (Neiderreiter [95]). For any ordered sequence of points x1 ≤ · · · ≤ xN in [0, 1),

their discrepancy is given by

DN =
1

N
+ max

1≤j≤N

(
j

N
− xj

)
− min

1≤i≤N

(
i

N
− xi

)
.

This gives us an easy way to compute the discrepancy of a sequence directly: simply

add 1/N to the range of the function i/N − xi. Further, the argmin and argmax of the

function indicate which particular interval(s) achieve the discrepancy.

Proof. As noted above, the discrepancy of the sequence is always achieved as the discrepancy

of a particular interval. For simplicity, we treat the unit interval as a circle, and thus can

restrict ourselves to considering closed arcs between points. Then, depending on the values

of i, j, we have the following two cases:

• For i ≤ j, we have

DN ([xi, xj ]) =

∣∣∣∣j − i+ 1

N
− (xj − xi)

∣∣∣∣ .
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• For i > j, we have

DN ([xi, xj ]) =

∣∣∣∣(N + 2)− (i− j + 1)

N
− (1− (xi − xj))

∣∣∣∣
=

∣∣∣∣j − i+ 1

N
− (xj − xi)

∣∣∣∣ ,
since the arcs [xi, xj ] and [xj , xi] together cover every point and only double count

the endpoints {xi, xj} (which are assumed distinct here).

Conveniently, the expression does not care about the order of i and j. So we have

DN = max
1≤i,j≤N

∣∣∣∣j − i+ 1

N
− (xj − xi)

∣∣∣∣
= max

1≤i,j≤N

∣∣∣∣( j

N
− xj

)
−
(
i

N
− xi

)
+

1

N

∣∣∣∣
=

1

N
+ max

1≤j≤N

(
j

N
− xj

)
− min

1≤i≤N

(
i

N
− xi

)
.

This theorem makes it clear that the discrepancy is always at least 1/N (which may

also be seen directly by taking an arbitrarily short interval around a point xi), and so the

question naturally arises: is it possible to construct a sequence for which the discrepancy

never exceeds c/N for some constant c? The question was first answered in the negative

by Tatyana van Aardenne-Ehrenfest in her 1945 paper “Proof of the Impossibility of a Just

Distribution of an Infinite Sequence Over an Interval” [1]. van Aardenne-Ehrenfest proved

that, for any sequence there are always infinitely many N for which

NDN > c
log logN

log log logN
,

for some universal constant c > 0. Roth, in 1954 [116], strengthened this to say that, for

infinitely many N and a universal constant c > 0, we have

NDN > c
√

logN.

It was not until 1972 that Wolfgang Schmidt [121] proved the sharpest form of the bound,

with his seminal theorem bounding the asymptotic decay of discrepancy from below:

13



Theorem (Schmidt [121]). For any sequence {xn}∞n=1 in the unit interval [0, 1] there are

infinitely many integers N such that

DN ≥
1

100

logN

N
.

Recent work has been done exploring the optimal constant in the above theorem, we refer

to [79,81]. Notably, both the van der Corput and Kronecker sequences attain this logN/N

discrepancy (up to constants), and thus they are optimally equidistributed sequences in

this sense. We will take a detour at the end of this section to survey some more precise,

and quite fascinating, results regarding the discrepancy of the van der Corput sequence.

Must any equidistributed sequence necessarily have discrepancy tending to 0 though? It

is clear that if DN → 0 as N → ∞ for a sequence xn, then xn is equidistributed; since

the discrepancy is defined as the maximum discrepancy over all intervals, the maximum

going to 0 also means that the discrepancy on each interval tends to 0. The converse is also

true, though not nearly as immediate. In fact, it is prima facie a rather amazing property

of equidistributed sequences: they are always uniformly so. That is, there is no way to

construct a sequence such that every interval J has |J | · N + o(1) of the first N points

in it without the supremum of the o(1) errors across all intervals also being o(1). Rather

than proving it directly, we elect to crack this nut with a sledgehammer, and first prove a

much stronger statement of which this is a direct consequence: LeVeque’s inequality, which

bounds DN from above in terms of the µ̂(k). But first, we will need a lemma:

Lemma (See e.g. [78]). Let xn be a sequence in [0, 1). For x ∈ [0, 1], we define

RN (x) = #{1 ≤ n ≤ N : xn ∈ [0, x)} −Nx.

Then we have

∫ 1

0
RN (x)2dx =

(
N∑
n=1

(xn − 1/2)

)2

+
1

2π2

∞∑
k=1

1

k2
|Nµ̂N (k)|2 .
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Before presenting the proof, we remark that RN (x)/N is simply the signed discrepancy

±DN of the interval [0, x). It is useful to define the star discrepancy as

D∗N = sup
x∈[0,1]

∣∣∣∣# {1 ≤ n ≤ N : xn < x}
N

− x
∣∣∣∣ =

∥∥∥∥RN (x)

N

∥∥∥∥
L∞

.

By a similar calculation to the one in the Computation of Discrepancy Theorem,

D∗N = max
1≤i≤N

max

(∣∣∣∣ iN − xi
∣∣∣∣ , ∣∣∣∣ i− 1

N
− xi

∣∣∣∣) .
Certainly D∗N ≤ DN , since it is a supremum over the subset of intervals anchored at 0 rather

than all subintervals. In the other direction, we see that any interval can be expressed as

the difference between two intervals anchored at 0, so by the triangle inequality we have

DN ≤ 2D∗N . Thus, while D∗N is a less natural quantity, since it is not translation-invariant

and anchoring at 0 is arbitrary, they only differ up to constants and are on the same order.

As such, the L2 computation in this lemma will be a key step in bounding DN . This also

recalls a crucial theme introduced by Weyl’s Criterion: exponential sum estimates on the

xn are a good measurement of their uniformity.

Proof: Summarized from [78]. RN (x) is continuous at all but a finite set of points, and

thus equals its Fourier series almost everywhere. We now compute its Fourier coefficients,

starting with the case k = 0. Note that #{1 ≤ n ≤ N : xn ∈ [0, x)} is the sum of

characteristic functions of the (xi, 1], since xn ∈ [0, x) ⇐⇒ x ∈ (xn, 1]. Then,

R̂N (0) =

∫ 1

0
RN (x)dx =

∫ 1

0

N∑
n=1

(
1(xn,1] − x

)
dx =

N∑
n=1

(1/2− xn).

For k 6= 0, we can use integration by parts to compute

R̂N (k) =

∫ 1

0
RN (x)e−2πikxdx =

(
N∑
n=1

∫ 1

xn

e−2πikxdx

)
−N

∫ 1

0
xe−2πikxdx

=

(
N∑
n=1

1

2πik
(e−2πikxn − 1)

)
+

N

2πik
=

N

2πik
µ̂N (k).
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Finally, by Parseval’s Identity we have

∫ 1

0
RN (x)2dx =

∑
k∈Z

∣∣∣R̂N (k)
∣∣∣2 = R̂N (0)2 +

∑
k 6=0

∣∣∣∣ N2πik
µ̂N (k)

∣∣∣∣2

=

(
N∑
n=1

(xn − 1/2)

)2

+
1

2π2

∞∑
k=1

1

k2
|Nµ̂N (k)|2 .

With this Lemma in hand, we now state and prove LeVeque’s inequality.

Theorem (LeVeque’s Inequality [85]). Let xn be a sequence in [0, 1). Then

DN ≤

 6

π2

∞∑
k=1

1

k2

∣∣∣∣∣ 1

N

N∑
n=1

e2πikxn

∣∣∣∣∣
2
1/3

.

Proof: Summarized from [78]. Let

TN (x) =
RN (x)− R̂N (0)

N
.

That is, shift RN vertically to have mean 0, and scale down by N . Since RN is piecewise

linear with slope −N and jumps of +1 at each xn, TN will be piecewise linear with slope

−1 and jumps of +1/N at each xn. Since RN (0) = RN (1) = 0 (there are no xn less than 0

and all xn are less than 1), we also have TN (0) = TN (1), so we may periodically extend the

domain of T to all of R, with period 1. Since TN is mean 0 over [0, 1], we may fix α, β such

that TN (α) ≥ 0 and TN (β) ≤ 0, with α ∈ [0, 1) and β ∈ [α, α+ 1) (using periodicity of TN ).

Then, since TN only has positive jumps, it is positive on the interval (α, α + TN (α)) and

in particular lies above the line −x + TN (α) + α. Similarly, TN is negative on the interval

(β + TN (β), β) and lies below the line −x + TN (β) + β. Thus, since the signs differ, the

intervals (α, α+ TN (α)) and (β + TN (β), β) are disjoint. So we have

∫ 1

0
TN (x)2dx =

∫ α+1

α
TN (x)2dx ≥

∫ α+TN (α)

α
TN (x)2dx+

∫ β

β+TN (β)
TN (x)2dx

≥
∫ α+TN (α)

α
(−x+ TN (α) + α)2dx+

∫ β

β+TN (β)
(−x+ TN (β) + β)2dx

=
TN (α)3

3
− TN (β)3

3
.
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Since x 7→ x3 has positive second derivative 6x for positive x, its secant lines always lie

above the curve (this is an application of Jensen’s inequality). In particular,

x3 + y3

2
≥
(
x+ y

2

)3

∀x, y ≥ 0

and thus, setting x = TN (α) and y = −TN (β) and multiplying both sides by 2/3,

TN (α)3 − TN (β)3

3
≥ (TN (α)− TN (β))3

12
.

Note that α and β can be chosen so that TN (α) − TN (β) is arbitrarily close to the supre-

mum of TN (x)− TN (y) without the sign restrictions on TN (x), TN (y), so this inequality on∫ 1
0 TN (x)2dx holds for all α, β. Further, for all α > β ∈ [0, 1],

TN (α)− TN (β) =
RN (α)−RN (β)

N

is simply the signed discrepancy of the interval [β, α). Clearly, swapping α and β will negate

this expression, so we may apply an absolute value to the right hand side to receive the

unsigned (positive) discrepancy on [β, α). Since this holds for all subintervals [β, α) ⊂ [0, 1)

we can take the supremum and conclude

∫ 1

0
TN (x)2dx ≥

D3
N

12
.

We can also compute the left-hand side of the inequality directly, applying the Lemma:

∫ 1

0
TN (x)2dx =

∫ 1

0

(
RN (x)− R̂N (0)

N

)2

dx

=
1

N2

∫ 1

0
(RN (x)2 + R̂N (0)2 − 2RN (x)R̂N (0))dx

=
1

N2

(∫ 1

0
RN (x)2dx+ R̂N (0)2 − 2R̂N (0)2

)
=

1

2π2N2

∞∑
k=1

1

k2
|Nµ̂N (k)|2
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Combining with the inequality from earlier immediately yields the desired result,

DN ≤

(
6

π2

∞∑
k=1

1

k2
|µ̂N (k)|2

)1/3

.

The exponential sum expression appearing in this bound arises in many settings of

interest, so it is worth naming. Let the diaphony [154] of a sequence of points xn in the

unit interval be defined as

FN =

∑
k 6=0

1

k2
|µ̂N (k)|2

1/2

.

We note that diaphony has been studied in a variety of settings [35, 52, 63, 101, 153, 154].

FN is always finite since, as observed before, |µ̂N (k)| ≤ 1, so the sum converges (and, in

particular, we have FN ≤ π/
√

3). Alternatively, we may view this as the Sobolev Ḣ−1-norm.

Diaphony does not have an immediate analogue in higher dimensional spaces: naively using

the Ḣ−1 norm will not work since it diverges on point masses for dimension d > 1. One

of the main contributions of this thesis is to interpret transport distance W2 as a suitable

generalization of diaphony, since it provides a lower bound in 1-dimension

W2

(
1

N

N∑
k=1

δxk , dx

)
≤ 2FN

(this is Peyre’s inequality) and is well-defined and finite in any dimension (see Chapter 2, §4).

LeVeque’s inequality gives us a quantitative bound on the discrepancy on the order of F
2/3
N ,

and in particular makes quite clear that discrepancy is bounded uniformly across intervals:

since |µ̂N (k)| ≤ 1, the bound on the right-hand side is at most 1. If xn is equidistributed,

then by Weyl’s Criterion all the µ̂N (k)→ 0 as N → 0, so, by the Dominated Convergence

Theorem, FN (and, in turn, DN ) goes to 0 as well. The traditional argument to directly

show this fact uses compactness of the unit interval, the main advantage being that such

an approach generalizes easily to higher dimensions whereas this one does not (as FN will

not even converge in dimension d ≥ 2). If we apply LeVeque’s inequality to the Kronecker
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sequence, using our geometric series sum expression from earlier, we have

DN ≤

(
6

π2

∞∑
k=1

1

N2k2

∣∣∣∣1− e2πikNα

1− e2πikα

∣∣∣∣2
)1/3

.

One can do much better by using the continued fraction expansion of α (see [9, 72]).

1.3.1 Discrepancy of the van der Corput Sequence

Here we state, without proof, a variety of interesting results about the van der Corput

sequence, beginning with the bound van der Corput himself gave in 1935 [146].

Theorem. For N ≥ 1, the van der Corput sequence satisfies

ND∗N ≤ log2N + 1.

Tijdeman then significantly improved the constant on this bound:

Theorem (Tijdeman, unpublished—see e.g. [53]). For N ≥ 1, we have

ND∗N ≤
1

3
log2N + 1.

Béijan and Faure showed how far the discrepancy deviates from this bound:

Theorem (Béijan & Faure [11]). For N ≥ 1, DN = D∗N , and thus

NDN ≤
1

3
log2N + 1.

Further, we have

lim sup
N→∞

(
NDN −

1

3
log2N

)
=

4

9
+

1

3
log2 3.

More recently (2005), Drmota-Larcher-Pillichshammer proved an amazing central limit

theorem on the discrepancy of the van der Corput sequence:

Theorem (Drmota-Larcher-Pillichshammer [46]). For all real y, we have

lim
M→∞

1

M

∣∣∣∣{N < M : NDN ≤
1

4
log2N + y

1

4
√

3

√
log2N

}∣∣∣∣ =
1√
2π

∫ y

−∞
e−t

2/2dt.
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In 2017, Spiegelhofer proved a pair of theorems describing precisely how often the dis-

crepancy of the van der Corput sequence can dip below Schmidt’s logN/100N bound,

improving known estimates. We combine these into a single theorem here:

Theorem (Spiegelhofer [125]). For M sufficiently large, we have

M .056 ≤ #

{
N < M : NDN ≤

logN

100

}
≤M .183.

It is not known what the optimal exponents in the above theorem are. We end this

survey with an interesting fact regarding bit reversal. For a positive integer N , we define

NR to be the number whose binary expansion is the reverse of N ’s.

Theorem (Spiegelhofer [125]). For all N ∈ N, the van der Corput sequence satisfies

NDN = NRDNR .

1.3.2 Proinov’s Diaphony Bounds

In 1986, P. D. Proinov published a bound for the diaphony of sequences in the d-dimensional

unit cube [108], but the proof was not released until a decade and a half later, in a Bulgarian-

language monograph in 2000 [109]. An English translation of the proof was published by

N. Kirk in 2020 [75], in a paper which both explains and expands upon Proinov’s results.

Proinov bounds diaphony using an L2 variant of discrepancy, and Kirk extends these results

to a dyadic variant of diaphony derived in turn from a Walsh variant of Fourier series, all

of which are outside the scope of this thesis—we encourage the reader to reference [75] for

these. For our sake, it will suffice to state the following lower bound on diaphony:

Theorem (Proinov [108]). For any infinite sequence of points in the unit interval, we have

for infinitely many N that

FN ≥
π

256
√

log 2
·
√

logN

N
.

The constant above is roughly .0147. Kirk improves this to .1619 using Proinov’s tech-

niques applied to more recent bounds on L2 discrepancy. The optimal value of this constant

(i.e. the supremum of all constants for which the theorem holds) is not known.
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1.4 Erdős-Turán Inequality

We now consider another important inequality which, like LeVeque’s, bounds the discrep-

ancy of a sequence in terms of its exponential sums. In fact, we will see that LeVeque’s

inequality follows from the Erdős-Turán inequality up to constants, but we nonetheless

believe it valuable to include the direct proof of the former as it is interesting in its own

right. The proof we provide here is not the original, but a very elegant insight of Ganelius

regarding Fourier series, published a decade after Erdős and Turán initially proved it [49,50].

Lemma (Ganelius [56]). Let V : R→ R be 1-periodic, bounded, and integrable, and set

ω(δ) = sup
0≤y−x≤δ

(V (y)− V (x)).

Then, for any positive integer m, we have

sup
x∈R
|V (x)| ≤ 4

(
ω(m−1) +

m−1∑
k=0

(
1− k

m

) ∣∣∣V̂ (k)
∣∣∣) .

There is a deliberate asymmetry in the definition of ω: it measures the maximum

increase of V over intervals of length at most δ, not simply the maximum (absolute) change

in value. (We will see the usefulness of this one-sidedness when applying the lemma to our

setting.) Note that ω is monotonic and satisfies the triangle inequality

ω(x) + ω(y) ≥ ω(x+ y),

and in particular, for any n ∈ N, nω(x) ≥ ω(nx). To prove the lemma, we recall Fejér’s

Theorem (proved above in §1.1).

Proof: Summarized from [56]. Let σm = V ∗ψm. Observe that, for all δ ∈ (0, 1/2), we have

∫ 1−δ

δ
ψm(x)dx = 2

∫ 1/2

δ

1

m

(
sin(mπx)

sin(πx)

)2

dx

≤ 2

m

∫ 1/2

δ
(sin(πx))−2 =

2

mπ
cot(πδ) ≤ 2

mπ2δ
,
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where the last inequality follows from cotx ≤ 1/x for x ∈ (0, π), a consequence of the power

series of cotangent. Then, since ψ̂m(0) = 1, we have

∫ δ

−δ
ψm(x)dx = 1−

∫ 1−δ

δ
ψm(x)dx ≥ 1− 2

mπ2δ
.

Assume without loss of generality that W = supx |V (x)| = supx V (x) (otherwise, simply run

the following argument on −V (−x): W , ω, and all the |V̂ (k)| are the same for −V (−x)).

Then for any ε > 0, we may fix xε with V (xε) > W − ε, and thus, for any x ∈ [xε − 2δ, xε],

we have, by definition of ω,

V (x) > V (xε)− ω(2δ) > W − ε− ω(2δ).

Then, by non-negativity of ψm, we may bound

σm(xε − δ) =

∫ 1

0
ψm(x)V (xε − δ − x)dx

≥ (W − ε− ω(2δ))

∫ δ

−δ
ψm(x)dx−W

∫ 1−δ

δ
ψm(x)dx

We now choose δ = 8(mπ2)−1. If m = 1, the Lemma holds trivially, as W ≤ |V̂ (0)|+ ω(1)

(V cannot stray farther from its mean than its total range). So we may fix m ≥ 2. Then

δ ≤ 4/π2 < 1/2, so our bounds on the integral of the Fejér kernel apply:

∫ 1−δ

δ
ψm(x)dx ≤ 2

mπ2δ
=

1

4
and

∫ δ

−δ
ψm(x)dx ≥ 1− 2

mπ2δ
=

3

4
.

If W < ω(2δ) ≤ 2ω(δ) ≤ 2ω(m−1), then we are done immediately, so assume W > ω(2δ)

and choose ε > 0 with W − ε− ω(2δ) ≥ 0. Then we may bound

σm(xε − δ) ≥ (W − ε− ω(2δ))

∫ δ

−δ
ψm(x)dx−W

∫ 1−δ

δ
ψm(x)dx

≥ 3

4
(W − ε− ω(2δ))− 1

4
W =

1

2
W − 3

4
(ε+ ω(2δ)).
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Since V is real, we have V̂ (−k) = V̂ (k), so

σm(x) = V̂ (0) +

m−1∑
k=1

(1− k/m)
(
V̂ (k)e2πikx + V̂ (−k)e−2πikx

)
= V̂ (0) +

m−1∑
k=1

(1− k/m) 2<
(
V̂ (k)e2πikx

)
≤ 2

m−1∑
k=0

(1− k/m)
∣∣∣V̂ (k)

∣∣∣ .
Combining this with the inequality above yields

W ≤ 3

2
(ε+ ω(2δ)) + 4

m−1∑
k=0

(1− k/m)
∣∣∣V̂ (k)

∣∣∣ .
Since 16/π2 < 2, we have ω(2δ) = ω(16(mπ2)−1) ≤ 2ω(m−1). Sending ε→ 0,

W ≤ 3ω(δ) + 4

m−1∑
k=0

(1− k/m)
∣∣∣V̂ (k)

∣∣∣ .
The Erdős-Turán inequality [49,50] now follows as an immediate corollary of Ganelius’

Lemma: Setting V (x) = −TN (x), we see that V has a constant slope of +1 except at the

terms of the sequence where it jumps by −1/N , so ω(x) ≤ x. Thus,

sup
x
|−TN (x)| ≤ 4

(
ω(m−1) +

m−1∑
k=0

(1− k/n)
∣∣∣T̂ (k)

∣∣∣) ≤ 4

(
1

m
+

1

2π

m−1∑
k=1

1

k
|µ̂N (k)|

)
,

recalling our computations of R̂(k) from earlier (and in particular that R̂(0) = 0). As we

saw in the proof of LeVeque’s inequality,

DN = sup
x,y

(TN (y)− TN (x)).

and thus, by the triangle inequality, we arrive at the Erdős-Turán inequality

DN ≤ 8

(
1

m
+

1

2π

m−1∑
k=1

1

k
|µ̂N (k)|

)
.
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To get LeVeque’s inequality (up to constants) from this, simply set m = dF−2/3
N e:

DN . F
2/3
N +

m−1∑
k=1

1

k
|µ̂N (k)| . F

2/3
N + FN · F−1/3

N . F
2/3
N ,

where the second inequality follows from applying the Cauchy-Schwartz inequality to the

sequences 1
k |µ̂N (k)| and 1[1,m−1] (the sequence of (m − 1) 1s and 0s after that). Here and

throughout the text we use A . B to denote that A ≤ cB for some universal constant

c–this is a useful shorthand that allows us to dispense of constants in favor of notational

compactness, particularly when we are really interested in asymptotic scaling anyway. In-

deed, we will often discard the 8 and (2π)−1 shown above for a cleaner inequality, which

is true up to constants. For an investigation of precisely which constants may replace the

8 and (2π)−1 to keep the inequality strictly true, we refer to the Rivat-Tenenbaum paper

on the matter [115]. Since LeVeque’s inequality is, up to constants, merely a special case

of the Erdős-Turán inequality, the latter is, again up to constants, the tighter bound of

the two asymptotically. For instance, if we look at the Kronecker sequence on the golden

ratio α = (1 +
√

5)/2, the Erdős-Turán bound gives DN . (logN)2/N (see the following

subsection) while LeVeque’s inequality only yields DN . N−2/3. We refer to [93] for further

exposition on these bounds as well as more examples displaying the relative weakness of

LeVeque’s inequality compared with the Erdős-Turán inequality.

1.4.1 Erdős-Turán Inequality on the Kronecker Sequence

For our running example of the Kronecker sequence, the Erdős-Turán inequality yields

DN ≤ 8

(
1

m
+

1

2π

m−1∑
k=1

|1− e2πiNkα|
kN |1− e2πikα|

)
.

By way of a standard dyadic decomposition trick, we see that, since α is badly approximable,

k|1− e2πikα| & 1, and thus the set

{|1− e2πikα| : 2` ≤ k ≤ 2`+1}
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is ∼ 2−` separated, and, for every element, we have |1− e2πikα| & 2−`. Thus,

DN .
1

m
+

1

N

logm∑
`=0

2`+1∑
k=2`

1

k

∣∣∣1− e2πikα
∣∣∣−1

.
1

m
+

1

N

logm∑
`=0

2−`
2`+1∑
k=2`

∣∣∣1− e2πikα
∣∣∣−1

.
1

m
+

1

N

logm∑
`=0

2−`
2`∑
j=1

(j/2−`)−1 .
1

m
+

1

N

logm∑
`=0

` ∼ 1

m
+

(logm)2

N
.

Setting m = N , we get a bound on the order of (logN)2/N . This is not the optimal rate

however—Beck [9] has stronger bounds on the discrepancy of the Kronecker sequence.

1.4.2 Tightness of the Erdős-Turán Inequality

After considering the Erdős-Turán inequality bounding the size of discrepancy from above,

it is natural to ask the question “How good of a bound is this?” That is, how close does

the Erdős-Turán bound get to actual discrepancy? Imre Rusza proved that the discrepancy

can never be significantly smaller than the Erdős-Turán bound.

Theorem (Rusza [117]). For a sequence of points in the unit interval, let

B = inf
m∈N

(
1

m
+

m−1∑
k=1

1

k
|µ̂N (k)|

)

be the minimal bound given by the Erdős-Turán inequality. Then we have

DN & B3/2.

Proof: Summarized from [117]. As in §3, we set

RN (x) = #{1 ≤ n ≤ N : xn ∈ [0, x)} −Nx.

Then we have the following chain of inequalities:

DN ≥ D∗N =

∥∥∥∥RNN
∥∥∥∥
L∞
≥
∥∥∥∥RNN

∥∥∥∥
L2

.
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By the §3 Lemma, we have

∥∥∥∥RNN
∥∥∥∥2

L2

≥ 1

2π2

∞∑
k=1

1

k2
|µ̂N (k)|2 =

1

4π2
F 2
N .

Combining with the above, we find

F 2
N ≤ 4π2D2

N .

Then, through an application of Cauchy-Schwarz along the same lines as when we deduced

LeVeque’s inequality from the Erdős-Turán inequality, we have

S =
m−1∑
k=1

1

k
|µ̂N (k)| ≤ π

√
2(m− 1)DN .

This in turn proves that

B ≤ 1

m
+ S ≤ 1

m
+ π

√
2(m− 1)DN .

Setting m = 1 + b(π
√

2DN )−2/3c yields the desired result:

B ≤ 3 · 2−1/3(πDN )2/3 < 6D
2/3
N .

Indeed, Rusza constructs examples showing that this bound is, up to constants, optimal.

1.5 Koksma’s Inequality

Weyl’s Criterion tells us that we should only sample over equidistributed sequences for nu-

merical integration, but of course there is massive variety within the class of equidistributed

sequences. In practice it is not enough to know that a sequence converges if we have no

idea how “quickly” it does so–maybe we need to take a trillion terms of the sequence before

being less than 1000 away from the true integral. For our sequence to be useful in practice,

we need pragmatic theoretical bounds which we can actually compute on how far these

averages are from
∫ 1

0 fdx. Koksma’s inequality [77] provides such an error bound for us.
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But before we present Koksma’s inequality, we need a lemma.

Lemma (See e.g. [78]). For any sequence 0 = x0 ≤ x1 ≤ · · · ≤ xN < xN+1 = 1, and any

function f : [0, 1]→ R of bounded variation, we have

1

N

N∑
i=1

f(xi)−
∫ 1

0
f(x)dx =

N∑
i=0

∫ xi+1

xi

(
t− i

N

)
df(t),

where the integral on the right-hand side is the Riemann-Stieltjes integral.

Proof: Summarized from [78]. This follows from Abel summation and integration by parts:

N∑
i=0

∫ xi+1

xi

(
t− i

N

)
df(t) =

∫ 1

0
tdf(t)−

N∑
i=0

i

N
(f(xi+1)− f(xi))

=
(
tf(t)

)1

0
−
∫ 1

0
f(t)dt+

1

N

N−1∑
i=0

f(xi+1)− f(1)

=
1

N

N∑
i=1

f(xi)−
∫ 1

0
f(t)dt.

From this, we may easily arrive at Koksma’s inequality:

Theorem (Koksma [77]). For any sequence xi in [0, 1), and any function f : [0, 1] → R

with total variation V (f) <∞, we have

∣∣∣∣∣ 1

N

N∑
i=1

f(xi)−
∫ 1

0
f(t)dt

∣∣∣∣∣ ≤ V (f)D∗N .

Koksma’s inequality gives us a bound which is both useful and easy to compute: as

long as we can bound the discrepancy of a sequence and the total variation of f , we have a

guarantee on how close the average value of f over xi is to the true integral. In particular,

for a fixed f the bound is simply proportional to the discrepancy of the sequence.

Proof: Summarized from [78]. Without loss of generality, we may assume the first N xi

are ordered (as all our quantities are independent of the order of the xi). Note that, for

t ∈ [xi, xi+1], we have

(
t− i

N

)
≤ max

(∣∣∣∣xi − i

N

∣∣∣∣ , ∣∣∣∣xi+1 −
i

N

∣∣∣∣) ≤ D∗N ,
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since D∗N is the maximum of the middle expression over all i (we can ignore the edge cases

since x0 − 0/N = xN+1 −N/N = 0). Then, since f has bounded variation, we may apply

the lemma, and get

∣∣∣∣∣ 1

N

N∑
i=1

f(xi)−
∫ 1

0
f(t)dt

∣∣∣∣∣ =
N∑
i=0

∫ xi+1

xi

(
t− i

N

)
df(t)

≤
N∑
i=0

∫ xi+1

xi

D∗Ndf(t) ≤ V (f)D∗N .

One particularly nice application of Koksma’s inequality is an immediate bound on the

size of the µ̂N (k): we have

|µ̂N (k)| = 1

N

N∑
i=1

e2πi(kxi+θ) =
1

N

N∑
i=1

cos(2π(kxi + θ)),

where θ = arg µ̂N (k) is chosen to rotate the exponential sum onto the real axis. Then, since

cos(2π(kx+ θ)) has total variation V (f) = 4k (all k bumps go up and down by 2),

|µ̂N (k)| =
∣∣∣∣µ̂N (k)−

∫ 1

0
cos(2π(kx+ θ))dx

∣∣∣∣ ≤ 4kD∗N .

We can also apply our Erdős-Turán bound on DN for the Kronecker sequence to bound the

error of numerical integration on it:

∣∣∣∣∣ 1

N

N∑
i=1

f(xi)−
∫ 1

0
f(t)dt

∣∣∣∣∣ . (logN)2

N
.

We can interpret Koksma’s inequality as a quantitative specification of Weyl’s Criterion: if

DN → 0, then numerical integrals over xi approach true integrals, in particular so do the

µ̂N (k), and here is precisely how fast those limits converge in terms of DN itself.
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Chapter 2

A Brief Survey of Optimal

Transport

2.1 Monge and Kantorovich

In Chapter 1, we have explored the use of discrepancy (the literal difference between a

point measure and the Lebesgue on an interval) as a way to quantify the equidistribution

of a sequence. In 1781, French geometer Gaspard Monge famously asked a more concrete

question: if probability mass were physical mass (say, sand in piles) then how much work

is needed to push one distribution of mass to another? Of course, there may be varying

types of terrain which pose obstructions to travel in differing degrees, so for the problem

to be well-specified we need a cost function c(x, y) that tells us the amount of work needed

to take one unit of mass from point x to point y (we will always assume the cost scales

linearly with the mass: carrying two units of mass from x to y is twice as much work as

carrying one between the same points). In his original formulation, Monge took the cost

function to simply be the euclidean distance between x and y: transporting m mass over

d distance costs m · d. This special case is now referred to as the “Earth mover distance,”

recalling Monge’s initial paper exploring the transfer of soil extracted from known sites in

the ground to aboveground structures being built from it. Formally, if we have a starting

measure µ which we would like to transport to a target measure ν (both on the same space



M), the plan to do so will be a coupling γ of µ and ν: a measure on M ×M with marginals

µ and ν, respectively. That is, for each pair of points in M , we indicate how much mass to

move from one to the other, and the probability distribution induced by projecting γ onto

the first coordinate should match µ while the probability distribution induced by projecting

γ onto the second coordinate should match ν.

Figure 2.1: Portrait of Monge by François Delpech, Public domain, via Wikimedia Commons

We denote the collection of couplings on µ, ν as Γ(µ, ν). Since we obviously want to

minimize the amount of work done, the ultimate number we care about is the solution to

the Monge-Kantorovich minimization problem

inf
γ∈Γ(µ,ν)

∫
M×M

c(x, y)dγ(x, y).

Monge’s Problem was slightly narrower than this: he was interested specifically in deter-

ministic transport plans, induced by functions M → M (where the mass of any point is

entirely sent to another point, and no mass is “split”). It is understandable why this re-

striction might be imposed, from a physical perspective: if individuals are stationed at each

point in tractors holding their respective piles of sand, each entire pile must be transported

to the same place (it would cost much more time and effort to have to measure out the
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appropriate portions to drop at each destination). Unfortunately, this is, in general, not

possible to do, e.g. if µ has a single point mass, it can only be transported to another single

point mass (though there are plenty of examples where deterministic transport is impossible

despite both µ, ν being continuous). For our purposes, we will restrict to the case where the

probability space is a Riemannian manifold (M, g). Then, we have the following theorem

which will be immensely useful:

Theorem (Existence of Optimal Couplings, see e.g. [148]). For any Riemannian manifold

(M, g) and continuous cost function c : M ×M → R+, and any pair µ, ν of probability

distributions on M , there exists a coupling γ ∈ Γ(µ, ν) which minimizes the transport cost.

In particular, the infimum in the Monge-Kantorovich problem is attained as a minimum.

The proof is a topological argument invoking the compactness of Γ(µ, ν). Much stronger

variants of this theorem are true, with fewer restrictions on the cost function and underlying

space, but it will be sufficient for our purposes. (In general, the cost function need not even

be non-negative, depending on the particular setting and application. Indeed, the transport

itself need not be restricted to a transfer on a single space M .) While we can certainly talk

about the transport of measures that are not probability distributions, the question only

makes sense if the total mass of µ and ν is equal, so without loss of generality, as long as they

are positive finite measures we may normalize them to be probability measures. In general,

the problem of finding optimal couplings is quite hard, though there are settings in which

it is not: for two distributions on R with cost function the standard euclidean distance, the

solution is very intuitive. We may imagine the probability density function of the initial

measure as aboveground piles of dirt and of the target measure as holes below ground, and it

is clear that the optimal transport plan consists of simply bulldozing the dirt forward while

allowing it to fall in the holes. Around two centuries after Monge formulated the problem,

Kantorovich approached it from the perspective of the theory of linear programming (which

he had invented, though it was later independently formulated by Koopmans, Dantzig, and

others [41]). He thus proposed we consider instead the dual problem of finding

sup

{∫
M
φ(x)dµ(x) +

∫
M
ψ(y)dν(y) : φ(x) + ψ(y) ≤ c(x, y)

}
,
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where the supremum is taken over L1 functions φ, ψ.

0.5 1.0 1.5

-0.10

-0.05

0.05

Figure 2.2: Here, it is easy to see how to optimally transport the lump of dirt to the hole

We can think of the dual problem with a real-life example as follows: Suppose we are

discussing our soil transport question when an entrepreneurial stranger appears. They

inform us that they overheard our conversation and they just so happen to run a soil

transport company, and will offer their services with the following payment scheme: we pay

some upon soil pickup and some upon soil drop-off, and they take care of everything in

between. Specifically, they produce two functions: φ(x) is the price to pick up one unit of

soil mass at location x, and ψ(y) is the price to drop off one unit of soil mass at location y

(picking up and dropping off are qualitatively different operations, they need not cost the

same amount even at the same location). They, somehow, already know our cost function

c and, while they do not (yet) know the precise distributions of soil we need transported,

they guarantee us that φ and ψ are such that, for all (x, y) ∈M ×M , φ(x)+ψ(y) ≤ c(x, y),

so the price we would pay them to pick up from x and drop off at y is no more than we

would pay to move it ourselves. (They may have techniques, connections, and machinery

that nonetheless make their cost function less than ours, so it could still be profitable for

them as well.) Kantorovich’s dual problem asks the maximum amount we would have to

pay the entrepreneur. The answer: no less than it would cost us to move the soil ourselves!

Theorem (Kantorovich Duality [74]). For any Riemannian manifold (M, g) and continuous

cost function c : M ×M → R+, and any pair µ, ν of probability distributions on M , the

Monge-Kantorovich problem and the dual Kantorovich problem have the same solution.
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Moreover, the supremum in the dual problem is attained as a maximum. That is, there

exists a pair of functions φ, ψ satisfying φ(x) + ψ(y) ≤ c(x, y) and γ ∈ Γ(µ, ν), with

∫
M
φ(x)dµ(x) +

∫
M
ψ(y)dν(y) =

∫
M×M

c(x, y)dγ(x, y).

Figure 2.3: Kantorovich, courtesy Andrei Bogdanoff, CC BY 3.0, via Wikimedia Commons

In the special case when c is a metric, we can further make the statement that the

optimal transport cost is

sup

{∫
M
φdµ−

∫
M
φdν

}
,

where φ is 1-Lipschitz (i.e., φ(x)−φ(y) ≤ d(x, y) for all x, y ∈M). This equation is referred

to as the Kantorovich-Rubinstein formula, and is easy to verify using Kantorovich duality:

for any 1-Lipschitz φ simply set ψ = −φ. Then, since φ is 1-Lipschitz by assumption,

φ(x) + ψ(y) = φ(x)− φ(y) ≤ d(x, y),

and thus φ, ψ are a permissible pair, and we have

∫
M
φdµ+

∫
M
ψdν =

∫
M
φdµ−

∫
M
φdν.
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Conversely, given any permissible φ, ψ pair, we define

f(x) = inf
y

(d(x, y)− ψ(y)) .

Note that f is 1-Lipschitz: we have

f(x)− f(x′) = inf
y

(d(x, y)− ψ(y))− inf
y

(d(x′, y)− ψ(y)) ≤ sup
y

(d(x, y)− d(x′, y)) ≤ d(x, x′)

by the triangle inequality. By construction f satisfies

φ(x) ≤ f(x) ≤ −ψ(x),

where the upper bound is realized by setting y = x. Thus,

∫
M
fdµ−

∫
M
fdν ≥

∫
M
φdµ+

∫
M
ψdν.

So the suprema of the two expressions is equal. In practice, this alternate form is often

easier to use as it ostensibly only needs a single function φ to be optimized instead of a φ, ψ

pair (though the proof provides a recipe to cook either up from the other).

2.2 The Wasserstein Distance

We now turn our attention to the Wasserstein distance, for which Santamborigo [119] or

Villani [148] are great points of reference. The p−Wasserstein distance [147] between two

measures µ and ν is defined as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
M×M

d(x, y)pdγ(x, y)

)1/p

,

where d is the metric on M and p ∈ [1,∞). That is, W p
p is simply the optimal transport

cost when c = dp. A particularly natural case arises from p = 1, when we recover the Earth

mover distance studied by Monge, also known as the Kantorovich-Rubinstein distance.

As noted in the previous section, W1 admits a particularly nice duality formula (though
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Kantorovich duality exists for all p):

W1(µ, ν) = sup

{∫
M
φdµ−

∫
M
φdν

}
,

with the supremum taken over all 1-Lipschitz φ. The p-Wasserstein distance can be thought

of analogously to the Lp-norm. One can easily verify that Wp satisfies the axioms for a

metric, inheriting all the relevant properties from d. The argument for triangle inequality

uses Minkowski’s inequality and thus follows closely to the proof that Lp is a norm. Since

we are working on compact spaces, we can always bound Wp from above by the diameter

of the space (the maximum distance between two points). It is relatively easy to see that

we have an (optimal) lower bound on the Wasserstein distance from a point distribution to

the uniform distribution that is independent of the pointset {x1, . . . , xN} ⊂M = Td:

Wp

(
1

N

N∑
k=1

δxk , dx

)
≥ cd
N1/d

.

The short argument is as follows: let BεN−1/d(x) be a ball of radius εN−1/d centered around

x. We note that the total volume of N such balls satisfies

∣∣∣∣∣
N⋃
i=1

BεN−1/d(xi)

∣∣∣∣∣ ≤ N |BεN−1/d(0)| ≤ ωdεd

for some universal constant ωd depending only on the dimension. For ε sufficiently small

(depending only on ωd), this is much less than the volume of M and therefore most of

the Lebesgue measure on M is at distance > εN−1/d from the set {x1, . . . , xN}. In the

case where N = nd, we can achieve optimal scaling on the constant cd using a lattice

configuration, picking the xi to be the centers of d-dimensional hypercubes with side length

1/n which partition M . This is because, by Stirling’s approximation, the volume of a

d-dimensional unit ball is ωd ∼ d−(d+1)/2, so, to make the above argument work, we need

ε . d(d+1)/2d ∼
√
d,
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and thus our lower bound becomes

cd
N1/d

∼
√
d

n
.

On the other hand, if we transport the point measure on each xi to the Lebesgue measure

on its corresponding box, then, since the probability mass must travel at most
√
d/n (the

diameter of each box), we have

Wp

(
1

N

N∑
k=1

δxk , dx

)
≤
√
d

n
,

as desired. The Wasserstein distance fully encodes the geometry of M : We can easily recover

the metric on the space from Wp, for any p. Simply observe that Wp(δx, δy) = d(x, y). From

Hölder’s inequality, we immediately deduce that Wp ≤ Wq for all p ≤ q: Let γ ∈ Γ(µ, ν).

Then, applying Hölder’s inequality on q/p and its Hölder conjugate k to dp and 1, we have

∫
M×M

dp · 1dγ ≤
(∫

M×M
(dp)q/pdγ

)p/q (∫
M×M

1kdγ

)1/k

,

so, simplifying and taking the pth root of both sides,

(∫
M×M

dpdγ

)1/p

≤
(∫

M×M
dqdγ

)1/q

,

and thus all couplings γ will have smaller total transport cost in Wp than Wq.

2.3 The Benamou-Brenier Formula

Just two decades ago, Jean-David Benamou and Yann Brenier approached Wasserstein

distance from the perspective of computational fluid dynamics. In such context, it is natural

to formulate the transport question continuously, asking not merely “How much mass should

be sent from point x to point y?” but “How does it get there?” To this end, they ask not for

a coupling of µ, ν, but a pair ρt(x) and v(t, x) of time-dependent density and velocity fields,

respectively. This is particularly useful for applied settings, where we may be interested to
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know what measure is “half-way between” µ and ν as they are being transported. With

this viewpoint, they prove the following:

Theorem (Benamou-Brenier Formula [14]). For any Riemannian manifold (M, g) and pair

µ, µ′ of positive measures on M , we have

W2(µ, µ′) = inf

{∫ 1

0

∫
M
|v|2dρtdt

}
,

where the infimum is taken over all ρt, v satisfying ρ0 = µ, ρ1 = µ′, and

∂ρt
∂t

+∇ · (vρt) = 0.

The first constraint merely says that ρ indeed transports from µ to µ′, and the second is

a continuity constraint stipulating that probability mass be locally conserved (i.e., no “tele-

porting” mass). The Benamou-Brenier Formula can also be phrased in terms of negative

Sobolev norms, eliminating v from the picture altogether—we briefly introduce them here.

The weighted Sobolev norm on signed measures is defined by

‖ν‖Ḣ−1(µ) = sup

{
〈f, ν〉

∣∣∣ ∫
M
|∇f |2 dµ ≤ 1

}
.

Clearly, this expression is infinite if ν has non-zero total mass—we can simply set f to be

an arbitrarily large constant function. In general, as long as ν has finite total mass we

may shift it down by an appropriate multiple of the Lebesgue measure to attain zero mass.

When µ is the Lebesgue measure, there is a nice spectral expression for this:

‖ν‖2
Ḣ−1 =

∞∑
k=1

〈ν, φk〉2

λk
,

where φk, λk are the eigenfunctions and eigenvalues of the Laplacian on M . Note that in

the 1-dimensional setting this is the diaphony FN , introduced in Chapter 1 §3. Using this

notation, we may restate the Benamou-Brenier Formula as follows:

W2(µ, µ′) = inf

{∫ 1

0
‖dρt‖Ḣ−1(dρt)

}
.
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This infimum only needs the constraint that ρ0 = µ, ρ1 = µ′, since the negative Sobolev

norm is itself an optimization. Thus, in this perspective, the Benamou-Brenier Formula can

be understood to say that, asymptotically, W2 agrees with Ḣ−1:

W2(µ+ dµ) = ‖dµ‖Ḣ−1(µ) + o(dµ)

for a small measure dµ on M . It is then natural to ask for some non-asymptotic variant of

this: can we bound W2 by Ḣ−1?

2.4 Peyre’s Inequality

Rémi Peyre, in 2018, answered this question positively:

Theorem (Peyre’s Inequality [106]). For any pair µ, ν of positive measures on a Rieman-

nian manifold M , we have

W2(µ, ν) ≤ 2‖µ− ν‖Ḣ−1(µ).

In particular, when ν is the Lebesgue measure on M (as will be the case of interest for

our setting, since we ultimately want to use this to consider transport cost between the

uniform distribution and a point distribution), this is simply W2(µ, dx) ≤ 2‖µ − dx‖Ḣ−1 .

We prove this by way of the following lemma:

Lemma (Peyre [106]). For measures µ, µ′ with µ′ ≥ ρµ for some ρ > 0, we have for all ν

‖ν‖Ḣ−1(µ) ≥ ρ
1/2‖ν‖Ḣ−1(µ′).

Proof: Summarized from [106]. Note that, since the integrand is everywhere non-negative,

∫
M
|∇f |2dµ′ ≥ ρ

∫
M
|∇f |2dµ.

Thus, bringing ρ inside the integrand, for all f we have

∫
M
|∇f |2dµ′ ≤ 1 =⇒

∫
M
|∇ρ1/2f |2dµ ≤ 1,
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and since 〈ρ1/2f, ν〉 = ρ1/2〈f, ν〉, the result follows.

We may now prove Peyre’s inequality using this and the Benamou-Brenier Formula:

Proof: Summarized from [106]. For t ∈ [0, 1], let

µt = (1− t)µ+ tν,

so that µ0 = µ and µ1 = ν. Then we have by the Benamou-Brenier Formula

W2(µ, ν) ≤
∫ 1

0
‖µ− ν‖Ḣ−1(µt)

dt

(since W2 is the infimum of this expression over all such ρt interpolating µ, ν). Since ν ≥ 0,

we have µt ≥ (1− t)µ, and so, applying the lemma,

‖µ− ν‖Ḣ−1(µt)
≤ (1− t)−1/2‖µ− ν‖Ḣ−1(µ).

Thus, we may integrate
∫ 1

0 (1− t)−1/2dt =
[
−2(1− t)1/2

]1
0

= 2, and so

W2(µ, ν) ≤
∫ 1

0
(1− t)−1/2‖µ− ν‖Ḣ−1(µ)dr = 2‖µ− ν‖Ḣ−1(µ).

Ledoux provided the following generalization of Peyre’s result not requiring p = 2:

Theorem (Ledoux [82]). For any 1 ≤ p <∞, if ν, µ satisfy dν = fdµ then we have

Wp(ν, µ) ≤ p‖f − 1‖H−1,p(µ).

2.5 Wasserstein on Graphs

The notion of Wasserstein distance can be immediately applied to finite graphs: we will work

only in the simple case of unweighted graphs where all edges have the same weight and the

distance between two vertices is given as the length of the shortest path connecting them;

extensions to the weighted case (i.e. arbitrary metric graphs) are certainly conceivable. In
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short, transporting ε L1−mass over a single edge has a W1 cost of ε. We will mostly be

interested in looking at W1 on the graph because of its particularly nice properties.

x1x2

x3

x4 x5

x6

1/2

1/2

Figure 2.4: W1

(
1
2(δx1 + δx2), dx

)
= 2/3: We can transport 1/6 units of mass from x1 to

each of x2 and x6, and similarly with x4 to x3 and x5, incurring a total cost of 4× 1/6.

Even though we are merely applying Wasserstein distance to a finite set of points, the

fact that the metric is induced by a graph supplies an abundance of structure that allows

us to make strong claims. For instance, we may apply Kantorovich-Rubinstein as follows:

Proposition 2.5.1 (Kantorovich-Rubinstein [105]). Let G = (V,E) be a finite, simple

graph, let f : V → R and let W ⊂ V be a subset of vertices. Then∣∣∣∣∣ 1

|V |
∑
x∈V

f(x)− 1

|W |
∑
x∈W

f(x)

∣∣∣∣∣ ≤W1

(
1

|W |
∑
x∈W

δx, dx

)
max
xi∼xj

|f(xi)− f(xj)|.

Proof. The Kantorovich-Rubinstein formula tells us that, for any pair of measures µi,

W1(µ1, µ2) = max
non-constant f

(∣∣∣∣∫
V
f(x)dµ1 −

∫
V
f(x)dµ2

∣∣∣∣ [max
xi∼xj

|f(xi)− f(xj)|
]−1
)
,

where the factor on the right simply scales down f to ensure it is 1-Lipschitz. Applying

this to the case where µ1 = dx and µ2 = 1
|W |
∑

x∈W δx, we arrive at the desired result.

(In the context of graphs, we use dx to denote the uniform measure on the vertex set V .)

This result can be interpreted as a bound on the error of numerical integration: averaging

f over its values on W can only be so far off from the global average of f over V . We will

look more closely at the graph setting in Chapter 7, particularly as it relates to sampling

and numerical integration, and investigate the relationship between results on the graph

and results on manifolds.

40



Chapter 3

Using Peyre to get Bounds

3.1 A Smoothing Procedure

This section collects some existing machinery and summarizes results from Steinerberger

[127, 131], note Bobkov and Ledoux independently used very similar techniques in [22]. In

particular it also contains a theorem formulated by Steinerberger and the author in [25].

Suppose we have a measure µ we would like to transport to the uniform measure dx—how

can we get a good bound on the W2 transport cost required to do this? The main idea

of this section is to apply the heat equation to smooth the measure and then interpret

the outcome ν of this smoothing process as the result of applying a particular transport

plan moving µ to ν. We achieve this through a reinterpretation of parabolic second order

differential equations, more specifically the heat equation

(
∂

∂t
−∆

)
u(t, x) = 0.

Observe that if u(0, x) ≥ 0, we may interpret this process physically as representing the

dynamics of particle density as particles diffuse over time (Fourier originally formulated it

to model temperature flow, hence the name). Using the spectral expansion we see that

high-frequency eigenfunctions, and linear combinations thereof, quickly decay under the

heat equation: within a short amount of time, the solution u(t, x) will be close to constant.

On the other hand, if we run the equation for a sufficiently short time, then most of the



particles are only moving a little bit. Let (M, g) denote a compact, smooth Riemannian

manifold without boundary. We denote the L2−normalized eigenfunctions of the Laplacian

as (φk)
∞
k=0 (where, as usual, φ0 = 1 is constant–for simplicity we normalize M to have

volume 1). The argument is based on an explicit construction comprised of two steps: we

first use the heat kernel as a way to organize transport to achieve a smoothened distribution

of mass that is very close to flat, and then we apply Peyre’s inequality

W2(µ, ν) ≤ 2‖µ− ν‖Ḣ−1(µ),

introduced in Chapter 2. The heat kernel p(t, x, y) : R≥0 ×M ×M → R≥0 satisfies

∫
M
p(t, x, y)dy = 1.

In particular, it may be understood as a probability distribution. We re-interpret it as a

transport plan telling us how to spread mass located at x. The result of this transport plan

will be a new probability distribution given by

et∆µ =

∫
M
p(t, x, y)dµ(y) at W2-cost

(∫
M

∫
M
|x− y|2p(t, x, y)dµ(y)dx

) 1
p

.

If we can bound the above cost, we may apply the triangle inequality to estimate

W2(µ, dx) ≤W2(µ, et∆µ) +W2(et∆µ, dx).

Here, et∆µ is the solution of the heat equation after t units of time (since we work on a

manifold without boundary, we do not need to specify boundary conditions). Fortunately,

this transportation cost W2(µ, et∆µ) is easy to bound:

Lemma (See e.g. [57, 127, 131]). Let µ be a probability measure on the compact manifold

M . Then we have for all t > 0

W2(µ, et∆µ) .M

√
t,
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where the implicit constant depends only on the manifold.

Note that there is nothing special about W2 in this result–the same proof works just as

well for all Wp, p ∈ [1,∞). We merely state is this way for simplicity because we are using

it as part of a larger argument to bound W2.

Proof: Summarized from [127]. We apply the heat equation for a short time to µ. We

interpret the heat equation as convolution with the heat kernel and the heat kernel as a

transport plan. The result of this transport plan will be a new mass distribution given by

ν =

∫
M
et∆δx(y)dµ(y) at W 2

2 -cost

∫
M

∫
M
|x− y|2et∆δx(y)dµ(y)dx.

To bound this, we use a classical bound of Aronson [4, 86],

et∆δx(y) ≤ c1

td/2
exp

(
−|x− y|

2

c2t

)
,

where d = dim(M), and c1, c2 are constants depending only on (M, g), and obtain

∫
M

∫
M
|x− y|2et∆δx(y)dµ(y)dx .(M,g)

∫
M

∫
M

|x− y|2

td/2
exp

(
−|x− y|

2

c2t

)
dµ(y)dx.

However, it is easily seen that for some universal constants depending on the manifold

∫
M

|x− y|2

td/2
exp

(
−|x− y|

2

c2t

)
dx .c2,(M,g) t.

Altogether, since c2 .(M,g) 1, this implies the squared W2 cost is bounded by

∫
M

∫
M
|x− y|2et∆δx(y)dµ(y)dx .(M,g) t‖µ‖L1 = t.

With this smoothing trick and bound in hand, we return to our main problem of approx-

imating the uniform measure with point measures, where we can now prove the following:
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Theorem 3.1.1 (B. & Steinerberger [25]). For any set of points {x1, . . . , xk} on M = Td,

W2

(
1

N

N∑
k=1

δxk , dx

)2

.d inf
t>0

t+
∑
k∈Zd
k 6=0

e−‖k‖
2t

‖k‖2

∣∣∣∣∣ 1

N

N∑
n=1

e2πi〈k,xn〉

∣∣∣∣∣
2


Before explaining the proof, we note this inequality has a series of remarkable features:

1. It is phrased exclusively in terms of exponential sums that have been well studied for

a variety of sequences; in particular, information about the size of these exponential

sums is available for many sequences.

2. The quantity on the right-hand side reduces to the notion of diaphony FN in the

one-dimensional case d = 1 and t = 0.

3. However, in contrast to classical diaphony, the quantity is finite for any set of points

and any dimension d ∈ N for all t > 0. It can thus be regarded as a useful generaliza-

tion of Zinterhof’s diaphony.

Recall that FN becomes meaningless in dimensions d ≥ 2 because Dirac deltas are no

longer contained in the Sobolev space Ḣ−1 (or, put differently, the infinite sums do not

converge). This has been a persistent issue in trying to define notions of discrepancy in

higher dimensions on other geometries (see e.g. Freeden [55] or Grabner, Klinger & Tichy

[60]). In contrast, we can rewrite our inequality (even on general manifolds) as

W2

(
1

N

N∑
k=1

δxk , dx

)
.M inf

t>0

[
√
t+

∥∥∥∥∥et∆ 1

N

N∑
k=1

δxk

∥∥∥∥∥
Ḣ−1

]
.

This quantity is always finite for any t > 0. We believe this to be an insight that might

be useful in discrepancy theory as a suitable generalization of diaphony to higher dimen-

sions. We also note that this notion is intimately tied to the integration error for Lipschitz

functions, see Chapter 6.

Proof of Theorem 3.1.1: Summarized from [25]. We abbreviate

µ =
1

N

N∑
k=1

δxk
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and first use the triangle inequality

W2(µ, dx) ≤W2(µ, et∆µ) +W2(et∆µ, dx),

where et∆ is the solution of the heat equation at time t. We can define this operator

spectrally via

et∆δx =
∑
k∈Zd

e−‖k‖
2te2πi〈k,x〉φk,

where φk(y) = e2πi〈k,y〉 are the Laplacian eigenfunctions of M , with associated eigenvalue

‖k‖2. Then, applying Peyre’s inequality, we have

W2(et∆µ, dx) .
∥∥et∆µ− dx∥∥

Ḣ−1 ,

which we may expand spectrally, omitting the constant term dx = φ0 (which vanishes by

orthogonality of eigenfunctions), and applying linearity of the heat operator et∆,

‖et∆µ− dx‖2
Ḣ−1 =

∑
k∈Zd
k 6=0

〈
et∆µ, φk

〉2

‖k‖2
=
∑
k∈Zd
k 6=0

e−2‖k‖2t

‖k‖2

∣∣∣∣∣ 1

N

N∑
n=1

e2πi〈k,xn〉

∣∣∣∣∣
2

.

Finally, note that, since

W2(µ, dx) ≤W2(µ, et∆µ) +W2(et∆µ, dx),

we may square both sides to

W 2
2 (µ, dx) ≤W 2

2 (µ, et∆µ) +W 2
2 (et∆µ, dx) + 2W2(µ, et∆µ)W2(et∆µ, dx)

.W 2
2 (µ, dx) +W 2

2 (µ, et∆µ),

since the cross term is, up to constants, dominated by the others. Putting together all our

transport bounds and rescaling t to absorb the 2 in e−2‖k‖2t, we arrive at the result.
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3.2 Peyre with Green’s

The Green’s function of the Laplacian, defined spectrally as

G(x, y) =
∞∑
k=1

φk(x)φk(y)

λk
,

is a kernel with mean value 0 and the property that

−∆x

∫
M
G(x, y)f(y)dy = f(x),

i.e. it solves the equation −∆u = f . It scales approximately like |x − y|2−d in dimension

d ≥ 3 and − log |x − y| for d = 2. We refer to [5] for a good introduction to Green’s

function. Closed form expressions for Green’s function are only known for certain very

restricted instances. Nonetheless, there are circumstances where we either have an explicit

description of it or define a point sequence using it (as in the next chapter), so it is useful to

have an analogue of the inequality in the previous section in terms of the Green’s function:

Theorem (Steinerberger [127]). Let M be a smooth, compact d−dimensional manifold

without boundary, d ≥ 3, and let G : M ×M → R∪{∞} denote the Green’s function of the

Laplacian. Then, for any set of n points {x1, . . . , xn} ⊂M , we have

W2

(
1

n

n∑
k=1

δxk , dx

)
.M

1

n1/d
+

1

n

∣∣∣∣∣∣
∑
k 6=`

G(xk, x`)

∣∣∣∣∣∣
1/2

.

If the manifold is two-dimensional, d = 2, then we have

W2

(
1

n

n∑
k=1

δxk , dx

)
.M

√
log n

n1/2
+

1

n

∣∣∣∣∣∣
∑
k 6=`

G(xk, x`)

∣∣∣∣∣∣
1/2

.

We will prove the case d ≥ 3, taking note of what needs to be changed when d = 2.

Proof: Summarized from [127]. We abbreviate

µ =
1

N

N∑
k=1

δxk
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and first use the triangle inequality

W2(µ, dx) ≤W2(µ, et∆µ) +W2(et∆µ, dx),

where et∆ is the solution of the heat equation at time t. As before, we have

et∆f =
∞∑
k=0

e−λkt 〈f, φk〉φk,

where φk denotes the sequence of Laplacian eigenfunctions on the manifold, i.e. −∆φk =

λkφk (normalized to have ‖φk‖L2 = 1). We have already seen in the Lemma above that

W2(µ, et∆µ) .
√
t. For the second term, we invoke Peyre’s inequality

W2(et∆µ, dx) .
∥∥et∆µ− dx∥∥

Ḣ−1 ,

where Ḣ−1 is a Sobolev space whose norm can be defined spectrally via

‖f‖2
Ḣ−1 =

∞∑
k=1

〈f, φk〉2

λk
.

We note that the Green function is defined in a similar way, i.e. spectrally via

∫
M
G(x, y)f(y)dy =

∞∑
k=1

〈f, φk〉
λk

φk(x).

As a consequence, we have that

∫
M×M

G(x, y)f(x)f(y)dxdy =

〈∫
M
G(x, y)f(y)dy, f(x)

〉
=
∞∑
k=1

〈f, φk〉2

λk
= ‖f‖2

Ḣ−1 .

We note that the heat equation and the Green function are both spectral multipliers and
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thus, whenever s1 + t1 = s2 + t2 and all four numbers are positive,

∫
M

∫
M
G(x, y)es1∆f(x)et1∆g(y)dxdy =

∞∑
k=1

e−s1λk
〈f, φk〉 〈g, φk〉

λk
e−t1λk

=

∞∑
k=1

e−s2λk
〈f, φk〉 〈g, φk〉

λk
e−t2λk

=

∫
M

∫
M
G(x, y)es2∆f(x)et2∆g(y)dxdy.

We can now write

∥∥et∆µ− dx∥∥2

Ḣ−1 =

∫
M

∫
M
G(x, y)et∆µ(x)et∆µ(y)dxdy

=
1

N2

∑
k,`

∫
M

∫
M
G(x, y)et∆δxk(x)et∆δx`(y)dxdy

=
1

N2

∑
k

∫
M

∫
M
G(x, y)et∆δxk(x)et∆δxk(y)dxdy

+
1

N2

∑
k 6=`

∫
M

∫
M
G(x, y)et∆δxk(x)et∆δx`(y)dxdy.

We use the self-adjointness of spectral multipliers (and both convolution with G as well

as the heat kernel are spectral multipliers, moreover the heat kernel is a semigroup and

et∆et∆ = e2t∆) and rewrite the first term as

∫
M

∫
M
G(x, y)et∆δxk(x)et∆δxk(y)dxdy =

∫
M

∫
M
G(x, y)δxk(x)e2t∆δxk(y)dxdy

=

∫
M
G(xk, y)e2t∆δxk(y)dy

We have a very good understanding of the heat kernel since

e2t∆δxk(y) .


t−d/2 if dg(x, y) ≤

√
t

exponentially decaying otherwise.

More formally, we use a classical bound of Aronson [4,86] for the heat kernel on manifolds
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stating that for constants c1, c2 depending on the manifold

et∆δx(y) ≤ c1

td/2
exp

(
−|x− y|

2

c2t

)
,

where |x−y| = dg(x, y) denotes the geodesic distance (we will use this notation henceforth).

We can couple this with the estimate (see e.g. Aubin [6])

G(x, y) .M
1

|x− y|d−2

and obtain

∫
M
G(xk, y)e2t∆δxk(y)dy .

∫
Rn

e2t∆δ0(x)

|x|d−2
dx .

∫ ∞
0

c1

td/2

exp
(
− r2

c2t

)
rn−2

rn−1dr . t1−
d
2 .

This implies

1

N2

∑
k

∫
M

∫
M
G(x, y)et∆δxk(x)et∆δxk(y)dxdy .

t1−
d
2

N
.

It remains to bound the second term. We can again use the fact that Fourier multipliers

commute to argue that

∫
M

∫
M
G(x, y)et∆δxk(x)et∆δx`(y)dxdy =

∫
M

∫
M
G(x, y)δxk(x)e2t∆δx`(y)dxdy

=

∫
M
G(xk, y)e2t∆δx`(y)dy.

We understand this value for t very small since the Green function is integrable and

lim
t→0

∫
M
G(xk, y)e2t∆δx`(y)dy = G(xk, x`)

and will now control the variation in time. We note that if xk = x` for some k 6= `, then

our upper bound is infinity/undefined and the entire statement is vacuously true. We can

thus assume xk 6= x` for k 6= `. The heat kernel solves the heat equation and thus

∂

∂t
et∆δx`(y) = ∆ye

t∆δx`(y)
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which we use in combination with

∆yG(x, y) = 1− δx and

∫
M
e2t∆δx`(y)dy = 1,

where the first identity is in the sense of distributions (and will be used paired against a

smooth function). We write

1

2

∂

∂t

∫
M
G(xk, y)e2t∆δx`(y)dy =

∫
M
G(xk, y)∆ye

2t∆δx`(y)dy =

∫
M

∆yG(xk, y)e2t∆δx`(y)dy

=

∫
M

(1− δxk) e2t∆δx`(y)dy = 1−
(
e2t∆δx`

)
(xk) ≤ 1

This implies

1

N2

∑
k 6=`

∫
M

∫
M
G(x, y)et∆δxk(x)et∆δx`(y)dxdy ≤ 2t+

1

N2

∑
k 6=`

G(xk, x`).

Altogether, collecting all the estimates, we have

W2(µ, dx) .W2(µ, et∆µ) +W2(et∆µ, dx) .
√
t+

 t1− d2
N

+ 2t+
1

N2

∑
k 6=`

G(xk, x`)

1/2

.

Setting t = N−2/d results in

W2

(
1

N

N∑
k=1

δxk , dx

)
.M

1

N1/d
+

1

N

∣∣∣∣∣∣
∑
k 6=`

G(xk, x`)

∣∣∣∣∣∣
1/2

.

We observe that the Green energy may actually be negative and, at first glance, it may look

like one could get improved results. However, we will show in the proof of the corollary that

1

N

∣∣∣∣∣∣
∑
k 6=`

G(xk, x`)

∣∣∣∣∣∣
1/2

&M −N−1/d

and thus our application of the triangle inequality in this form is not lossy. We quickly note
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the necessary changes for the case d = 2. We observe that in that case

G(x, y) . | log |x− y||

and thus, for the first term,

∫
M
G(xk, y)e2t∆δxk(y)dy .

∫
Rn
| log |x||e2t∆δ0(x)dx

.
∫ ∞

0

c1

t
| log r| exp

(
− r

2

c2t

)
rdr . log (1/t).

The off-diagonal term behaves exactly as before and we obtain

W2(µ, dx) .M

√
t+

 log (1/t)

N
+ t+

1

N2

∑
k 6=`

G(xk, x`)

1/2

.

Setting t = 1/N results in the desired statement.

The result is sharp for d ≥ 3 and sharp up to possibly the factor of
√

log n in d = 2.

One way to see this is by computing asymptotics on the Green energy which follows as a

byproduct from our approach (this Corollary can be interpreted as related to the work of

Wagner [150] for Coulomb energy on the sphere).

Corollary 1 (Steinerberger [127]). Let M be a smooth, compact d−dimensional manifold

without boundary and d ≥ 3, then

n∑
k,`=1
k 6=`

G(xk, x`) &M −n2−2/d.

If the manifold is two-dimensional, then

n∑
k,`=1
k 6=`

G(xk, x`) &M −n log n.

The Theorem and the Corollary combined then show that for points minimizing the
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Green energy for d ≥ 3 we attain an optimal transport scaling of

W2

(
1

n

n∑
k=1

δxk , dx

)
.M

1

n1/d
.

This also refines [13] showing that minimizers of the Green energy equidistribute on the

manifold: if we have an infinite sequence of points for which

lim
n→∞

1

n2

n∑
k,`=1
k 6=`

G(xk, x`) = 0,

then the sequence is asymptotically uniformly distributed (because the Wasserstein distance

tends to 0). The Corollary follows from the argument developed in the Theorem. We again

first deal with the case d ≥ 3 and then discuss the necessary modifications for d = 2.

Proof: Summarized from [127]. We make use of the trivial identity

∥∥et∆µ− dx∥∥2

Ḣ−1 ≥ 0.

At the same time, we can control its expansion in terms of Green’s function and the bounds

obtained in the theorem via

0 ≤
∥∥et∆µ− dx∥∥2

Ḣ−1 ≤
1

N2

∑
k

∫
M

∫
M
G(x, y)et∆δxk(x)et∆δxk(y)dxdy

+
1

N2

∑
k 6=`

∫
M

∫
M
G(x, y)et∆δxk(x)et∆δx`(y)dxdy.

We have the inequalities

1

N2

∑
k

∫
M

∫
M
G(x, y)et∆δxk(x)et∆δxk(y)dxdy .

t1−
d
2

N

1

N2

∑
k 6=`

∫
M

∫
M
G(x, y)et∆δxk(x)et∆δx`(y)dxdy ≤ t

vol(M)
+

1

N2

∑
k 6=`

G(xk, x`)

We may now set t = N−2/d to obtain the desired bound. Using the modified bounds yields

the result for d = 2.
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Chapter 4

A Dynamical Approach

4.1 Background

In this section, we consider the problem of “How do we select points on a space which are

as uniformly distributed as possible?” This is a natural question to ask, and one which

has been studied in some form for a long time. If we know in advance how many points

we are to place, we can exploit symmetries of the space to make nicely structured, well

spread out designs, but in many real-life scenarios we do not. For instance, consider the

problem of corporate strategists deciding where to place their next cafe in town to maximize

convenience for consumers (and profit for themselves). Not only do they not know how many

cafes they will ultimately build, but they did not necessarily have any say over the current

placement: some short-term thinking former strategists made the call of where to place the

first 100 cafes, and it is your job as the new hire to place the 101st, well aware that you

(or a successor) will likely have to pick a location for the 102nd and 103rd cafes later. This

is the problem of ‘on-line selection.’ The motivation is similar to that of Chapter 1, with

the notable exception that when we are on a general manifold we measure the quality of

the point set using Wasserstein transport cost as opposed to discrepancy. We will consider

some known results and approaches to the problem, first looking at the problem on the unit

interval / torus, and broadening our scope to more general manifolds later. It is not known

what the optimal rate of discrepancy is for sequences in [0, 1]d with d > 1—finding good

constructions in 1 dimension could pave the way for higher-dimensional generalizations.



4.1.1 A Naive Approach: Maximize Distance

On first inspection, the problem may seem trivial: why not simply place each point as far

from the existing points as possible? More formally, we may set

xn+1 = arg max
x∈[0,1)

(
min

1≤i≤n
|x− xi|

)
,

breaking ties by taking the smallest such x. Below we plot the discrepancy of the sequence

obtained by this algorithm with initial point set {0, π − 3, 1}.

200 400 600 800 1000

0.05

0.10

0.15

Figure 4.1: The discrepancy of the simple algorithm on {0, π − 3, 1}.

Why does this seemingly decent algorithm perform so horrendously in terms of discrep-

ancy? Quite simply, the sequence it generates is not even equidistributed. To understand

why, consider the first few points it picks.

π − 3

0

0 1

12 34 5 6 7

Figure 4.2: The first 7 elements of the naive algorithm on {0, π − 3, 1}.

Notice that each time the interval between two points in the sequence is bisected, two

subintervals of the same length appear: we start with a subinterval of length π − 3 and

another of length 4− π, and then turn the latter into two subintervals of length (4− π)/2,

then 4 of length (4 − π)/4, etc. Notably, the intervals of the same length are all adjacent

and form a single block. Thus, the algorithm will spend 2k steps filling in all the intervals

in such a block, while completely ignoring intervals elsewhere. This explains the pattern of
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increasingly long bumps in the discrepancy plot: while it is initially good to fill in longest

intervals, it eventually becomes quite bad to keep picking points in the same small cluster of

intervals. This also showcases the subtlety of the van der Corput sequence: while it is true

that the van der Corput sequence bisects a maximal length interval at each step, it is the

order in which these intervals are filled which makes it such an equidistributed sequence.

4.1.2 An Ergodic Approach: The Tent Map

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: The Tent map on [0, 1]

One way we could approach this problem is to pick a particularly chaotic map with nice

mixing properties–say, the Tent map

f(x) =


2x x < .5

2(1− x) x ≥ .5
,

and simply iterate it. That is, arbitrarily pick some x1 to start, then recursively set xi+1 =

f(xi) to get the next point. This is just operating on the binary expansion of x: if the

first bit after the bimal point is 0, it is removed, and if it is 1 then it is removed and

the remaining bits are all flipped (swapping all 0s and 1s). Thus, if we pick a starting

value x1 with random bits, we should get a random sequence of points. However, random

sequences of points are not particularly well-distributed in general. The star discrepancy

of a random sequence of points on the unit interval is precisely the Kolmogorov-Smirnov

statistic between the cumulative distribution function of the empirical distribution and the
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uniform one. Then by Kolmogorov’s Theorem, we have that, as N →∞,
√
ND∗N converges

to the Kolmogorov distribution [76]. In particular, this tells us that we almost surely have

infinitely many values of N for which D∗N > N−1/2, and thus the discrepancy does not

decay particularly quickly (recall that the optimal rate is on the order of logN/N).
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0.6

0.8

1.0

Figure 4.4: The first 1000 terms of the
sequence, iterating the tent map on π−3
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Figure 4.5: The discrepancy of this se-
quence does not decay quickly

4.1.3 A Dyadic Approach: Kakutani’s Theorem

In the 1975 Conference on Measure Theory in Oberwolfach, Shizuo Kakutani (then a Yale

faculty) gave a talk on this question. His framing was slightly different: he was not consid-

ering sequences of points but sequences of partitions. He proved the following theorem:

Theorem (Kakutani [73]). Let S ⊂ [0, 1] be any finite set of points. Then, for any α ∈

(0, 1), the following algorithm produces an equidistributed sequence: at each step, identify

all the longest empty sub-intervals (x, y), and place new points at all the αx+ (1− αy).

Note that there is a bit of “cheating” happening here: Kakutani is not adding a single

point in each step, but a slew of points (one for each maximal length interval). The question

for our sake is then “What order do we place these points in one at a time?” and for that

we are essentially back at square 1. It is not hard to see that poor choices of ordering

lead to the sequence failing to be equidistributed at all (see §1.1 above for an example of

this). Since Kakutani’s result, many authors have expanded, generalized, and refined the

procedure, see [30,31,45,96,111,149]. In particular, Volc̆ic̆ [149] presented a generalization

of Kakutani’s procedure called ρ-refinement: rather than fixing a ratio α to dyadically

split intervals, ρ-refinement begins with a finite set of points and partitions the longest
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empty interval(s) homothetically to the current partition—that is, it scales down the current

partition to decompose the longest empty interval(s). Volc̆ic̆ proved the following:

Theorem (Volc̆ic̆ [149]). If {πn} is a uniformly distributed sequence of partitions on [0, 1],

then we may consider an associated point sequence, randomly ordering all endpoints which

appear in the same step. With probability 1, this sequence is uniformly distributed.

4.1.4 A Potential Theoretic Approach: Greedy Minimization

Another way we might attempt to choose points, motivated this time by physical consider-

ations is by picking some function f : [0, 1)→ R, where

∑
i<j

f(xi − xj) represents the energy

of the system with particles placed at the points xi. (We want f to be even, i.e. symmetric

about 1/2, so that the potential energy created from the interaction between xi, xj does not

depend on the order in which we subtract them.) Then we set

xk = arg min
x∈[0,1)

∑
i<k

f(x− xi),

greedily throwing in the point which contributes the lowest energy to the system and

breaking ties arbitrarily. Here, we examine the outcome for two particular choices of f :

f1(x) = cos(2πx), and f2(x) = − ln |2 sin(πx)| − 1
5 cos(10πx).
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Figure 4.6: DN obtained by greedily min-
imizing cos(2πx)
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Figure 4.7: DN obtained by greedily min-
imizing ln |2 sin(πx)| − 1

5 cos(10πx)

It is clear that we will need to further constrain the potential function if we are to get
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sequences with good discrepancy. If the function satisfies a concavity property, Florian

Pausinger proved that we retrieve a sequence of van der Corput type (if we start with a

singleton set), as well as the following theoretical bound on the discrepancy:

Theorem (Pausinger [100]). Let f : [0, 1] → R be bounded and symmetric about 1/2.

Further, assume f̂(k) > c|k|−2 for some c > 0 and all k 6= 0. Then all sequences defined

via the greedy algorithm on an arbitrary initial set satisfy

DN ≤
c̃

N1/3
,

where c̃ > 0 depends on the initial set.

This answered a question posed by Steinerberger in [130]. We can interpret the condition

on the Fourier coefficients as a quantitative positive definiteness, requiring the Fourier

coefficients not to decay too quickly.

Proof: Summarized from [100]. Assume without loss of generality that f is mean 0 (oth-

erwise, we may simply shift it down without impacting the algorithm, since the argmin of∑
f(x− xk) is independent of constant shifts). Then

n∑
m,`=1

f(xm − x`) = nf(0) + 2
n∑

m,`=1
m<`

f(xm − x`)

= nf(0) + 2

n∑
`=2

`−1∑
m=1

f(x` − xm) ≤ nf(0)

since, by definition of the greedy algorithm,

`−1∑
m=1

f(x` − xm) = min
x∈[0,1)

`−1∑
m=1

f(x− xm) ≤
∫
T

`−1∑
m=1

f(x − xm)dx = 0.

Thus
n∑

m,`=1

f(xm − x`) ≤ nf(0). (�)
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On the other hand, we have

n∑
m,`=1

f(xm − x`) =
∑
k∈Z

f̂(k)
n∑

m,`=1

e2πik(xm−x`) =
∑
k∈Z

f̂(k)

(
n∑

m=1

e2πikxm

)(
n∑

m=1

e2πik(−xm)

)

=
∑
k∈Z

f̂(k)

(
n∑

m=1

e2πikxm

)(
n∑

m=1

e2πikxm

)
=
∑
k∈Z

f̂(k)

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

.

Thus, combining with �, ∑
k∈Z

f̂(k)

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

≤ nf(0).

Now, we use the fact that f̂(k) ≥ c|k|−2:

nf(0) ≥
∑
k∈Z

f̂(k)

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

≥ n2
∑
k 6=0

c

k2

∣∣∣∣∣ 1n
n∑

m=1

e2πikxm

∣∣∣∣∣
2

= cn2‖µn‖2Ḣ−1 ,

so ‖µn‖Ḣ−1 . n−1/2. Finally, by LeVeque’s inequality, we can bound the discrepancy as

Dn . ‖µn‖2/3Ḣ−1
. n−1/3

and we have the desired result.

4.2 A Curious Phenomenon

In this section we will further explore the dynamical system from §1.4—with the right

conditions on the potential function, this curious system results in sequences of points with

seemingly remarkable properties. As in Pausinger’s result, let the even function f : T→ R

satisfy f̂(k) ≥ c|k|−2—recall this is a quantitative form of positive definiteness. One example

of such a function is the second Bernoulli polynomial which, identifying T ∼ [0, 1], is

f(x) = x2 − x+
1

6
.
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Starting with an arbitrary initial set of points, we define a sequence greedily via

xn = arg min
x∈T

n−1∑
k=1

f(x− xk).

As before, when we take the argmin, we may pick arbitrarily from any of the points where

the minimum is attained if there is not a unique point. Such sequences (xn)∞n=1 seem to

be astonishingly regularly distributed, with quickly decaying discrepancy and W2 trans-

portation cost to the uniform measure. However, these observations are mainly empirical

at this stage. We refer to the papers [126, 130] for some numerical experiments (see also

below). We summarize the existing results and derive some new ones; however, the overall

phenomenon is largely unexplained. We prove

W2 (µ, ν) ≤ c√
n
, where µ =

1

n

n∑
k=1

δxk

is the empirical distribution and ν = dx is the Lebesgue measure. Much stronger results

seem to be true and it is an interesting problem to understand this dynamical system better.

We obtain optimal results in dimension d ≥ 3: using G(x, y) to denote the Green’s function

of the Laplacian on a compact manifold, we show that

xn = arg min
x∈M

n−1∑
k=1

G(x, xk) satisfies W2

(
1

n

n∑
k=1

δxk , dx

)
.

1

n1/d
.

4.2.1 Introduction

We begin by listing some open problems related to the algorithm above:

1. Open Problem 1. Is it true that

n∑
k,`=1

f(xk − x`) . log n?

2. Open Problem 2. Is it true that

∥∥∥∥∥
n∑
k=1

f(x− xk)

∥∥∥∥∥
L∞

. log n?
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Before embarking on a discussion of these problems, we quickly illustrate Open Problem 2

with a simple example. Indeed, Open Problem 2 can be stated in very simple terms.

Figure 4.8: 250 points created starting with {1/3, 4/5} and using the second Bernoulli
polynomial for f . We display the points (n/250, xn) ∈ [0, 1]2 for 1 ≤ n ≤ 250. Why is this
distribution so regular?

We fix again f(x) = x2−x+1/6 and obtain a sequence by starting with x1 = 0.3, x2 = 0.8

and using the greedy algorithm to obtain all subsequent elements of the sequence. We set

fn(x) =
n∑
k=1

f(x− xk).

As seen in Figure 4.3, the function fn does not seem to be very large: this is only possible if

0.2 0.4 0.6 0.8 1.0

-0.10

-0.05

0.05

0.10

0.15

f101 has its minimum here

f101

f102

f(x− x101)

Figure 4.9: We obtain f102 by finding the point x101 at which f101 assumes its minimum
and f102(x) = f101(x) + f(x− x101).
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the sequence elements are so regular that the sum over f(x−xk) leads to good cancellation

properties. This is one instance of the ‘curious’ phenomenon alluded to in the section title:

why is ‖fn‖L∞ so remarkably small in n? The inequalities posed in Open Problems 1 and

0.2 0.4 0.6 0.8 1.0

-0.10

-0.05

0.05

0.10

Figure 4.10: The functions f100, f110, f120 . . . , f200. We observe that they are quite different
from one another and have an interesting behavior. Most importantly, they all seem to be
quite small with ‖fn‖L∞ barely exceeding ‖f‖L∞ .

2 above, if true, would indicate that the sequence (xn)∞n=1 satisfies very good distribution

properties. What is remarkable is that, in a certain sense, these properties would be close

to optimal. We will derive that

n∑
k,`=1

f(xk − x`) . n and

∥∥∥∥∥
n∑
k=1

f(x− xk)

∥∥∥∥∥
L∞

. n1/2

but these estimates seem to be very far from sharp. Any improvement of these estimates

would immediately yield improvements of our other results via the arguments outlined

below. In the converse direction, it is an interesting question whether the following is true:

if f : T → R is an even, continuous function with mean 0 such that f̂(k) > c|k|−2 for all

k 6= 0, is it true that for any sequence (xk)
∞
k=1∥∥∥∥∥

n∑
k=1

f(x− xk)

∥∥∥∥∥
L∞

is unbounded in n?

For the ‘double’ sum, this is a known result of Proinov [108], translated into English by

Kirk [75] (see Chapter 1, §3.2), which shows that, for some constant cf > 0 depending only
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on the function and any sequence (xn)∞n=1,

n∑
k,`=1

f(xk − x`) ≥ cf log n for infinitely many n.

In particular, this shows that the bounds conjectured in Open Problem 1 would be optimal.

It seems reasonable to assume that the condition f̂(k) ≥ c|k|−2, or some condition like it,

is necessary for this phenomenon to occur; it is certainly necessary for our proof that the

sequence (xn)∞n=1 is uniformly distributed. It may be of interest to study the dynamical

system when f is a trigonometric polynomial: it seems that in this case the sequence (xn)∞n=1

will not even be uniformly distributed.

4.2.2 Connections To Other Problems.

We start with a simple example. Let us define, as above, f(x) = x2 − x+ 1/6 and consider

the sequence obtained via

xn = arg min
x∈T

n−1∑
k=1

f(x− xk)

when starting with {1/3, 4/5}. The sequence is easy to compute and starts

1

3
,
4

5
, 0.066, 0.566, 0.941, 0.441, 0.191, 0.691, . . .

Empirically, this sequence (and seemingly any sequence obtained in this way) seems to have

remarkable regularity properties. We now state our question as follows.

Open Problem 3. Are these greedy sequences, up to constants, comparable

to the behavior of the best Kronecker sequence or the van der Corput sequence

in all the ways outlined in Chapter 1, §1?

If this were indeed the case, it could have very interesting consequences. Recall, both the

Kronecker sequence and the van der Corput sequence are known to be optimal in the one-

dimensional setting (a result of Schmidt [121], see also [80, 81] for an improved constant).

However, nobody knows what sequences are optimal in even d = 2 dimensions (we refer

to the excellent survey of Bilyk [17]). So, if there was a greedy-type construction with
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optimal behavior in d = 1 dimension, it might suggest sequences of similar quality in higher

dimensions as well – this would be interesting because the greedy sequence seems to be

unlike any that has been studied; in particular, if it enjoys good distribution properties,

this seems like it would have to be because of a different underlying mechanism.

4.2.3 Known results.

This type of construction was first proposed by the Steinerberger in [130]. There it was

shown that if the function is

f(x) = − log (2 sin (π|x|)),

then the arising sequence satisfies the discrepancy bound

DN ≤ c
logN√
N

.

The arguments are based on the explicit structure of the Fourier series of f(x) and do not

generalize to other functions. It is already discussed in [130] that much stronger results seem

to be true and that the sequence arising from this function f seems, numerically, as well

behaved with regard to all these aspects as the Kronecker or the van der Corput sequence.

This particular choice of f has a natural geometric interpretation as− log of the chord length

from 1 to e2πix on the complex unit circle, and thus minimizing
∑n−1

k=1 f(x−xk) is precisely

maximizing the product of chord lengths to points on the unit circle. Steinerberger proved

stronger results about this particular f in [129], contextualizing the problem as one about

polynomials with zeroes on the unit circle and considering an L1 measure of discrepancy

(as opposed to the L∞ discrepancy considered in this thesis). The same idea, interpreted

differently, has also led to a numerical scheme that seems to be effective at regularizing point

sets [126]. It was also noted in [130] that if one starts with a single element {x1}, then the

arising sequence seems to be related to the van der Corput sequence—this is indeed the case

and was subsequently proven by Pausinger [100]. Pausinger’s theorem (see §1.3) holds for

the much larger family of strictly convex functions f : [0, 1]→ R that are symmetric around
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x = 1/2. There it is also shown that for functions of this type satisfying f̂(k) ≥ c|k|−2 for

all k 6= 0, the arising construction results in a sequence with

DN ≤
c̃

N1/3
.

The bound stated in Open Problem 1 would improve this estimate to . logN/N2/3 (which,

however, is still not at the logN/N level that we observe numerically). Other types of

greedy constructions of sequences have been considered in the literature, we refer to work

of Kakutani [73] and Temylakov: [142,143] and §6.11 in [140]. Temlyakov has since used this

type of sequence to establish an endpoint result for a result in Numerical Integration [141].

4.2.4 Riesz points

Riesz points refer, at great level of generality, to point sets minimizing energy expressions

of the form

arg min
x∈Mn

n∑
k,`=1
k 6=`

1

‖xk − x`‖s
.

The problem was first stated on S2 with s = 1 by Thomson [144] in 1904 and has since

inspired a large body of work, we refer to [24, 40, 64, 118] and references therein. We make

a connection with two contributions in particular. The first is due to Beltran, Corral and

Criado del Rey [13]: they show that if we consider sets of n points on a compact manifold

chosen so that they minimize

n∑
k,`=1
k 6=`

G(xk, x`), where G is the Green’s function

of the Laplacian on M , then the sequence of point measures on the first n terms converges

weakly to the uniform measure

1

n

n∑
k=1

δxk ⇀ dx.

This can be considered the static analogue (since one finds the minimal arrangement for all

n points) of our problem (keeping the previous n− 1 points fixed and then greedily adding

the point which will minimize total energy). The second contribution that we highlight is
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very recent and due to Marzo & Mas [92]. They studied the specific problem of minimizing

the s−Riesz energy

Es =
n∑

k,`=1
k 6=`

1

‖xk − x`‖s
on Sd

and estimating the spherical cap discrepancy of the minimizing point set: in short, if the

points are uniformly distributed, then we would expect the number of points in each spher-

ical cap to be proportional to the volume of the cap; the largest discrepancy is known as

spherical cap discrepancy. They use ideas dating back to Wolff: the Riesz energy Es is

comparable to a negative Sobolev norm and, more precisely, for all f ∈ L2(Sd),

‖f‖2
H(s−d)/2 .s,d

∫
Sd×Sd

f(x)f(y)

‖x− y‖s
dxdy .s,d ‖f‖2H(s−d)/2 .

This, while not directly related to our approach, is at least philosophically connected: we

will estimate the Wasserstein distance in negative Sobolev spaces and use the underlying

L2−structure. We take a similar approach to combinatorial graphs in Chapter 7.

4.3 Results

4.3.1 Wasserstein distance.

The main purpose of this section is to (1) describe the phenomenon and its connections in

a concise way and (2) to point out that we can obtain slightly improved regularity results

by switching to the Wasserstein distance, introduced in Chapter 2 §2. We will only discuss

the case where one measure is the empirical distribution

µ =
1

n

n∑
k=1

δxk and the other measure is ν = dx.

In our setting, we trivially have 0 ≤Wp(µ, ν) ≤ 1. Pausinger’s inequality [100]

DN ≤
c

N1/3

66



can be coupled with the Monge-Kantorovich formula to obtain

W1

(
1

n

n∑
k=1

δxk , dx

)
.

1

n1/3
.

4.3.2 Main Results.

Our main result is an improvement for the W2−distance. Hölder’s inequality shows that

W1(µ, ν) ≤W2(µ, ν), so the result also implies improved bounds for the W1 distance.

Theorem 4.3.1 (B. & Steinerberger [26]). Let the even function f : T→ R satisfy f̂(k) ≥

c|k|−2 for some fixed constant c > 0 and all k 6= 0. Define a sequence via

xn = arg min
x∈T

n−1∑
k=1

f(x− xk),

then this sequence satisfies

W2

(
1

n

n∑
k=1

δxk , dx

)
.

1

n1/2
,

where the implicit constant depends only on the initial set, f(0) and c.

One way of interpreting the Theorem is as follows: given {x1, . . . , xn} we can interpret

these points as Dirac measures with weight 1/n. It is then possible to ‘break’ these points

up and move their L1-mass a distance of, on average, not more than ∼ n−1/2 to recreate

the uniform distribution. The result seems to be far from the truth, which we believe to be

at scale n−1 up to logarithmic factors (see below). We also obtain the following corollary

(which was suggested to us together with its proof by Igor Shparlinski).

Corollary 2 (Shparlinski). Suppose f : T→ R is even, has mean value 0 and satisfies both

f̂(k) > 0 and
∑
k∈Z

f̂(k) <∞.

Then, for any sequence (xn) arising from the algorithm outlined above,

∥∥∥∥∥
n∑
k=1

f(x− xk)

∥∥∥∥∥
L∞

.
√
n.
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Again, we believe this to be far from optimal and expect the quantity to grow not much

faster than (at most) logarithmically. We have a refinement of this statement in the case

where f̂(k) ∼ |k|−2:

Theorem 4.3.2 (B. & Steinerberger [26]). Let f : T → R be an even function with mean

0 satisfying c1|k|−2 ≤ f̂(k) ≤ c2|k|−2 for all k 6= 0 for some universal c1, c2 > 0. Then

∥∥∥∥∥
n∑
k=1

f(x− xk)

∥∥∥∥∥
L∞

. n1/3 for infinitely many n.

The argument is slightly finer than this: we will prove that

∥∥∥∥∥
n∑
k=1

f(x− xk)

∥∥∥∥∥
L∞

. n1/3

∥∥∥∥∥
n∑
k=1

f(x− xk)

∥∥∥∥∥
1/3

L1

and then prove that the L1−term has to be . 1 infinitely many times. We note that this

result is below the n1/2−threshold that we would expect from randomly chosen points.

Again, as mentioned above, we expect the error rate to actually be much smaller than this.

We will now discuss why Wasserstein distance is a very canonical way of capturing problems

of this type. We state this formally in the following estimate.

Corollary 3 (B. & Steinerberger [26]). Suppose f : T→ R is even, has mean value 0 and

satisfies f̂(k) ≥ c|k|−2 for k 6= 0. Then, for any set {x1, . . . , xn} ⊂ T, we have

W2

(
1

n

n∑
k=1

δxk , dx

)
.

1

n

 n∑
k,`=1

f(xk − x`)

1/2

.

Fix now a function such that f̂(k) ∼ |k|−2 for k 6= 0 (in the sense of having corresponding

upper and lower bounds). Open Problem 1 asks whether

n∑
k,`=1

f(xk − x`) . log n might hold

and, conversely, which kind of lower bounds exist. Corollary 2 shows that any such estimate
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would imply

W2

(
1

n

n∑
k=1

δxk , xdx

)
.

√
log n

n
.

This connects to yet another problem, that of irregularities of distribution. The results

of van Aardenne-Ehrenfest, Roth, and Schmidt described in Chapter 1 §3 show that, for

discrepancy, irregularities of distribution are unavoidable. A natural question now is the

following: does a similar phenomenon exist for the Wasserstein distance? This was answered

by Cole Graham [61] who proved the following result.

Theorem (Graham [61]). For any sequence (xn)∞n=1 in [0, 1], we have

W2

(
1

n

n∑
k=1

δxk , dx

)
&

√
log n

n
for infinitely many n.

Steinerberger has already remarked in [131] that this is sharp for the Kronecker sequence

xn = {nα} for any badly approximable α. An implication of Graham’s result coupled with

our Corollary above is the following result that was first established by Proinov.

Theorem (Proinov, [108]). Let f : T → R be a function with mean value 0 satisfying

f̂(k) ≥ c|k|−2 for k 6= 0. Then, for any sequence (xn)∞n=1, we have

n∑
k,`=1

f(xk − x`) & log n for infinitely many n.

Using again the Kronecker sequence, we can show that there are sequences for which

this notion of energy does indeed grow very slowly; this result is folklore, we include it

for the convenience of the reader. The same result is also known for the van der Corput

sequence, we refer to Proinov & Grozdanov [110].

Proposition 4.3.1 (B. & Steinerberger [26]). Let f : T→ R have mean value 0 satisfying

f̂(k) ≤ c|k|−2 for k 6= 0. Then, for any badly approximable α, the sequence xn = {nα} has

n∑
k,`=1

f(xk − x`) . log n.

The proof of the proposition makes explicit use of a rather delicate property of the
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sequence {nα}. It is thus even more striking that, possibly, the greedy sequence

xn = arg min
x∈T

n−1∑
k=1

f(x− xk)

might conceivably behave in a similar manner. Naturally, this falls into the realm of Ap-

proximation Theory and, more specifically, the Greedy Algorithm [43, 139, 140] and its use

in Approximation Theory. Indeed, we can interpret this greedy sequence as a way to ap-

proximate the constant function 0 by means of translates f(x−xk). The Greedy Algorithm

is well understood to yield reasonable estimates for a broad class of functions—what is of

special interest here is that in our case the greedy algorithm seems to perform much better

than one would usually expect from a greedy algorithm; moreover, it seems to be compara-

ble in efficiency to subtle constructions in Number Theory that make use of delicate notions

such as badly approximable numbers.

4.3.3 Two Remarks.

All our estimates are based on the inequality

n∑
k,`=1

f(xk − x`) ≤ nf(0).

It is not difficult to see (see below) that this is indeed satisfied for our greedy construction.

However, the inequality (and therefore our main Theorem) is also valid if xn is chosen in

such a way that
n−1∑
k=1

f(xn − xk) ≤ 0.

We observe that f has mean value 0 and thus

∫
T

n−1∑
k=1

f(x− xk)dx = 0

and it is always possible to choose a new element xn with this property (and, usually, there

are many of those). However, presumably these elements can be chosen in rather terrible

ways and there is no reason to expect these sequences (xn)∞n=1 to have particularly good

70



distribution properties; it would seem our Theorem is close to optimal for these types of

sequences though we do not know how to show this. It also shows the bottleneck in our

current approach: we do not know how to make use of the fact that the algorithm chooses

the minimal value and not merely a value not exceeding the expected value. The second

remark concerns uniform distribution of the sequence (xn)∞n=1. We have the following fact.

Corollary 4 (B. & Steinerberger [26]). If f̂(k) > 0 for all k 6= 0, then the sequence xn

defined via

xn = arg min
x∈T

n−1∑
k=1

f(x− xk).

is uniformly distributed on T.

The argument is so short that we can give it right here.

Proof: Summarized from [26]. We have

nf(0) ≥
n∑

m,`=1

f(xm − x`) =
∑
k∈Z
k 6=0

f̂(k)

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

≥ f̂(k)

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

from which we obtain

1

n

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣ ≤
√
f(0)

f̂(k)

1√
n
.

This tends to 0 from which we obtain uniform distribution from Weyl’s theorem.

We emphasize that the argument also shows that the size of f̂(k) will play a role in the

quality of the distribution: if it decays rapidly, the convergence rate might be quite slow.

4.3.4 Higher dimensions.

The same phenomenon exists in higher dimensions and it does so at a great level of gen-

erality. Indeed, the scaling in higher dimensions is fundamentally different and this allows

us to obtain optimal results. Let (M, g) be a smooth compact manifold without boundary.

We use φk to denote the L2−normalized eigenfunctions of the Laplace operator

−∆φk = λkφk.
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We will now define admissible kernels K : M ×M → R to be functions of the form

K(x, y) =
∞∑
k=1

ak
φk(x)φk(y)

λk

where the coefficient ak is assumed to satisfy a two-sided bound:

c1 < ak < c2 for all k ≥ 1

and some positive constants c1, c2. We note that the sum starts at k = 1 and thus excludes

the trivial (constant) eigenfunction φ0. In particular, all these kernels have mean value

0. This definition is an extension of our assumption f̂(k) ≥ c|k|−2 in the one-dimensional

setting. A particularly natural kernel arises from setting ak = 1 in which case we obtain

the Green’s function of the Laplacian G(x, y). This function has the property that

−∆x

∫
M
G(x, y)f(y)dy = f(x),

i.e. it solves the equation −∆u = f . We will now consider sequences of the form

xn = arg min
x∈M

n−1∑
k=1

K(x, xk).

Theorem 4.3.3 (B. & Steinerberger [26]). Let xn be a sequence obtained in such a way on

a d−dimensional compact manifold. Then

W2

(
1

n

n∑
k=1

δxk , dx

)
.M


n−1/2

√
log n if d = 2

n−1/d if d ≥ 3.

We note that this result is optimal for d ≥ 3. We do not know whether the logarithmic

factor is necessary for d = 2. The main ingredient is a favorable estimate of the Wasserstein

distance that was recently obtained by Steinerberger [127] that allows for a greedy formu-

lation. We note that while the static case, the structure of point sets minimizing the Green

energy, has been an active field of study [12, 13, 15, 34, 39, 57, 84, 92, 127], we are not aware
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of results in the dynamic setting. This theorem and its proof are explored further in the

following chapter.

Corollary 5 (B. & Steinerberger [26]). If d ≥ 3, then there exists a sequence of points

(xn)∞n=1 on Td such that

W2

(
1

n

n∑
k=1

δxk , dx

)
.d

1

n1/d
uniformly in n.

This Corollary seems to be new: it gives a constructive proof that Wasserstein distance

does not have an irregularities of distribution phenomenon in dimensions d ≥ 3. We have

the same result up to a factor of
√

log n in two dimensions. By Graham’s result [61], the

loss of a factor of
√

log n is indeed necessary in d = 1.

4.4 Proofs

4.4.1 Proof of Theorem 4.3.1, Corollary 2 and Corollary 3.

Proof: Summarized from [26]. The proof decomposes into two parts. In the first part we

argue exactly as in [100]. We can assume w.l.o.g. that f has mean value 0. We first observe

n∑
m,`=1

f(xm − x`) ≤ nf(0). (�)

which follows from the identity

n∑
m,`=1

f(xm − x`) = nf(0) + 2
n∑

m,`=1
m<`

f(xm − x`),

the reformulation
n∑

m,`=1
m<`

f(xm − x`) =

n∑
`=2

`−1∑
m=1

f(x` − xm)

and the greedy algorithm: by definition of x`, we have

`−1∑
m=1

f(x` − xm) = min
x

`−1∑
m=1

f(x− xm) ≤
∫
T

`−1∑
m=1

f(x − xm)dx = 0.
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Rewriting quantities in terms of Fourier Analysis then shows that

n∑
m,`=1

f(xm − x`) =
∑
k∈Z

f̂(k)
n∑

m,`=1

e2πik(xm−x`) =
∑
k∈Z

f̂(k)

(
n∑

m=1

e2πikxm

)(
n∑

m=1

e2πik(−xm)

)

=
∑
k∈Z

f̂(k)

(
n∑

m=1

e2πikxm

)(
n∑

m=1

e2πikxm

)
=
∑
k∈Z

f̂(k)

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

.

We first use this fact to establish the statement of the Corollary 2. This corollary was

suggested to the author and Steinerberger by Igor Shparlinski, and we are grateful to be

able to incorporate it here. Note that

n∑
`=1

f(x− x`) =
∑
k∈Z

f̂(k)

(
n∑
`=1

e−2πikx`

)
e2πikx

and thus, using the Cauchy-Schwarz inequality,

∥∥∥∥∥
n∑
`=1

f(x− x`)

∥∥∥∥∥
L∞

≤
∑
k∈Z

f̂(k)

∣∣∣∣∣
n∑
`=1

e−2πikx`

∣∣∣∣∣ =
∑
k∈Z

f̂(k)1/2f̂(k)1/2

∣∣∣∣∣
n∑
`=1

e−2πikx`

∣∣∣∣∣
≤

(∑
k∈Z

f̂(k)

)1/2
∑
k∈Z

f̂(k)

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2
1/2

=
√
f(0)

 n∑
m,`=1

f(xm − x`)

1/2

.

Coupled with the inequality (�) above, we obtain

∥∥∥∥∥
n∑
`=1

f(x− x`)

∥∥∥∥∥
L∞

≤ f(0)
√
n .
√
n,

which was the desired statement. To prove Theorem 4.3.1 and Corollary 3, we may further

assume f̂(k) ≥ c|k|−2 for all k 6= 0, and thus

n2
∑
k∈Z
k 6=0

c

k2

∣∣∣∣∣ 1n
n∑

m=1

e2πikxm

∣∣∣∣∣
2

≤
∑
k∈Z

f̂(k)

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

=

n∑
m,`=1

f(xm − x`) ≤ nf(0),

so we have
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∑
k∈Z
k 6=0

c

k2

∣∣∣∣∣ 1n
n∑

m=1

e2πikxm

∣∣∣∣∣
2

≤ f(0)

n
.

Reformulating, ∑
k∈Z
k 6=0

1

k2

∣∣∣∣∣ 1n
n∑

m=1

e2πikxm

∣∣∣∣∣
2


1/2

.c,f(0)
1√
n
.

We note that this last argument has been previously stated in the literature in a very

different context (integration error of periodic functions in terms of Zinterhof’s diaphony

[154]) in a paper of Zinterhof & Stegbuchner [153]. It remains to prove the second Corollary

and Theorem 4.3.1. For that we use Peyré’s inequality [106] (see Chapter 2 §4): this estimate

states that, for any measure µ on T

W2(µ, dx) . ‖µ‖Ḣ−1 =

∑
k 6=0

|µ̂(k)|2

k2

1/2

.

We apply this estimate to the measure

µ =
1

n

n∑
k=1

δxk

to obtain

W2

(
1

n

n∑
k=1

δxk , dx

)
.

∑
k 6=0

1

k2

∣∣∣∣∣ 1n
n∑
`=1

e2πikx`

∣∣∣∣∣
2
1/2

.
1√
n
.

This establishes Theorem 4.3.1. Corollary 2 follows from remarking that, as seen above,

1

n2

n∑
m,`=1

f(xm − x`) =
∑
k∈Z

f̂(k)

∣∣∣∣∣ 1n
n∑

m=1

e2πikxm

∣∣∣∣∣
2

.

Moreover, since f̂(k) ≥ c|k|−2 for k 6= 0 and f̂(0) = 0, we can bound this quantity by

∑
k∈Z

f̂(k)

∣∣∣∣∣ 1n
n∑

m=1

e2πikxm

∣∣∣∣∣
2

&
∑
k 6=0

1

|k|2

∣∣∣∣∣ 1n
n∑

m=1

e2πikxm

∣∣∣∣∣
2

= ‖µ‖Ḣ−1 .
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Finally, by another application of Peyré’s inequality, we have

∑
k 6=0

1

|k|2

∣∣∣∣∣ 1n
n∑

m=1

e2πikxm

∣∣∣∣∣
2

&W2(µ, dx).

4.5 Proof of Theorem 4.3.2

Lemma (B. & Steinerberger [26]). We have

∥∥∥∥∥
n∑
k=1

f(x− xk)

∥∥∥∥∥
L1

≤ 2f(0) for infinitely many n.

Proof: Summarized from [26]. Suppose that the inequality fails for some fixed n. Since

∫
T

n∑
k=1

f(x− xk)dx = 0,

we have that the positive mass and the negative mass cancel and thus, by pigeonholing,

min
x∈T

n∑
k=1

f(x− xk) ≤ −
1

2

∥∥∥∥∥
n∑
k=1

f(x− xk)

∥∥∥∥∥
L1

≤ −f(0).

This, in turn, then implies that

n+1∑
k,`=1

f(xk − x`) =

n∑
k,`=1

f(xk − x`) + f(0) + 2

n∑
k=1

f(xn+1 − xk) ≤
n∑

k,`=1

f(xk − x`)− f(0)

and we see that the quantity is decaying since f(0) > 0. However, the quantity cannot

decay indefinitely since

n∑
k,`=1

f(xk − x`) =
∑
k∈Z
k 6=0

f̂(k)

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

≥ 0.

This means that the desired inequality has to eventually be true. The argument shows

something slightly stronger than this: since

n∑
k,`=1

f(xk − x`) ≤ f(0)n,
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we can infer that if the L1−norm is bigger than 2f(0) for some fixed n, then it holds true

for some m ≤ 2n. However, we will not need this refined information.

Proof of Theorem 4.3.2: Summarized from [26]. We now fix such a value of n where the

L1−norm is smaller than 2f(0). We argue that

∥∥∥∥∥ ddx
n∑

m=1

f(x− xm)

∥∥∥∥∥
L2

=

∥∥∥∥∥ ddx∑
k∈Z

f̂(k)
n∑

m=1

e2πik(x−xm)

∥∥∥∥∥
L2

.

∥∥∥∥∥ ddx∑
k∈Z

1

k2

n∑
m=1

e2πik(x−xm)

∥∥∥∥∥
L2

.

∥∥∥∥∥∑
k∈Z

1

k

n∑
m=1

e2πik(x−xm)

∥∥∥∥∥
L2

=

∑
k 6=0

1

k2

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2
1/2

.

 n∑
k,`=1

f(xk − x`)

1/2

. n1/2.

The final ingredient in our argument is a Gagliardo-Nirenberg inequality: for differentiable

g : T→ R with mean value 0, we have

‖g‖L∞(T) .

∥∥∥∥ ddxg
∥∥∥∥2/3

L2(T)

‖g‖1/3
L1(T)

,

which establishes the desired result.

4.5.1 Proof of the Proposition

Proof: Summarized from [26]. We have

n∑
m,`=1

f(xm − x`) =
∑
k∈Z
k 6=0

f̂(k)

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

.
∞∑
k=1

1

k2

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

.

This quantity was estimated in [131], we summarize the argument here. We observe that

we trivially have the inequality

∞∑
k=n2

1

k2

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

≤ n2
∞∑

k=n2

1

k2
. 1.
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It thus remains to estimate the first n2 sums. We split into dyadic pieces and estimate

∑
2`≤k≤2`+1

1

k2

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

.
1

22`

∑
2`≤k≤2`+1

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

.

We recall the geometric series and use it to estimate

∣∣∣∣∣
n∑

m=1

e2πikmα

∣∣∣∣∣ =

∣∣∣∣e2πiknα − 1

e2πikα − 1

∣∣∣∣ ≤ 2

|e2πikα − 1|
.

1

‖kα‖
,

where ‖x‖ = min(x−bxc , dxe−x) is the distance to the nearest integer. Since α is assumed

to be badly approximable, i.e. ∣∣∣∣α− p

q

∣∣∣∣ ≥ cα
q2
,

we have that, for any 2` ≤ k1 < k2 ≤ 2`+1,

|‖k1α‖ − ‖k2α‖| ≥
cα

2`+1
.

Moreover, we also have

cα
2`+1

≤ ‖k1α‖, ‖k2α‖ ≤ 1− cα
2`+1

.

This shows that the sum

∑
2`≤k≤2`+1

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

.
∑

2`≤k≤2`+1

1

‖kα‖2

can be estimated from above by

∑
2`≤k≤2`+1

1

‖kα‖2
.α

2`∑
k=1

1

(k/2`)2
. 22`.

Altogether this shows that over every dyadic block

∑
2`≤k≤2`+1

1

k2

∣∣∣∣∣
n∑

m=1

e2πikxm

∣∣∣∣∣
2

.
1

22`
. 1

and thus the sum simplifies to the number of dyadic blocks up to n2 which is ∼ log n.
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4.5.2 Proof of Theorem 4.3.3

Proof: Summarized from [26]. We can see that K is positive-definite and equivalent to the

Green’s functionG. Thus, it suffices to prove the desired result for the Green’s functionG in-

stead. The proof follows by induction from the main result of [127]. Fixing a d−dimensional

manifold (M, g) with d ≥ 3, we have for any set of n points {x1, . . . , xn} ⊂M that

W2

(
1

n

n∑
k=1

δxk , dx

)
.M

1

n1/d
+

1

n

∣∣∣∣∣∣
∑
k 6=`

G(xk, x`)

∣∣∣∣∣∣
1/2

.

If the manifold is two-dimensional, d = 2, then we have

W2

(
1

n

n∑
k=1

δxk , dx

)
.M

√
log n

n1/2
+

1

n

∣∣∣∣∣∣
∑
k 6=`

G(xk, x`)

∣∣∣∣∣∣
1/2

.

We emphasize that G(·, y) has mean value 0 and thus, by the usual argument, we obtain

min
x∈M

n−1∑
k=1

G(x, xk) ≤ 0

and thus we may bound ∑
k 6=`

G(xk, x`) ≤ 0.

We recall the Corollary from [127] which implies that for any set of points

n∑
k,`=1
k 6=`

G(xk, x`) &M −n2−2/d

for d ≥ 3. If the manifold is two-dimensional, then we have the estimate

n∑
k,`=1
k 6=`

G(xk, x`) &M −n log n.

These two results combined imply the desired statement.
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Chapter 5

Explicit Sequences of Points and

their Transport Distance

5.1 Introduction

5.1.1 Introduction

Here we study the problem of measuring the regularity of point sets {x1, . . . , xN} ⊂ Td as

well as infinite sequences. There are many classical notions of regularity (discussed at the

beginning of Chapter 1) as well as good constructions of sets minimizing these notions that

have been proposed. Typically, the regularity of sequences is considered using discrepancy,

whereas we would look at the regularity of measures using transport distance, though of

course we can always interpret sequences of points as sequences of measures, by placing a

1
N δxk Dirac measure at each of the first N points. The results of Chapter 4 also suggest

that a potential theoretic approach to regularity is useful, interpreting the points as particles

with energy interactions. To get the full story, we will need to use multiple approaches in

conjunction. This chapter and Chapter 6 follow [25] closely.

Figure 5.1: The renormalized quadratic residues in F29 rescaled to [0, 1]. Every dot except
the one at zero represents two quadratic residues corresponding to two Dirac delta measures.
How costly is it to move this point measure to the uniform distribution on [0, 1]?



The classical theory has developed a useful machinery in terms of exponential sums that

exploits regularities of number-theoretic constructions. We will not, initially, pursue this

path and instead ask a different question: consider the measure

µ =
1

N

N∑
k=1

δxk .

How would we go about distributing this measure in such a way that the end result is

the Lebesgue measure on Td? Here, the ‘cost’ of transporting δ units of measure across

distance d is understood to be the W1 cost, δ · d. An even more practical example is

the following: suppose we have people evenly distributed over Td and N supermarkets

placed in {x1, . . . , xN} ⊂ Td. Demand and supply are exactly matched: how far would the

trucks have to drive to distribute the goods from the supermarkets evenly? This is Monge’s

transportation problem discussed in Chapter 2. It is easy to see that

Wp

(
1

N

N∑
k=1

δxk , dx

)
≥ cd
N1/d

,

where cd is a universal constant depending only on the dimension (see Chapter 2 §2 for

the argument). This scaling is, for example, assumed by a rescaling of Zd intersected with

Td ∼= [0, 1]d. This chapter is motivated by the following questions:

1. Do the classical constructions of regular sequences in Td from [36, 44, 47, 78] have an

optimal transportation cost? Do they have it uniformly in N?

2. How does one go about proving such results?

3. Does this perspective lead to new results?

We emphasize that these types of problems, estimating transport cost from one measure

to another, have been actively investigated in Optimal Transport, where the emphasis is

usually on existence and uniqueness of optimal transport maps as well as fine qualitative and

quantitative properties. Many special cases have been actively investigated in probability

theory, we emphasize the problems of estimating the transport of random points to the

Lebesgue measure, more generally, random points drawn from a measure µ to µ or random
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points to random points [2, 3, 23, 71, 136–138, 145]. As far as we know, special structures

arising from Number Theory or Combinatorics have not been considered before (however,

there are some interesting precursors in [21,25,65,127,131–134]).

5.1.2 Setup.

We recall the p−Wasserstein distance discussed in Chapter 2. As throughout the thesis,

our two measures under consideration here are

µ =
1

N

N∑
k=1

δxk and ν = dx,

where dx refers to the normalized volume measure. As mentioned above, we have an

(optimal) lower bound that is independent of the set {x1, . . . , xN} ⊂ Td

W1

(
1

N

N∑
k=1

δxk , dx

)
≥ cd
N1/d

.

5.1.3 Existing Results in One Dimension.

There are several recent results in the one-dimensional setting. Given a finite set on the

one-dimensional torus {x1, . . . , xN} ⊂ T, we associate to it the measure

µ =
1

N

N∑
k=1

δxk .

Then we may bound the transport cost

W1(µ, dx) . DN (µ)

using Kantorovich-Rubinstein duality (this is carried out in greater detail in [21] or [130]).

We recall another notion of regularity introduced in Chapter 1 §3: Zinterhof’s diaphony
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[47, 154], which can be defined as

FN (µ) =

∑
k∈Z
k 6=0

|µ̂(k)|2

k2


1/2

.

One of the key points of this Chapter is that we are able to generalize Zinterhof’s diaphony

to higher dimensions. Recall Peyre’s inequality [106] (see Chapter 2 §4), which says that

W2(µ, dx) . FN (µ).

Summarizing, we have two inequalities and Holder’s inequality

W1(µ, dx) . DN (µ) and W1(µ, dx) ≤W2(µ, dx) . FN (µ)

For classical one-dimensional constructions in Number Theory, the notions DN and FN

have been studied intensively. This connection immediately implies a series of results for

the Wasserstein distance: the upper bounds that we obtain for the W2 distance are better,

by a factor of (logN)1/2, than the estimate on DN . A simple example is given by the van

der Corput sequence in base r ∈ N (see e.g. [44]). The element xn is given by writing n in

base r, inverting the digits at the comma and then reinterpreting this as a real number; the

van der Corput sequence in base 2 starts with 0.5, 0.25, 0.75, 0.125, 0.625 and so on. It is

known to satisfy DN .r N
−1 logN . Using an existing result of Proinov & Grozdanov [110],

we can obtain the following improved estimate on the transport distance.

Theorem 5.1.1 (Proinov & Grozdanov [110]). Let (xn)∞n=1 denote the van der Corput

sequence in base r. Then, uniformly in N ,

W2

(
1

N

N∑
k=1

δxk , dx

)
.r

(logN)1/2

N
.

A recent result of Graham [61] (see Chapter 4 §3.2) shows that this is the optimal

rate. Peyre’s inequality FN & W2(µ, dx) [106], implies the same result for the Zinterhof

diaphony which recovers a result of Proinov [108]. A natural question is whether this rate
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of growth is attained by other sequences as well. Steinerberger recently remarked [131]

that the (nα)−sequence satisfies a similar growth. Moreover, quadratic residues of a finite

field, suitably rescaled, behave better than one would obtain using the Polya-Vinogradov

estimate (see for example [28]).

Theorem 5.1.2 (Kronecker Sequence and Quadratic Residues [131]). Let α be badly ap-

proximable and xn = {nα}, then

W2

(
1

N

N∑
k=1

δxk , dx

)
.α

(logN)1/2

N
.

Moreover, let p be a prime and let xk =
{
k2/p

}
for 1 ≤ k ≤ p. Then

W2

(
1

p

p∑
k=1

δxk , dx

)
.

1
√
p
.

The bound on the Kronecker sequence follows from applying Peyre’s inequality to the

diaphony estimate shown in the proof of the Chapter 4 Proposition (see §5.1). Recall from

Chapter 1 that the Kronecker sequence has optimal discrepancy on the order of

DN .
logN

N
.

Notice this loses a factor of
√

logN from our W2 bound. While DN is giving the worst case

discrepancy over all intervals, analogous to an L∞ norm, the W2 transport distance is more

similar to an L2 norm, giving the average distance points must be transported. Thus, it is

notable that Kronecker’s points are substantially more well-distributed ‘on average’ than

in the worst-case interval. As for the quadratic residues, we will see that the argument

from [131] generalizes to any monomial residues, the main difference being that we can

complete the square and push this argument through for any quadratic polynomial, whereas

it is not so simple for higher degrees. That is, for an odd prime p, a 6≡ 0 (mod p), we have

ax2 + bx+ c ≡ a(x+ (2a)−1b)2 + c− (4a)−1b2 (mod p),

so the residues of any quadratic polynomial are simply the shifted residues of a quadratic
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monomial. The matter of whether the result below can be extended to higher degree non-

monomials is an interesting open question.

Theorem 5.1.3. Let p be a prime, n a positive integer and m ∈ Z\pZ, and let xk =

{mkn/p} for 1 ≤ k ≤ p. Then

W2

(
1

p

p∑
k=1

δxk , dx

)
≤ 2π

p
√

3

(
1 + (gcd(n, p− 1)− 1)2

(
p− 1

p

))1/2

.n
1
√
p
.

We present the proof at the end of this section. The above connection between the

Wasserstein distance, Diaphony, the Sobolev space Ḣ−1 and the corresponding exponential

sum estimate does not seem to have been noticed before the paper [131]. For that reason,

we believe that there are many interesting results in d = 1 that are within reach.

5.1.4 Existing Results in Higher Dimensions

Figure 5.2: The regular grid distribution with small Wasserstein transportation cost –
however, these constructions are not uniform in N .

We first present some recent results on randomly selected points in dimension 2. In 2016,

Ambrosio-Stra-Trevisan proved the following:

Theorem (Ambrosio-Stra-Trevisan [3]). Suppose D = [0, 1]2 or D is a 2-dimensional com-

pact manifold with volume 1, and points xi are picked uniformly at random over D. Then

lim
n→∞

n

log n
E

[
W 2

2

(
1

n

n∑
i=1

δxi , dx

)]
=

1

4π
.

That is, on average the squared W2 distance between randomly selected point masses

and the uniform distribution tends to log n/4πn. Following this result, Ledoux provided a

bound on the plane R2 using similar techniques:
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Theorem (Ledoux [82]). Suppose points xi are picked from the standard Gaussian distri-

bution µ on R2. Then, for some universal constant C > 0 and all n ≥ 2, we have

log n

Cn
≤ E

[
W 2

2

(
1

n

n∑
i=1

δxi , µ

)]
≤ C(log n)2

n
.

Ledoux further conjectured that the left-hand side is of the correct order, which is

supported by simulations and heuristics. We now consider higher-dimensional manifolds: It

is easy to see that for any fixed set of points {x1, . . . , xN} ⊂ Td, the lattice construction (see

Fig. 5.2) is optimal up to constants. However, if one were to construct an infinite sequence

(xn)∞n=1 with estimates that are uniformly good, a lattice construction does not seem to be

particularly useful; see Fig 5.2: where would one put the next point and the point after

that? A general result has recently been obtained by the author and Steinerberger [26] on

general compact manifolds. If (M, g) is a compact manifold without boundary and G(·, ·)

denotes the Green’s function of the Laplacian −∆g, then the greedy construction

xn = arg min
x∈M

n−1∑
k=1

G(x, xk).

has good distribution properties (see Theorem 4.3.3 in Chapter 4 §3.4).

5.1.5 Proof of Theorem 5.1.3: Monomial Residues

Proof. Consider a monomial f(x) = mxn, where n is a positive integer and m ∈ Z, and let

µp =
1

p

p∑
k=1

δ{f(k)/p},

where p - m is an odd prime. That is, place a point mass of weight 1/p at each of the

residues of f in Fp (with multiplicity). Then the Fourier coefficients of µp given by

µ̂p(j) =

∫ 1

0
e−2πijxdµp =

1

p

p∑
k=1

e−2πijf(k)/p

are Gauss sums. If p | j then clearly µ̂p(j) = 1, so we restrict to the case p - j. Then,

we may express these Fourier coefficients in terms of the non-trivial Dirichlet characters
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χ : (Z/pZ)× → S1 of order dividing n:

µ̂p(j) =
1

p

∑
χn=1
χ6=1

τj(χ) where τj(χ) =

p−1∑
k=1

χ(k)e−2πikjm/p.

We can see this as follows: first, recall that (Z/pZ)× is cyclic—fix a generator g. Then the

Dirichlet characters of order dividing n are determined by their value at g. We may, without

loss of generality, assume n | p− 1; otherwise, we can simply replace n by gcd(n, p− 1) and

receive the same set of residues. Letting ζ = e2πi/n, the Dirichlet characters are precisely

those given by χq(g) = ζq. Note

p∑
k=1

e−2πikjm/p = 0,

as this is summing over all p of the pth roots of unity. Thus, we have

∑
χn=1
χ6=1

τj(χ) =
∑
χn=1
χ6=1

p−1∑
k=1

χ(k)e−2πikjm/p +

p∑
k=1

e−2πikjm/p.

We may switch the order of summation: if we fix k = gx and consider the total contribution

of e−2πikjm/p to the sum, we see that this will be the sum over all χ of order dividing n

(including χ = 1 now) of χ(k)e−2πikjm/p. But, the χ(k) are simply running over each of

the n/ gcd(n, x) roots of unity gcd(n, x) times. This is always 0, unless n = gcd(n, x)—that

is, unless n | x, in which case it is adding n copies of 1. n | x precisely when k is an nth

power residue mod p. Thus, the summation does exactly what we want: it eliminates the

contribution of all non-residues, and extracts the correct contribution from each residue,

which necessarily appears as an nth power of n elements in Z/pZ (except if k = 0, where

it appears as an nth power of precisely one element—0). Since p is prime and χ is non-

trivial, it is automatically primitive, and thus we have |τj(χ)| = √p (this can be seen by an

elementary argument: simply expand the sum τj(χ)τj(χ)). Since there are precisely n − 1

non-trivial characters of order dividing n, we have by the triangle inequality, for j /∈ pZ,

|µ̂p(j)| ≤
1

p
(n− 1)

√
p =

n− 1
√
p

.n
1
√
p
.
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Note that we may bound the discrepancy with the Erdős-Turán inequality:

DN .
1

q
+

q∑
k=1

|µ̂p(k)|
k

.n
1

q
+
∑

1≤k≤q
p|k

1

k
+

1
√
p

q∑
k=1

1

k
.

1

q
+

1

p
log

(
q

p

)
+

log q
√
p
.

Setting q = p yields DN .n log p/
√
p. To bound W2, we use Peyre’s inequality:

W2(µp, dx) ≤ 2

∑
k∈Z
k 6=0

|µ̂p(k)|2

k2


1/2

≤ 2

∑
k∈pZ
k 6=0

1

k2
+
∑
k/∈pZ

(n− 1)2

pk2


1/2

=
2π

p
√

3

(
1 + (n− 1)2

(
p− 1

p

))1/2

.n
1
√
p
.

As with the Kronecker sequence, it is worth noting that the Wasserstein bound is better

than the discrepancy bound, here by a factor of log p (though the true values are unknown).

5.2 Main Results

5.2.1 A Random Walk.

We have already mentioned a series of results for d = 1. We add another one to the list:

here, we do not consider a sequence of points but a sequence of probability measures. Let

µk be the measure that arises from an unbiased random walk on T ∼= [0, 1] where each step

is ±α (independently and with likelihood 1/2 each) and α is a quadratic irrational. This

model was studied by Su [132] (see also Hensley & Su [65] and Su [134]). The main result

in [132] showed that the measure arising after k random steps satisfies

DN (µk) .α k
−1/2.

We note that this result immediately implies W1(µk, dx) . k−1/2. Here, we show that for

this model we can obtain a (worse) bound for the (larger) W2−distance.

Theorem 5.2.1 (B. & Steinerberger [25]). We have

W2(µk, dx) .α k
−1/4.
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We emphasize that the framework discussed in this chapter enables us to reduce Theorem

5.2.1 to standard estimates. This is presumably not optimal and stronger results should be

true. Hensley & Hu [65] discuss their result and put it in direct relation to the Wasserstein

distance. We hope that our approach will be a useful technique for these types of problems.

5.2.2 Kronecker sequences.

We now consider a natural higher-dimensional generalization of Kronecker sequences (irra-

tional rotations) on T. We say that a vector α = (α1, α2, . . . , αd) ∈ Rd is badly approximable

if, for all p ∈ Zd and q 6= 0, we have

‖qv − p‖ ≥ cα

q1/d
.

Since p does not appear on the right-hand side, we may alternatively write

min
p∈Z
‖qv − p‖ ≥ cα

q1/d
.

Further, since all norms are equivalent in finite-dimensional vector spaces, we may replace

the `2 norm with an `∞ norm. This yields

max
1≤j≤d

‖αjq‖ ≥
cα

q1/d
,

where ‖ · ‖ is the distance to the nearest integer. By Dirichlet’s approximation theorem,

this is the optimal scaling: for any α ∈ Rd there is always some cα such that, for infinitely

many q ∈ Z\{0}, we have

max
1≤j≤d

‖αjq‖ ≤
aα

q1/d
.

The existence of badly approximable vectors follows from continued fraction expansion when

d = 1. The first examples in higher dimensions are due to Perron [102], Davenport [42]

showed that there are uncountably many such vectors for d = 2 and Schmidt [123] extended
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this result to d ≥ 3. The Kronecker sequence is then defined via

xn = (nα1, nα2, . . . , nαd) mod 1,

where mod 1 is to be interpreted component-wise. We now establish that these sequences

have uniformly good transport properties to the uniform measure.

Theorem 5.2.2 (B. & Steinerberger [25]). Let d ≥ 2 and let α ∈ Rd be badly approximable.

Then the Kronecker sequence satisfies

W2

(
1

N

N∑
k=1

δxk , dx

)
.cα,d N

−1/d

We emphasize that this result is best possible (up to constants) as well as uniform in N .

It is not at all clear to us whether the condition of α being badly approximable is necessary;

however, in light of results in d = 1, this is quite conceivable.

5.2.3 Other manifolds.

Nothing about our approach is particularly tied to the torus Td. Indeed, Theorem 3.1.1

W2

(
1

N

N∑
k=1

δxk , dx

)
. inf

t>0

√
t+

∑
k∈Zd
k 6=0

e−‖k‖
2t

‖k‖2

∣∣∣∣∣ 1

N

N∑
n=1

e2πi〈k,xn〉

∣∣∣∣∣
2


1/2

can be generalized just as easily to other manifolds. Let us fix a manifold (M, g) and use

φk denote the sequence of Laplacian eigenfunctions

−∆φk = λkφk.

We assume that φ0 = 1 is the trivial (constant) eigenfunction and that they are normalized

to ‖φk‖L2 = 1. Then the inequality (see [131]) assumes the form

W2

(
1

N

N∑
k=1

δxk , dx

)
.M inf

t>0

√
t+

 ∞∑
k=1

e−2λkt

λk

∣∣∣∣∣ 1

N

N∑
n=1

φk(xn)

∣∣∣∣∣
2
1/2

.
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For most manifolds, we do not have an explicit expression for the eigenfunctions φk and

the inequality is thus of limited use. Chapter 3 §2 recalls a substitute inequality in cases

where the Green’s function G(x, y) or good estimates for it are known [127]. However, the

Laplacian eigenfunctions are completely explicit on the sphere and are simply the classical

spherical harmonics that have already been frequently used to define notions of discrepancy

on the sphere (see e.g. [55,58–60,94]). We believe that our notion can be a useful addition.

As an example of its usefulness, we give the general version of the result above.

Theorem 5.2.3 (B. & Steinerberger [25]). Let (M, g) be a compact manifold without bound-

ary, normalized to have volume 1, and let f : T → R be differentiable. Then, for some

constant cM > 0 depending only on the manifold, we have

∣∣∣∣∣
∫
M
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ cM inf
t>0

[
√
t‖∇f‖L∞ +

∥∥∥∥∥et∆
N∑
k=1

δxk

∥∥∥∥∥
Ḣ−1

‖∇f‖L2

]

Alternatively, rewriting the Sobolev norm in terms of the spectral expansion, we could

also write the upper bound on the integration error as

inf
t>0

√t‖∇f‖L∞ +

 ∞∑
k=1

e−2λkt

λk

∣∣∣∣∣ 1

N

N∑
n=1

φk(xn)

∣∣∣∣∣
2
1/2

‖∇f‖L2

 .
One possible application is to estimate the error of points chosen randomly with respect to

the volume measure dx. We observe, from L2−orthogonality of the Laplacian eigenfunc-

tions, that if (xn)Nn=1 are chosen independently at random, then

E
∞∑
k=1

e−2λkt

λk

∣∣∣∣∣ 1

N

N∑
n=1

φk(xn)

∣∣∣∣∣
2

=

∞∑
k=1

e−2λkt

λk

1

N2

N∑
n,`=1

Eφk(xn)φk(x`) =
1

N

∞∑
k=1

e−2λkt

λk

Weyl’s Theorem implies that, on a compact d−dimensional manifold, λk ∼ k2/d. For

example, on d−dimensional manifolds with d ≥ 3, we have (using the lemma from below)

1

N

∞∑
k=1

e−2λkt

λk
.M

1

N

∞∑
k=1

e−k
2/dt

k2/d
.d

1

N
t−

d−2
2 ,
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for 0 < t < 1/2. Minimizing in t suggests the value

t1/2 =
1

N1/d

(
‖∇f‖L2

‖∇f‖L∞

)2/d

resulting in the ‘typical bound’ for random points

∣∣∣∣∣
∫
M
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ . ‖∇f‖ d−2
d

L∞ ‖∇f‖
2
d

L2N
−1/d.

However, this is inferior to classical Monte-Carlo and thus perhaps not useful.

5.3 Proofs

5.3.1 A recurring computation.

We collect a simple Lemma that will reappear in several different arguments.

Lemma (B. & Steinerberger [25]). We have, for m+ d ≥ 1, the estimate

∑
k∈Zd
k 6=0

e−‖k‖
2t‖k‖m .m,d t

−m+d
2 .

If m+ d = 0, then we have, for 0 < t < 1/2,

∑
k∈Zd
k 6=0

e−‖k‖
2t‖k‖m .m,d log

(
1

t

)
.

Proof: Summarized from [25]. By moving to polar coordinates noting that, for all ` ≥ 1,

#
{
k ∈ Zd \ {0} : ` ≤ ‖k‖ < `+ 1

}
≤ cd`d−1,

we can reduce the sum to a one-dimensional quantity

∑
k∈Zd
k 6=0

e−‖k‖
2t‖k‖m .d

∑
k∈Z
k 6=0

e−|k|
2t|k|m+d−1.
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If m+ d = 0, then we can easily bound the sum via

∑
k∈Z
k 6=0

e−|k|
2t|k|−1 .

∫ ∞
1

e−x
2t

x
dx

This integral is the complete gamma function and can be rewritten in terms of the expo-

nential integral via ∫ ∞
1

e−x
2t

x
dx = −1

2
Ei(−t) =

1

2

∫ ∞
t

e−x

x
dx.

It is easy to see that

∫ ∞
t

e−x

x
dx .

∫ 1

t

1

x
dx+

∫ ∞
1

e−x

x
dx . log

(
1

t

)
.

It remains to deal with the case in which m + d ≥ 1, where we estimate the sum via a

different integral. Note that

∑
k∈Z
k 6=0

e−|k|
2t|k|m+d−1 .

∫ ∞
0

e−x
2txm+d−1dx = cm+dt

−m+d
2 .

5.3.2 Random Walks: Proof of Theorem 5.2.1.

Proof: Summarized from [25]. We have that the measure µk describing the distribution of

the random walk after k steps is given by

µk = µk−1 ∗ µ where ∗ denotes convolution, and µ =
1

2
δα +

1

2
δ−α.

Therefore

|µ̂k(`)| = |µ̂(`)|k = | cos (2π`α)|k.

Using Peyre’s estimate, we reduce the problem to estimating the sum

W2(µk, dx) ≤

∑
`∈Z
` 6=0

| cos (2π`α)|2k

`2


1/2

.
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We use, as we often do, that `α cannot be close to an integer for many values of `. More

precisely, we define the k sets

Ij =

{
` ∈ Z \ {0} :

j

k
≤ {`α} ≤ j + 1

k

}
for 0 ≤ j ≤ k − 1.

Since α is badly approximable, we have that two distinct elements `1, `2 ∈ Ij satisfy |`1 −

`2| &α k. We can now write

∑
`∈Z
6̀=0

| cos (2π`α)|2k

`2
=

k−1∑
j=0

∑
`∈Ij

| cos (2π`α)|2k

`2
.

We have

∑
`∈Ij

| cos (2π`α)|2k

`2
. max

x∈Ij
| cos (2πx)|2k

∑
`∈Ij

1

`2
.

However, the smallest element in Ij is &α k/(j + 1) and any two consecutive elements are

&α k separated implying that

∑
`∈Ij

1

`2
.α

∞∑
h=0

1

(k/(j + 1) + hk)2
.α

(j + 1)2

k2
.

However, we also have

max
x∈Ij
| cos (2πx)|2k ≤

(
1−

(
min {j, k − j}

k

)2
)2k

.

By symmetry, it suffices to sum j up to k/2. We then obtain

∑
0≤j≤k/2

max
x∈Ij
| cos (2πx)|2k

∑
`∈Ij

1

`2
.

∑
0≤j≤k/2

(
1− j2

k2

)2k
(j + 1)2

k2

. k

∫ 1

0

(
1− x2

)2k
x2dx .

1√
k
.

94



5.3.3 Kronecker sequences: Proof of Theorem 5.2.2

Proof: Summarized from [25]. Let us consider the Kronecker sequence

xn = (nα1, nα2, nα3, . . . , nαd) mod 1.

We assume that α is badly approximable, which means that, for some universal constant

cα > 0 and all integers q 6= 0, we have

max
1≤j≤d

‖αjq‖ ≥
cα

q1/d
,

where ‖·‖ is the distance to the nearest integer. Khintchine’s transference principle (see, for

example, the textbook of Schmidt [120]) states that α is badly approximable if and only if

the linear form induced by α is badly approximable, i.e. if for all 0 6= k ∈ Zd

‖〈k, α〉‖ ≥ cα
‖k‖d

,

where ‖·‖ is the distance to the nearest integer and cα is a universal constant. This is the

property we are going to use. Observe that, abbreviating

µ =
1

N

N∑
k=1

δxk ,

then, arguing via the geometric series,

|µ̂(k)| = 1

N

∣∣∣∣∣
N∑
`=1

e2πi〈k,x`〉

∣∣∣∣∣ =
1

N

∣∣∣∣∣
N∑
`=1

e2πi`〈k,α〉

∣∣∣∣∣ ≤ 2

N

1

‖〈k, α〉‖
,

where ‖〈k, α〉‖ is the distance to the nearest integer. We are left with estimating

W2(µ, dx) ≤ inf
t>0

√t+
2

N

∑
k 6=0

e−‖k‖
2t

‖k‖2
1

‖〈k, α〉‖2

1/2
 .
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We split frequencies into dyadic scales and first estimate

∑
2`≤‖k‖≤2`+1

1

‖〈k, α〉‖2
.

Clearly, for any k1 6= k2 in this dyadic scale, we have

|〈k1 − k2, α〉| &α ‖k1 − k2‖−d ≥ 2−`d.

This means that these ∼ 2`d terms are roughly evenly spread and we have

∑
2`≤‖k‖≤2`+1

1

‖〈k, α〉‖2
.α

2`·d∑
h=1

1

(h2−`·d)2
. 22`·d.

This shows that the typical size of such a term (of which there are 2`·d) is 2`·d and thus we

can estimate a dyadic block by increasing the multiplier as in

∑
2`≤‖k‖≤2`+1

e−‖k‖
2t

‖k‖2
1

‖〈k, α〉‖2
≤

(
max

2`≤‖k‖≤2`+1

e−‖k‖
2t

‖k‖2

) ∑
2`≤‖k‖≤2`+1

1

‖〈k, α〉‖2

.α

(
max

2`≤‖k‖≤2`+1

e−‖k‖
2t

‖k‖2

)
22`·d

.d

(
max

2`≤‖k‖≤2`+1

e−‖k‖
2t

‖k‖2

) ∑
2`≤‖k‖≤2`+1

2`·d

≤
∑

2`≤‖k‖≤2`+1

e−‖k‖
2(t/2)

(‖k‖/2)2
2`·d.

This, in turn, can be rewritten as the kind of sum already studied above since

∑
2`≤‖k‖≤2`+1

e−‖k‖
2(t/2)

(‖k‖/2)2
2`·d .d

∑
2`≤‖k‖≤2`+1

e−‖k‖
2(t/2)

‖k‖2
‖k‖d

Altogether, using the Lemma above as well as d ≥ 2,

∑
k∈Zd
k 6=0

e−‖k‖
2t

‖k‖2
1

‖〈k, α〉‖2
.
∑
k∈Zd
k 6=0

e−‖k‖
2t‖k‖d−2 .

1

td−1
.
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Therefore

W2(µ, dx) .α

√
t+

2

N

1

t
d−1
2

which implies, for the choice t = N−2/d that

W2(µ, dx) .α
1

N1/d
.

5.3.4 A General Manifold Result: Proof of Theorem 5.2.3

Proof: Summarized from [25]. The proof combines two estimates. We first replace the point

measure on the xk

µ =
1

N

N∑
k=1

δxk

by the smoothed measure et∆µ. The second step of the argument is merely a duality

estimate (or, alternatively, an application of the Cauchy-Schwarz inequality). The first step

is comprised of the estimate

∣∣∣∣∫
M
fdµ−

∫
M
fet∆µdx

∣∣∣∣ . √t ‖∇f‖L∞ ,
which can be understood in at least two different ways. We describe both of them. The

first case is physical: we interpret the heat equation as a process that transports a Dirac

measure to a nearby neighborhood. The physical scaling is that within t units of time,

the mass is transported roughly distance
√
t. However, the effect of transporting mass is

naturally aligned to the setting of a Lipschitz function since

∣∣∣∣∫
M
fdµ−

∫
M
fdν

∣∣∣∣ ≤ ‖∇f‖L∞W1(µ, ν).

(This inequality becomes an equality, the Kantorovich-Rubinstein duality formula, in one

dimension, see Chapter 2 §1). However, it is known that (see Chapter 3 §1 Lemma)

W1(µ, et∆µ) .M

√
t
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and we obtain the desired estimate. The second step is more explicit. We introduce the

heat kernel pt(x, y) as the solution of the heat equation started with the measure δx and

run up to time t and then evaluated in y. Then it follows from conservation of mass that

∫
M
pt(x, y)dy = 1

and the mean-value theorem implies

∣∣∣∣∫
M
f(x)dµ−

∫
M
f(x)et∆µdx

∣∣∣∣ =

∣∣∣∣∣
∫
M

1

N

N∑
k=1

(pt(xk, y)f(y)− f(xk))dy

∣∣∣∣∣
≤ 1

N

N∑
k=1

∣∣∣∣∫
M
pt(xk, y)f(y)− f(xk)dy

∣∣∣∣
≤ 1

N

N∑
k=1

∣∣∣∣∫
M
pt(xk, y)f(y)− pt(xk, y)f(xk)dy

∣∣∣∣
≤ 1

N

N∑
k=1

∫
M
‖∇f‖L∞pt(xk, y)|xk − y|dy

≤ ‖∇f‖L∞ max
x∈M

∫
M
pt(x, y)|x− y|dy.

However, the last term can be controlled using Aronson’s estimate

pt(x, y) ≤ c1

tn/2
exp

(
−|x− y|

2

c2t

)
, ∀t > 0, x, y ∈M,

where the constant c1, c2 depend only on the manifold. A simple computation then shows

(see e.g. [131]) that ∫
M
pt(xk, y)|xk − y|dy .M

√
t.

We now come to the final part of the argument. It remains to estimate the error

∣∣∣∣∫
M
f(x)dx−

∫
M
f(x)et∆µ dx

∣∣∣∣ from above.

We interpret this as an inner product

∣∣∣∣∫
M
f(x)dx−

∫
M
f(x)et∆µ dx

∣∣∣∣ =
∣∣〈f, et∆µ− 1

〉∣∣ .
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A duality argument now shows that

∣∣〈f, et∆µ− 1
〉∣∣ ≤ ‖f‖Ḣ1‖et∆µ‖Ḣ−1

which is the desired result. One could also avoid the language of functional analysis and

estimate, after noticing that et∆µ− 1 and φk both have mean value 0 for k ≥ 1,

∣∣〈f, et∆µ− 1
〉∣∣ =

∣∣∣∣∣
∞∑
k=0

〈f, φk〉
〈
et∆µ− 1, φk

〉∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=1

λ
1/2
k 〈f, φk〉λ

−1/2
k

〈
et∆µ− 1, φk

〉∣∣∣∣∣
≤

( ∞∑
k=1

λk 〈f, φk〉
2

)1/2( ∞∑
k=1

λ−1
k

〈
et∆µ− 1, φk

〉2

)1/2

=

( ∞∑
k=1

λk 〈f, φk〉
2

)1/2( ∞∑
k=1

λ−1
k

〈
et∆µ, φk

〉2

)1/2

.

As for the first term, we observe that

∞∑
k=1

λk 〈f, φk〉2 =

∫
M

(−∆f)fdx =

∫
M
|∇f |2dx = ‖∇f‖2L2 .

As for the second sum, we observe that, using the self-adjointness of the heat propagator

and the fact that φk is an eigenfunction of the Laplacian

〈
et∆µ, φk

〉
=
〈
µ, et∆φk

〉
= e−λkt 〈µ, φk〉 .

This then results in

( ∞∑
k=1

λ−1
k

〈
et∆µ, φk

〉2

)1/2

=

( ∞∑
k=1

e−2λkt

λk
〈µ, φk〉2

)1/2

and concludes the desired result.
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Chapter 6

Numerical Integration and Error

Bounds

6.1 Recent Results

Let us consider the problem of numerically integrating a function f : [0, 1]d → R which we

assume to be Lipschitz. It is a classic 1959 result of Bakhvalov [7] (see also Novak [97]) that

there are sets of points (xk)
N
k=1 such that for all differentiable functions f : [0, 1]d → R with

Lipschitz constant ‖∇f‖L∞ , we have

∣∣∣∣∣
∫

[0,1]d
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ Cd‖∇f‖L∞N−1/d

and that this result is optimal in the power of N and its dependence on the Lipschitz

constant ‖∇f‖L∞ : there are functions f for which the error is at that scale (up to constants).

We can easily construct such functions: consider the Lipschitz function

f(x) = min
1≤i≤n

‖x− xi‖.

Then the sum 1
N

∑N
k=1 f(xk) = 0, and the true value of the integral will be on the order of

N−1/d, the average distance to points in the set (see Chapter 2 §2 for the argument in the

context of transport distance). In fact, the traditional problem formulation presumes as a



foregone conclusion a linear dependence on the Lipschitz constant: rather than writing the

inequality as above, authors simply restrict their attention to the unit ball of of Lipschitz

functions in F lip
d , with norm

‖f‖ = max

(
‖f‖L∞ , sup

x,y∈[0,1]d

|f(x)− f(y)|
‖x− y‖∞

)
≤ 1

and write instead ∣∣∣∣∣
∫

[0,1]d
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ CdN−1/d.

Recently, Hinrichs, Novak, Ullrich and Wozniakowski [68] (see also [66, 67]) established

rather precise estimates on the constant Cd, and showed that product rules (regular grid

structures) are a good choice whenever the number of points N is of the form N = md.

Bakhalov’s proof shows that Cd can in fact be taken to be Cd for some universal constant

C > 1 [98]. The theorem also shows conversely that this is sharp, in the sense that the

following lower bound exists as well: for any set of points (xk)
N
k=1, there is a function f

with ‖f‖ = 1 such that

∣∣∣∣∣
∫

[0,1]d
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ ≥ cdN−1/d,

where cd again can be taken to be cd for some universal constant 0 < c < 1. The proof in

fact does not require points to be uniformly weighted, nor even linearly aggregated at all:

it applies to the worst case error of any algorithm which takes the values at points xk as

inputs and outputs an integral estimate. While Bakhalov’s result is sharp for worst case

functions, we may nonetheless asymptotically improve it in the general case by considering

a different norm on f .
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6.2 A New Result: Kronecker Integration

Theorem 6.2.1 (B. & Steinerberger [25]). Let d ≥ 2 and let α ∈ Rd be a badly approximable

vector. Then, for some cα > 0 and all differentiable f : Td → R

∣∣∣∣∣
∫
Td
f(x)dx− 1

N

N∑
k=1

f(kα)

∣∣∣∣∣ ≤ cα‖∇f‖(d−1)/d

L∞(Td)
‖∇f‖1/d

L2(Td)
N−1/d.

The main novelties are that:

1. The result holds uniformly in N along a sequence. In the classical theory, we are told

in advance how many points need to be picked and get to distribute them to minimize

integration error, but it is a harder problem to generate an infinite sequence of points

which integrates well no matter how many terms we take. Theorem 6.2.1 shows that

we can recover the classical estimate and even do slightly better in this setting.

2. The error estimate is actually smaller than the classically assumed dependence on the

Lipschitz constant. We note that, trivially

‖∇f‖L2 ≤ ‖∇f‖L∞

which recovers the traditional estimate. At first, this seems like a contradiction to the

fact that the dependence on the Lipschitz constant is optimal – however, it merely

implies that extremal functions for the estimate have to have ‖∇f‖L2 ∼ ‖∇f‖L∞

which is perhaps not surprising (one would expect them to grow at maximal speed

away from the points, so |∇f | should be fairly constant).

3. The result is an explicit improvement in the case where the function f has a large

derivative in a small region.

We also emphasize that there is nothing particularly special about the Kronecker sequence:

given any sequence for which we can establish optimal Wasserstein bounds along the lines

outlined above, we will also obtain a version of the integration result; the proof is identical.

Indeed, the result is actually true on general d−dimensional manifolds, we refer to Theorem
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5.2.3. If α ∈ Rd is badly approximable, then it is possible to obtain directional Poincaré

inequalities without loss on Td: for all f ∈ C∞(Td) with mean value 0, we have

‖∇f‖(d−1)/d
L2 ‖ 〈∇f, α〉 ‖1/d

L2 ≥ cα‖f‖L2 .

6.3 The Case of the Regular Grid

Let us return to the case of the regular grid, with N = md points that are arranged as a

regular grid. Since we have just improved the classic integration error for the Kronecker

sequence, we would expect a similar improvement to hold for the regular grid (which is well

understood to be, in a sense, an optimal set for sampling Lipschitz functions). The classic

estimate for a regular grid (xn)Nn=1 is

∣∣∣∣∣
∫

[0,1]d
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ Cd‖f‖N−1/d.

Sukharev [135] (see also [98]) proved the sharp constant is d/(2d + 2). It is known that

‘the result cannot be significantly improved for uniformly continuous functions’ (Dick &

Pillichshammer [44, §1.3]). Indeed, there is a corresponding result of Larcher (unpublished,

see [44, §1.3]) that shows that the estimate is optimal with regards to modulus of continuity.

However, there is an explicit improvement in terms of Lp−spaces that seems to be new.

Theorem 6.3.1 (B. & Steinerberger [25]). We have, for some explicit constant cd depending

on the dimension, for all differentiable f : [0, 1]d → R sampled on the regular grid (xk)
N
k=1∣∣∣∣∣

∫
[0,1]d

f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ cd‖∇f‖(d−1)/d

L∞(Td)
‖∇f‖1/d

L1(Td)
N−1/d.

We observe that this is a slightly better estimate than Theorem 5.2.4 (an L1(Td) norm

instead of the larger L2(Td) norm); this is maybe to be expected since one would assume

that stronger estimates become available for the regular grid. We will also show that this is

the best possible bound in terms of these Lp-spaces. It is an interesting question whether

this bound (L1 instead of L2) is also true for the Kronecker sequence (Theorem 6.2.1).
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More generally, one could ask whether there is a sequence (xn)∞n=1 that uniformly attains

the same error estimate as Theorem 6.3.1.

6.4 Error Bounds from Kantorovich-Rubinstein

Recall from Chapter 2 §1, the Kantorovich-Rubinstein formula: the optimal transport cost

between two measures µ, ν is given by

W1(µ, ν) = sup

{∫
M
φdµ−

∫
M
φdν

}
,

where the supremum is taken over all 1-Lipschitz functions φ. Taking µ = dx and ν =

1
N

∑N
k=1 δxk reveals that numerical integration error and optimal transport are essentially

asking the same question! More precisely, the worst case integration error over all 1-Lipschitz

functions sampling over a given set (xk)
N
k=1 is precisely the W1 transport cost between the

point measure 1
N

∑N
k=1 δxk and dx. This allows us to refine the rate of growth on the

constants with respect to dimension in the regular grid case: by the argument provided in

Chapter 2 §2, both cd and Cd are ∼
√
d. See [151] for more results using this approach to

bounding numerical integration error through Kantorovich-Rubinstein duality.

6.5 Numerical Integration: Proof of Theorems

6.5.1 Integration Error of Kronecker Sequences: Proof of Theorem 6.2.1

Proof: Summarized from [25]. Having proven Theorem 5.2.3 in the previous chapter, we

can now outline a proof of Theorem 6.2.1 which follows quite easily by combining several

of our existing arguments. We will make use of the inequality

∣∣∣∣∣
∫
M
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ cM inf
t>0

[
√
t‖∇f‖L∞ +

∥∥∥∥∥et∆
N∑
k=1

δxk

∥∥∥∥∥
Ḣ−1

‖∇f‖L2

]

in the special case where the manifold is given by M = Td and the set of points is given by

xn = (nα1, . . . , nαd) mod 1
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where α is badly approximable. The only quantity that requires computation is the Ḣ−1

norm. This, however, was already done in the proof of Theorem 5.2.2 where we used that

W2(µ, dx) .d

√
t+W2(et∆µ, dx)

and then estimated that

W2(et∆µ, dx) .α,d
1

N

1

t
d−1
2

.

This results in

∣∣∣∣∣
∫
M
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ .d,α inf
t>0

[√
t‖∇f‖L∞ +

1

N

1

t
d−1
2

‖∇f‖L2

]
.

We set

t =
1

N2/d

‖∇f‖2/d
L2

‖∇f‖2/dL∞

.

This results in

∣∣∣∣∣
∫
M
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ .d,α
1

N1/d
‖∇f‖

1
d

L2‖∇f‖
d−1
d

L∞ .

6.5.2 Proof of Theorem 6.3.1

We now turn to Theorem 6.3.1, the case of the regular grid. The proof is based on a simple

Poincaré-type inequality for Lipschitz functions vanishing at a fixed point.

Lemma (See e.g. [51], notes below). Let f : [0, 1]d → R be differentiable and assume that

f(1/2, 1/2, . . . , 1/2) = 0.

Then we have the estimate

∣∣∣∣∣
∫

[0,1]d
f(x)dx

∣∣∣∣∣ ≤ cd‖∇f‖ d−1
d

L∞ ‖∇f‖
1
d

L1 .
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The inequality is not new and follows from combining two known results. The inequality

∣∣∣∣∣
∫

[0,1]d
f(x)dx

∣∣∣∣∣ .
∫

[0,1]d

|∇f |
|x|d−1

dx

is used as a first step in the proof of Morrey’s inequality (see Evans [51, §5.6.2]). This is now

combined with an interpolation estimate: it is easy to see that the function g(x) = |x|1−d

is contained in the Lorentz space L
d
d−1

,∞. Thus, by the Hölder inequality in Lorentz spaces

due to O’Neil [99], we have ∫
[0,1]d

|∇f |
|x|d−1

dx . ‖f‖Ld,1 .

We recall the definition of the Ld,1 norm and use the Hölder inequality to obtain

‖f‖Ld,1 = d · ‖λ · | {|f | > λ} |1/d‖L1( dλ
λ

) = d ·
∫ ∞

0
| {|f | > λ} |1/ddλ

= d ·
∫ ‖f‖L∞

0
| {|f | > λ} |1/ddλ

≤ d · ‖f‖
d−1
d

L∞ ·
(∫ ∞

0
|{|f | > λ}| dλ

) 1
d

= d · ‖f‖
d−1
d

L∞ ‖f‖
1
d

L1 .

Using this simple statement, we can now prove Theorem 6.3.1.

Proof: Summarized from [25]. The proof of Theorem 6.3.1 follows easily from the Lemma

which we apply, in isolation, to each fundamental cell of size N−1/d. Rescaling the inequality

in the Lemma then shows that for any such box B = [0, N−1/d]d, we have

∣∣∣∣∫
B
f(x)dx− 1

N
f(xk)

∣∣∣∣ ≤ cd
N
‖∇f‖

d−1
d

L∞(B)‖∇f‖
1
d

L1(B)
.

Summing over all boxes leads to

∣∣∣∣∣
∫

[0,1]d
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ . ‖∇f‖
d−1
d

L∞

N

∑
B

‖∇f‖
1
d

L1

.
‖∇f‖

d−1
d

L∞

N

(∑
B

‖∇f‖L1

)1/d(∑
B

1

) d−1
d

=
‖∇f‖

d−1
d

L∞

N
‖∇f‖1/d

L1 N
d−1
d ≤ ‖∇f‖

d−1
d

L∞ ‖∇f‖
1/d
L1 N

−1/d.
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We emphasize that the argument by itself actually yields a slightly stronger result in

terms of local L1−norms over N−1/d−boxes

∣∣∣∣∣
∫

[0,1]d
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ . ‖∇f‖
d−1
d

L∞

N

∑
B

‖∇f‖
1
d

L1 .

Optimality. We quickly construct an example showing that our result is optimal. Let us

consider the Lipschitz function

f(x) = min

{
ε, min

1≤i≤N
‖x− xi‖

}
.

We only work in the regime where ε� N−1/d in which case we see that

∣∣∣∣∣
∫

[0,1]d
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ =

∫
[0,1]d

f(x)dx ≥ ε
(

1− cdNεd
)

while also observing that

‖∇f‖L∞ = 1 and ‖∇f‖L1 ∼ Nεd.

By letting ε→ 0, we see that our estimate has the optimal exponents.
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Chapter 7

Wasserstein on Graphs

7.1 Introduction

7.1.1 Introduction.

This section follows [27] closely. The purpose of this section is to explore a basic problem on

metric spaces, already discussed throughout the earlier chapters on manifolds, in the setting

of a finite graph G = (V,E). Given a graph, how does one construct a sequence x1, x2, . . .

of vertices such that their distribution is uniformly good—by this we mean that if one takes

the first k vertices {x1, . . . , xk}, then this set is very nearly as evenly distributed on the set

as any set of k vertices would be. As noted earlier, the precise notion of ‘well-distributed’

under inspection will depend on the actual setting; the question is frequently interesting for

several different such notions.

Figure 7.1: The first k (here k = 2, 3, 4) elements of the sequence are nearly as evenly
distributed as any set of k vertices could be.

There are many different reasons why one could be interested in such sequences: they



are natural sampling points for functions (especially for on-line selection and in cases where

one does not know in advance how many points one can sample) but there is also an obvious

combinatorial question (‘How well distributed can sequences of vertices on graphs be? What

is the unavoidable degree of irregularity?’). We will now state one informal version of the

main problem before stating a more precise version further below.

Main Problem (informal version). Given a finite graph G = (V,E), how would

one select a sequence of vertices that are uniformly good? In what metric would

one measure the ‘goodness’ of such a sequence?

1

2 3

4

5 6

7

8

9 10

11

12

Figure 7.2: The Frucht Graph and the enumeration obtained by the algorithm when starting
with x1 = 1.

Fig. 7.2 contains a simple such example: taking the Truncated Tetrahedral Graph, in

which order should one select the vertices so as to obtain a sequence that is uniformly evenly

distributed? Even without making the notion of quality precise, we can get some intuition

from this simple example. The enumeration of the vertices was automatically generated by

the algorithm discussed below.

7.1.2 Wasserstein Distance.

The Wasserstein distance Wp, as well as the appropriate formulation on graphs, were intro-

duced in Chapter 2 §2 and §5, respectively. As a reminder, on an abstract metric space X
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equipped with a metric d, we define

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
X×X

d(x, y)pdγ(x, y)

)1/p

,

where Γ(µ, ν) denotes the collection of all measures on X × X with marginals µ and ν,

respectively (also called the set of all couplings of µ and ν). We will, throughout this

section, work exclusively with the Earth Mover Distance W1 (although extensions to more

general Wp are certainly conceivable). The Earth Mover’s Distance is particularly nice to

work with: by Kantorovich-Rubinstein duality (see Chapter 2)

W1(µ, ν) = sup

{∫
X
fdµ−

∫
X
fdν : f is 1-Lipschitz

}
.

Because of this, W1 is translation invariant—for positive measures µ, ν, µ′, we have

W1(µ, ν) = W1(µ+ µ′, ν + µ′).

Thus, if we have a positive measure µ decomposed into non-positive measures µ1, µ2 as

µ = µ1 + µ2, we may use this translation invariance to write

W1(µ, ν) = W1(µ+
1 + µ+

2 , ν + µ−1 + µ−2 ),

where µ+
i = max{µi, 0} is the positive part of µi and µ−i = max{−µi, 0} is the negative

part. One natural way of making the question precise is thus as follows.

Main Problem (formal version). Given a finite graph G = (V,E), how would

one select a sequence of vertices such that

W1

1

k

k∑
j=1

δxj , dx

 is small for all k,

where dx is the normalized counting measure with weight |V |−1 on each vertex.
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How small one could expect this quantity to be will depend on the particular geometry of

the graph. If M = Td is the d−dimensional torus, then, as shown in Chapter 2,

W1

 1

n

n∑
j=1

δxj , dx

 ≥ cdn−1/d

for all sets of points {x1, . . . , xn} ⊂ Td. This clearly shows that the geometry (here: the

dimension d) plays a role in what we can expect. We also emphasize that it is almost surely

the case that our main question (as asked in §1.1) is of interest also for many other ways of

making the notion of even distribution quantitative and Wasserstein distance may be one

of many (though certainly a rather canonical one).

1
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2324

Figure 7.3: The Nauru Graph on 24 vertices: algorithm starting at 1.

We conclude our short introduction to the problem at hand by stating the formulation

of Kantorovich-Rubinstein duality when X is a finite graph.

Proposition 7.1.1 (Kantorovich-Rubinstein, see e.g., [74,105]). Let G = (V,E) be a finite,

simple graph, let f : V → R and let W ⊂ V be a subset of vertices. Then

∣∣∣∣∣ 1

|V |
∑
x∈V

f(x)− 1

|W |
∑
x∈W

f(x)

∣∣∣∣∣ ≤W1

(
1

|W |
∑
x∈W

δx, dx

)
max
xi∼xj

|f(xi)− f(xj)|.

This shows that our notion of uniform distribution of a subset of vertices has a natural

connection to the question of sampling on graphs (i.e., reconstructing the average value of

a ‘smooth’ function by sampling in a subset of the vertices). The theory of sampling on

graphs is in its infancy but rapidly developing, we refer to [70,89,103,104,124].
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7.2 The Algorithm

7.2.1 Setup

We recall that for a finite graph G = (V,E), we can define the adjacency matrix

A = (aij)
|V |
i,j=1 where aij =


1 if xi ∼E xj

0 otherwise

as well as the degree matrix

D = (dij)
|V |
i,j=1 where dij =


deg(xi) if i = j

0 otherwise.

With these definitions, we can define a notion of a Laplacian via

L = D −A.

We denote the eigenvectors of L by φi with corresponding eigenvalues λi, i.e., Lφi = λiφi.

Note that L has all its eigenvalues in [0, 2 maxv∈V deg(v)]. Since L’s columns sum to 0, we

have for all measures µ that Lµ has no net mass, i.e., is orthogonal to the constant vector,

or has mean 0. Since L is symmetric, it is diagonalizable and all pairs of eigenvectors with

distinct eigenvalues are orthogonal. The induced ordering of eigenvectors is analogous to

the continuous case: small eigenvalue means slow oscillation frequency and the oscillation

increases with the eigenvalue—the larger the eigenvalue, the more oscillation there is. In

particular, φ1 is constant with λ1 = 0. Since we assume G is connected, there is only one

instance of the trivial eigenvalue. As L is diagonalizable, we can also take arbitrary powers

and define the fractional Laplacian Lα for α > 0. Setting n = |V |,

Lαv =

n∑
i=1

〈v, φi〉λαi φi.
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To define L−α, we need to adjust this definition slightly: since λ1 = 0, we first shift v down

by its mean to avoid dividing by 0. (In other words, we simply ignore the component of v

in the direction of the constant eigenvector φ1.) That is,

L−αv =
n∑
i=2

〈v, φi〉λ−αi φi.

Of course, multiplying a vector by a matrix can be interpreted as applying an operator

to a function, since vectors indexed by vertices are simply functions V → R. Note that

AD−1 = I − LD−1 is a diffusion operator: each vertex splits its mass uniformly among

its neighbors, and hence mass is preserved. This operator has eigenvalues in [−1, 1]. If we

instead apply the transpose D−1A, this corresponds to each vertex taking an equal portion

of each of its neighbors masses, which, in general, is not mass-preserving. If G is k-regular

(each vertex has equal degree k), then D = kI is scalar and these two notions coincide and

equal 1
kA. We refer to [38,62] for a good introduction to these notions and many references.

7.2.2 Description of the Algorithm

We present an algorithm, parametrized by 0 < α < 1, for greedily picking well-distributed

vertices xk on graphs. (If α� 1 the algorithm degenerates and repeatedly selects the same

small subset of distant vertices over and over.) First, x1 is chosen arbitrarily. Then, vertices

are picked recursively according to the following:

xk+1 = arg min
x∈V

L−α k∑
j=1

δxj

 (x),

breaking ties arbitrarily (Figures 7.2, 3, 5, and 9-11 display applications of this algorithm

to various graphs). If we write out the algorithm explicitly in terms of the spectrum of the

Laplacian operator L = D −A, it becomes

xk+1 = arg min
x∈V

n∑
i=2

k∑
j=1

φi(xj)

λαi
φi(x),
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where the φi are normalized with ‖φi‖L2 = 1, and we skip the constant eigenvector φ1 since

it has eigenvalue 0 (note that this choice, while seemingly arbitrary, has no impact on the

algorithm as any contribution from the constant vector can be ignored when computing

arg min—the algorithm is independent of choice of right inverse of the Laplacian). That is,

we add up the projections of the indicator vector of the current vertex set,
∑k

j=1 δxj , onto

each eigenvector, scaling down by the α power of the respective eigenvalue. Consider the

case of a cycle graph: if the number of vertices is sufficiently large, this is well approximated

by a torus. Setting α = 1/2 and identifying the torus with [0, 2π)/ ∼:= T, we have a simple

explicit formula for the inverse Laplacian of a point mass (see §3.4 for the derivation):

L−1/2(δxk) = − 1

π
ln |2 sin((x− xk)/2)|.

Note that 2 sin((x−xk)/2) is precisely the Euclidean distance between the points at angles

xi and x on the unit circle (i.e., |e2πix− e2πixk |). Thus, the algorithm is simply maximizing

the product of distances between points on the circle, by setting

xk+1 = arg min
x∈T

− 1

π

k∑
j=1

ln |2 sin((x− xj)/2)|

 .

The arising sequence appears to behave on par with provably optimally regular sequences,

and Steinerberger recently proved strong results on the regularity of such a sequence in [129],

using techniques which are specific to this setting and unlikely to generalize to other graphs.

(We explore this example in more detail in §3.4.) Nonetheless, these remarkable results on

the torus and cycle graph give us hope that the algorithm may work comparably well on

graphs more generally.

7.2.3 A Theoretical Guarantee

We prove a theoretical guarantee, for any finite graph G, that these sequences do exhibit

at least a certain degree of regularity.
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Theorem 7.2.1. Let G be a simple connected graph and let

µk =
1

k

k∑
j=1

δxj ,

where vertices xj are selected as above. Then, for all 1 ≤ k ≤ n,

n∑
i=2

|〈µk, φi〉|2

λ2α
i

≤
(

max
j≤k

∥∥L−2α
(
δxj
)∥∥2

`2

)
k−1.

Remark 1. Observe for the sake of comparison that

n∑
i=2

|〈µk, φi〉|2 = ‖µk‖2`2 − |〈µk, φ1〉|2 =
1

k
− 1

n
.

Thus, it is natural that the bound in the Theorem should be ∼ k−1. However, λi (and

thus λ2α
i ) may be arbitrarily close to 0, scaling up the terms in the sum substantially. The

only way to prevent this is for µk to be almost orthogonal to low-frequency eigenfunctions

(which is cf. Erdős-Turán [49, 50] a natural way of defining regularity, as it means that µk

is concentrated at high frequencies).

Remark 2. Note that

max
j≤k

∥∥L−2α
(
δxj
)∥∥2

`2
≤ max

x∈V

∥∥L−2α (δx)
∥∥2

`2
.

The term on the right side is an interesting quantity in itself, and there may be good

bounds for it in terms of the geometry of the graph. As can be seen from the expansion into

eigenfunctions, this quantity measures, implicitly, how much low-frequency eigenfunctions

concentrate in a particular vertex. In vertex-transitive graphs like cycle graphs and torus

grid graphs we see that the quantity is actually independent of the vertex x.

7.3 Spectral Bounds on Transport Distances

7.3.1 Motivation

The motivation behind the algorithm is two-fold:
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1. The greedy algorithm tries to minimize a Sobolev norm

∥∥∥∥∥∥1

k

k∑
j=1

δxj − dx

∥∥∥∥∥∥
Ḣ−1

.

2. Peyre’s inequality [106] (see Chapter 2 §4) shows that, in the continuous setting,

W2(µ, dx) . ‖µ− dx‖Ḣ−1 .

The purpose of this section is to establish a connection between problems of optimal trans-

port and spectral properties of the Laplacian. This is known to hold in the continuous case,

we recall the following bound:

Theorem (Carroll, Massaneda, Ortega-Cerda [32]). Let (M, g) be a compact Riemannian

manifold with normalized volume measure dx and ∂M = ∅. If −∆gφ = λφ on M , then, for

some constant C > 0 depending only on (M, g),

W1

(
φ+dx, φ−dx

)
≤ C√

λ
‖φ‖L1(M).

This inequality is sharp. We recall the basic intuition that a Laplacian eigenfunction

may, at scale λ−1/2 (the wavelength), be understood as a random wave. This suggests that

one has to move mass at least a distance comparable to the wavelength and examples on

the torus Td or the sphere Sd show that this is indeed the case.

7.3.2 Spectral Bounds on Transport

The purpose of this section is to show that a variation of this result exists on finite graphs;

we will prove this for the Earth Mover’s Distance p = 1.

Theorem 7.3.1. Let M = I −AD−1 and let Mφk = λkφk. Then 0 ≤ λk ≤ 2 and

W1(φ+
k , φ

−
k ) ≤ 1

1− |1− λk|
‖φk‖`1 .

Note that, since φ = φ+
k −φ

−
k has mean 0, the measures φ+

k and φ−k have the same mass,
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and thus one can be transported to the other. When we consider the asymptotic behavior

of W1(φ+
k , φ

−
k ) on cycle graphs of increasing size, we see that this bound is a natural analog

of Peyre’s result [106] to graphs—it scales sharply with respect to Ḣ−1(φk) (see §3.4). We

observe that this bound degenerates if |λk − 1| is close to 1 and this a consequence of the

proof. We also note that we always have the trivial transport inequality

W1(φ+
k , φ

−
k ) ≤ diam(G)

∥∥φ+
k

∥∥
`1

=
diam(G)

2
‖φk‖`1 ,

and thus the bound in the Theorem is preferable to the trivial bound only when

|1− λk| < 1− 2

diam(G)
.

In many of the interesting cases for applications (graphs with good mixing properties),

we can expect a spectral gap that quantitatively bounds |λ2 − 1| < 1.

7.3.3 Applying the Theorem to obtain Transport Bounds

For an arbitrary distribution µ, we may use this bound to measure the Wasserstein distance

to the uniform distribution on a graph with n vertices. The observation above motivates

splitting µ into mid-range and extreme-frequency components,

µ =
∑

|1−λk|<1−2/diam(G)

〈µ, φk〉φk

and

µ =
∑

|1−λk|≥1−2/diam(G)

〈µ, φk〉φk.

We then transport µ by propagating infinitely, and bound µ with a diameter bound:

W1 (µ, dx) = W1(µ+ + µ+, µ− + µ− + dx)

≤W1

(
µ+, µ−

)
+W1

(
µ+, µ− + dx

)
≤
∞∑
i=0

‖AiD−iµ‖`1 +
diam(G)

2
‖µ− dx‖`1
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While the above spectral bound is not guaranteed to be smaller than the diameter bound,

empirical evidence suggests that it is in general a stronger bound, particularly for graphs

with large diameter. We can test the quality of this bound by using linear programming [105]

to compute exact Wasserstein distances. In §4, we display the results of doing so with

µ =
1

k

k∑
j=1

δxj

using the algorithm to pick the xj :

xk+1 = arg min
x∈V

L−1/2
k∑
j=1

δxj

 (x),

compared against picking vertices xk uniformly at random (without repetition) and av-

eraging over 1000 Wasserstein distances obtained in this manner. This approach yields

promising computational results across a number of large graphs.

7.3.4 A Case Study: Cycle Graphs

In this subsection, we will look carefully at the behavior of the cycle graphs Cn in the

context of the above result. We recall the eigenvectors of M = 1
2L on Cn are

φk(x) = (n/2)−1/2 cos

(
2πkx

n

)
and φn−k(x) = (n/2)−1/2 sin

(
2πkx

n

)
,

for 0 < k < n/2, with φ0(x) ≡ n−1/2 and, if n is even, φn/2(x) = n−1/2(−1)x and corre-

sponding eigenvalues

λk = 1− 1 cos

(
2πk

n

)
.

Note that φ0 is the constant eigenvector here and, since cosine is even, λk = λn−k for all

k 6= 0. We have elected to use the real eigenvectors in order to apply our arguments, though

it is worth noting that we can change basis for the dimension 2 eigenspaces and simply write

φk(x) = n−1/2 exp

(
2πikx

n

)
,
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where 0 ≤ k < n with all λk the same as above. Then,

1

1− |1− λk|
=

1

1− cos
(

2πk
n

) ≈ 2
( n

2πk

)2

for small k, by Taylor expansion. Further,

‖φk‖`1 ≈ ‖φn−k‖`1 ≈ (n/2)−1/2

∫ n

0

∣∣∣∣cos

(
2πkx

n

)∣∣∣∣ dx =

√
8n

π
.

On the other hand, W1(φ+
k , φ

−
k ) ≈W1(φ+

n−k, φ
−
n−k) can be approximated by the continuous

analogue, where it is clear from symmetry that the optimal way to transport the sine wave

is sending all mass to the nearest zero, where the positive and negative mass will cancel.

This endures a cost of

(n/2)−1/24k

∫ n/4k

0
x sin

(
2πkx

n

)
dx = (n/2)−1/24k

( n

2πk

)2
,

integrating by parts. Putting it all together, this yields

W1(φ+
k , φ

−
k ) ≈ πk

n
· 1

1− |1− λk|
‖φk‖`1 .

We may let k ≤ n/100 so that k is small enough for the Taylor expansion to be good,

but nonetheless on the order of n: then we see the bound in Theorem 7.3.1 is sharp up to

constants. Observe that applying L−1/2 to the point mass δ0 yields

L−1/2(δ0) =
n−1∑
k=1

φk(0)

λ
1/2
k

φk =
n−1∑
k=1

1(
2− 2 cos

(
2πk
n

))1/2
n

exp

(
2πikx

n

)

= 2

bn/2c∑
k=1

1(
2− 2 cos

(
2πk
n

))1/2
n

cos

(
2πkx

n

)

≈ 1

π

bn/2c∑
k=1

1

k
cos

(
2πkx

n

)
,

for all odd n, again approximating with Taylor expansion. (If n is even, we will get an extra

(−1)x/n
√

2 term corresponding to φn/2, but this will vanish in the limit we are about to

take.) We caution the reader that the λk above are the eigenvalues of L = 2M , and are
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thus double the eigenvalues of M referred to in the preceding computations. Rescaling with

x = nθ/2π, we have

L−1/2(δ0) ≈ 1

π

bn/2c∑
k=1

1

k
cos (kθ) .

Fixing θ and letting n→∞, this is simply the Fourier series for

lim
n→∞

L−1/2(δ0) = − 1

π
ln |2 sin (θ/2)| .

Taking this limit and rescaling really is just transitioning us to the continuous setting:

the eigenfunctions of the Laplacian on the unit circle S1 identified with [0, 2π)/ ∼ are

(2π)−1/2 exp(ikx), with eigenvalue k2, for k ∈ Z. So the fractional inverse Laplacian L−1/2

of a point mass on the circle is

L−1/2(δ0) =
∑
k 6=0

φk(0)

λ
1/2
k

φk =
∑
k 6=0

1

2π|k|
exp(ikx)

=
1

π

∞∑
k=1

1

k
cos(kx) = − 1

π
ln |2 sin(x/2)|,

precisely our function in the discrete case.

20 40 60 80 100 120 140

0.00005

0.00010

0.00015

0.00020

Figure 7.4: The difference between L−1/2(δ0) on S1 and the fractional Laplacian L−1/2(δ0)
on C150 is small.

In Figure 7.6 we show the difference between the inverse fractional Laplacian on a point

mass L1/2(δ0) in the continuous and discrete settings. The two outputs are almost identical

and thus their difference is quite small (this holds even for very small values of n). It is worth
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recalling the recent Theorem of Pausinger, which proves that this algorithm belongs to a

large class which produces the van der Corput sequence on the torus (and thus achieves

optimal discrepancy, up to constants) [100]. Further, Steinerberger’s recent result [129]

indicates that this algorithm performs extremely well on the torus, and by extension large

cycle graphs, and that the sequence of points rapidly becomes very evenly distributed. See

Chapter 4, §2 for much more on such algorithms in the continuous setting.

7.3.5 A Case Study: Torus Grid Graphs

In this subsection, we examine another class of graphs: torus grid graphs. The m × n

torus grid graph Tm,n is the Cartesian product of Cm and Cn, so we can apply many of our

computations from the previous subsection here. In particular, the eigenvectors for Tm,n

are the Kronecker products of pairs of eigenvectors (φj , φk) from Cm and Cn, respectively,

with corresponding eigenvalues under M = 1
4L of

λj,k =
λj + λk

2
= 1− 1

2

(
cos

(
2πj

m

)
+ cos

(
2πk

n

))
.

(The factor of 1/2 appears because cycle graphs are 2-regular while torus grid graphs are

4-regular, and vanishes if we instead use L here.) Then we have

1

1− |1− λj,k|
=

1

1− 1
2

(
cos
(

2πj
m

)
+ cos

(
2πk
n

)) ≈ 4(
2πj
m

)2
+
(

2πk
n

)2
for small j, k, by Taylor expansion. Further,

‖φj,k‖`1 = ‖φj‖`1‖φk‖`1 ≈
8
√
nm

π2
.

To find W1(φ+
j,k, φ

−
j,k), note that the support of φ+

j,k consists of checkerboarded rectangles,

and the most efficient way to transport the positive mass to the negative mass will be along

the higher frequency direction—that is, horizontally if m/j < n/k, and vertically otherwise.
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Without loss of generality, we suppose we are in the former case. Then this incurs a cost of

n−1∑
i=0

|φk(i)|W1(φ+
j , φ

−
j ) = ‖φk‖`1W1(φ+

j , φ
−
j ) ≈

√
8n

π
· (m/2)−1/24j

(
m

2πj

)2

.

Applying our assumption that m/j < n/k to our earlier estimate, we see

1

1− |1− λj,k|
≈ 4(

2πj
m

)2
+
(

2πk
n

)2 ≤ 4(
2πk
n

)2
+
(

2πk
n

)2 = 2
( n

2πk

)2
.

Putting it all together,

√
8n

π
(m/2)−1/24j

(
m

2πj

)2

≈W1(φ+
j,k, φ

−
j,k)

≤ 1

1− |1− λj,k|
‖φj,k‖`1 ≤ 2

( n

2πk

)2
· 8
√
nm

π2
,

and thus, taking the quotient of the two sides in the above inequality our bound is off by

(at most) a factor of πk2m(n2j)−1. Note that when k/n = j/m (i.e., when the horizontal

and vertical components of φj,k have the same frequency), this simplifies to πk/n, precisely

our result on cycle graphs.

7.4 Numerics

Below we provide numerics on a variety of graphs demonstrating the performance of the

algorithm and the bound from Theorem 7.3.1. In particular, we compare the performance of

vertices selected according to our algorithm against that of randomly selected vertices. The

differences between our vertex sequences and random vertex sequences may seem marginal,

but this is partly due to the fact that the diameter of some of these graphs is quite small.

For instance, the Truncated Tetrahedral graph, with diameter 3, only has 12 vertices, so we

will hardly be able to distinguish the performance of the algorithm’s vertices from randomly

selected vertices on such a small set—it is impressive that we see a difference at all. We

see that for the Faulkner-Younger Graph and the Level 2 Menger Sponge the difference

becomes significantly more drastic. Many of the graphs are quite well connected, which
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makes the transport problem easier than on sparse graphs (e.g., on complete graphs it

makes no difference at all which vertices are selected, the transport cost only depends on

the number of vertices). In all the tables in this section, xj were computed directly using

the recursive definition for the algorithm (α = .5) given in Section 2 with any ties broken

randomly, and the exact Wasserstein distances

W1

1

k

k∑
j=1

δxj , dx


were subsequently computed using the dual linear program in [105] in the “Algorithm” row.

For graphs which are not vertex-transitive, the performance of the algorithm depends upon

the arbitrary initial vertex chosen, and thus all choices of initial vertex were attempted

and the transport costs averaged. In the “Random” row, 1000 uniformly randomly selected

sets of k distinct vertices were taken, and the corresponding Wasserstein distances were

averaged.

Printed by Wolfram Mathematica Student Edition

Figure 7.5: The Menger Sponge,
whose 400 cubes form the vertices of
a connectivity graph.
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Figure 7.6: The tightness of the bound in Theorem
7.3.1, applied to the eigenfunctions of the Level 2
Menger Sponge Connectivity Graph (computed as
a quotient of the right and left sides).

7.4.1 Connectivity Graph of Level 2 Menger Sponge

The Level 2 Menger sponge is the object obtained beginning with a cube and drilling out the

middle square of each face (viewed as a three by three grid of squares), and then iterating

this process one more time on the smaller cubes (see Fig. 7.7). We can then generate a
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connectivity graph of the remaining 400 smaller cubes (each one ninth the side length of

the original cube). Note that this is not a regular graph. In Figure 7.8, we see the that, on

the Level 2 Menger Sponge Connectivity Graph, the Theorem 7.3.1 bound is tightest for

mid-range eigenvalues. This is to be expected, due to the blow-up of the 1/(1 − |1 − λ|)

term at the extremes, where a diameter bound is tighter (see §3.2). But we see here that,

even for very small eigenvalues, the bound is fairly tight.

No. of vertices 1 3 5 10 15 20 25 30

Algorithm 9.94 6.48 5.01 3.54 2.92 2.55 2.31 2.11

Random 9.94 6.73 5.52 4.25 3.63 3.20 2.90 2.69

Table 7.1: W1(µ, dx) for the Connectivity Graph of a Level 2 Menger Sponge
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Figure 7.7: The sequence of vertices
picked by the algorithm on the Truncated
Tetrahedral Graph.
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Figure 7.8: The sequence of vertices
picked by the algorithm on the Frucht
Graph.

7.4.2 Truncated Tetrahedral Graph

The Truncated Tetrahedral Graph (see Fig. 7.9) is a 3-regular, vertex-transitive graph on

12 vertices. It is the 1-skeleton of the Archimedean solid formed by truncating each vertex

of a tetrahedron.
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No. of vertices 1 2 3 4 5 6 7 8 9 10

Algorithm 1.92 1.17 0.83 0.67 0.58 0.50 0.42 0.33 0.28 0.23

Random 1.92 1.35 1.01 0.84 0.72 0.58 0.52 0.43 0.34 0.27

Table 7.2: W1(µ, dx) for the Truncated Tetrahedral Graph

7.4.3 Frucht Graph

The Frucht Graph (see Fig. 7.10) is a 3-regular graph on 12 vertices, and has trivial

automorphism group despite being degree-regular.

No. of vertices 1 2 3 4 5 6 7 8 9 10

Algorithm 1.93 1.17 0.86 0.67 0.59 0.50 0.42 0.34 0.29 0.23

Random 1.93 1.34 1.04 0.85 0.73 0.59 0.52 0.43 0.35 0.27

Table 7.3: W1(µ, dx) for the Frucht Graph

7.4.4 Faulkner-Younger Graph

The Faulkner-Younger Graph on 44 vertices (see Fig. 7.11) is a 3-regular non-Hamiltonian

graph (that is, there is no path along its edges that traverses every vertex exactly once).

1

89

7

10

3
6

4

2

5

Figure 7.9: The first ten vertices picked by the algorithm on the Faulkner-Younger Graph.
Each label is above and to the right of the corresponding vertex.
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No. of vertices 1 2 3 4 5 6 7 8 9 10

Algorithm 4.17 2.67 2.05 1.71 1.52 1.34 1.23 1.15 1.05 0.97

Random 4.17 3.08 2.57 2.24 2.01 1.83 1.68 1.56 1.46 1.37

Table 7.4: W1(µ, dx) for the Faulkner-Younger Graph

7.4.5 Erdős-Rényi Random Graphs

The Erdős-Rényi model for random graphs G(n, p) is given by including an edge between

each pair of the n vertices independently with probability p. Here we display the perfor-

mance of the algorithm on two such graphs, one taken from G(100, .06) (a sparse graph, see

Fig. 7.12) and another from G(100, .2) (a dense graph, see Fig. 7.13).

No. of vertices 1 3 5 10 15 20 25 30

Algorithm, Sparse Graph 2.72 2.61 2.13 1.52 1.22 1.02 0.85 0.74

Random, Sparse Graph 2.72 2.11 1.82 1.44 1.22 1.06 0.93 0.83

Algorithm, Dense Graph 1.79 1.53 1.31 1.01 0.86 0.80 0.75 0.70

Random, Dense Graph 1.79 1.46 1.26 0.99 0.88 0.81 0.75 0.70

Table 7.5: W1(µ, dx) for Erdős-Rényi Random Graphs

It is no surprise that the dense graph exhibits little variation between the transport cost

of random vertices and of the algorithm’s—after all, any pair of vertices has many short

paths between them. In fact, this particular graph has diameter 3. Thus, for sufficiently

dense graphs it is largely irrelevant which vertices are selected: the transport cost will be

low. The sparse graph displayed has diameter 6 and is thus more interesting: while random

vertices initially outperform the algorithm, by 15 vertices selected they are matched, after

which the algorithm surpasses the random vertices. That is, even in highly irregular graphs

such as this one where random vertices perform well at first, the algorithm nonetheless

manages to catch up even with a relatively small number of vertices.
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Figure 7.10: A sparse Erdős-Rényi Graph
from G(100, .06).

Figure 7.11: A dense Erdős-Rényi Graph
from G(100, .2).

7.4.6 Complete 3-ary Tree

The complete 3-ary tree of depth 4 is a rooted tree, where each vertex has 3 children, except

for the fourth generation of vertices which all have no children, yielding a total of 40 vertices

(see Fig. 7.14).

Figure 7.12: The 3-ary tree of depth 4

No. of vertices 1 2 3 4 5 6 7 8 9 10

Algorithm 4.25 3.58 2.75 2.83 2.55 2.07 1.98 1.73 1.34 1.37

Random 4.25 3.62 3.12 2.93 2.74 2.48 2.33 2.17 1.99 1.86

Table 7.6: W1(µ, dx) for the 3-ary tree of depth 4

7.5 Proofs

7.5.1 Proof of Theorem 7.2.1

Proof. Note first that, since, for all v ∈ Rn, L−2αv has mean 0 (being spanned by φi, i > 1,

and thus orthogonal to the constant φ1), we will always have

min
x∈V

L−2α
k∑
j=1

δxj

 (x) < 0.
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Using the `2 norm

‖v‖2`2 =
n∑
i=1

v2
i ,

we observe

∥∥L−α(kµk)
∥∥2

`2
=
∥∥L−α ((k − 1)µk−1)

∥∥2

`2
+
∥∥L−α (δxk)

∥∥2

`2

+ 2
〈
L−α((k − 1)µk−1), L−α (δxk)

〉
=
∥∥L−α ((k − 1)µk−1)

∥∥2

`2
+
∥∥L−α (δxk)

∥∥2

`2

+ 2
〈
L−2α((k − 1)µk−1), δxk

〉
,

since L−α is self-adjoint. Rewriting the inner product term,

〈
L−2α((k − 1)µk−1), δxk

〉
=

L−2α
k−1∑
j=1

δxj

 (xk).

But xk was chosen by the algorithm specifically to minimize that quantity—thus, it is

certainly less than the average value of 0, and so

∥∥L−α(kµk)
∥∥2

`2
≤
∥∥L−α ((k − 1)µk−1)

∥∥2

`2
+
∥∥L−α (δxk)

∥∥2

`2
.

Then, by induction, we obtain the desired inequality:

n∑
i=2

|〈µk, φi〉|2

λαi
=
∥∥L−α(µk)

∥∥2

`2
≤
(

max
j≤k

∥∥L−α (δxj)∥∥2

`2

)
k−1.

7.5.2 Proof of Theorem 7.3.1

Proof. We recall that AD−1 can be interpreted as the propagator of the random walk on

the graph G = (V,E). Moreover, we have

AD−1φk = (1− λk)φk

and observe that |1 − λk| ≤ 1. We proceed in a similar manner to [131] and interpret

diffusion on the graph as one of many ways to transport mass. In particular, we will apply
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the elementary estimate

W1(AD−1v, v) ≤ ‖v‖`1 =
n∑
j=1

|vj |

to v = ((AD−1)iφk)
±,

W1(AD−1((AD−1)iφk)
±), ((AD−1)iφk)

±) ≤ ‖((AD−1)iφk)
±‖`1 =

|1− λk|i

2
‖φk‖`1 .

In particular, we will transport φk to (AD−1)mφk through its positive and negative parts

after each diffusion. For large m, this measure almost vanishes since

(AD−1)mφk = (1− λk)m φk.

We perform this operation until some arbitrary m and then use the trivial bound on the

remaining measure. This shows that the total transport can be bounded by

W1(φ+
k , φ

−
k ) ≤ |1− λk|

m diam(G)

2
‖φk‖`1 +

m−1∑
i=0

|1− λk|i ‖φk‖`1

=

(
|1− λk|m diam(G)

2
+

1− |1− λk|m

1− |1− λk|

)
‖φk‖`1

=

(
|1− λk|m

[
diam(G)

2
− 1

1− |1− λk|

]
+

1

1− |1− λk|

)
‖φk‖`1 .

We observe that this bound is monotonic in m, with direction depending on the sign of the

bracketed expression. If

|1− λk| ≥ 1− 2

diam(G)
,

the bound is monotonically increasing and we set m = 0, recovering the initial diameter

bound. If

|1− λk| < 1− 2

diam(G)
,

we have a monotonically decreasing bound, and take the limit as m → ∞, yielding the

desired bound of

W1(φ+
k , φ

−
k ) ≤ 1

1− |1− λk|
‖φk‖`1 .
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7.6 Connection to other Results

7.6.1 Low-discrepancy point sets.

A classical problem in the study of irregularities of distribution is to construct sequences

(xn)∞n=1 on the unit interval [0, 1] such that {x1, . . . , xn} is fairly evenly distributed over the

unit interval for all n ∈ N. The problem has now been solved completely: as discussed in

Chapter 1, Schmidt [121] proved that for any sequence on [0, 1], there exist infinitely many

N ∈ N such that the discrepancy satisfies

DN ≥
1

100
· logN

N
.

Recall Steinerberger’s result [130] from Chapter 4 §2.3: greedy sequences defined via

xn+1 = arg min
x∈T

(
(−∆)−1/2

n∑
k=1

δxk

)
(x)

satisfy, for all N ∈ N,

DN .
logN√
N

,

This result is conjectured to be far from optimal, and numerical examples show that the

arising sequences seem to be remarkably close to the best possible bound N−1 logN (down

to the level of the constant). The argument is somewhat different and uses the Koksma-

Hlawka inequality and classical Fourier Analysis. In particular, this result is stronger than

what is guaranteed by Theorem 7.2.1.

7.6.2 Leja points

Leja points can be defined, in the utmost level of generality, for any symmetric kernel

k : X × X → R ∪ {∞} on a compact Hausdorff space. We remain on smooth compact

manifolds M , a natural example for the kernel is

k(x, y) =
1

dg(x, y)s
where dg(x, y) is the geodesic distance and s > 0.
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We can then define, in an iterative fashion, for a given initial point x1 ∈ M , a sequence

(xk)
∞
k=1, in such a way that

n−1∑
k=1

k(xn, xk) = inf
x∈M

n−1∑
k=1

k(x, xk).

Put differently, we greedily add a new point xn in such a way that the total energy

n∑
k,`=1
k 6=`

k(xk, x`) is as small as possible.

These sets were introduced by Edrei [48] and intensively studied by Leja [83] after whom they

are named. The most commonly used kernel is k(x, y) = − log |x− y| (such that minimizing

the sum is the same as maximizing the product of the distances). Leja points have a number

of applications in numerical analysis [16,29,91,113,114]. Pausinger [100] recently gave a very

precise description of Leja sequences on T for fairly general kernel functions and established

a connection to binary digit expansion. For the Riesz kernel k(x, y) = |x− y|−s, it is known

that Leja sequences are asymptotically uniformly distributed [90]. We are not aware of

any study of Leja vertices on graphs; while one could take existing kernels, for example

k(x, y) = |x − y|−s, and consider them on graphs, there is little reason to assume that

such vertices will have many special properties: Graphs are simply too flexible. We can

summarize the approach in this chapter as stating that

there is a very good reason to believe (see the Figures in this chapter) that

considering k(x, y) to be the Green’s function of the inverse Laplacian leads to

well-distributed sets of vertices.

Moreover, we are able to analyze the continuous limit of manifolds and are able to obtain

a quantitative bound showing that the bounds are more regularly distributed than simply

exhibiting uniform distribution.
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représentation conforme, Annales Polonici Mathematici 4, 8–13 (1957).

138
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