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Abstract
This paper introduces the problem of coresets for regression problems to panel data settings. We

first define coresets for several variants of regression problems with panel data and then present efficient
algorithms to construct coresets of size that depend polynomially on 1/ε (where ε is the error parameter)
and the number of regression parameters – independent of the number of individuals in the panel data
or the time units each individual is observed for. Our approach is based on the Feldman-Langberg
framework in which a key step is to upper bound the “total sensitivity” that is roughly the sum of
maximum influences of all individual-time pairs taken over all possible choices of regression parameters.
Empirically, we assess our approach with synthetic and real-world datasets; the coreset sizes constructed
using our approach are much smaller than the full dataset and coresets indeed accelerate the running
time of computing the regression objective.

∗A version of this paper in NeurIPS format has been published in the 2020 NeurIPS Proceedings. When citing, please cite
the NeurIPS paper as follows: "Huang, L., Sudhir, K., & Vishnoi, N. K., "Coresets for Regressions with Panel Data,”, Advances
in Neural Information Processing Systems, 2020.
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1 Introduction
Panel data, represented as X ∈ RN×T×d and Y ∈ RN×T where N is the number of entities/individuals, T is
the number of time periods and d is the number of features is widely used in statistics and applied machine
learning. Such data track features of a cross-section of entities (e.g., customers) longitudinally over time.
Such data are widely preferred in supervised machine learning for more accurate prediction and unbiased
inference of relationships between variables relative to cross-sectional data (where each entity is observed
only once) [28, 6].

The most common method for inferring relationships between variables using observational data involves
solving regression problems on panel data. The main difference between regression on panel data when
compared to cross-sectional data is that there may exist correlations within observations associated with
entities over time periods. Consequently, the regression problem for panel data is the following optimization
problem over regression variables β ∈ Rd and the covariance matrix Ω that is induced by the abovementioned
correlations: minβ∈Rd,Ω∈RT×T

∑
i∈[N ](yi −Xiβ)>Ω−1(yi −Xiβ). Here Xi ∈ RT×d denotes the observation

matrix of entity i whose t-th row is xit and Ω is constrained to have largest eigenvalue at most 1 where Ωtt′
represents the correlation between time periods t and t′. This regression model is motivated by the random
effects model (Eq. (1) and Appendix A), common in the panel data literature [27, 24, 23]. A common way to
define the correlation between observations is an autocorrelation structure AR(q) [25, 35] whose covariance
matrix Ω is induced by a vector ρ ∈ Rq (integer q ≥ 1). This type of correlation results in the generalized
least-squares estimator (GLSE), where the parameter space is P = Rd+q.

As the ability to track entities on various features in real-time has grown, panel datasets have grown
massively in size. However, the size of these datasets limits the ability to apply standard learning algorithms
due to space and time constraints. Further, organizations owning data may want to share only a subset of
data with others seeking to gain insights to mitigate privacy or intellectual property related risks. Hence, a
question arises: can we construct a smaller subset of the panel data on which we can solve the regression
problems with performance guarantees that are close enough to those obtained when working with the complete
dataset?

One approach to this problem is to appeal to the theory of “coresets.” Coresets, proposed in [1], are
weighted subsets of the data that allow for fast approximate inference for a large dataset by solving the
problem on the smaller coreset. Coresets have been developed for a variety of unsupervised and supervised
learning problems; for a survey, see [43]. But, thus, far coresets have been developed only for `2-regression
cross-sectional data [18, 36, 8, 15, 33]; no coresets have been developed for regressions on panel data – an
important limitation, given their widespread use and advantages.

Roughly, a coreset for cross-sectional data is a weighted subset of observations associated with entities
that approximates the regression objective for every possible choice of regression parameters. An idea, thus,
is to construct a coreset for each time period (cross-section) and output their union as a coreset for panel
data. However, this union contains at least T observations which is undesirable since T can be large. Further,
due to the covariance matrix Ω, it is not obvious how to use this union to approximately compute regression
objectives. With panel data, one needs to consider both how to sample entities, and within each entity how
to sample observations across time. Moreover, we also need to define how to compute regression objectives
on such a coreset consisting of entity-time pairs.
Our contributions. We initiate the study of coresets for versions of `2-regression with panel data, including
the ordinary least-squares estimator (OLSE; Definition 2.2), the generalized least-squares estimator (GLSE;
Definition 2.3), and a clustering extension of GLSE (GLSEk; Definition 2.4) in which all entities are partitioned
into k clusters and each cluster shares the same regression parameters.

Overall, we formulate the definitions of coresets and propose efficient construction of ε-coresets of sizes
independent of N and T . Our key contributions are:

1. We give a novel formulation of coresets for GLSE (Definition 3.3) and GLSEk (Definition 3.4). We
represent the regression objective of GLSE as the sum of NT sub-functions w.r.t. entity-time pairs,
which enables us to define coresets similar to the case of cross-sectional data. For GLSEk, the regression
objective cannot be similarly decomposed due to the min operations in Definition 2.4. To deal with
this issue, we define the regression objective on a coreset S by including min operations.

2. Our coreset for OLSE is of size O(min{ε−2d, d2}) (Theorems B.1 and B.2), based on a reduction to
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coreset for `2-regression with cross-sectional data.

3. Our coreset for GLSE consists of at most Õ(ε−2 max{q4d2, q3d3}) points (Theorem 4.1), independent
of N and T as desired.

4. Our coreset for GLSEk is of size poly(M,k, q, d, 1/ε) (Theorem 5.2) where M upper bounds the gap
between the maximum individual regression objective of OLSE and the minimum one (Definition 5.1).
We provide a matching lower bound Ω(N) (Theorem 5.4) for k, q, d ≤ 2, indicating that the coreset size
should contain additional factors than k, q, d, 1/ε, justifying the M -bounded assumption.

Our coresets for GLSE/GLSEk leverage the Feldman-Langberg (FL) framework [21] (Algorithms 1 and 2).
The ρ variables make the objective function of GLSE non-convex in contrast to the cross-sectional data setting
where objective functions are convex. Thus, bounding the “sensitivity” (Lemma 4.4) of each entity-time
pair for GLSE, which is a key step in coreset construction using the FL framework, becomes significantly
difficult. We handle this by upper-bounding the maximum effect of ρ, based on the observation that the gap
between the regression objectives of GLSE and OLSE with respect to the same β ∈ Rd is always constant,
which enables us to reduce the problem to the cross-sectional setting. For GLSEk, a key difficulty is that
the clustering centers are subspaces induced by regression vectors, instead of points as in Gaussian mixture
models or k-means. Hence, it is unclear how GLSEk can be reduced to projective clustering used in Gaussian
mixture models; see [20]. To bypass this, we consider observation vectors of an individual as one entity and
design a two-staged framework in which the first stage selects a subset of individuals that captures the min
operations in the objective function and the second stage applies our coreset construction for GLSE on each
selected individuals. As in the case of GLSE, bounding the “sensitivity” (Lemma 5.8) of each entity for
GLSEk is a key step at the first stage. Towards this, we relate the total sensitivity of entities to a certain
“flexibility” (Lemma 5.7) of each individual regression objective which is, in turn, shown to be controlled by
the M -bounded assumption (Definition 5.1).

We implement our GLSE coreset construction algorithm and test it on synthetic and real-world datasets
while varying ε. Our coresets perform well relative to uniform samples on multiple datasets with different
generative distributions. Importanty, the relative performance is robust and better on datasets with outliers.
The maximum empirical error of our coresets is always below the guaranteed ε unlike with uniform samples.
Further, for comparable levels of empircal error, our coresets perform much better than uniform sampling in
terms of sample size and coreset construction speed.

1.1 Related work
With panel data, depending on different generative models, there exist several ways to define `2-regression [27,
24, 23], including the pooled model, the fixed effects model, the random effects model, and the random
parameters model. In this paper, we consider the random effects model (Equation (1)) since the number of
parameters is independent of N and T (see Section A for more discussion).

For cross-sectional data, there is more than a decade of extensive work on coresets for regression; e.g.,
`2-regression [18, 36, 8, 15, 33], `1-regression [11, 47, 12], generalized linear models [31, 40] and logistic
regression [44, 31, 42, 49]. The most relevant for our paper is `2-regression (least-squares regression), which
admits an ε-coreset of size O(d/ε2) [8] and an accurate coreset of size O(d2) [33].

With cross-sectional data, coresets have been developed for a large family of problems in machine learning
and statistics, including clustering [21, 22, 30], mixture model [37], low rank approximation [16], kernel
regression [53] and logistic regression [42]. We refer interested readers to recent surveys [41, 19]. It is
interesting to investigate whether these results can be generalized to panel data.

There exist other variants of regression sketches beyond coreset, including weighted low rank approx-
imation [13], row sampling [17], and subspace embedding [47, 39]. These methods mainly focus on the
cross-sectional setting. It is interesting to investigate whether they can be adapted to the panel data setting
that with an additional covariance matrix.
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2 `2-regression with panel data
We consider the following generative model of `2-regression: for (i, t) ∈ [N ]× [T ],

yit = x>itβi + eit, (1)

where βi ∈ Rd and eit ∈ R is the error term drawn from a normal distribution. Sometimes, we may
include an additional entity or individual specified effect αi ∈ R so that the outcome can be represented by
yit = x>itβi + αi + eit. This is equivalent to Equation (1) by appending an additional constant feature to each
observation xit.

Remark 2.1 Sometimes, we may not observe individuals for all time periods, i.e., some observation vectors
xit and their corresponding outcomes yit are missing. One way to handle this is to regard those missing
individual-time pairs as (xit, yit) = (0, 0). Then, for any vector β ∈ Rd, we have yit − x>itβ = 0 for each
missing individual-time pairs.

As in the case of cross-sectional data, we assume there is no correlation between individuals. Using this
assumption, the `2-regression function can be represented as follows: for any regression parameters ζ ∈ P (P
is the parameter space), ψ(ζ) =

∑
i∈[N ] ψi(ζ), where ψi is the individual regression function. Depending on

whether there is correlation within individuals and whether βi is unique, there are several variants of ψi. The
simplest setting is when all βis are the same, say βi = β, and there is no correlation within individuals. This
setting results in the ordinary least-squares estimator (OLSE); summarized in the following definition.

Definition 2.2 (Ordinary least-squares estimator (OLSE)) For an ordinary least-squares estimator
(OLSE), the parameter space is Rd and for any β ∈ Rd the individual objective function is

ψ
(O)
i (β) :=

∑
t∈[T ] ψ

(O)
it (β) =

∑
t∈[T ](yit − x>itβ)2.

Consider the case when βi are the same but there may be correlations between time periods within individuals.
A common way to define the correlation is called autocorrelation AR(q) [25, 35], in which there exists ρ ∈ Bq,
where q ≥ 1 is an integer and Bq = {x ∈ Rq : ‖x‖2 < 1}, such that

eit =
∑min{t−1,q}
a=1 ρaei,t−a +N(0, 1). (2)

This autocorrelation results in the generalized least-squares estimator (GLSE).

Definition 2.3 (Generalized least-squares estimator (GLSE)) For a generalized least-squares estima-
tor (GLSE) with AR(q) (integer q ≥ 1), the parameter space is Rd ×Bq and for any ζ = (β, ρ) ∈ Rd ×Bq the
individual objective function is ψ(G,q)

i (ζ) :=
∑
t∈[T ] ψ

(G,q)
it (ζ) equal to

(1− ‖ρ‖22)(yi1 − x>i1β)2 +
∑T
t=2

(
(yit − x>itβ)−

∑min{t−1,q}
j=1 ρj(yi,t−j − x>i,t−jβ)

)2
.

The main difference from OLSE is that a sub-function ψ
(G,q)
it is not only determined by a single obser-

vation (xit, yit); instead, the objective of ψ(G,q)
it may be decided by up to q + 1 contiguous observations

(xi,max{1,t−q}, yi,max{1,t−q}), . . . , (xit, yit).
Motivated by k-means clustering [48], we also consider a generalized setting of GLSE, called GLSEk

(k ≥ 1 is an integer), in which all individuals are partitioned into k clusters and each cluster corresponds to
the same regression parameters with respect to some GLSE.

Definition 2.4 (GLSEk: an extention of GLSE) Let k, q ≥ 1 be integers. For a GLSEk, the parameter
space is

(
Rd ×Bq

)k and for any ζ = (β(1), . . . , β(k), ρ(1), . . . , ρ(k)) ∈
(
Rd ×Bq

)k the individual objective
function is ψ(G,q,k)

i (ζ) := minl∈[k] ψ
(G,q)
i (β(l), ρ(l)).

GLSEk is a basic problem with applications in many real-world fields; as accounting for unobserved het-
erogeneity in panel regressions is critical for unbiased estimates [3, 26]. Note that each individual selects
regression parameters (β(l), ρ(l)) (l ∈ [k]) that minimizes its individual regression objective for GLSE. Note
that GLSE1 is exactly GLSE. Also note that GLSEk can be regarded as a generalized version of clustered
linear regression [4], in which there is no correlation within individuals.
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3 Our coreset definitions for panel data
In this section, we show how to define coresets for regression on panel data, including OLSE and GLSE. Due
to the additional autocorrelation parameters, it is not straightforward to define coresets for GLSE as in the
cross-sectional setting. One way is to consider all observations of an individual as an indivisible group and
select a collection of individuals as a coreset. However, this construction results in a coreset of size depending
on T , which violates the expectation that the coreset size should be independent of N and T . To avoid a
large coreset size, we introduce a generalized definition: coresets of a query space, which captures the coreset
definition for OLSE and GLSE.

Definition 3.1 (Query space [21, 9]) Let X be a index set together with a weight function u : X → R≥0.
Let P be a set called queries, and ψx : P → R≥0 be a given loss function w.r.t. x ∈ X . The total cost of X
with respect to a query ζ ∈ P is ψ(ζ) :=

∑
x∈X u(x) · ψx(ζ). The tuple (X , u,P, ψ) is called a query space.

Specifically, if u(x) = 1 for all x ∈ X , we use (X ,P, ψ) for simplicity.

Intuitively, ψ represents a linear combination of weighted functions indexed by X , and P represents the
ground set of ψ. Due to the separability of ψ, we have the following coreset definition.

Definition 3.2 (Coresets of a query space [21, 9]) Let (X , u,P, ψ) be a query space and ε ∈ (0, 1) be
an error parameter. An ε-coreset of (X , u,P, ψ) is a weighted set S ⊆ X together with a weight function
w : S → R≥0 such that for any ζ ∈ P, ψS(ζ) :=

∑
x∈S w(x) · ψx(ζ) ∈ (1± ε) · ψ(ζ).

Here, ψS is a computation function over the coreset that is used to estimate the total cost of X . By
Definitions 2.2 and 2.3, the regression objectives of OLSE and GLSE can be decomposed into NT sub-
functions. Thus, we can apply the above definition to define coresets for OLSE and GLSE. Note that OLSE
is a special case of GLSE for q = 0. Thus, we only need to provide the coreset definition for GLSE. We let
u = 1 and P = Rd ×Bq. The index set of GLSE has the following form:

Z(G,q) =
{
zit =

(
xi,max{1,t−q}, yi,max{1,t−q}, . . . xit, yit

)
: (i, t) ∈ [N ]× [T ]

}
,

where each element zit consists of at most q + 1 observations. Also, for every zit ∈ Z(G,q) and ζ = (β, ρ) ∈
P, the cost function ψit is: if t = 1, ψ(G,q)

it (ζ) = (1 − ‖ρ‖22) · (yi1 − x>i1β)2; and if t 6= 1, ψ(G,q)
it (ζ) =(

(yit − x>itβ)−
∑min{t−1,q}
j=1 ρj(yi,t−j − x>i,t−jβ)

)2
. Thus, (Z(G,q),P, ψ(G,q)) is a query space of GLSE.1 Then

by Definition 3.2, we have the following coreset definition for GLSE.

Definition 3.3 (Coresets for GLSE) Given a panel dataset X ∈ RN×T×d and Y ∈ RN×T , a constant
ε ∈ (0, 1), integer q ≥ 1, and parameter space P, an ε-coreset for GLSE is a weighted set S ⊆ [N ] × [T ]
together with a weight function w : S → R≥0 such that for any ζ = (β, ρ) ∈ P,

ψ
(G,q)
S (ζ) :=

∑
(i,t)∈S

w(i, t) · ψ(G,q)
it (ζ) ∈ (1± ε) · ψ(G,q)(ζ).

The weighted set S is exactly an ε-coreset of the query space (Z(G,q),P, ψ(G,q)). Note that the number of
points in this coreset S is at most (q + 1) · |S|. Specifically, for OLSE, the parameter space is Rd since q = 0,
and the corresponding index set is Z(O) = {zit = (xit, yit) : (i, t) ∈ [N ]× [T ]} . Consequently, the query space
of OLSE is (Z(O),Rd, ψ(O)).

Coresets for GLSEk Due to the min operation in Definition 2.4, the objective function ψ(G,q,k) can only
be decomposed into sub-functions ψ(G,q,k)

i instead of individual-time pairs. Then let u = 1, Pk =
(
Rd ×Bq

)k,
and Z(G,q,k) = {zi = (xi1, yi1, . . . , xiT , yiT ) : i ∈ [N ]} . We can regard (Z(G,q,k),Pk, ψ(G,q,k)) as a query space
of GLSEk. By Definition 3.2, an ε-coreset of (Z(G,q,k),Pk, ψ(G,q,k)) is a subset IS ⊆ [N ] together with a
weight function w′ : IS → R≥0 such that for any ζ ∈ Pk,∑

i∈IS

w′(i) · ψ(G,q,k)
i (ζ) ∈ (1± ε) · ψ(G,q,k)(ζ). (3)

1Here, we slightly abuse the notation by using ψ(G,q)
it (ζ) instead of ψ(G,q)

zit (ζ).
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However, each zi ∈ Z(G,q,k) consists of T observations, and hence, the number of points in this coreset S is
T · |S|. To avoid the size dependence of T , we propose a new coreset definition for GLSEk. The intuition is
to further select a subset of time periods to estimate ψ(G,q,k)

i .
Given S ⊆ [N ]× [T ], we denote IS := {i ∈ [N ] : ∃t ∈ [T ], s.t., (i, t) ∈ S} as the collection of individuals

that appear in S. Moreover, for each i ∈ IS , we denote JS,i := {t ∈ [T ] : (i, t) ∈ S} to be the collection of
observations for individual i in S.

Definition 3.4 (Coresets for GLSEk) Given a panel dataset X ∈ RN×T×d and Y ∈ RN×T , constant
ε ∈ (0, 1), integer k, q ≥ 1, and parameter space Pk, an ε-coreset for GLSEk is a weighted set S ⊆ [N ]× [T ]
together with a weight function w : S → R≥0 such that for any ζ = (β(1), . . . , β(k), ρ(1), . . . , ρ(k)) ∈ Pk,

ψ
(G,q,k)
S (ζ) :=

∑
i∈IS

min
l∈[k]

∑
t∈JS,i

w(i, t) · ψ(G,q)
it (β(l), ρ(l)) ∈ (1± ε) · ψ(G,q,k)(ζ).

The key is to incorporate min operations in the computation function ψ(G,q,k)
S over the coreset. Similar to

GLSE, the number of points in such a coreset S is at most (q + 1) · |S|.

4 Coresets for GLSE
In this section, we show how to construct coresets for GLSE. We let the parameter space be Pλ = Rd ×Bq1−λ
for some constant λ ∈ (0, 1) where Bq1−λ =

{
ρ ∈ Rq : ‖ρ‖22 ≤ 1− λ

}
. The assumption of the parameter space

Bq1−λ for ρ is based on the fact that ‖ρ‖22 < 1 (λ→ 0) is a stationary condition for AR(q) [35].

Theorem 4.1 (Coresets for GLSE) There exists a randomized algorithm that, for a given panel dataset
X ∈ RN×T×d and Y ∈ RN×T , constants ε, δ, λ ∈ (0, 1) and integer q ≥ 1, with probability at least 1 − δ,
constructs an ε-coreset for GLSE of size

O

(
ε−2λ−1qd

(
max

{
q2d, qd2} · log d

λ
+ log 1

δ

))
and runs in time O(NTq +NTd2).

Note that the coreset in the above theorem contains at most (q + 1) ·
O
(
ε−2λ−1qd

(
max

{
q2d, qd2} · log d

λ + log 1
δ

))
points (xit, yit), which is independent of both N and

T . Also note that if both λ and δ are away from 0, e.g., λ = δ = 0.1 the number of points in the coreset can
be further simplified: O

(
ε−2 max

{
q4d2, q3d3} · log d

)
= poly(q, d, 1/ε).

4.1 Algorithm for Theorem 4.1
We summarize the algorithm of Theorem 4.1 in Algorithm 1, which takes a panel dataset (X,Y ) as input
and outputs a coreset S of individual-time pairs. The main idea is to use importance sampling (Lines 6-7)
leveraging the Feldman-Langberg (FL) framework [21, 9]. The key new step appears in Line 5, which computes
a sensitivity function s for GLSE that defines the sampling distribution. Also note that the construction of s
is based on another function s(O) (Line 4), which is actually a sensitivity function for OLSE that has been
studied in the literature [8].

4.2 Useful notations and useful facts for Theorem 4.1
Feldman and Langberg [21] show how to construct coresets by importance sampling and the coreset size has
been improved by [9].

Theorem 4.2 (FL framework [21, 9]) Let ε, δ ∈ (0, 1). Let dim be an upper bound of the pseudo-
dimension. Suppose s : [N ] × [T ] → R≥0 is a sensitivity function satisfying that for any (i, t) ∈ [N ] × [T ],
s(i, t) ≥ supζ∈Pλ

ψ
(G,q)
it

(ζ)
ψ(G,q)(ζ) , and G :=

∑
(i,t)∈[N ]×[T ] s(i, t). Let S ⊆ X be constructed by taking

O
(
ε−2G(dim · log G + log(1/δ))

)
5



Algorithm 1: CGLSE: Coreset construction of GLSE
Require: X ∈ RN×T×d, Y ∈ RN×T , constant ε, δ, λ ∈ (0, 1), integer q ≥ 1 and parameter space Pλ.
Ensure: a subset S ⊆ [N ]× [T ] together with a weight function w : S → R≥0.
1: M ← O

(
ε−2λ−1qd

(
max

{
q2d, qd2} · log d

λ + log 1
δ

))
.

2: Let Z ∈ RNT×(d+1) be whose (iT − T + t)-th row is zit = (xit, yit) ∈ Rd+1 for (i, t) ∈ [N ]× [T ].
3: Compute A ⊆ RNT×d′ whose columns form a unit basis of the column space of Z.
4: For each (i, t) ∈ [N ]× [T ], s(O)(i, t)← ‖AiT−T+t‖22.
5: For each pair (i, t) ∈ [N ]× [T ], s(i, t)← min

{
1, 2λ−1

(
s(O)(i, t) +

∑min{t−1,q}
j=1 s(O)(i, t− j)

)}
.

6: Pick a random sample S ⊆ [N ]× [T ] of M pairs, where each (i, t) ∈ S is selected with probability
s(i,t)∑

(i′,t′)∈[N]×[T ]
s(i′,t′)

.

7: For each (i, t) ∈ S, w(i, t)←
∑

(i′,t′)∈[N]×[T ]
s(i′,t′)

M ·s(i,t) .
8: Output (S,w).

samples, where each sample x ∈ X is selected with probability s(x)
G and has weight w(x) := G

|S|·s(x) . Then,
with probability at least 1− δ, S is an ε-coreset for GLSE.

Here, the sensitivity function s measures the maximum influence for each xit ∈ X.
Note that the above is an importance sampling framework that takes samples from a distribution

proportional to sensitivities. The sample complexity is controlled by the total sensitivity G and the pseudo-
dimension dim. Hence, to apply the FL framework, we need to upper bound the pseudo-dimension and
construct a sensitivity function.

4.3 Proof of Theorem 4.1
Algorithm 1 applies the FL framework (Feldman and Langberg [21]) that constructs coresets by importance
sampling and the coreset size has been improved by [9]. The key is to verify the “pseudo-dimension”
(Lemma 4.3) and “sensitivities” (Lemma 4.4) separately; summarized as follows.

Upper bounding the pseudo-dimension. We have the following lemma that upper bounds the pseudo-
dimension of (Z(G,q),Pλ, ψ(G,q)).

Lemma 4.3 (Pseudo-dimension of GLSE) The pseudo-dimension of any query space
(Z(G,q), u,Pλ, ψ(G,q)) over weight functions u : [N ]× [T ]→ R≥0 is at most O ((q + d)qd).

The proof can be found in Section 4.4. The main idea is to apply the prior results [2, 52] which shows that
the pseudo-dimension is polynomially dependent on the number of regression parameters (q + d for GLSE)
and the number of operations of individual regression objectives (O(qd) for GLSE). Consequently, we obtain
the bound O ((q + d)qd) in Lemma 4.3.

Constructing a sensitivity function. Next, we show that the function s constructed in Line 5 of
Algorithm 1 is indeed a sensitivity function of GLSE that measures the maximum influence for each xit ∈ X;
summarized by the following lemma.

Lemma 4.4 (Total sensitivity of GLSE) Function s : [N ]× [T ]→ R≥0 of Algorithm 1 satisfies that for
any (i, t) ∈ [N ] × [T ], s(i, t) ≥ supζ∈P

ψ
(G,q)
it

(ζ)
ψ(G,q)(ζ) and G :=

∑
(i,t)∈[N ]×[T ] s(i, t) = O(λ−1qd). Moreover, the

construction time of function s is O(NTq +NTd2).

Intuitively, if the sensitivity s(i, t) is large, e.g., close to 1, ψ(G,q)
it must contribute significantly to the objective

with respect to some parameter ζ ∈ Pλ. The sampling ensures that we are likely to include such pair (i, t) in
the coreset for estimating ψ(ζ). Due to the fact that the objective function of GLSE is non-convex which is
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different from OLSE, bounding the sensitivity of each individual-time pair for GLSE becomes significantly
difficult. To handle this difficulty, we develop a reduction of sensitivities from GLSE to OLSE (Line 5 of
Algorithm 1), based on the relations between ψ(G,q) and ψ(O), i.e., for any ζ = (β, ρ) ∈ Pλ we prove that
ψ

(G,q)
i (ζ) ≥ λ · ψ(O)

i (β) and ψ(G,q)
it (ζ) ≤ 2 ·

(
ψ

(O)
it (β) +

∑min{t−1,q}
j=1 ψ

(O)
i,t−j(β)

)
. The first inequality follows

from the fact that the smallest eigenvalue of Ω−1
ρ (the inverse covariance matrix induced by ρ) is at least

λ. The intuition of the second inequality is from the form of function ψ(G,q)
it , which relates to min {t, q + 1}

individual-time pairs, say (xi,min{1,t−q}, yi,min{1,t−q}), . . . , (xit, yit). Combining these two inequalities, we
obtain a relation between the sensitivity function s for GLSE and the sensitivity function s(O) for OLSE,
based on the following observation: for any ζ = (β, ρ) ∈ Pλ,

ψ
(G,q)
it (ζ)
ψ(G,q)(ζ)

≤
2 ·
(
ψ

(O)
it (β) +

∑min{t−1,q}
j=1 ψ

(O)
i,t−j(β)

)
λ · ψ(O)(β)

≤ 2λ−1 ·
(
s(O)(i, t) +

∑min{t−1,q}
j=1 s(O)(i, t− j)

)
= s(i, t).

which leads to the construction of s in Line 5 of Algorithm 1. Then it suffices to construct s(O) (Lines 2-4
of Algorithm 1), which reduces to the cross-sectional data setting and has total sensitivity at most d + 1
(Lemma 4.7). Consequently, we conclude that the total sensitivity G of GLSE is O(λ−1qd) by the definition
of s.

Now we are ready to prove Theorem 4.1.

Proof: [Proof of Theorem 4.1] By Lemma 4.4, the total sensitivity G is O(λ−1qd). By Lemma 4.3, we let
dim = O ((q + d)qd). Pluging the values of G and dim in the FL framework [21, 9], we prove for the coreset
size. For the running time, it costs O(NTq+NTd2) time to compute the sensitivity function s by Lemma 4.4,
and O(NTd) time to construct an ε-coreset. This completes the proof. �

4.4 Proof of Lemma 4.3: Upper bounding the pseudo-dimension
Our proof idea is similar to that in [37]. For preparation, we need the following lemma which is proposed to
bound the pseudo-dimension of feed-forward neural networks.

Lemma 4.5 (Restatement of Theorem 8.14 of [2]) Let (X , u,P, f) be a given query space where
fx(ζ) ∈ {0, 1} for any x ∈ X and ζ ∈ P, and P ⊆ Rm. Suppose that f can be computed by an algo-
rithm that takes as input the pair (x, ζ) ∈ X × P and returns fx(ζ) after no more than l of the following
operations:

• the arithmetic operations +,−,×, and / on real numbers.

• jumps conditioned on >,≥, <,≤,=, and 6= comparisons of real numbers, and

• output 0,1.

Then the pseudo-dimension of (X , u,P, f) is at most O(ml).

Note that the above lemma requires that the range of functions fx is [0, 1]. We have the following lemma
which can help extend this range to R.

Lemma 4.6 (Restatement of Lemma 4.1 of [52]) Let (X , u,P, f) be a given query space. Let gx :
P × R→ {0, 1} be the indicator function satisfying that for any x ∈ X , ζ ∈ P and r ∈ R,

gx(ζ, r) = I [u(x) · f(x, ζ) ≥ r] .

Then the pseudo-dimension of (X , u,P, f) is precisely the pseudo-dimension of the query space (X , u,P×R, gf ).

Now we are ready to prove Lemma 4.3.
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Proof: [Proof of Lemma 4.3] Fix a weight function u : [N ]× [T ]→ R≥0. For every (i, t) ∈ [N ]× [T ], let
git : Pλ × R≥0 → {0, 1} be the indicator function satisfying that for any ζ ∈ Pλ and r ∈ R≥0,

git(ζ, r) := I
[
u(i, t) · ψ(G,q)

it (ζ) ≥ r
]
.

We consider the query space (Z(G,q), u,Pλ × R≥0, g). By the definition of Pλ, the dimension of Pλ × R≥0 is
m = q + 1 + d. By the definition of ψ(G,q)

it , git can be calculated using l = O(qd) operations, including O(qd)
arithmetic operations and a jump. Pluging the values of m and l in Lemma 4.5, the pseudo-dimension of
(Z(G,q), u,Pλ × R≥0, g) is O ((q + d)qd). Then by Lemma 4.6, we complete the proof. �

4.5 Proof of Lemma 4.4: Bounding the total sensitivity
We prove Lemma 4.4 by relating sensitivities between GLSE and OLSE. For preparation, we give the following
lemma that upper bounds the total sensitivity of OLSE. Given two integers a, b ≥ 1, denote T (a, b) to be the
computation time of a column basis of a matrix in Ra×b. For instance, a column basis of a matrix in Ra×b
can be obtained by computing its SVD decomposition, which costs O(min

{
a2b, ab2

}
) time by [14].

Lemma 4.7 (Total sensitivity of OLSE) Function s(O) : [N ]× [T ]→ R≥0 of Algorithm 1 satisfies that
for any (i, t) ∈ [N ]× [T ],

s(O)(i, t) ≥ sup
β∈Rd

ψ
(O)
it (β)

ψ(O)(β)
, (4)

and G(O) :=
∑

(i,t)∈[N ]×[T ] s
(O)(i, t) satisfying G(O) ≤ d+ 1. Moreover, the construction time of function s(O)

is T (NT, d+ 1) +O(NTd).

Proof: The proof idea comes from [51]. By Line 3 of Algorithm 1, A ⊆ RNT×d′ is a matrix whose columns
form a unit basis of the column space of Z. We have d′ ≤ d+ 1 and hence ‖A‖22 = d′ ≤ d+ 1. Moreover, for
any (i, t) ∈ [N ]× [T ] and β′ ∈ Rd′ , we have

‖β′‖22 ≤ ‖Aβ′‖22,

Then by Cauchy-Schwarz and orthonormality of A, we have that for any (i, t) ∈ [N ]× [T ] and β′ ∈ Rd+1,

|z>itβ′|2 ≤ ‖AiT−T+t‖22 · ‖Zβ′‖22, (5)

where AiT−T+t is the (iT − T + t)-th row of A.
For each (i, t) ∈ [N ]× [T ], we let s(O)(i, t) := ‖AiT−T+t‖22. Then G(O) = ‖A‖22 = d′ ≤ d+ 1. Note that

constructing A costs T (NT, d+ 1) time and computing all ‖AiT−T+t‖22 costs O(NTd) time.
Thus, it remains to verify that s(O)(i, t) satisfies Inequality (4). For any (i, t) ∈ [N ] × [T ] and β ∈ Rd,

letting β′ = (β,−1), we have

ψ
(O)
it (β) = |z>itβ′|2 (Defn. of ψ(O)

it )
≤ ‖AiT−T+t‖22 · ‖Zβ′‖22 (Ineq. (5))
= ‖AiT−T+t‖22 · ψ(O)(β). (Defn. of ψ(O))

This completes the proof. �
Now we are ready to prove Lemma 4.4.

Proof: [Proof of Lemma 4.4] For any (i, t) ∈ [N ]× [T ], recall that s(i, t) is defined by

s(i, t) := min
{

1, 2λ−1 ·
(
s(O)(i, t) +

∑min{t−1,q}
j=1 s(O)(i, t− j)

)}
.
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We have that∑
(i,t)∈[N ]×[T ]

s(i, t) ≤
∑

(i,t)∈[N ]×[q]

2λ−1 ×
(
s(O)(i, t) +

∑min{t−1,q}
j=1 s(O)(i, t− j)

)
(by definition)

≤ 2λ−1 ·
∑

(i,t)∈[N ]×[T ](1 + q) · s(O)(i, t)

≤ 2λ−1(q + 1)(d+ 1). (Lemma 4.7)

Hence, the total sensitivity G = O(λ−1qd). By Lemma 4.7, it costs T (NT, d+ 1) +O(NTd) time to construct
s(O). We also know that it costs O(NTq) time to compute function s. Since T (NT, d+ 1) = O(NTd2), this
completes the proof for the running time.

Thus, it remains to verify that s(i, t) satisfies that

s(i, t) ≥ sup
ζ∈P

ψ
(G,q)
it (ζ)
ψ(G,q)(ζ)

.

Since supβ∈Rd
ψ

(O)
it

(β)
ψ(O)(β) ≤ 1 always holds, we only need to consider the case that

s(i, t) = 2λ−1 ·
(
s(O)(i, t) +

∑min{t−1,q}
j=1 s(O)(i, t− j)

)
.

We first show that for any ζ = (β, ρ) ∈ Pλ,

ψ(G,q)(ζ) ≥ λ · ψ(O)(β). (6)

Given an autocorrelation vector ρ ∈ Rq, the induced covariance matrix Ωρ satisfies that Ω−1
ρ = P>ρ Pρ where

Pρ =


√

1− ‖ρ‖22 0 0 . . . . . . . . . 0
−ρ1 1 0 . . . . . . . . . 0
−ρ2 −ρ1 1 . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 −ρq . . . −ρ1 1

 . (7)

Then by Equation (7), the smallest eigenvalue of Pρ satisfies that

λmin =
√

1− ‖ρ‖22 (Defn. of Pρ)

≥
√
λ. (ρ ∈ Bq1−λ)

(8)

Also we have

ψ(G,q)(ζ) =
∑
i∈[N ]

(yi −Xiβ)>Ω−1
ρ (yi −Xiβ) (Program (GLSE))

=
∑
i∈[N ]

‖Pρ(yi −Xiβ)‖22 (P>ρ Pρ = Ω−1
ρ )

≥
∑
i∈[N ]

λ · ‖(yi −Xiβ)‖22 (Ineq. (8))

= λ · ψ(O)(β), (Defns. of ψ(O))

which proves Inequality (6). We also claim that for any (i, t) ∈ [N ]× [T ],

ψ
(G,q)
it (ζ) ≤ 2 ·

(
ψ

(O)
it (β) +

∑min{t−1,q}
j=1 ψ

(O)
i,t−j(β)

)
. (9)
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This trivially holds for t = 1. For t ≥ 2, this is because

ψ
(G,q)
it (ζ)

=
(

(yit − x>itβ)−
∑min{t−1,q}
j=1 ρj · (yi,t−j − x>i,t−jβ)

)2
(t ≥ 2)

≤
(

1 +
∑min{t−1,q}
j=1 ρ2

j

)
×
(

(yit − x>itβ)2 +
∑min{t−1,q}
j=1 (yi,t−j − x>i,t−jβ)2

)
(Cauchy-Schwarz)

= 2 ·
(
ψ

(O)
it (β) +

∑min{t−1,q}
j=1 ψ

(O)
i,t−j(β)

)
. (‖ρ‖22 ≤ 1)

Now combining Inequalities (6) and (9), we have that for any ζ = (β, ρ) ∈ Pλ,

ψ
(G,q)
it (ζ)
ψ(G,q)(ζ)

≤
2 ·
(
ψ

(O)
it (β) +

∑min{t−1,q}
j=1 ψ

(O)
i,t−j(β)

)
λ · ψ(O)(β)

≤ 2λ−1 ·
(
s(O)(i, t) +

∑min{t−1,q}
j=1 s(O)(i, t− j)

)
= s(i, t).

This completes the proof. �

5 Coresets for GLSEk

Following from Section 4, we assume that the parameter space is Pkλ = (Rd ×Bq1−λ)k for some given constant
λ ∈ (0, 1). Given a panel dataset X ∈ RN×T×d and Y ∈ RN×T , let Z(i) ∈ RT×(d+1) denote a matrix whose
t-th row is (xit, yit) ∈ Rd+1 for all t ∈ [T ] (i ∈ [N ]). Assume there exists constant M ≥ 1 such that the input
dataset satisfies the following property.

Definition 5.1 (M-bounded dataset) Given M ≥ 1, we say a panel dataset X ∈ RN×T×d and Y ∈
RN×T is M-bounded if for any i ∈ [N ], the condition number of matrix (Z(i))>Z(i) is at most M , i.e.,
maxβ∈Rd

ψ
(O)
i

(β)
‖β‖2

2+1 ≤M ·minβ∈Rd
ψ

(O)
i

(β)
‖β‖2

2+1 .

If there exists i ∈ [N ] and β ∈ Rd such that ψ(O)
i (β) = 0, we let M = ∞. Specifically, if all (Z(i))>Z(i)

are identity matrix whose eigenvalues are all 1, i.e., for any β, ψ(O)
i (β) = ‖β‖22 + 1, we can set M = 1.

Another example is that if n � d and all elements of Z(i) are independently and identically distributed
standard normal random variables, then the condition number of matrix (Z(i))>Z(i) is upper bounded by
some constant with high probability (and constant in expectation) [10, 46], which may also imply M = O(1).
The main theorem is as follows.

Theorem 5.2 (Coresets for GLSEk) There exists a randomized algorithm that given an M-bounded
(M ≥ 1) panel dataset X ∈ RN×T×d and Y ∈ RN×T , constant ε, λ ∈ (0, 1) and integers q, k ≥ 1, with
probability at least 0.9, constructs an ε-coreset for GLSEk of size

O

(
ε−4λ−2Mk2 max

{
q7d4, q5d6} · log Mq

λ
log Mkd

λ

)
and runs in time O(NTq +NTd2).

Similar to GLSE, this coreset for GLSEk (k ≥ 2) contains at most

(q + 1) ·O
(
ε−4λ−2Mk2 max

{
q7d4, q5d6} · log Mq

λ
log kd

λ

)
points (xit, yit), which is independent of both N and T when M is constant. Note that the size contains an
addtional factor M which can be unbounded. Our algorithm is summarized in Algorithm 2 and we outline
Algorithm 2 and discuss the novelty in the following.

Remark 5.3 Algorithm 2 is a two-staged framework, which captures the min operations in GLSEk.
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Algorithm 2: CGLSEk: Coreset construction of GLSEk
Require: an M -bounded (constant M ≥ 1) panel dataset X ∈ RN×T×d and Y ∈ RN×T , constant

ε, λ ∈ (0, 1), integers k, q ≥ 1 and parameter space Pkλ .
Ensure: a subset S ⊆ [N ]× [T ] together with a weight function w : S → R≥0.

% Constructing a subset of individuals
1: Γ← O

(
ε−2λ−1Mk2 max

{
q4d2, q3d3} · log Mq

λ

)
.

2: For each i ∈ [N ], let matrix Z(i) ∈ RT×(d+1) be whose t-th row is z(i)
t = (xit, yit) ∈ Rd+1.

3: For each i ∈ [N ], construct the SVD decomposition of Z(i) and compute

ui := λmax((Z(i))>Z(i)) and `i := λmin((Z(i))>Z(i)).

4: For each i ∈ [N ], s(O)(i)← ui
ui+
∑

i′ 6=i
`i′
.

5: For each i ∈ [N ], s(i)← min
{

1, 2(q+1)
λ · s(O)(i)

}
.

6: Pick a random sample IS ⊆ [N ] of size M , where each i ∈ IS is selected w.p. s(i)∑
i′∈[N]

s(i′)
.

7: For each i ∈ IS , w′(i)←
∑

i′∈[N]
s(i′)

Γ·s(i) .
% Constructing a subset of time periods for each selected individual

8: For each i ∈ IS , apply CGLSE(Xi, yi,
ε
3 ,

1
20Γ , λ, q) and construct JS,i ⊆ [T ] together with a weight

function w(i) : JS,i → R≥0.
9: Let S ← {(i, t) ∈ [N ]× [T ] : i ∈ IS , t ∈ JS,i}.

10: For each (i, t) ∈ S, w(i, t)← w′(i) · w(i)(t).
11: Output (S,w).

First stage. We construct an ε
3 -coreset IS ⊆ [N ] together with a weight function w′ : IS → R≥0 of the

query space (Z(G,q,k),Pk, ψ(G,q,k)), i.e., for any ζ ∈ Pk∑
i∈IS

w′(i) · ψ(G,q,k)
i (ζ) ∈ (1± ε) · ψ(G,q,k)(ζ).

The idea is similar to Algorithm 1 except that we consider N sub-functions ψ(G,q,k)
i instead of NT . In Lines

2-4 of Algorithm 2, we first construct a sensitivity function s(O) of OLSEk. The definition of s(O) captures
the impact of min operations in the objective function of OLSEk and the total sensitivity of s(O) is guaranteed
to be upper bounded by Definition 5.1. The key is showing that the maximum influence of individual i is at
most ui

ui+
∑

j 6=i
`j

(Lemma 5.7), which implies that the total sensitivity of s(O) is at most M . Then in Line 5,

we construct a sensitivity function s of GLSEk, based on a reduction from s(O) (Lemma 5.8).

Second stage. In Line 8, for each i ∈ IS, apply CGLSE(Xi, yi,
ε
3 ,

1
20·|IS | , λ, q) and construct a subset

JS,i ⊆ [T ] together with a weight function w(i) : JS,i → R≥0. Output S = {(i, t) ∈ [N ]× [T ] : i ∈ IS , t ∈ JS,i}
together with a weight function w : S → R≥0 defined as follows: for any (i, t) ∈ S, w(i, t) := w′(i) · w(i)(t).

We also provide a lower bound theorem which shows that the size of a coreset for GLSEk can be up to
Ω(N). It indicates that the coreset size should contain additional factors than k, q, d, 1/ε, which reflects the
reasonability of the M -bounded assumption.

Theorem 5.4 (Size lower bound of GLSEk) Let T = 1 and d = k = 2 and λ ∈ (0, 1). There exists
X ∈ RN×T×d and Y ∈ RN×T such that any 0.5-coreset for GLSEk should have size Ω(N).

5.1 Proof overview
We first give a proof overview for summarization.
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Proof overview of Theorem 5.2. For GLSEk, we propose a two-staged framework (Algorithm 2): first
sample a collection of individuals and then run CGLSE on every selected individuals. By Theorem 4.1,
each subset JS,i at the second stage is of size poly(q, d). Hence, we only need to upper bound the size
of IS at the first stage. By a similar argument as that for GLSE, we can define the pseudo-dimension of
GLSEk and upper bound it by poly(k, q, d), and hence, the main difficulty is to upper bound the total
sensitivity of GLSEk. We show that the gap between the individual regression objectives of GLSEk and
OLSEk (GLSEk with q = 0) with respect to the same (β(1), . . . , β(k)) is at most 2(q+1)

λ , which relies on
ψ

(G,q)
i (ζ) ≥ λ · ψ(O)

i (β) and an observation that for any ζ = (β(1), . . . , β(k), ρ(1), . . . , ρ(k)) ∈ Pk, ψ(G,q,k)
i (ζ) ≤

2(q + 1) ·minl∈[k] ψ
(O)
i (β(l)). Thus, it suffices to provide an upper bound of the total sensitivity for OLSEk.

We claim that the maximum influence of individual i is at most ui
ui+
∑

j 6=i
`j

where ui is the largest eigenvalue

of (Z(i))>Z(i) and `j is the smallest eigenvalue of (Z(j))>Z(j). This fact comes from the following observation:
minl∈[k] ‖Z(i)(β(l),−1)‖22 ≤ ui

`j
· minl∈[k] ‖Z(j)(β(l),−1)‖22, and results in an upper bound M of the total

sensitivity for OLSEk since
∑
i∈[N ]

ui
ui+
∑

j 6=i
`j
≤
∑

i∈[N]
ui∑

j∈[N]
`j
≤M.

Proof overview of Theorem 5.4. For GLSEk, we provide a lower bound Ω(N) of the coreset size by
constructing an instance in which any 0.5-coreset should contain observations from all individuals. Note that
we consider T = 1 which reduces to an instance with cross-sectional data. Our instance is to let xi1 = (4i, 1

4i )
and yi1 = 0 for all i ∈ [N ]. Then letting ζ(i) = (β(1), β(2), ρ(1), ρ(2)) where β(1) = ( 1

4i , 0), β(2) = (0, 4i) and
ρ(1) = ρ(2) = 0, we observe that ψ(G,q,k)(ζ(i)) ≈ ψ(G,q,k)

i (ζ(i)). Hence, all individuals should be contained in
the coreset such that regression objectives with respect to all ζ(i) are approximately preserved.

5.2 Proof of Theorem 5.2: Upper bound for GLSEk

The proof of Theorem 5.2 relies on the following two theorems. The first theorem shows that IS of Algorithm 2
is an ε

3 -coreset of
(
ZG,q,k,Pkλ , ψ(G,q,k)). The second one is a reduction theorem that for each individual in IS

constructs an ε-coreset JS,i.

Theorem 5.5 (Coresets of
(
ZG,q,k,Pkλ , ψ(G,q,k))) For any given M-bounded observation matrix X ∈

RN×T×d and outcome matrix Y ∈ RN×T , constant ε, δ, λ ∈ (0, 1) and integers q, k ≥ 1, with probabili-
ty at least 0.95, the weighted subset IS of Algorithm 2 is an ε

3 -coreset of the query space
(
ZG,q,k,Pkλ , ψ(G,q,k)),

i.e., for any ζ = (β(1), . . . , β(k), ρ(1), . . . , ρ(k)) ∈ Pkλ ,∑
i∈IS

w′(i) · ψ(G,q,k)
i (ζ) ∈ (1± ε

3) · ψ(G,q,k)(ζ). (10)

Moreover, the construction time of IS is

N · SVD(T, d+ 1) +O(N).

We defer the proof of Theorem 5.5 later.

Theorem 5.6 (Reduction from coresets of
(
ZG,q,k,Pkλ , ψ(G,q,k)) to coresets for GLSEk) Suppose

that the weighted subset IS of Algorithm 2 is an ε
3 -coreset of the query space

(
ZG,q,k,Pkλ , ψ(G,q,k)). Then

with probability at least 0.95, the output (S,w) of Algorithm 2 is an ε-coreset for GLSEk.

Proof: [Proof of Theorem 5.6] Note that S is an ε-coreset for GLSEk if Inequality (10) holds and for all
i ∈ [N ], JS,i is an ε

3 -coreset of
(
(Z(i))(G,q),Pλ, ψ(G,q)). By condition, we assume Inequality (10) holds. By

Line 6 of Algorithm 2, the probability that every JS,i is an ε
3 -coreset of

(
(Z(i))(G,q),Pλ, ψ(G,q)) is at least

1− Γ · 1
20Γ = 0.95,

which completes the proof. �
Observe that Theorem 5.2 is a direct corollary of Theorems 5.5 and 5.6.
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Proof: Combining Theorems 5.5 and 5.6, S is an ε-coreset of
(
ZG,q,k,Pkλ , ψ(G,q,k)) with probability at least

0.9. By Theorem 4.1, the size of S is

Γ ·O
(
ε−2λ−1qd

(
max

{
q2d, qd2} · log d

λ
+ log Γ

δ

))
,

which satisfies Theorem 5.2 by pluging in the value of Γ.
For the running time, it costs N · SVD(T, d+ 1) to compute IS by Theorem 5.5. Moreover, by Line 3 of

Algorithm 2, we already have the SVD decomposition of Z(i) for all i ∈ [N ]. Then it only costs O (T (q + d))
to apply CGLSE for each i ∈ IS in Line 8 of Algorithm 2. Then it costs O (NT (q + d)) to construct S. This
completes the proof of the running time. �

Proof of Theorem 5.5: IS is a coreset of
(
Z(G,q,k),Pkλ , ψ(G,q,k)). It remains to prove Theorem 5.5.

Note that the construction of IS applies the Feldman-Langberg framework. The analysis is similar to Section 4
in which we provide upper bounds for both the total sensitivity and the pseudo-dimension.

We first discuss how to bound the total sensitivity of (Z(G,q,k),Pk, ψ(G,q,k)). Similar to Section 4.5, the
idea is to first bound the total sensitivity of (Z(G,0,k),Pk, ψ(G,0,k)) – we call it the query space of OLSEk
whose covariance matrices of all individuals are identity matrices.

Lemma 5.7 (Total sensitivity of OLSEk) Function s(O) : [N ] → R≥0 of Algorithm 2 satisfies that for
any i ∈ [N ],

s(O)(i) ≥ sup
β(1),...,β(k)∈Rd

minl∈[k] ψ
(O)
i (β(l))∑

i′∈[N ] minl∈[k] ψ
(O)
i′ (β(l))

, (11)

and G(O) :=
∑
i∈[N ] s

(O)(i) satisfying that G(O) = O(M). Moreover, the construction time of function s(O) is

N · SVD(T, d+ 1) +O(N).

Proof: For every i ∈ [N ], recall that Z(i) ∈ RT×(d+1) is the matrix whose t-th row is z(i)
t = (xit, yit) ∈ Rd+1

for all t ∈ [T ]. By definition, we have that for any β ∈ Rd,

ψ
(O)
i (β) = ‖Z(i)(β,−1)‖22.

Thus, by the same argument as in Lemma 4.7, it suffices to prove that for any matrix sequences Z(1), . . . , Z(N) ∈
RT×(d+1),

s(O)(i) ≥ sup
β(1),...,β(k)∈Rd

minl∈[k] ‖Z(i)(β(l),−1)‖22∑
i′∈[N ] minl∈[k] ‖Z(i′)(β(l),−1)‖22

.
(12)

For any β(1), . . . , β(k) ∈ Rd and any i 6= j ∈ [N ], letting l? = arg minl∈[k] ‖Z(j)(β(l),−1)‖22, we have

min
l∈[k]
‖Z(i)(β(l),−1)‖22

≤ ‖Z(i)(β(l?),−1)‖22
≤ ui · (‖β(l?)‖22 + 1) (Defn. of ui)

≤ ui
`j
· ‖Z(j)(β(l?),−1)‖22 (Defn. of `i)

= ui
`j
·min
l∈[k]
‖Z(j)(β(l),−1)‖22. (Defn. of l?)
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Thus, we directly conclude that

minl∈[k] ‖Z(i)(β(l),−1)‖22∑
i′∈[N ] minl∈[k] ‖Z(i′)(β(l),−1)‖22

≤
minl∈[k] ‖Z(i)(β(l),−1)‖22(

1 +
∑
i′ 6=i

`i′
ui

)
·minl∈[k] ‖Z(i)(β(l),−1)‖22

= ui
ui +

∑
i′ 6=i `i′

= s(O)(i).

Hence, Inequality (12) holds. Moreover, since the input dataset is M -bounded, we have

G(O) ≤
∑
i∈[N ]

ui∑
i′∈[N ] `i′

≤M,

which completes the proof of correctness.
For the running time, it costs N · SVD(T, d+ 1) to compute SVD decompositions for all Z(i). Then it

costs O(N) time to compute all ui and `i, and hence costs O(N) time to compute sensitivity functions s(O).
Thus, we complete the proof. �
Note that by the above argument, we can also assume∑

i∈[N ]

ui
ui +

∑
i′ 6=i `i′

≤M,

which leads to the same upper bound for the total sensitivity G(O). Now we are ready to upper bound the
total sensitivity of (Z(G,q,k),Pk, ψ(G,q,k)).

Lemma 5.8 (Total sensitivity of GLSEk) Function s : [N ]→ R≥0 of Algorithm 2 satisfies that for any
i ∈ [N ],

s(i) ≥ sup
ζ∈Pk

λ

ψ
(G,q,k)
i (ζ)
ψ(G,q,k)(ζ)

, (13)

and G :=
∑
i∈[N ] s(i) satisfying that G = O( qMλ ). Moreover, the construction time of function s is

N · SVD(T, d+ 1) +O(N).

Proof: Since it only costs O(N) time to construct function s if we have s(O), we prove the construction
time by Lemma 5.7.

Fix i ∈ [N ]. If s(i) = 1 in Line 4 of Algorithm 2, then Inequality (13) trivally holds. Then we assume
that s(i) = 2(q+1)

λ · s(O)(i). We first have that for any i ∈ [N ] and any ζ ∈ Pkλ ,

ψ
(G,q,k)
i (ζ)

= min
l∈[k]

∑
t∈[T ]ψ

(G,q)
it (β(l), ρ(l)) (Defn. 2.4)

≥ min
l∈[k]

∑
t∈[T ]λ · ψ

(O)
it (β(l)) (Ineq. (6))

= λ ·min
l∈[k]

ψ
(O)
i (β(l)). (Defn. of ψ(O)

i )

which directly implies that

ψ(G,q,k)(ζ) ≥ λ ·
∑
i′∈[N ]

min
l∈[k]

ψ
(O)
i′ (β(l)). (14)
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We also note that for any (i, t) ∈ [N ]× [T ] and any (β, ρ) ∈ Pλ,

ψ
(G,q)
it (β, ρ)

≤
(

(yit − x>itβ)−
∑min{t−1,q}
j=1 ρj · (yi,t−j − x>i,t−jβ)

)2
(Defn. of ψ(G,q)

it )

≤ (1 +
∑min{t−1,q}
j=1 ρ2

j )×
(

(yit − x>itβ)2 +
∑min{t−1,q}
j=1 (yi,t−j − x>i,t−jβ)2

)
(Cauchy-Schwarz)

≤ 2
(

(yit − x>itβ)2 +
∑min{t−1,q}
j=1 (yi,t−j − x>i,t−jβ)2

)
. (‖ρ‖22 ≤ 1)

Hence, we have that

1
2 · ψ

(G,q)
it (β, ρ) ≤ (yit − x>itβ)2 +

min{t−1,q}∑
j=1

(yi,t−j − x>i,t−jβ)2. (15)

This implies that

ψ
(G,q,k)
i (ζ)

= min
l∈[k]

∑
t∈[T ]ψ

(G,q)
it (β(l), ρ(l)) (Defn. 2.4)

≤ min
l∈[k]

∑
t∈[T ]2×

(
(yit − x>itβ)2 +

∑min{t−1,q}
j=1 (yi,t−j − x>i,t−jβ)2

)
(Ineq. (15))

≤ 2(q + 1) ·min
l∈[k]

∑
t∈[T ]ψ

(O)
it (β(l))

= 2(q + 1) ·min
l∈[k]

ψ
(O)
i (β(l)). (Defn. of ψ(O)

i )

(16)

Thus, we have that for any i ∈ [N ] and ζ ∈ Pkλ ,

ψ
(G,q,k)
i (ζ)

ψ(G,q,k)(ζ)
≤

2(q + 1) ·minl∈[k] ψ
(O)
i (β(l))

λ ·
∑
i∈[N ] minl∈[k] ψ

(O)
i (β(l))

(Ineqs. (14) and (16))

≤ 2(q + 1)
λ

· s(O)(i) (Lemma 5.7)

= s(i), (by assumption)

which proves Inequality (13). Moreover, we have that

G =
∑
i∈[N ]

s(i) ≤ 2(q + 1)
λ

· G(O) = O(qM
λ

),

where the last inequality is from Lemma 5.7. We complete the proof. �
Next, we upper bound the pseudo-dimension of GLSEk. The proof is similar to that of GLSE by applying
Lemmas 4.5 and 4.6.

Lemma 5.9 (Pseudo-dimension of GLSEk) The pseudo-dimension of any query space
(Z(G,q,k), u,Pkλ , ψ(G,q,k)) over weight functions u : [N ]→ R≥0 is at most

O
(
k2q2(q + d)d2) .

Proof: The proof idea is similar to that of Lemma 4.3. Fix a weight function u : [N ] → R≥0.
For every i ∈ [N ], let gi : Pkλ × R≥0 → {0, 1} be the indicator function satisfying that for any
ζ = (β(1), . . . , β(k), ρ(1), . . . , ρ(k)) ∈ Pkλ and r ∈ R≥0,

gi(ζ, r) := I
[
u(i) · ψ(G,q,k)

i (ζ) ≥ r
]
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= I

∀l ∈ [k], u(i) ·
∑
t∈[T ]

ψ
(G,q)
it (β(l), ρ(l)) ≥ r

 .
We consider the query space (Z(G,q,k), u,Pkλ × R≥0, g). By the definition of Pkλ , the dimension of Pkλ × R≥0

is m = k(q + d) + 1. Also note that for any (β, ρ) ∈ Pλ, ψ(G,q)
it (β, ρ) can be represented as a multivariant

polynomial that consists of O(q2d2) terms ρb1
c1
ρb2
c2
βb3
c3
βb4
c4

where c1, c2 ∈ [q], c3, c4 ∈ [d] and b1, b2, b3, b4 ∈ {0, 1}.
Thus, gi can be calculated using l = O(kq2d2) operations, including O(kq2d2) arithmetic operations and k
jumps. Pluging the values of m and l in Lemma 4.5, the pseudo-dimension of (Z(G,q,k), u,Pkλ × R≥0, g) is
O
(
k2q2(q + d)d2). Then by Lemma 4.6, we complete the proof. �

Combining with the above lemmas and Theorem 4.2, we are ready to prove Theorem 5.5.

Proof: [Proof of Theorem 5.5] By Lemma 5.8, the total sensitivity G of (Z(G,q,k),Pkλ , ψ(G,q,k)) is O( qMλ ).
By Lemma 5.9, we can let dim = O

(
k2(q + d)q2d2) which is an upper bound of the pseudo-dimension of

every query space (Z(G,q,k), u,Pkλ , ψ(G,q,k)) over weight functions u : [N ]→ R≥0. Pluging the values of G and
dim in Theorem 4.2, we prove for the coreset size.

For the running time, it costs N · SVD(T, d+ 1) +O(N) time to compute the sensitivity function s by
Lemma 5.8, and O(N) time to construct IS . This completes the proof. �

5.3 Proof of Theorem 5.4: Lower bound for GLSEk

Actually, we prove a stronger version of Theorem 5.4 in the following. We show that both the coreset size
and the total sensitivity of the query space (Z(G,q,k), u,Pkλ , ψ(G,q,k)) may be Ω(N), even for the simple case
that T = 1 and d = k = 2.

Theorem 5.10 (Size and sensitivity lower bound of GLSEk) Let T = 1 and d = k = 2 and λ ∈ (0, 1).
There exists an instance X ∈ RN×T×d and Y ∈ RN×T such that the total sensitivity

∑
i∈[N ]

sup
ζ∈Pk

λ

ψ
(G,q,k)
i (ζ)
ψ(G,q,k)(ζ)

= Ω(N).

and any 0.5-coreset of the query space (Z(G,q,k), u,Pkλ , ψ(G,q,k)) should have size Ω(N).

Proof: We construct the same instance as in [49]. Concretely, for i ∈ [N ], let xi1 = (4i, 1
4i ) and yi1 = 0.

We claim that for any i ∈ [N ],

sup
ζ∈Pk

λ

ψ
(G,q,k)
i (ζ)

ψ(G,q,k)(ζ)
≥ 1

2 . (17)

If the claim is true, then we complete the proof of the total sensitivity by summing up the above inequality
over all i ∈ [N ]. Fix i ∈ [N ] and consider the following ζ = (β(1), β(2), ρ(1), ρ(2)) ∈ Pkλ where β(1) = ( 1

4i , 0),
β(2) = (0, 4i) and ρ(1) = ρ(2) = 0. If j ≤ i, we have

ψ
(G,q,k)
j (ζ) = min

l∈[2]
(yi1 − x>i1β(l))2

= min
{

1
16j−i ,

1
16i−j

}
= 1

16i−j .

Similarly, if j > i, we have

ψ
(G,q,k)
j (ζ) = min

{
1

16j−i ,
1

16i−j

}
= 1

16j−i .
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By the above equations, we have

ψ(G,q,k)(ζ) =
i∑

j=1

1
16i−j +

N∑
j=i+1

1
16j−i <

5
4 . (18)

Combining with the fact that ψ(G,q,k)
i (ζ) = 1, we prove Inequality (17).

For the coreset size, suppose S ⊆ [N ] together with a weight function w : S → R≥0 is a 0.5-coreset of the
query space (Z(G,q,k), u,Pkλ , ψ(G,q,k)). We only need to prove that S = [N ]. Suppose there exists some i? ∈ S
with w(i?) > 2. Letting ζ = (β(1), β(2), ρ(1), ρ(2)) where β(1) = ( 1

4i? , 0), β(2) = (0, 4i?) and ρ(1) = ρ(2) = 0, we
have that∑

i∈S
w(i) · ψ(G,q,k)

i (ζ) > w(i?) · ψ(G,q,k)
i? (ζ)

> 2 (w(i?) > 2 and Defns. of ζ)

> (1 + 1
2) · 5

4
> (1 + 1

2) · ψ(G,q,k)(ζ), (Ineq. (18))

which contradicts with the assumption of S. Thus, we have that for any i ∈ S, w(i) ≤ 2. Next, by
contradiction assume that i? /∈ S. Again, letting ζ = (β(1), β(2), ρ(1), ρ(2)) where β(1) = ( 1

4i? , 0), β(2) = (0, 4i?)
and ρ(1) = ρ(2) = 0, we have that∑

i∈S
w(i) · ψ(G,q,k)

i (ζ) ≤ 2
(
ψ(G,q,k)(ζ)− ψ(G,q,k)

i? (ζ)
)

(w(i) ≤ 2)

≤ 2(5
4 − 1) (Ineq. (18))

≤ (1− 1
2) · 1

≤ (1− 1
2) · ψ(G,q,k)(ζ),

which contradicts with the assumption of S. This completes the proof.
�

6 Empirical results
We implement our coreset algorithms for GLSE, and compare the performance with uniform sampling on
synthetic datasets and a real-world dataset. The experiments are conducted by PyCharm on a 4-Core desktop
CPU with 8GB RAM.2
Datasets. We experiment using synthetic datasets with N = T = 500 (250k observations), d = 10, q = 1
and λ = 0.2. For each individual i ∈ [N ], we first generate a mean vector xi ∈ Rd by first uniformly sampling
a unit vector x′i ∈ Rd, and a length τ ∈ [0, 5], and then letting xi = τx′i. Then for each time period t ∈ [T ],
we generate observation xit from a multivariate normal distribution N(xi, ‖xi‖22 · I) [50].3 Next, we generate
outcomes Y . First, we generate a regression vector β ∈ Rd from distribution N(0, I). Then we generate an
autoregression vector ρ ∈ Rq by first uniformly sampling a unit vector ρ′ ∈ Rq and a length τ ∈ [0, 1− λ],
and then letting ρ = τρ′. Based on ρ, we generate error terms eit as in Equation (2). To assess performance
robustness in the presence of outliers, we simulate another dataset replacing N(0, I) in Equation (2) with the
heavy tailed Cauchy(0,2) distribution [38]. Finally, the outcome yit = x>itβ + eit is the same as Equation (1).

2Codes are in https://github.com/huanglx12/Coresets-for-regressions-with-panel-data.
3The assumption that the covariance of each individual is proportional to ‖xi‖2

2 is common in econometrics. We also fix the
last coordinate of xit to be 1 to capture individual specific fixed effects.
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Figure 1: Boxplots of empirical errors for GLSE w.r.t. varying ε. Uni has higher average and maximum
empirical errors than CGLSE.

We also experiment on a real-world dataset involving the prediction of monthly profits from customers
for a credit card issuer as a function of demographics, past behaviors, and current balances and fees. The
panel dataset consisted of 250k observations: 50 months of data (T = 50) from 5000 customers (N = 5000)
with 11 features (d = 11). We set q = 1 and λ = 0.2.
Baseline and metrics. As a baseline coreset, we use uniform sampling (Uni), perhaps the simplest approach
to construct coresets: Given an integer Γ, uniformly sample Γ individual-time pairs (i, t) ∈ [N ]× [T ] with
weight NT

Γ for each.

Given regression parameters ζ and a subset S ⊆ [N ]× [T ], we define the empirical error as
∣∣∣∣ψ(G,q)

S
(ζ)

ψ(G,q)(ζ) − 1
∣∣∣∣.

We summarize the empirical errors e1, . . . , en by maximum, average, standard deviation (std) and root mean
square error (RMSE), where RMSE=

√
1
n

∑
i∈[n] e

2
i . By penalizing larger errors, RMSE combines information

in both average and standard deviation as a performance metric,. The running time for solving GLSE on
dataset X and our coreset S are TX and TS respectively. TC is the running time for coreset S construction .
Simulation setup. We vary ε = 0.1, 0.2, 0.3, 0.4, 0.5 and generate 100 independent random tuples ζ =
(β, ρ) ∈ Rd+q (the same as described in the generation of the synthetic dataset). For each ε, we run our
algorithm CGLSE and Uni to generate coresets. We guarantee that the total number of sampled individual-
time pairs of CGLSE and Uni are the same. We also implement IRLS [32] for solving GLSE. We run IRLS
on both the full dataset and coresets and record the runtime.
Results. Table 1 summarizes the accuracy-size trade-off of our coresets for GLSE for different error guarantees
ε. The maximum empirical error of Uni is always larger than that of our coresets (1.16-793x). Further,
there is no error guarantee with Uni, but errors are always below the error guarantee with our coresets.
The speed-up with our coresets relative to full data ( TX

TC+TS ) in solving GLSE is 1.2x-108x. To achieve the
maximum empirical error of .294 for GLSE in the real-world data, only 1534 individual-time pairs (0.6%)
are necessary for CGLSE. With Uni, to get the closest maximum empirical error of 0.438, at least 2734
individual-time pairs) (1.1%) is needed; i.e.., CGLSE achieves a smaller empirical error with a smaller sized
coreset. Though Uni may sometimes provide lower average error than CGLSE, it always has higher RMSE,
say 1.2-745x of CGLSE. When there are outliers as with Cauchy, our coresets perform even better on all
metrics relative to Uni. This is because CGLSE captures tails/outliers in the coreset, while Uni does not.
Figure 1 presents the boxplots of the empirical errors.

7 Conclusion, limitations, and future work
This paper initiates a theoretical study of coreset construction for regression problems with panel data. We
formulate the definitions of coresets for several variants of `2-regression, including OLSE, GLSE, and GLSEk.
For each variant, we propose efficient algorithms that construct a coreset of size independent of both N
and T , based on the FL framework. Our empirical results indicate that our algorithms can accelerate the
evaluation time and perform significantly better than uniform sampling.
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Table 1: performance of ε-coresets for GLSE w.r.t. varying ε. We report the maximum/average/standard
deviation/RMSE of the empirical error w.r.t. the 100 tuples of generated regression parameters for our
algorithm CGLSE and Uni. Size is the # of sampled individual-time pairs, for both CGLSE and Uni. TC
is construction time (seconds) of our coresets. TS and TX are the computation time (seconds) for GLSE over
coresets and the full dataset respectively. “Synthetic (G)” and “Synthetic (C)” represent synthetic datasets
with Gaussian errors and Cauchy errors respectively.

ε
max. emp. err. avg./std./RMSE of emp. err. size TC TC + TS TX (s)CGLSE Uni CGLSE Uni

sy
nt
he

tic
(G

) 0.1 .005 .015 .001/.001/.002 .007/.004/.008 116481 2 372 458
0.2 .018 .029 .006/.004/.008 .010/.007/.013 23043 2 80 458
0.3 .036 .041 .011/.008/.014 .014/.010/.017 7217 2 29 458
0.4 .055 .086 .016/.012/.021 .026/.020/.032 3095 2 18 458
0.5 .064 .130 .019/.015/.024 .068/.032/.075 1590 2 9 458

sy
nt
he

tic
(C

) 0.1 .001 .793 .000/.000/.001 .744/.029/.745 106385 2 1716 4430
0.2 .018 .939 .013/.003/.014 .927/.007/.927 21047 2 346 4430
0.3 .102 .937 .072/.021/.075 .860/.055/.862 6597 2 169 4430
0.4 .070 .962 .051/.011/.053 .961/.001/.961 2851 2 54 4430
0.5 .096 .998 .060/.026/.065 .992/.004/.992 472 2 41 4430

re
al
-w

or
ld

0.1 .029 .162 .005/.008/.009 .016/.026/.031 50777 3 383 2488
0.2 .054 .154 .017/.004/.017 .012/.024/.026 13062 3 85 2488
0.3 .187 .698 .039/.038/.054 .052/.106/.118 5393 3 24 2488
0.4 .220 .438 .019/.033/.038 .050/.081/.095 2734 3 20 2488
0.5 .294 1.107 .075/.038/.084 .074/.017/.183 1534 3 16 2488

For GLSEk, our coreset size contains a factor M , which may be unbounded and result in a coreset of
size Ω(N) in the worst case. In practice, if M is large, each sensitivity s(i) in Line 5 of Algorithm 2 will be
close or even equal to 1. In this case, IS is drawn from all individuals via uniform sampling which weakens
the performance of Algorithm 2 relative to Uni. Future research should investigate whether a different
assumption than the M -bound can generate a coreset of a smaller size.

There are several directions for future work. Currenly, q and d have a relatively large impact on coreset
size; future work needs to reduce this effect. This will advance the use of coresets for machine learning, where
d is typically large, and q is large in high frequency data. This paper focused on coreset construction for
panel data with `2-regression. The natural next steps would be to construct coresets with panel data for
other regression problems, e.g., `1-regression, generalized linear models and logistic regression, and beyond
regression to other supervised machine learning algorithms.
Broader impact. In terms of broader impact on practice, many organizations have to routinely outsource
data processing to external consultants and statisticians. But a major practical challenge for organizations
in doing this is to minimize issues of data security in terms of exposure of their data for potential abuse.
Further, minimization of such exposure is considered as necessary due diligence by laws such as GDPR and
CCPA which mandates firms to minimize security breaches that violate the privacy rights of the data owner
[45, 34]. Coreset based approaches to sharing data for processing can be very valuable for firms in addressing
data security and to be in compliance with privacy regulations like GDPR and CCPA.

Further, for policy and managerial decision making in economics, social sciences and management,
obtaining unbiased estimates of the regression relationships from observational data is critical. Panel data
is a critical ingredient for obtaining such unbiased estimates. As ML methods are being adopted by many
social scientists [5], ML scholars are becoming sensitive to these issues and our work in using coreset methods
for panel data can have significant impact for these scholars.

A practical concern is that coresets constructed and shared for one purpose or model may be used by the
data processor for other kinds of models, which may lead to erroneous conclusions. Further, there is also the
potential for issues of fairness to arise as different groups may not be adequately represented in the coreset
without incorporating fairness constraints [29]. These issues need to be explored in future research.
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A Discussion of the generative model (1)
In this section, we discuss the equivalence between the generative model (1) and the random effects estimator.
In random effects estimators, there exist additional individual specific effects αi ∈ R, i.e.,

yit = x>itβi + αi + eit, (19)

and we assume that all individual effects are drawn from a normal distribution, i.e.,

αi ∼ N(µ, σ2
0), ∀i ∈ [N ].

where µ ∈ R is the mean and σ2
0 ∈ R≥0 is the covariance of an unknown normal distribution. By Equation (19),

for any i ∈ [N ], we let αi = µ+ εi where εi ∼ N(0, σ2
0). Then Equation (19) can be rewritten as

yit = x>itβi + µ+ (εi + eit).

Let Ω ∈ RT×T denote the covariance matrix among error terms eit. Next, we simplify εi + eit by e′it.
Consequently, error terms e′it satisfy that

Exp[e′it] = 0, ∀(i, t) ∈ [N ]× [T ];
Cov(e′it, e′i′t′) = 0 ∀i 6= i′

Cov(e′it, e′it′) = Ωtt′ + σ2
0 = Ω′tt′ ∀i ∈ [N ], t, t′ ∈ [T ].

By this assumption, a random effects estimator can be defined by the following:

min
β,Ω

∑
i∈[N ]

(yi −Xiβi − µ · 1)>(Ω′)−1(yi −Xiβi − µ · 1).

Thus, we verify that the random effects estimator is equivalent to the generative model (1).

B Existing results and approaches for OLSE
We note that finding an ε-coreset of X for OLSE can be reduced to finding an ε-coreset for least-squares
regression with cross-sectional data. For completeness, we summarize the following theorems for OLSE whose
proofs mainly follow from the literature.

Theorem B.1 (ε-Coresets for OLSE [8]) There exists a deterministic algorithm that for any given ob-
servation matrix X ∈ RN×T×d, outcome matrix Y ∈ RN×T , a collection B ⊆ Rd and constant ε ∈ (0, 1),
constructs an ε-coreset of size O(d/ε2) of OLSE, with running time TSV D +O(NTd3/ε2) where TSV D is the
time needed to compute the left singular vectors of a matrix in RNT×(d+1).

Theorem B.2 (Accurate coresets for OLSE [33]) There exists a deterministic algorithm that for any
given observation matrix X ∈ RN×T×d, outcome matrix Y ∈ RN×T , a collection B ⊆ Rd, constructs an
accurate coreset of size O(d2) of OLSE, with running time O(NTd2 + d8 log(NT/d)).

B.1 Proof of Theorem B.1
We first prove Theorem B.1 and propose the corresponding algorithm that constructs an ε-coreset. Recall
that B ⊆ Rd denotes the domain of possible vectors β.

Proof: [Proof of Theorem B.1] Construct a matrix A ∈ RNT×d by letting the (iT − T + t)-th row of A
be xit for (i, t) ∈ [N ]× [T ]. Similarly, construct a vector b ∈ RNT by letting biT−T+t = yit. Then for any
β ∈ B, we have

ψ(O)(β) = ‖Aβ − b‖22.
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Thus, finding an ε-coreset of X of OLSE is equivalent to finding a row-sampling matrix S ∈ Rm×NT whose
rows are basis vectors e>i1 , . . . , e

>
im

and a rescaling matrix W ∈ Rm×m≥0 that is a diagonal matrix such that for
any β ∈ B,

‖WS (Aβ − b) ‖22 ∈ (1± ε) · ‖Aβ − b‖22.
By Theorem 1 of [8], we only need m = O(d/ε2) which completes the proof of correctness. Note that Theorem
1 of [8] only provides a theoretical guarantee of a weak-coreset which only approximately preserves the optimal
least-squares value. However, by the proof of Theorem 1 of [8], their coreset indeed holds for any β ∈ Rd.

The running time also follows from Theorem 1 of [8], which can be directly obtained by the algorithm
stated below. �

Algorithm in [8]. We then introduce the approach of [8] as follows. Suppose we have inputs A ∈ Rn×d
and b ∈ Rn.

1. Compute the SVD of Y = [A, b] ∈ Rn×(d+1). Let Y = UΣV > where U ∈ Rn×(d+1),Σ ∈ R(d+1)×(d+1)

and V ∈ R(d+1)×(d+1).

2. By Lemma 2 of [8] which is based on Theorem 3.1 of [7], we deterministically construct sampling and
rescaling matrices S ∈ Rm×n and W ∈ Rm×m (m = O(d/ε2)) such that for any y ∈ Rd+1,

‖WSUy‖22 ∈ (1± ε) · ‖Uy‖22.

The construction time is O(nd3/ε2).

3. Output S and W .

B.2 Proof of Theorem B.2
Next, we prove Theorem B.2 and propose the corresponding algorithm that constructs an accurate coreset.

Proof: [Proof of Theorem B.2] The proof idea is similar to that of Theorem B.1. Again, we construct a
matrix A ∈ RNT×d by letting the (iT − T + t)-th row of A be xit for (i, t) ∈ [N ]× [T ]. Similarly, construct a
vector b ∈ RNT by letting biT−T+t = yit. Then for any β ∈ B, we have

ψ(O)(β) = ‖Aβ − b‖22.

Thus, finding an ε-coreset of X of OLSE is equivalent to finding a row-sampling matrix S ∈ Rm×NT whose
rows are basis vectors e>i1 , . . . , e

>
im

and a rescaling matrix W ∈ Rm×m≥0 that is a diagonal matrix such that for
any β ∈ B,

‖WS (Aβ − b) ‖22 = ‖Aβ − b‖22.
By Theorem 3.2 of [33], we only need m = (d+ 1)2 + 1 = O(d2). Moreover, we can construct matrices W
and S in O(NTd2 + d8 log(NT/d)) time by applying n = NT , and k = 2(d+ 1) in Theorem 3.2 of [33]. �

Main approach in [33]. Suppose we have inputs A ∈ Rn×d and b ∈ Rn. Let A′ = [A,b] ∈ Rn×(d+1) For
any β ∈ Rd, we let β′ = (β,−1) ∈ Rd+1 and have that

‖Aβ − b‖22 = ‖A′β′‖22 = (β′)>(A′)>A′β′.

The main idea of [33] is to construct a sub-matrix C ∈ R((d+1)2+1)×(d+1) of A′ whose rows are of the form
wi · (ai,bi)> for some i ∈ [n] and wi ≥ 0, such that C>C = (A′)>A′. Then we have for any β ∈ Rd,

‖Cβ′‖22 = (β′)>C>Cβ′ = (β′)>(A′)>A′β′ = ‖Aβ − b‖22.

By the definition of C, there exists a row-sampling matrix S and a rescaling matrix W such that C = WSA′.
We then discuss why such a sub-matrix C exists. The main observation is that (A′)>A′ ∈ R(d+1)×(d+1)

and
(A′)>A′ =

∑
i∈[n]

(ai,bi) · (ai,bi)>.
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Thus, 1
n ·(A

′)>A′ is inside the convex hull of n matrices (ai,bi) ·(ai,bi)> ∈ R(d+1)×(d+1). By the Caratheodor-
y’s Theorem, there must exist at most (d+ 1)2 + 1 matrices (ai,bi) · (ai,bi)> whose convex hull also contains
1
n · (A

′)>A′. Then 1
n · (A

′)>A′ can be represented as a linear combination of these matrices, and hence, the
sub-matrix C ∈ R((d+1)2+1)×(d+1) exists.

Algorithm 1 of [33] shows how to directly construct such a matrix C. However, the running time is
O(n2d2) which is undesirable. To accelerate the running time, Jubran et al. [33] apply the following idea.

1. For each i ∈ [n], set pi ∈ R(d+1)2 as the concatenation of the (d+ 1)2 entries of (ai,bi) · (ai,bi)>. Let
P be the collection of these points pi. Then our objective is reduced to finding a subset S ⊆ P of size
(d+ 1)2 + 1 such that the convex hull of S contains P = 1

n ·
∑
i∈[n] pi.

2. Compute a balanced partition P1, . . . , Pk of P into k = 3(d+ 1)2 clusters of roughly the same size. By
the Caratheodory’s Theorem, there must exist at most (d+ 1)2 + 1 partitions Pi such that the convex
hull of their union contains P . The main issue is how to these partitions Pi efficiently.

3. To address this issue, Jubran et al. [33] compute a sketch for each partition Pi including its size |Pi|
and the weighted mean

ui := 1
|Pi|
·
∑
j∈Pi

pj .

The construction of sketches costs O(nd2) time. The key observation is that there exists a set S of at
most (d+ 1)2 + 1 points ui such that the convex hull of their union contains P by the Caratheodory’s
Theorem. Moreover, the corresponding partitions Pi of these ui are what we need – the convex hull
of
⋃
i∈[n]:ui∈S Pi contains P . Note that the construction of S costs O

(
k2 ((d+ 1)2)2) = O(d8) time.

Overall, it costs O(nd2 + d8) time to obtain the collection
⋃
i∈[n]:ui∈S Pi whose convex hull contains P .

4. We repeat the above procedure over
⋃
i∈[n]:ui∈S Pi until obtaining an accurate coreset of size (d+1)2 +1.

By the value of k, we note that ∣∣∣∣∣∣
⋃

i∈[n]:ui∈S

Pi

∣∣∣∣∣∣ ≤ n/2,
i.e., we half the size of the input set by an iteration. Thus, there are at most log(n/d) iterations and
the overall running time is

logn∑
i=0

O(nd2)
2i +O(d8) · log(n/d) = O

(
nd2 + d8 log(n/d)

)
.
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