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Abstract

There are many economic environments in which an object is offered sequentially to prospective

buyers. It is often observed that once the object for sale is turned down by one or more agents,

those that follow do the same. One explanation that has been proposed for this phenomenon is that

agents making choices further down the line rationally ignore their own assessment of the object’s

quality and herd behind their predecessors. Our research adds a new dimension to the canonical

herding model by allowing agents to differ in their ability to assess the quality of the offered object.

We develop novel tests of herding based on this ability heterogeneity and also examine its efficiency

consequences, applied to organ transplantation in the U.K. We find that herding is common but

that the information lost due to herding does not substantially increase false discards of good organs

or false acceptances of bad organs. Our counter-factual analysis indicates that this is due (in part)

to the high degree of heterogeneity in ability across transplant centers. In other settings, such as

the U.S., where organ transplantation is organized very differently and the ability distribution will

not be the same, the inefficiencies due to herding might well be substantial.
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1 Introduction

There are many economic environments in which prospective buyers, acting sequentially, must choose

whether or not to acquire an object. Examples of such environments include venture capital and

property development, where a startup or a piece of land is offered for sale, and the labor market,

notably the draft in professional sports leagues and the academic job market. It is often observed in

these environments that once the object for sale is turned down by one or more agents, those that

follow do the same. One explanation for this correlation in decisions is that the object is independently

assessed to be of poor quality by all agents. An alternative explanation, which goes back to seminal

contributions by Banerjee (1992) and Bikhchandani et al. (1992) is that agents who must make choices

further down the line (rationally) ignore their own assessment of the object’s quality and herd behind

their predecessors. Our research adds a new dimension to the canonical herding model by allowing

agents to differ in their ability to assess the quality of the offered object. We develop novel tests of

herding based on this ability heterogeneity and also examine its consequences for efficiency.

The setting for our research is the transplantation of deceased donor organs in the United King-

dom. The organ transplant program in the U.K. is organized around a nationwide network of centers

(hospitals). When a deceased donor organ becomes available, all patients on the National Transplant

Registry are assigned a priority rank based on a predetermined allocation algorithm. Transplant cen-

ters are offered the organ in order of their patients’ priority, until the organ either is accepted or,

having deteriorated with time, is no longer viable and is discarded by the National Health Service

Blood and Transplantation (NHSBT). We will see that the organization of the U.K. transplant pro-

gram makes it an ideal setting for our tests of herding. In particular, most decisions are made at

early positions (on average, the third position) and, hence, patient-organ mismatch and organ deteri-

oration, which increase by position, will be shown to be less relevant. This is also a setting in which

information-based herding, associated with uncertainty about organ quality, may have large practical

consequences. Currently, demand outstrips the availability of both livers and kidneys, the two organs

that dominate transplantation activity in the U.K. and that constitute the focus of our analysis. A

natural question to ask is whether herding, and the accompanying discarding of good organs, has

contributed to this shortfall.

The example that follows explains why transplant centers might rationally follow the decisions of

the centers that preceded them, and why such herding could generate inefficiencies. When a center

is offered an organ, it can either accept or reject. Suppose that there are two types of organs: good

(G) organs, which should be accepted and bad (B) organs, which should be rejected. Each transplant

center makes an assessment of the quality of the organ that is made available to it. This assessment,

which we characterize as an information signal, is not directly observed by other transplant centers.

As is common in the literature on herd behaviour; e.g. Bikhchandani et al. (1992), Anderson and

Holt (1997), and other references cited in Chamley (2004), we assume that signals are binary: good

(g) and bad (b). Centers are not systematically misinformed; they are thus more likely to receive a g
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(b) signal when an organ is good (bad). For the purpose of this example, we assume that transplant

centers have a common negative prior about the quality of offered organs; thus, in the absence of any

other information, each center’s decision is to reject the organ. Additionally, we assume that, if a

center receives a g signal, this dominates its negative prior and it will accept the offered organ.

It follows that the first center to be offered an organ will reject it on receipt of a b signal, but will

accept it on receipt of a g signal. The second center in line is only offered the organ if the first center

rejects. It knows that the first center only rejects following a b signal. Thus, if the second center also

receives a b signal, it will certainly reject the organ. If, however, the second center receives a g signal,

it knows that its signal is not aligned with that of the first center. Assuming, for the moment, that

all transplant centers receive signals of equal precision; i.e. that they are all equally competent in

assessing the quality of an organ, the first and second centers’ signals cancel each other out, and the

second center also rejects (based on its negative prior). Next, consider the third center’s decision: it

knows that the second center rejects the organ regardless of it’s signal, so the second center’s decision

gives the third center no additional information. Accordingly, the third center behaves as if it were

second in line and also rejects the organ, regardless of the signal it receives. This process is repeated

along the entire waiting list, regardless of the sequence of signals received by centers.

While it is individually rational for centers to ignore their signals in the manner described above,

herding can result in the under-utilization of viable organs. To see why this is the case, suppose that

the first center in line for an organ receives a b signal, but all the centers that follow receive g signals.

This organ is rejected by all centers despite the high likelihood that it is a G organ. Banerjee (1992)

and Bikhchandani et al. (1992) construct similar examples of this particular type of herding, which is

referred to in the literature as an “information cascade.” For the purpose of this paper, we say that

herding arises when a center rejects the organ regardless of its signal and, as a result, information

contained in that signal is lost to all centers that follow.1 With ability heterogeneity, the analysis

of herding becomes more complex; lower ability centers are more likely to ignore their signals when

they follow higher ability centers and, conversely, information cascades can be broken if centers of

sufficiently high ability are positioned later in the sequence.

Over the past three decades, the literature on information-based herding has advanced on multiple

fronts. Early theoretical contributions examined the robustness of information cascades to alternative

signal and choice structures (see Gale (1996) and Chamley (2004) for overviews). Theoretical work

on financial markets; e.g. Avery and Zemsky (1998) and Park and Sabourian (2011) showed that

1More generally, herding arises when agents follow their predecessors’ decisions and their successors cannot fully
recover the signals they received. An information cascade is an extreme type of herding in which agents completely
ignore their own signals when they follow their predecessors and, as a result, agents further down the line learn nothing
from their decisions. When the distribution of signals is unbounded, agents always place some weight on their own signals;
i.e. information cascades are ruled out (Smith and Sørensen, 2000). With a continuous distribution and bounded support,
herding and information cascades can co-exist and can be empirically disentangled, as in Çelen and Kariv (2004a). Either
way, there is always an information loss when decisions are binary because predecessors’ signals cannot be recovered
perfectly (Vives, 1996). In our model, there are two actions, accept or reject, two types of organs (states), G and B, and
two signals, g and b. Centers either follow their signals or ignore them completely and, hence, herding and information
cascades are synonymous.

2



herding can arise even when the cost of conformity (the asset price) is increasing in the number of

agents who have made the same (investment) decision. In parallel, empirical contributions in finance

and development sought to establish the key implication of social learning, a general phenomenon

subsuming herding but not necessarily involving information loss, which is that agents condition their

decisions on their predecessors’ decisions (Lakonishok et al., 1992; Grinblatt et al., 1995; Wermers,

1999; Foster and Rosenzweig, 1995; Munshi, 2004; Conley and Udry, 2010). More recently, the theo-

retical focus has shifted to model misspecification (Bohren, 2016; Frick et al., 2019) and non-Bayesian

learning on networks (Golub and Jackson, 2010; Mobius et al., 2015; Banerjee et al., 2021). The em-

pirical literature has developed sharper tests of social learning by exploiting experimentally induced

variation in predecessors’ decisions (Dupas, 2014) and has moved to estimating structural models of

herding (Zhang, 2010; Cipriani and Guarino, 2014). Our analysis advances the herding literature by

incorporating a new dimension of agent heterogeneity; the ability to assess the quality of the object

under consideration.

Our analysis proceeds in three steps. First, we derive tests of herding with heterogeneous ability.

When choices are sequential, the most straightforward test of herding, and social learning more gen-

erally, is that the same patient (and her associated center) are more likely to reject an organ when

they are further down the line because they have observed more rejections. Zhang (2010) exploits this

source of variation to estimate a structural model of herding in organ transplant decisions in the U.S.

However, other explanations for this observation are also available. For example, lower quality organs,

which are less likely to be accepted at any position on average, travel further down the line even when

centers make decisions independently.2 Furthermore, patient priority is determined, in part, by the

organ-patient match. Patients lower in line will have a worse match on average and, moreover, the

organ is more likely to have deteriorated with time. This is especially relevant in the U.S. because

queue lengths are an order of magnitude longer than in the U.K. Zhang controls for these factors in

her analysis, but such conditioning is always imperfect.3 We avoid this problem by developing tests of

herding and its associated information loss that leverage variation in decisions at the same position.

This variation arises because (i) centers differ in their ability to distinguish between good and bad

organs, and (ii) the ordering of centers varies from one organ to the next depending on the priority of

their patients (and not on center ability).

We implement the tests of herding with administrative data obtained from NHSBT. This data

covers the universe of deceased-donor livers and kidneys offered between 2006 and 2015 in the United

Kingdom. It includes the sequence of centers that were offered each organ, as well as their decisions,

2This negative selection is conceptually related to the well known dynamic selection bias that arises when individuals
with heterogeneous ability make decisions sequentially and drop out non-randomly from the sample over time; e.g.
Cameron and Heckman (1998).

3Zhang proposes an additional test of herding in which she documents that (close to identical) kidneys from the same
donor are accepted at different positions. This observation is consistent with a model of herding, as in the example above,
in which initial mistakes that occur by chance are not subsequently rectified. However, such divergence in outcomes
could also be obtained if centers are making decisions independently and there is sufficient variation in the signals they
receive for a given organ and, by extension, across (even identical) organs.
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which – with the possible exception of the final center in every sequence – must necessarily be rejections.

In our model, centers always follow their signals in first position. Moreover, higher ability centers are

better at detecting both bad organs and good organs; when the pool of organs is of low (high) quality,

higher ability centers will thus have higher (lower) rejection rates in first position. However, the

centers that follow them will always be more likely to reject because they receive organs of lower

quality. We find that centers in second position are more likely to reject when their predecessors have

higher rejection rates with livers, which implies that the pool of organs is of poor quality, whereas the

converse is true for kidneys. We consequently measure center ability, q, in our tests of herding by the

rejection rate in first position for livers and by one minus that statistic for kidneys. Alternative sources

of heterogeneity; for example, that some centers are more picky about accepting organs or that they

receive organs of lower quality on average could, in principle, generate variation in the rejection rate

in first position. Providing support for our interpretation of the rejection rate as a measure of center

ability, we show that they cannot independently explain the distinct patterns of decision-making that

we document for livers and kidneys in second position.

Our tests of herding are based on the idea that centers always follow their signals in first position,

but can herd and ignore their signals in second position. The first test restricts attention to decisions

in second position, focusing on the interaction of center 1 ability, q1, and center 2 ability, q2. When

centers follow their own signals, center 2 is more responsive to the deterioration in the organ pool

that results from center 1 being of relatively high ability when it too is of higher ability. That is, we

expect the effect of an increase in q1 · q2 on the rejection decision in second position to be positive.

When centers ignore their own signals and herd behind their predecessors, however, this interaction

effect could be reversed. This is because lower ability centers in second position are more likely to

abandon their signals and reject with certainty, especially when following higher-ability centers. A

notable feature of this test is that we are able to show theoretically, and verify empirically, that the

q1 · q2 effect is negative in a bad organ pool, as observed for livers, and positive in a good organ pool,

as observed for kidneys, when (some) centers are herding in second position. In contrast, as noted

above, the q1 · q2 effect is always positive in the absence of herding.

Our second test of herding restricts attention to decisions in third position. Suppose, to begin

with, that all centers follow their own signals. As above, higher ability centers then pass on a worse

pool of organs to those that follow. It can then be shown that marginal increases in q1 and q2 will have

the same (positive) effect on center 3’s rejection decision. However, once we introduce the possibility

of herding – this can happen in second, but not first, position – the effect of an increase in q2 is

strictly smaller than the effect of a corresponding increase in q1. This is because centers that herd,

and reject with certainty, regardless of their signal, do not alter the quality of the organ pool and,

thus, the rejection probability of center 3. A notable feature of this test is that we are able to verify

its implications with a substantially restricted sample of organs for which q1 and q2 are approximately

the same.
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The second step in the analysis estimates and validates the model. While it is sufficient to construct

a composite, center-specific, measure of ability, q, for the herding tests, we need to construct center

and organ-quality specific measures of ability to verify the assumptions of the model, to examine its

goodness of fit with the data, and for the efficiency analysis. The challenge here is that the quality of

a given organ in the data is not known to the researcher, even ex post, particularly if it is not accepted.

We thus incorporate “risk indices” that have recently been developed in the transplantation literature

(Watson et al., 2012; Collett et al., 2017) and that are negatively associated with the probability that

an organ is good, to estimate the β parameter (the probability of receiving a b signal with a B organ)

and the γ parameter (the probability of receiving a g signal with a G organ) for each center. We

establish that the β, γ parameters are positively associated with the composite q parameter used in

the herding tests, verifying the assumption in the model that more able centers are better at detecting

both good and bad organs. The β, γ parameters can be used, in addition, to estimate the remaining

parameters of the model: the fraction of good organs in the population, which serves as the prior

belief for all centers in position 1, and the threshold belief that an organ is good above which centers

accept. The estimated fraction of good organs is substantially lower for livers than for kidneys, which

is consistent with the discussion above where we inferred that livers (kidneys) are drawn from organ

pools of low (high) quality. The estimated parameters also allow us to verify two key assumptions of

the model: (i) centers are not systematically misinformed; i.e. they are more likely to receive a b (g)

signal with a B (G) organ, and (ii) centers follow their signals in first position; i.e. their posterior

belief that an organ is good after receiving a g (b) signal lies above (below) the threshold belief.

We complete the validation of the model by examining its goodness of fit with the data. The

model’s parameters are estimated at the first and second positions and, hence, we are interested in

seeing how well the model matches the data at higher positions. Despite its parsimonious structure, we

find that the rejection rate predicted by the model matches closely with the data at each position. This

contrasts with the performance of an alternative no learning model in which centers make decisions

independently; rejection rates continue to increase across positions due to the negative selection; i.e.

because bad organs are more likely to reach higher positions, but predicted rejection rates are now

systematically lower than the rates observed in the data. The goodness of fit results complement the

tests of herding, providing independent evidence that centers are learning from their predecessors’

(rejection) decisions. Moreover, given the parameter estimates and the sequence of centers associated

with each organ, we can determine whether a given center at a given position is herding. We find

that herding is common – this occurs for 48% of decisions for livers, and 17% of decisions for kidneys

– which leads us to the final step in the analysis where we examine the efficiency consequences of

herding and its associated information loss.

We measure efficiency against the first-best benchmark in which all good organs are accepted and

all bad organs are discarded. Although the risk index provides an objective measure of organ quality,

it does not indicate whether a given organ in our data is good (should be accepted) or bad (should be
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discarded). We thus consider 1000 hypothetical “good” organs and 1000 hypothetical “bad” organs in

the efficiency analysis. For each organ, we draw centers randomly from our pool of centers and then

order them without regard to their ability, in line with the ordering scheme that is currently in place.

We draw a signal for each selected center, based on the type of organ and the center’s ability, and

then use the model to predict beliefs and accompanying decisions at each position. In addition to our

herding model, we also predict outcomes with a counter-factual pooled information model in which

signals received by centers that reject regardless of their signal are made available to centers positioned

later in line. The results of this exercise can be summarized as follows: (i) both false discard rates

and false acceptance rates are very similar with the two models of learning, (ii) false discard rates and

false acceptance rates are low overall (approximately 3 percent).

We complete the analysis by examining the contribution of ability heterogeneity to the results

reported above. We do this by comparing false discard rates and false acceptance rates at different

(counter-factual) levels of ability heterogeneity. We find that the inefficiency due to herding, relative

to the pooled information model, is declining with ability heterogeneity. The false discard rate, in

particular, would double if centers were homogeneous in their abilities. In general, the effect of a

mean-preserving increase in ability heterogeneity on the prevalence of herding is ambiguous; herding

will increase when higher ability centers go earlier in the sequence and decrease when they go later. In

our setting, the prevalence of herding, and ability conditional on herding, decline with heterogeneity.

This explains why the information loss and accompanying inefficiency due to herding is relatively low.

Our results are relevant for analyses of organ transplantation in other settings. Early contributions

to the organ transplantation literature in economics; e.g. Roth et al. (2004), Roth et al. (2007),

focussed on kidney exchange and its associated matching problem involving multiple (living) donor-

patient pairs. More recently, economists have begun to examine the allocation of deceased donor

organs. With these organs, uncertainty about objective organ quality is an important consideration

(in addition to the donor-patient mismatch) in decision-making. The fact that risk indices of organ

quality have been developed in the U.S. and the U.K., with the objective of ultimately informing

center decision-making, suggests that the medical community is well aware of this consideration.

Moreover, since centers are making decisions sequentially, uncertainty about organ quality is likely to

result in herding, with its potential inefficiencies. There is no a priori reason why the conditions that

reduce herding inefficiencies in the U.K. should hold in other settings, such as the U.S., where organ

transplantation is organized very differently and where the ability distribution will not be the same.

Nevertheless, recent contributions to the transplantation literature in economics; e.g. Agarwal et al.

(2020) Agarwal et al. (2021), ignore herding in their (U.S. based) analyses. Deceased donor organs

account for the majority of transplanted organs in the U.S. and the U.K. and this line of research is

likely to grow over time. It thus seems especially important to incorporate relevant elements of center

decision-making, including social learning, in future research.
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2 Institutional Setting

The shortage of suitable donor organs has always been the primary challenge faced by organ trans-

plant programs. In response to this challenge, many countries, including the United Kingdom, have

established national allocation schemes for the distribution of organs supplied by deceased donors.

Organs obtained from deceased donors are classified according to the manner of death as either DBD

(donation after brain death) or DCD (donation after cardiac death). Although DBD and DCD organs

do not vary systematically with respect to ex ante quality and the same broad allocation protocols

are utilized by the National Health Service Blood and Transplant (NHSBT) for both types of organs,

DCD organs are useable for a shorter period of time before they must be discarded from the donor

pool and set aside for research (Watson and Dark, 2012).

Our analysis focuses on livers and kidneys, for which donors have been matched to recipients in the

United Kingdom through a national allocation scheme since the late 1990s. These two types of organs

continue to dominate transplantation activity: NHSBT statistics indicate that over 80% of livers and

kidneys obtained from DBD donors in 2014-2015 were transplanted, while the corresponding statistics

for pancreases, hearts, and lungs were less than 35%. For DBD livers and kidneys, a Transplant

Benefit Score (TBS), which puts weight on both the patient’s need for a transplant and the patient’s

organ-specific quality of life after the transplant, is used to rank all patients listed on the National

Registry when a given organ becomes available. The TBS is calculated using a fixed set of donor and

recipient characteristics. Transplantation delays are substantially more costly for DCD organs and,

hence, the proximity between donor and recipient is also a factor in drawing up the priority list for

them.

When an organ becomes available, it is offered to patients in order of their priority. Each patient’s

hospital (transplant center) has 45 minutes to accept or decline the offer. The attending surgeon has

an open-ended conversation with the NHSBT administrator about the characteristics of the organ

and the donor, as well as other factors that are relevant for that particular case, before arriving at a

decision. Each center that is offered an organ can either accept or reject it. If an organ is rejected,

it is offered to the next center in line, unless NHSBT assesses that the condition of the organ has

deteriorated to the point that it is no longer useable, in which case it is discarded, i.e. set aside for

research. There are thus two possible end-points for an organ: it is accepted or it is discarded. Prior

to either end-point, all decisions must necessarily be rejections.

The deterioration that results in an organ being discarded can be caused by delays in retrieving

the organ (warm ischaemia), which applies to DCD organs, or by subsequent delays in transplantation

(cold ischaemia), which applies to both DBD and DCD organs. Based on NHSBT guidelines, DBD

(DCD) livers should be transplanted within 12 (6) hours after retrieval, while the corresponding cutoffs

for kidneys are 18 (12) hours. This is a narrow time window, leaving room for just a few centers to

make decisions before an organ is discarded by NHSBT. The data that we use to test the model

consists of the sequence of decisions taken by centers for each deceased-donor organ (liver or kidney)
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that was offered for transplantation in the 2006-2015 period.4 Based on this data, as observed in

Figure 1, 35% of observed decisions for livers are in first position, with a steep decline in the fraction

of decisions at higher positions. For kidneys, over 40% of decisions are in first position, followed by an

even steeper decline in the fraction of decisions at higher positions. There are relatively few decisions

past the eighth position for either type of organ. The analysis that follows will thus be restricted to

the first eight positions.

Figure 1: Distribution of Decisions by Queue Position

Note: Statistics based on all organs offered for transplantation, 2006-2015.

The allocation of deceased-donor organs in the United Kingdom differs in important respects from

the allocation procedure in the United States. Zhang (2010), using data on kidney donations in

Texas, documents that on average an organ is accepted by the 34th patient in line, who has already

turned down 15 offers. Such long queue lengths are possible because organs are only discarded after

48 hours. Under these circumstances, the condition of the organ becomes a major consideration in

decision-making, particularly at higher positions. The mismatch between organ and recipient also

becomes relevant (in Zhang’s data, kidneys are accepted as late as the 77th position). Given this

mismatch, patients consider (and reject) many organs before finally accepting and, hence, dynamic

considerations enter the decision rule. Zhang (2010), Agarwal et al. (2020), and Agarwal et al. (2021),

who all study kidney allocation in the United States, model the acceptance decision as an optimal

stopping problem. The institutional environment in the United Kingdom, where organs are almost

always accepted by patients towards the very top of the national priority list and where mismatch,

deterioration, and the associated strategic inter-temporal considerations are thus less relevant, allows

4A new National Kidney Allocation Scheme was initiated in 2006 and a new National Liver Allocation Scheme was
initiated in 2015. The analysis thus covers a period during which both livers and kidneys were allocated in a uniform
manner.
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us to ignore these factors in our analysis and focus on a new aspect of decision-making, which is the

ability of centers to correctly assess the quality of the organs they are offered.5

Table 1: Determinants of Transplant Success

Dependent variable: organ survives for at least three years

Organ: liver kidney
(1) (2)

Organ risk index -0.0463*** -0.130***
(0.011) (0.011)

Position in queue -0.00644 -0.00471*
(0.004) (0.003)

Center ability -0.00489 -0.0155
(0.082) (0.032)

Mean of dependent variable 0.729 0.771

N 6243 11755

Note: heteroscedasticity-robust standard errors in parentheses

Center ability is the measure used in the herding tests

Position in queue ranges from 1 to 8
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1 provides direct evidence that the patient-organ mismatch and organ deterioration, which

are both necessarily increasing with a center’s position in the queue for a given organ, are less relevant

in the United Kingdom. This table reports the relationship between the most stringent (conventional)

measure of transplant success – whether the organ survives at least three years – and the position in

the queue of the transplanting center, for all livers and kidneys that were transplanted between 2006

and 2015. If mismatch and deterioration are relevant, then organs transplanted at higher positions

will have worse outcomes. Because lower quality organs will travel further down the line on average,

we include a recently constructed risk index of organ quality (described in greater detail in Section

5.1) in the estimating equation. As observed in Table 1, the probability of transplant success is (not

surprisingly) declining significantly in the risk index. Conditional on the risk index, the transplanting

center’s position in the queue has a negligible effect on transplant success.6 This indicates that

5A patient (and her associated center) will strategically decline an organ if the expected gain from a better match in
the future exceeds the expected cost of the delay. The patients in our data are at the very top of the national priority
list for each organ, as observed in Figure 1. Since patient priority is based on both patient characteristics and the
patient-organ match, the latter must be very high for a patient to be positioned so early. There would thus appear to
be little to gain with respect to matching by moving up a couple of positions in the future. In contrast, a patient who is
offered an organ in the 77th position, as observed in Zhang’s (2010) U.S. data, could well benefit by delaying strategically
and waiting for a better match.

6The estimates reported in Table 1 are based on the linear probability model because the marginal effects are easy
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neither mismatch nor deterioration (at higher positions) are relevant in this setting. One alternative

explanation for this result is that centers at higher positions account for the mismatch and deterioration

in their decision-making; i.e. strategic dynamic considerations are relevant. Based on the analysis in

Section 5.3, however, there is no evidence that this is the case.

While centers may differ in their ability to distinguish between good and bad organs, we assume

that this particular dimension of ability is independent of their competence in implementing transplant

procedures. The estimating equation in Table 1 includes the measure of center ability that we will

use in the herding tests, which is based on the center’s rejection rate when in first position. Although

this measure will have a strong effect on decisions, we see (conditional on the risk index) that it has

no impact on transplant success. Our interpretation of this result is that higher ability centers, as we

define them, do not have greater competence in implementing transplants and that their patients do

not differ with respect to fixed characteristics such as age and health condition that independently

determine transplant outcomes.7 The results in Table 1, taken together, will allow us to simplify both

the model and the empirical analysis that follows.

As noted, organs are offered to patients on the basis of their priority, without regard to the

characteristics of the centers to which they are attached. This feature of the allocation scheme will

be especially useful in the analysis that follows and we close this section by verifying two of its

implications: (i) The average quality of organs received in first position does not vary across centers.

(ii) The average position at which centers receive organs does not vary across centers.

The X axis in Figure 2 ranks centers by their rejection rate when in first position and the Y axis

reports the quality of organs received by centers in that position, where quality is measured by the

independently constructed risk index. For each center, the circle marks the mean risk index and the

vertical line demarcates one standard deviation above and below the mean. The horizontal line marks

the sample mean of the risk index, across all organs in the data. There are eight liver transplant

centers and 24 kidney transplant centers and we see that the center-specific means are very close to

(and statistically indistinguishable from) this population statistic, with the exception of one outlying

center for livers.8 Variation in the rejection rate in first position, which sorts centers on the X axis,

is evidently not being driven by variation in the (average) quality of organs they receive, and we will

return to this point below.

Figure 3 replaces organ quality with the center’s position in the queue on the Y axis. We see that

to interpret. Average marginal effects with the probit model are almost identical to the estimates reported in the table.
The estimated marginal effects imply that a two standard deviation increase in center position would reduce the survival
probability for both livers and kidneys by 0.02.

7Transplant centers service precisely defined regions. Given the length of time that patients must wait for a transplant
and the fact that decisions must be made and the transplant itself must be undertaken within a matter of hours, selective
sorting by patients into particular centers is unlikely to be a consideration in practice. However, variation in demographic
characteristics across regions could, in principle, generate variation in patient characteristics across centers. The results
in Table 1 indicate that this is not the case.

8The same outlying center is dropped from Figure 2(b) and from Figure 3(b) that follows because it only receives
kidneys in first position. It will also be dropped later in Figures 8 and 9, for kidneys, because the rejection rate in first
position lies well below the reported range. We retain this center in the statistical analysis for completeness, but verified
that the results of the tests that follow would be unchanged if it were dropped.
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Figure 2: Risk Index in First Position Across Centers

(a) liver (b) kidney

Note: Circles mark the mean risk index for organs received in first position by center and vertical lines demarcate one

standard deviation above and below the center-specific mean. The horizontal line marks the sample mean.

the center-specific mean positions are close to (and statistically indistinguishable from) the sample

mean, which is approximately 3 for livers and 2.5 for kidneys, with the exception of the same outlying

liver center. Based on the model that follows, we will associate the rejection rate in first position (the

X variable) with center ability and, hence, Figure 3 is consistent with the assumption that centers are

ordered independently of their ability. Additional support for this assumption is provided in Section

4.1.

Figure 3: Position in the Queue Across Centers

(a) liver (b) kidney

Note: Circles mark the mean position for each center across all the organs it received and vertical lines demarcate one

standard deviation above and below the center-specific mean. The horizontal line marks the sample mean.

11



3 A Model of Organ Transplantation

3.1 Organs, Centers and Signals

Organs can be either of good (G) or bad (B) quality. The outcome of an organ transplant is denoted

by H if the organ is good, and by L if it is bad, with H > 0 > L. We normalize the outcome of

not transplanting an organ to 0. Although centers do not know the quality of a particular organ

with certainty, the fraction of organs that are G organs, π, is common knowledge. We define the

cut-off belief π̃ as the belief at which every center is indifferent between accepting or rejecting an

organ; i.e. π̃H + (1 − π̃)L = 0, or π̃ = −L
H−L . π̃ could potentially vary across centers because some

are more competent at performing transplants; i.e. have higher H/L, due to heterogeneity in patient

demographics, or because some centers are more picky than others. As discussed in Section 4.2,

allowing for center heterogeneity on this dimension does not undermine our tests of herding.

Centers independently assess organ quality before making a decision. This assessment is based on

each center’s past experience and the organ-specific information it receives from the NHSBT adminis-

trator. More competent centers are better able to acquire salient information from the administrator

and to utilize that information. We characterize each center’s independent assessment of an organ

by a private information signal s ∈ {g, b}, where a g signal indicates that the organ is good, while b

indicates that it is bad. We denote a center by j and its ability by qj ∈
[
q, q
]
⊂ R. A center’s ability

determines the probability γj with which it correctly identifies a G organ and the probability βj with

which it correctly identifies a B organ. In particular, for any center j, P (g | G) = γj = γ(qj) and

P (b | B) = βj = β(qj), where γ, β are strictly increasing functions. In the discussion that follows, we

will sometimes refer to qj as composite ability to distinguish it from center-specific and organ-quality

specific abilities, βj and γj .

Centers are not systematically misinformed; i.e. each center is more likely to receive a b (g) signal

with a bad (good) organ. This requires:

Assumption 1: For all j, βj ≥ 1− γj .

This assumption will certainly be satisfied if the lowest ability center, with ability q, is completely

uninformed; i.e. is equally likely to receive a b (g) signal with a G organ or with a B organ. This

implies β(q) = 1− γ(q).

Centers in first position update their prior belief that an organ is good, π, upon receiving their

signals. Formally, center j’s posterior belief that an organ is good, upon receiving signals g and b in

first position is denoted by

πj(g) =
πγj

πγj + (1− π)(1− βj)

πj(b) =
π(1− γj)

π(1− γj) + (1− π)βj
,
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respectively. Given Assumption 1, the belief shifts up (down) upon receipt of a g(b) signal:

πj(g) ≥ π ≥ πj(b). (1)

In addition to Assumption 1, we further assume that centers always follow their own signals in

first position (absent any other information) such that each center accepts the organ if it receives a g

signal and declines the organ upon receipt of a b signal. This is equivalent to the following:

Assumption 2: For all j, πj(g) ≥ π̃ > πj(b).

3.2 Transplant Decisions

Organs are offered sequentially to centers on the basis of a predetermined algorithm. The priority

list for a given organ is based on recipients’ characteristics and their match with the organ and is

independent of the centers to which they are attached. In this institutional environment, where

organs rarely proceed past the first few positions, there is little variation in patient characteristics,

the organ-patient mismatch, and organ deterioration. Although we will consider a potential role for

these factors when interpreting the empirical results, this allows us to focus on centers’ beliefs about

organ quality when modeling decision-making.

We next describe the evolution of beliefs, and associated decisions, for the centers in line for a

given organ. To simplify notation for the rest of this section and for the tests of herding in Section 4,

we identify a center by its position in line, such that the center at position j has ability qj . Center

1 receives a signal and, given Assumption 2, accepts after a g signal and declines after a b signal. If

the organ is accepted, it is transplanted by center 1 and results in payoff H or L, depending on its

quality. If it is declined, an administrator from NHSBT decides either to offer the organ to the next

center or to set it aside for research. The decision to discard an organ is based on its condition, which

depends on its quality and its deterioration over the course of the offering process. Although we do

not model the discard decision, we will account for its exogenous (common) effect on center beliefs at

each position in the empirical analysis, where relevant. Note that the discard decision has no bearing

on our tests of herding because they are based on variation in center beliefs and decisions at the same

position.

Centers positioned further along in the sequence learn from the (rejection) decisions of their pre-

decessors. Each center knows the identity of its predecessors and the order in which they made their

decisions. If this were not the case, then all the tests reported below would fail to be supported by

the data.9 We use an iterative process to describe centers’ equilibrium beliefs and strategies moving

down the line. The equilibrium concept that characterizes the learning process is Perfect Bayesian

Nash Equilibrium.

9In other settings with sequential decision-making, it is possible that all predecessors’ identities will not be available.
A modified analysis, on the lines of Çelen and Kariv (2004b) will then be required.
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If center 2 is offered an organ, it knows that center 1 must have received a b signal, given Assumption

2. Its prior belief before it receives its private signal, which is public information, is denoted by π2;

thus

π2 = π1(b) =
π(1− γ1)

π(1− γ1) + (1− π)β1
. (2)

Its posterior belief, upon receiving signals g and b, respectively, is given by

π2(g) =
π2γ2

π2γ2 + (1− π2)(1− β2)
,

and

π2(b) =
π2(1− γ2)

π2(1− γ2) + (1− π2)β2
.

Center 2 always rejects the organ if it receives a b signal, because its prior belief, π2 (which is lower

than π̃ from Assumption 2), is downgraded even further following a b signal. Center 2 could reject the

organ even if it receives a g signal – which implies that it is herding – if this updating does not raise

its posterior above π̃. To summarize, center 2’s optimal decision is to accept the organ if it received

a g signal and π2(g) ≥ π̃, and to decline otherwise.

Next, center 3 knows center 2’s decision-making process and its prior belief, π2, but does not

necessarily know center 2’s signal. If center 2 herds, its decision provides no information about its

signal to center 3, and the latter’s public belief π3 is therefore equal to π2. If, on the other hand,

center 2 uses its signal to make its decision (π2(g) ≥ π̃), center 3 infers from center 2’s rejection that

it must have received a b signal, and therefore has a public belief equal to π2(b). Thus,

π3 =

{
π2, if π2(g) < π̃

π2(b) otherwise.

The preceding discussion can be easily generalized. In the same way as center 2, center n > 3, given

its public belief (πn), forms its posterior belief (either πn(g) or πn(b)), and then chooses optimally

either to accept or to decline the organ. Then, as with center 3, center n + 1’s public belief πn+1

equals πn if center n herds and πn(b) otherwise.

4 Herding Tests

4.1 Center Ability

As discussed, the novelty of our tests of herding is that they are based on variation in center decisions

at the same position. This variation arises because centers differ in their ability to distinguish between

good and bad organs and because the order of centers varies from one organ to the next. The first

step in deriving our tests is thus to use the model to construct a composite measure of center ability.

Our measure of a center’s ability is based on its observed rejection rate when in first position p1.
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By Assumption 2, all centers follow their signals in first position. Thus, for any specific organ, the

probability that center 1 with ability q1, rejects the organ, p1(q1), is equal to the probability that it

receives a b signal:

p1(q1) = π(1− γ1) + (1− π)β1. (3)

Under the assumption that all centers receive organs of the same average quality in first position,

as verified above, this probability depends only on the probability that the organ is good π and the

ability of the center q1. Moreover, it is the same for all organs that the center receives in first position.

This implies that p1(q1) = p1, and we will thus use these terms interchangeably.

By equation (3), we also have that

dp1(q1)

dq1
= −πγ′(q1) + (1− π)β′(q1). (4)

It is evident from equation (4) that p1(q1) could be increasing or decreasing in q1 because more able

centers are better at detecting both good and bad organs; i.e. γ′(q1) and β′(q1) are both positive.

In an inferior organ pool, with many bad organs, the β′(q1) term dominates and p1(q1) is increasing

in q1. In a superior organ pool, with many good organs, the γ′(q1) term dominates and p1(q1) is

decreasing in q1. We allow for both possibilities, with the restriction that the probability of rejection

in first position, for a given organ pool, is either monotonically increasing or decreasing in ability for

all centers; i.e. either dp1(q1)
dq1

> 0 for any q1 ∈ [q, q] or dp1(q1)
dq1

< 0 for any q1 ∈ [q, q]. We provide

empirical support for this monotonicity assumption in Section 5.2.

To determine whether the probability of rejection in first position is increasing or decreasing in

center ability, we examine the decisions of centers in second position. To begin with, assume that

center 2 follows its own signal. This would be the case if it ignores its predecessors’ decisions or if

it does not herd; that is, its posterior belief upon receiving a g signal exceeds π̃. In this case, the

probability that center 2 rejects an organ is the probability that it receives a b signal, conditional on

center 1 also having received a b signal. Because signals are conditionally independent and centers

follow their own signals in first position (Assumption 2), the probability that center 2 rejects an organ

conditional on center 1 rejecting is thus given by

p2(q1, q2) ≡
π(1− γ1)(1− γ2) + (1− π)β1β2

π(1− γ1) + (1− π)β1
. (5)

We can then compute the manner in which center 2’s rejection probability, which we also refer to as

p2 in the discussion that follows, varies with center 1’s ability:

∂p2(q1, q2)

∂q1
=
π(1− π)(γ′1β1 + β′1(1− γ1))(β2 − (1− γ2))

(π(1− γ1) + (1− π)β1)2
≥ 0. (6)

The inequality in expression (6) follows from Assumption 2. It implies that if center 2 follows

its own signal, then it is more likely to reject when its predecessor has higher ability. Moreover, an
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increase in center 1’s ability makes it more likely that center 2 herds, in which case it rejects for sure

(regardless of its signal). This is because a higher-ability predecessor’s rejection has a bigger impact

on center 2’s prior belief, thereby increasing the likelihood that its posterior belief will remain below

π̃ even when it receives a g signal. Thus, center 2 is more likely to reject an organ when center 1 has

high ability, regardless of whether centers learn from their predecessors or not.

Based on the preceding discussion, if we observe that centers in second position are more (less)

likely to reject an organ when they follow centers with a higher rejection rate in first position, p1,

then p1 or, equivalently, p1(q1), must be positively (negatively) associated with center ability. The

relationship between the decision in second position for each organ that reaches that position and

center 1’s rejection rate when in first position, p1, is reported in Table 2, Columns 1 and 3, for livers

and kidneys respectively.10 We also report results with an augmented specification that includes center

2 fixed effects and a risk index of the organ’s quality in Columns 2 and 4. The coefficient on p1 is

positive and significant for livers, and negative and significant for kidneys, with both specifications.

Our interpretation of these results is that center ability is increasing (decreasing) in the first-position

rejection rate for livers (kidneys).

Table 2: Measuring Center Ability

Dependent variable: decision in second position

Organ: liver kidney
(1) (2) (3) (4)

p̄1 0.300*** 0.440*** -0.281*** -0.374**
(0.068) (0.089) (0.036) (0.038)

Center 2 fixed effects No Yes No Yes

Organ risk index No Yes No Yes

Mean of dependent variable 0.816 0.816 0.710 0.710

N 6383 5684 9257 8764

Note: heteroscedasticity-robust standard errors in parentheses

Decision in second position: reject = 1, accept = 0

p̄1 measures center 1’s rejection rate in first position
∗ p < 0.10, ** p < 0.05, *** p < 0.01

The implicit assumption underlying this interpretation is that average organ quality in first position

does not vary across centers and that centers are ordered independently of their ability. If the rejection

10We use the linear probability model to estimate our measures of ability and for the tests of herding because it follows
directly from the specified estimating equations and because the marginal effects are easy to interpret. However, this
implies that the error term will be heteroscedastic and, hence, robust standard errors are reported in this table and the
tables that follow.
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rate in first position, p1, varies (in part) because centers receive organs of different quality on average,

then p1 will proxy for both q1 and organ quality (which directly determines decisions at position 2).

Alternatively, if q1 and q2 are correlated, and q2 is omitted from the estimating equation, then p1 will

proxy for both q1 and q2. Based on the evidence presented in Figures 2 and 3, we do not expect either

source of bias to be present, which implies that the estimated p1 coefficient should be stable when

the organ’s risk index, which proxies for its quality, and center 2 fixed effects, which subsume q2, are

included in the estimating equation. As expected, the p1 coefficients estimated with the benchmark

and augmented specifications in Table 2 are statistically indistinguishable, despite the fact that these

coefficients are very precisely estimated (with narrow confidence intervals). Variation in p1 can be

attributed to differences in center ability and we consequently measure center ability by p1 for livers

and by 1− p1 for kidneys in the tests of herding that follow.

It is possible that the risk index does not fully incorporate all dimensions of organ quality and it

is also possible that centers vary in their (unobserved) pickiness. This will generate variation in p1

across centers that is independent of ability, as we have defined it. We provide additional support for

the assumption that p1 is a valid proxy for center ability in the following ways: First, we show in the

section that follows that alternative sources of heterogeneity in p1 cannot, on their own, generate the

observed patterns in Table 2. Second, we show in Section 5.2 that this composite measure is positively

associated with independently constructed organ-quality specific measures of center ability.

Notice that we do not cluster standard errors in Table 2. The dependent variable in Table 2 is

the decision by center 2 to reject or accept a given organ and the residual in the estimating equation

incorporates the organ-specific signal that center 2 receives. Center 1 must have rejected the organ

and, given the assumption (verified below) that all centers follow their signals in first position, must

have received a b signal. However, there will be variation in the type of organs that it passes down

on account of the mistakes that it makes. While it will often correctly receive a b signal for a B

organ, it will also on occasion receive a b signal for a G organ. The organ’s quality (B or G) is

independent across organs received by center 2 and, as assumed in the model, the signals it receives

are independent, conditional on the underlying quality of the organ. It follows that the error (residual)

term in the estimating equation is independent across organs for a given center 1-center 2 pair.11 By

the same argument, the error term will be independent across organs with different center-pairs in

first and second position. The estimated standard errors in Table 2 should not be clustered and this

is also true, for the same reasons, for the tests of herding that follow.12

11When center 2 herds after center 1, it always rejects and, hence, there is no variation in the error term across organs
for that center-pair. However, it continues to be the case that the error term for a given organ provides no additional
information about the error term for other organs and, hence, satisfies the independence assumption.

12Abadie et al. (2017) note that if the researcher assesses that the assignment mechanism is not clustered, as we
do based on the model and the institutional setting, then the standard errors should not be clustered. This is true
irrespective of whether such an adjustment would change the standard errors.
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4.2 Alternative Sources of Heterogeneity

In our model, decisions in first position are determined by organ quality and center ability. In practice,

these decisions will also depend on the patient-organ match and the condition of the organ. However,

these organ-specific factors are idiosyncratic and thus the rejection rate across all organs received in

first position, p1, will continue to serve as a valid proxy for center ability.13 The more relevant concern

is whether other sources of center heterogeneity are responsible for the observed variation in p1. We

have already seen, in Figure 2, that the average risk index in first position does not vary with p1. The

discussion that follows considers other (unobserved) sources of variation in p1 and shows that they

cannot, on their own, explain the results in Table 2.

We begin by considering the possibility that ability heterogeneity, as we have defined it, is absent

and, instead, that (i) centers differ in their ability (along other dimensions) to perform transplants,

or (ii) that centers have the same ability, but some are more conservative than others, or (iii) that

patient demographics vary across centers, such that some centers are more picky than others.

The first point to note is that all of the alternative explanations effectively generate variation in π̃

across centers. The second point to note is that this variation in π̃ directly impacts the center-specific

rejection rate in first position. However, if centers do not differ in their ability to detect good and

bad organs, then more picky centers with a higher rejection rate (higher π̃ and p1) will pass on higher

quality organs on average to the centers that follow, resulting in a lower probability of rejection in

second position. This implies that the p1 coefficient in Table 2 will be unambiguously negative, which

is at odds with what we observe in the table (for livers). As shown in the Appendix, the preceding

argument is robust to alternative signal structures and is obtained regardless of whether or not center

2 learns from its predecessor’s decision.14

Next, suppose that the quality of organs received in first position varies across centers (and is not

fully captured by the risk index). If centers do not differ in their ability to detect good and bad organs

or in their pickiness (π̃), then following the argument above, centers who receive lower quality organs

on average in first position will have a higher rejection rate and will pass on worse organs on average.

This implies that the p1 coefficient in Table 2 will be unambiguously positive, which is once again at

odds with what we observe (for kidneys).

Our model, which is based on heterogeneity in the ability of centers to detect good and bad

organs, can generate the results in Table 2 if the quality of the organ pool varies by organ type. In

particular, the model predicts that the p1 coefficient will be positive in a bad (low-π) organ pool, which

13By the same argument, idiosyncratic organ-specific factors will not bias our tests of herding. These tests are based
on decisions at a single – second or third – position, with center 1 and center 2 ability included in the estimating
equation. Center ability will be associated with the rejection rate in first position, which, as noted, is uncorrelated with
the unobserved organ-specific determinants of center decisions.

14This argument implicitly assumes that π̃1 and π̃2 are uncorrelated, consistent with the evidence in Section 2 that
centers are not ordered systematically. p2 is decreasing in π̃1 or, equivalently, p1, and increasing in π̃2, which is omitted
from the estimating equation and thus a positive p1 coefficient could be obtained, in principle, if π̃1− π̃2 are (sufficiently)
positively correlated. However, this alternative interpretation of the positive p1 coefficient for livers is not robust to the
inclusion of center 2 fixed effects, which subsume π̃2, in the estimating equation.
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is presumably the case for livers, and negative in a good (high-π) organ pool, which is presumably the

case for kidneys. We provide independent evidence in Section 5.2 that π is indeed substantially larger

for kidneys than for livers.

Although the specific dimension of center ability that we emphasize in our analysis may be the only

source of variation in p1 that can explain the results in Table 2, this does not preclude the coexistence

of other sources of variation. However, the resulting proxy error in our measure of ability, p1 for livers

and 1− p1 for kidneys, would only bias our estimates in the herding tests that follow if it is correlated

with other regressors. The estimating equation in both tests includes center 1 and center 2 ability as

regressors, and we observed in Section 4.1 that centers appear to be ordered independently of their

ability. There is thus no reason to expect that proxy error will bias our estimates.15 Even if it did,

this would result in false rejection of the herding model and not the other way around.

4.3 A Test of Herding (based on decisions in second position)

The discussion in Section 4.1 indicates that center 2 is more likely to reject an organ when it follows

a higher-ability center; i.e. dp2/dq1 < 0, with and without herding. To test for herding in second

position we thus need to look more closely at the p2−q1 relationship, and we do this by examining

how this relationship varies with q2. In particular, we estimate the following equation: p2 = α0 +

α1q1 + α2q2 + α3q1 · q2, and focus attention on the interaction term.

To begin with, assume that center 2 does not herd, such that its rejection probability for a given

organ is described by equation (5). The cross-partial with respect to q1 and q2, which is essentially

the coefficient on the interaction term, is then

∂2p2(q1, q2)

∂q1∂q2
=
π(1− π)(γ′1β1 + β′1(1− γ1))(β′2 + γ′2))

(π(1− γ1) + (1− π)β1)2
> 0, (7)

That is, the effect of an increase in center 1’s ability on center 2’s rejection probability is larger

when center 2 has higher ability. This result is obtained because (i) an increase in q1 reduces the

quality of the organ pool passed on to center 2, i.e. the prior belief π2 goes down and (ii) center

2’s decision, p2, is more sensitive to π2 when it has higher ability. In the extreme case, if center 2

is completely uninformed; i.e. β2 = 1 − γ2, then its decision will be unaffected by the change in the

quality of the organ pool.

It follows from equation (7) that the cross partial is positive in the absence of herding. This result,

however, does not necessarily hold when center 2 herds. In particular, there are now two effects: the

quality selection effect and the herding effect. The former, which we described above, implies that a

low-ability center reacts less to an increase in its predecessor’s ability than does a high-ability center,

because the former is less sensitive to the quality of its organ pool. The latter effect works in the

opposite direction; as the rejection by a high-ability center 1 represents worse news about underlying

15This bias would only arise if proxy error is correlated with ability and abilities are correlated.
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organ quality than does the rejection of a low-ability center, it is more likely that a weak center 2

herds and also rejects. Which effect dominates depends on the underlying organ pool and on the

ability of the relevant centers. This is best seen in the following two figures. In drawing these figures,

we have assumed that the lowest-ability center is completely uninformed and that the highest-ability

center is perfectly informed, although the results do not rely on those assumptions; i.e. we assume

β(q) = 1 − γ(q) and β(q) = γ(q) = 1. The figures show the rejection probabilities of two centers at

position 2 as a function of center 1’s ability q1. The abilities of the two centers are q′2 and q′′2 ; and we

assume that q′2 < q′′2 .

The curves labelled p2(·, q′2) and p2(·, q′′2) in the figures are the centers’ respective rejection prob-

abilities without herding, given by the expression in equation (5). If center 2 follows center 1 with

q1 = q it faces an organ pool with quality π and, consequently, draws signals as if it were in first

position. This implies that p2(q, q2) = p1(q2), which pins down the intercept of each curve. Note that

Figure 4 assumes that p1(q
′
2) < p1(q

′′
2), which applies to livers as documented above, while Figure

5 assumes that the inequality is reversed, which is relevant for kidneys. This represents the only

difference between the two figures. If center 2 follows center 1 with q1 = q̄, the organ is a B organ

for certain, so center 2 draws signals from a B organ. This explains why the curves reach heights of

p2(q, q
′
2) = β(q′2) and p2(q, q

′′
2) = β(q′′2), where β(q′2) < β(q′′2).

Figure 4: dp1(q)
dq > 0
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With herding the rejection probability of any center 2 with ability q2 jumps to 1 at some threshold

q1(q2); thus, for q1 < q1(q2), center 2 uses its signal and rejects according to the expression in equation
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Figure 5: dp1(q)
dq < 0
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(5) while, for q1 ≥ q1(q2), center 2 herds and always rejects. Note that q1(q
′
2) < q1(q

′′
2) as a lower-ability

center positioned at 2 starts herding sooner than does a high-ability one.

We now use the figures to derive the effect of the interaction term q1 · q2, on center 2’s rejection

probability with herding. Expression (7) allows us to derive this effect for each pair (q1, q2) in the

absence of herding. With herding, we cannot use the same method because center 2’s rejection

probability contains a jump when center 2 starts to herd and, hence, the derivative is not well-defined

at each point. Instead, for each q2, we compute the“average effect” of an increase in q1; this is the

slope of the line starting at (q, p1(q2)) and going to (q̄, β(q2)) if there is no herding and to (q̄, 1),

otherwise.16 We then examine how this slope varies with q2 (q′2 versus q′′2).

Consistent with the cross-partial expression in (7), the average slope with respect to q1 is increasing

in q2 in the absence of herding in both figures:

β(q′2)− p1(q′2)
q̄ − q

<
β(q′′2)− p1(q′′2)

q̄ − q

When we incorporate the effect of herding, however, we see that the slope with respect to q1 in Figure

4 is decreasing in q2:
1− p1(q′2)
q̄ − q

>
1− p1(q′′2)

q̄ − q
.

In contrast, the slope with respect to q1 in Figure 5 is increasing in q2. Thus, when center ability is

16The implicit assumption when computing the average effect is that the distribution of q1 is uniform on [q, q].
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increasing in the probability of rejection in first position,
(
dp1(q)
dq > 0

)
, as observed in Figure 4 and for

livers, we predict that the interaction effect is reversed with herding: lower-ability centers at position

2 react more to an increase in center 1’s ability because the herding effect dominates. When center

ability is decreasing in the probability of rejection in first position,
(
dp1(q)
dq < 0

)
, as observed in Figure

5 and for kidneys, we predict that the interaction effect goes in the same direction as it does in the

absence of herding; the quality selection effect then dominates, such that higher-ability centers at

position 2 react more to an increase in center 1’s ability. We summarise the preceding discussion as

follows:

Test 1 Without herding, the cross-partial effect of an increase in both center 1’s and center 2’s

ability on center 2’s rejection probability, for a given organ, is strictly positive. With herding, the

average cross-partial effect is strictly positive if center ability is decreasing in the rejection rate in first

position and negative if center ability is increasing in the rejection rate in first position.

Table 3 reports the estimated relationship between the decision in second position for each organ

that reaches that position and center ability in first and second position, together with the interaction

term. Center ability is measured by the rejection rate in first position for livers and by one minus

that statistic for kidneys. The same measures are used for the test of herding at third position that

follows.17

To interpret the estimated coefficients, it is convenient to normalize so that q = 0. α1, the

coefficient on q1, then applies to the case where q2 equals zero. Assume that a center with ability

0 is completely uninformed; i.e. β(0) = 1 − γ(0). This implies that without herding, a center with

q2 = 0 makes decisions that are independent of the quality of the organs that it receives and, hence,

are independent of q1. However, with herding, the probability that such a center rejects for sure is

increasing in q1. The predicted effect is ambiguous, and we find that α1 is small and imprecisely

estimated for kidneys and much larger and significant at the one percent level for livers. In line with

these results, we will see below that the prevalence of herding in second position is substantially higher

for livers than for kidneys.

α2, the coefficient on q2, applies to the case in which q1 equals zero. In this case, the first center’s

decision has no effect on the quality of the organ pool that is passed on and center 2 effectively behaves

as if it is in first position. We thus expect higher ability (q2) centers to reject more often for livers

and less often for kidneys. As predicted, the coefficient on q2 is positive and significant for livers

and negative and significant for kidneys. Our test of herding, however, is based on the interaction

coefficient. As predicted by the model, the interaction coefficient is negative and significant for livers,

17The implicit assumption in the model is that no center decides more than once for a given organ. Given that centers
have multiple patients on the waiting list, it is possible that this requirement will not be satisfied in practice. It turns
out that sequences in which the same center makes repeated decisions are rare in the data; 7% of all decisions for kidneys
and 3% of all decisions for livers are repeat decisions made by a center with the same organ. Restricting attention to the
first three positions, which we use for the herding tests, these statistics decline even further to 5% and 2%, respectively.
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and positive and significant for kidneys.18 In contrast, the interaction coefficient would be positive

and significant for both livers and kidneys in the absence of herding.

Table 3: First Test of Herding (based on decisions in second position)

Dependent variable: decision in second position

Organ: liver kidney
(1) (2)

Center 1 ability (q1) 2.135∗∗ -0.0245
(0.713) (0.097)

Center 2 ability (q2) 2.588∗∗∗ -0.999∗∗∗

(0.688) (0.102)

(q1 × q2) -2.668∗∗ 1.003∗∗∗

(1.103) (0.246)

N 6383 9257

Note: heteroscedasticity-robust standard errors in parentheses.

Decision in second position: reject = 1, accept = 0

The constant term cannot be interpreted and is thus not reported.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.05

4.4 A Test of Herding (based on decisions in third position)

Our second test of herding is based on decisions at position 3; in particular, on the relationship between

these decisions and center abilities at position 1 (q1) and position 2 (q2), as expressed in the following

equation: p3 = λ0 + λ1q1 + λ2q2. In deriving this test we assume that center 3 does not herd - centers

that herd at third position always reject, and their decision is thus unaffected by marginal changes in

q1 and q2.

To develop our second test of herding we investigate the effect of a marginal increase in q1 and q2

on center 3’s rejection probability p3. We first consider the case in which center 2 does not herd; then

p3 is the probability that center 3 receives a b signal, conditional on both center 1 and center 2 also

having received b signals. In this case p3 is given by

p3(q1, q2, q3) =
π(1− γ1)(1− γ2)(1− γ3) + (1− π)β1β2β3

π(1− γ1)(1− γ2) + (1− π)β1β2
. (8)

It is easy to see that an increase in either center 1’s or center 2’s ability decreases the quality of

18Note that the results in Table 3 are consistent with the key finding from Table 2, where the specification does not
include an interaction term, which is that the probability of rejection in second position, p2, is increasing (decreasing)
in center 1’s rejection rate in first position, p1, with livers (kidneys). Based on the point estimates in Table 3, p2 is
increasing (decreasing) in p1 with livers (kidneys) for all values of q2 in the data.
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the organ pool passed on to center 3, which increases the latter’s rejection probability. Formally,

∂p3(q1, q2, q3)

∂q1
= Θβ2(1− γ2)(γ′1β1 + β′1(1− γ1)), (9)

∂p3(q1, q2, q3)

∂q2
= Θβ1(1− γ1)(γ′2β2 + β′2(1− γ2)), (10)

where, Θ = π(1−π)(β3−(1−γ3))
[π(1−γ1)(1−γ2)+(1−π)β1β2]2 . Both expressions clearly are strictly positive, but their exact

magnitudes depend on the abilities of centers 1 and 2. When q1 6= q2,
∂p3(q1,q2,q3)

∂q1
could be larger or

smaller than ∂p3(q1,q2,q3)
∂q2

; for q1 = q2, however, ∂p3(q1,q2,q3)
∂q1

is equal to ∂p3(q1,q2,q3)
∂q2

.

Now consider a situation in which center 2 herds. Because it rejects, regardless of the signal it

receives, its decision has no effect on the quality of the organ pool passed on to center 3. In contrast,

center 1 always uses its signal. Center 3’s rejection probability, p3, is thus the probability that center

3 receives a b signal, conditional only on center 1 having received a b signal:

ph3(q1, q2, q3) =
π(1− γ1)(1− γ3) + (1− π)β1β3

π(1− γ1) + (1− π)β1
. (11)

In this case, the effect of an increase in the ability of center 1, though different to the case without

herding (see equation (9)), is still positive, while the effect of an increase in the ability of center 2 is

zero:

∂ph3(q1, q2, q3)

∂q1
= Π(γ′1β1 + β′1(1− γ1)) (12)

∂ph3(q1, q2, q3)

∂q2
= 0, (13)

where Π = π(1−π)(β3−(1−γ3))
[π(1−γ1)+(1−π)β1]2 . Summarizing the preceding discussion:

Test 2 If centers 1 and 2 have the same ability then, without herding, the effect of an increase in

center 1’s ability on center 3’s rejection probability equals the effect of an increase in center 2’s ability.

With herding, the effect of an increase in center 1’s ability is larger than the effect of an increase in

center 2’s ability.

Table 4 reports the estimated relationship between the decision in third position for each organ

that reached that position, and center abilities q1 and q2. As predicted by the model when herding is

present, the coefficient on q1 is substantially larger than the coefficient on q2; it is twice as large for

livers and 50% larger for kidneys. The coefficients on q1 and q2 (λ1 and λ2 respectively) are imprecisely

estimated for livers, and we cannot reject the hypothesis that λ1 ≤ λ2. The corresponding coefficients

for kidneys are, however, statistically significant; we can reject the hypothesis that λ1 ≤ λ2 at the

5 per cent level. As discussed in Section 4.2, alternative sources of center heterogeneity, notably in

π̃, cannot explain observed decisions in second position, with or without herding. As shown in the
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Appendix, neither can these sources of heterogeneity explain observed decisions in third position; in

particular, the differential marginal effect of q1 and q2, in the absence of herding.

Table 4: Second Test of Herding (based on decisions in third position)

Dependent variable: decision in third position

Organ: liver kidney
(1) (2)

Center 1 ability (q1) 0.104 0.352∗∗∗

(0.066) (0.045)

Center 2 ability (q2) 0.0529 0.220∗∗∗

(0.064) (0.046)

Constant 0.820∗∗∗ 0.541∗∗∗

(0.067) (0.024)

F-statistic (λ1 ≤ λ2) 0.47 3.43
p-value [0.247] [0.032]

q̄1 0.60 0.40

q̄2 0.65 0.40

N 4819 6084

Note: λ1, λ2 are the coefficients on q1, q2, respectively

q̄1 and q̄2 denote the sample means of q1 and q2, respectively.

Heteroscedasticity-robust standard errors in parentheses

Decision in third position: reject = 1, accept = 0
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The data requirements to implement the second test of herding are quite stringent: (i) A substantial

fraction of centers should herd in second position. (ii) A substantial fraction of centers should not herd

in third position (if they did, then variation in q1, q2 would have no consequence for their decisions).

(iii) There should be substantial variation in decisions – accept versus reject – in third position for the

test to have statistical power. We will see below that conditions (i) and (ii) are satisfied for both livers

and kidneys. The important difference between the two organ types is that by the third position, over

90% of decisions for livers are rejections. This lack of variation might explain why the coefficients on

q1 and q2 are imprecisely estimated in Column 1 of Table 4. While livers are most useful for identifying

herding with the first test, we thus focus on kidneys for the second test.

Although Test 1 places no restrictions on center abilities, Test 2 is derived for the case where

centers at position 1 and 2 have the same ability; i.e. q1 = q2. Figure 6 describes the distribution

of the ability differential, q1 − q2, for all kidneys that reached at least third position (and are thus
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Figure 6: Ability Differential (q1 − q2) Distribution

Note: sample includes all kidneys that reached third position.

Table 5: Second Test of Herding (restricted samples)

Dependent variable: decision in third position

(q1 − q2) range: [-0.30,0.30] [-0.20,0.20] [-0.10,0.10] [-0.05,0.05]
(1) (2) (3) (4)

Center 1 ability (q1) 0.396*** 0.427*** 0.638*** 1.020**
(0.053) (0.064) (0.136) (0.468)

Center 2 ability (q2) 0.153** 0.132** 0.00181 -0.437
(0.055) (0.065) (0.140) (0.470)

Constant 0.554*** 0.550*** 0.513*** 0.515***
(0.025) (0.027) (0.039) (0.045)

F-statistic (λ1 ≤ λ2) 7.27 6.81 5.94 2.44
p-value [0.004] [0.004] [0.007] [0.059]

N 5603 5071 3069 1665

Note: heteroscedasticity-robust standard errors in parentheses

Alternative samples restricted to kidneys within a pre-specified ability differential (q1 − q2) range

Decision in third position: reject = 1, accept = 0
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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used for the second test of herding). Although the distribution is centered at zero, consistent with

the observation in Table 4, Column 2 that the average ability in first position, q1, is equal to the

average ability in second position, q2, there is substantial variation in the ability differential statistic.

Table 5 takes account of this variation in q1 − q2 by implementing the second test of herding with an

increasingly restricted sample of kidneys; i.e. by gradually narrowing the ability differential range.

Note that restricting the sample in this way does not bias our estimates because center abilities are

exogenously assigned. We see that the key result from Table 4, which is that the coefficient on q1 is

significantly larger than the coefficient on q2 for kidneys, is retained as we reduce the sample. Indeed,

this result is even obtained with the most stringent ability-differential restriction in Column 4, by

which point the sample is just one-quarter of the full sample of kidneys.

5 Model Estimation and Validation

5.1 Ability Parameter Estimates

In the model, each center j has composite ability, qj , which is positively associated with its ability

to detect bad organs, βj , and good organs, γj . While qj was sufficient to test for herding, we will

need organ-quality and center-specific measures, βj and γj , to verify the assumptions of the model, to

examine its goodness of fit, and for the efficiency analysis. To estimate βj , γj , the main challenge is

that we do not observe the quality of a given organ in the data; i.e. whether it is good or bad. This

is true even ex post, especially if the organ is not accepted. A novel feature of our analysis is that we

use independently constructed “risk indices” of organ quality, which we interpret as being negatively

associated with the probability that a given organ is a G organ, to estimate βj , γj .

Indices of liver and kidney quality were first constructed in the United States, but have recently

been adapted to the U.K. population. The UK KDRI (Kidney Donor Risk Index) is based on U.K.

National Transplant Registry data covering over 7000 recipients who received deceased-donor kidneys

between January 1, 2000 and December 31, 2007 (Watson et al., 2012). Various recipient and trans-

plant factors were included in a model of transplant success, measured by patient survival, and the UK

KDRI consists of those donor and organ characteristics that were found to be significant determinants

of success (with optimal, estimated weights on each of those characteristics). More recently, data from

all liver transplants from deceased donors between January 1, 2000 and December 31, 2014 have been

used to construct the UK DLI (Donor Liver Index). As with the UK KDRI, donor, recipient, and

transplant data were used to identify factors associated with graft survival. Those donor and organ

characteristics that were found to be significant determinants of transplant success, appropriately

weighted, are included in the UK DLI (Collett et al., 2017).

The risk indices are based on outcomes generated by thousands of transplants over many years.

The set of organ and donor characteristics included in the indices, and the weights placed on these

characteristics, taken together, will accurately predict transplant outcomes or, equivalently, the quality
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of the organ. In contrast, transplant centers must base their assessment of an organ’s quality, g or b,

on their past experiences with a limited set of outcomes and the organ-specific information that they

receive from NHSBT. The risk indices were originally developed to aid centers in their decision-making,

and a proposal to incorporate the UK KDRI into the National Kidney Offering Scheme was presented

at the 2018 Blood and Transplantation Congress. At the time of writing, however, neither the UK

KDRI nor the UK DLI, the latter of which was developed in 2017, are made available to transplant

surgeons when they make their decisions. While centers may not have had explicit knowledge of the risk

indices during the period of our analysis (2006-2015), we have assumed that they are not systematically

misinformed and, hence, we expect that their assessments and their (rejection) decisions will track

with the risk index.

Figure 7: Probit Slope Coefficient Estimates Across Centers

(a) liver (b) kidney

Note: estimates based on the relationship between the probability of rejection in first position and the risk index.

To test the preceding hypothesis, we estimate the relationship between the probability that an

organ i is rejected and its risk index Ri, separately by center, restricting the sample to decisions that

were made when centers were in first position (and therefore, by assumption, following their signals).

We use the probit model for the estimation because this ensures that predicted rejection probabilities

lie in the unit interval; these predicted values will be needed to estimate βj , γj , as discussed below.

Figure 7 reports probit estimates of the Risk Index (slope) coefficient, with the corresponding 95%

confidence interval, by center. The estimated coefficient is positive and statistically significant, almost

without exception, both for livers and kidneys. Notice, however, that there is substantial variation in

this coefficient across centers. We would expect rejection decisions by higher ability centers to track

more closely with the risk index, and we will build on this intuition to estimate βj , γj below.

Based on our interpretation of the risk index, the probability that organ i is a good organ, πi,

is decreasing in its risk index, Ri. We model this by assuming that πi = π(Ri) for some decreasing

function π(.). We place two additional restrictions on the π(.) function: π(R) = 1, π(R) = 0, where

R, R define the support of the risk index distribution. This is simply saying that an organ is a G
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organ with probability one (zero) at the bottom (top) of the risk index distribution. Given that the

probability that center j will reject organ i in first position, pij1, is equal to the probability that it

receives a b signal, the following must hold

pij1 = πi(1− γj) + (1− πi)βj . (14)

Rearranging terms,

pij1 = (1− γj) + (1− πi)(βj − (1− γj)). (15)

Given that (1 − πi) is increasing in Ri, βj − (1 − γj) is associated with the slope of the estimated

pij1−Ri relationship reported in Figure 7, while (1 − γj) corresponds to the intercept. Intuitively,

higher ability centers will reject fewer organs with a low risk index, hence the smaller intercept, while

simultaneously rejecting more organs with a high risk index, which results in the steeper slope.

Figure 8: Organ-Quality Specific Ability, by Center

Note: Composite ability measures are based on rejection rates in first position.

Organ-quality specific abilities are derived from the relationship between decisions in first position and organ risk indices.

At Ri = R, πi = 1 and, hence, pij1 = (1− γj) from equation (15). At Ri = R, πi = 0 and, hence,

pij1 = βj . Using the pij1−Ri relationship that we have estimated for each center, the predicted pij1

at Ri = R provides an estimate of 1 − γj and the predicted pij1 at Ri = R provides an estimate of

βj . In practice, we set R = 0.5 and R = 4, to be consistent, for both livers and kidneys. This spans

the range of risk indices that are considered by Collett et al. (2017) and Watson et al. (2012) in their

validation analyses.19 Figure 8 reports the estimated βj and 1−γj for each center, separately for livers

19Given that the pij1 −Ri relationship has a lower intercept and a steeper slope for higher ability centers, R(R) must
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and kidneys. The X axis measures each center’s composite ability, qj , which is the measure we used

in the herding tests, based on the rejection rate in first position. Cross-validating the independently

constructed ability measures, we see that βj is increasing and 1 − γj is decreasing in qj . This result

is not obtained mechanically because βj , γj , qj are all derived from decisions in first position. Recall

that qj is measured by the rejection rate in first position, p1, for livers and (1− p1) for kidneys.20

5.2 Verifying the Assumptions of the Model

We make two assumptions in the model: Assumption 1 specifies that centers are not systematically

misinformed; i.e. βj > 1 − γj for all j. As observed in Figure 8, this is evidently the case for each

center. Recall that we also assume in the model that the rejection rate in first position, p1, is either

monotonically increasing or monotonically decreasing in ability. As observed in Figure 8, there is

indeed a monotonic relationship between composite ability on the X axis, which is measured by p1 for

livers and (1− p1) for kidneys, and the independently constructed organ-quality specific measures of

ability, βj and γj .

Assumption 2 specifies that centers follow their signals in first position; i.e. they accept with a g

signal and reject with a b signal. This assumption is satisfied if πj(g) > π̃ > πj(b) for all j, where

πj(g) is center j’s posterior belief that an organ is a G organ after receiving a g signal in first position,

πj(b) is the corresponding belief after receiving a b signal, and π̃ is the cutoff belief above which

centers accept an organ. The ability parameters, βj , γj , that we have estimated tell us how center j’s

belief that an organ is good responds to b, g signals. To verify Assumption 2 we need, in addition, to

estimate the prior belief, π; i.e. the fraction of G organs in the population, and the cut-off belief, π̃.

Given the estimated pij1−Ri relationship for each center, pij1 can be predicted for any organ i

with risk index Ri. Given the predicted pij1 and the estimated βj , γj , we can recover πi = π(Ri)

from equation (14). Although, in principle, πi corresponding to a given Ri should be the same for all

centers, noise in the estimated βj and γj could generate some variation in practice. Our best estimate

of πi is thus the average across all centers that were offered organ i. Averaging the estimated πi across

all organs, we arrive at an estimate of π, the fraction of G organs in the population of organs: 0.48 for

livers and 0.74 for kidneys. These estimates allow us to further cross-validate the composite ability

measures used in the tests of herding. Recall from Table 2 that the probability of rejection in second

position is increasing (decreasing) in p1 for livers (kidneys). Based on the model, this implies that

livers (kidneys) are drawn from bad (good) organ pools and, hence, that p1 can be used to measure

ability for livers and (1− p1) can be used to measure ability for kidneys. Our estimates of π, based on

the risk indices, provide independent support for the inference that livers (kidneys) are drawn from

be sufficiently low (high) to ensure that the predicted pij1 is decreasing (increasing) in ability at R(R).
20The βj , γj parameters can be linked to the composite ability, qj , by taking expectations in equation (14):

pj1 = π(1− γj) + (1− π)βj .

In a superior organ pool, π → 1 in the limit, and qj ≡ γj = 1− pj1, as with kidneys. In an inferior organ pool, π → 0 in
the limit, and qj ≡ βj = pj1, as with livers.
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bad (good) organ pools.

To verify Assumption 2, all that remains is to estimate π̃. All centers follow their signal in first

position in the model, which implies that their belief following a g (b) signal lies above (below) π̃.

While some centers continue to follow their signals in later positions, others will start to herd (i.e. to

reject offers regardless of whether they receive a g or a b signal). This is because their beliefs always

lie below π̃. As π̃ increases, the fraction of centers that herd thus increases, with an accompanying

increase in the rejection rate (the decisions of centers that follow their signals remain unchanged). To

estimate π̃ we thus match the overall rejection rate in the data to the rejection rate predicted by the

model; there is a unique value of π̃ at which the actual and predicted rejection rates match and this

will be our best estimate of the π̃ parameter.

The simulated method of moments is used to estimate π̃. To draw signals for the estimation, we

take advantage of the fact that our center-specific probit estimates of the pij1−Ri relationship allow

us to predict the probability of rejection in first position for any organ-center pair. Since centers

always follow their signals in first position, as verified below, this provides us with the probability

that the center would receive a b signal in first position and, for that matter, in any position for

a given organ. We draw signals in this way, and then predict decisions at each position (given the

previously-estimated values of βj , γj , and π). The average over multiple draws of the signals predicts

the overall rejection rate for a given π̃, and we then search over all π̃ to find the value at which the

actual and predicted rejection rates match. Given that βj , γj , π are estimated using decisions at the

first position, we match rejection rates at the second position to estimate π̃. The π̃ estimate, with

bootstrapped standard errors in parentheses, is 0.79 (0.004) for livers and 0.80 (0.04) for kidneys. The

advantage of estimating π̃ at a single position is that we will be able to more stringently validate the

model below by comparing the goodness of fit with the data out-of-sample at higher positions.

Having estimated π̃, we can now verify Assumption 2. Figure 9 reports the belief after a g signal

in first position, πj(g), and the corresponding belief after a b signal, πj(b), for each center, together

with π̃. We see that πj(g) > π̃ > πj(b), with one exception, consistent with Assumption 2. Recall

that π is 0.48 for livers and 0.74 for kidneys. Given that π̃ is around 0.8, it is quite striking that the

posterior belief for livers after a g signal nevertheless satisfies Assumption 2. Notice also that πj(g)

is increasing in the composite ability measure, whereas the relationship is reversed for πj(b). This is

because all centers start with a common prior belief π in first position, but posterior beliefs (in both

directions) respond more to the signals that are received when centers have higher ability.

5.3 Goodness of Fit

Having verified the key assumptions of the model, the next step is to assess its goodness of fit with

the data. We estimate π̃ by matching rejection rates at second position that are predicted by the

model with the data. While we would thus expect a close match in second position, the analysis that

follows examines how well the model matches the data at higher positions. As a basis for comparison,
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Figure 9: Posterior Beliefs in First Position, by Center

Note: Composite ability measures are based on rejection rates in first position.
Posterior beliefs are derived after receiving g and b signals, respectively, in first position.

π̃ denotes the threshold belief above which centers accept organs.

we also report rejection rates from an alternative model with no (social) learning. Center ability and

the signal-generating process in the alternative no learning model are determined in the same way as

in our model, but decisions are now based exclusively on the signals received by each center (without

regard to the decisions of preceding centers).

Figure 10 reports rejection rates in the data, predicted by our learning model, and predicted

by an alternative no learning model, by position.21 We see that the rejection rate predicted by

the herding model matches closely with the data at each position: the overall prediction error for

positions 2-8 is 2.6% for livers and 3.6% for kidneys. The more stringent out-of-sample prediction

error for positions 3-8 is not much higher: 3.5% for livers and 4.0% for kidneys. With livers, predicted

rejection rates are slightly higher than the data at all positions, whereas with kidneys, they start below

and then converge, before overshooting slightly at the highest (eighth) position. This contrasts with

the performance of the no learning model, which substantially under-predicts rejection rates at each

position. The rejection rate does increase across positions, on account of the fact that lower quality

organs travel further down the line on average, but the gap between the predicted and actual rejection

21If the model predicts an acceptance but the organ was actually rejected at a given position, then we terminate the
sequence and do not make predictions at subsequent positions. If the organ is rejected in the data and the model, we
account for the exogenous discards of organs by NHSBT at each position, and the resulting effect on the prior belief
of all centers at the next position. The adjustment in beliefs is based on the observed discard rate and the estimated
change in the fraction of G organs (based on our estimates of πi) at each position up to the eighth position. We also
make this adjustment when estimating π̃ (at the second position).

32



rates nevertheless continues to grow across successive positions.

Figure 10: Goodness of Fit

Note: The model’s parameters are estimated at positions 1 and 2.

Rejection rates at positions 3-8 are thus predicted out of sample.

The results in Figure 10 complement the reduced form tests of herding, providing independent

evidence that centers are learning from their predecessors’ (rejection) decisions. These results can

also be used to rule out an alternative interpretation of the observation in Table 1 that transplant

success does not vary by position. Our interpretation of this finding is that organ deterioration and

the patient-organ mismatch, which are both mechanically increasing with position, are less salient in

this setting. However, an alternative interpretation, which we did not rule out, is that centers account

for these factors by becoming more conservative; in the context of our model, this implies that π̃ is

increasing at higher positions. If this were the case, then given that π̃ is estimated at the second

position, the model would systematically under-predict rejection rates at higher positions. There is

no evidence of such under-prediction, with livers or kidneys, in Figure 10.

While the tests derived from the model indicate that centers are herding, they do not quantify the

prevalence of this behavior. Given the estimates of βj , γj , π, π̃ and the sequence of centers associated

with each organ, we can determine whether a given center at a given position is herding – i.e. that its

prior belief based on preceding decisions is so far below π̃ that it will reject regardless of the signal

it receives. Figure 11 reports the prevalence of such herding, by position, for livers and kidneys.

Herding is very common. For livers, above 30% of centers in second position herd. There is a steep

increase in herding at higher positions and, by the sixth position, almost all centers herd. Herding is

less prevalent, on average, for kidneys. Nevertheless, over 10% of centers herd in second position and
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Figure 11: Prevalence of Herding

Note: A center is specified to be herding at a given organ-position if the model predicts it would reject regardless of the

signal it received.

there is a steady increase to 70% by the eighth position.22

6 Ability Heterogeneity and Efficiency

The preceding analysis exploits ability heterogeneity to document that centers learn from their pre-

decessors’ decisions about organ quality, although information on prior signals is sometimes lost due

to herding. The analysis that follows examines the relationship between ability heterogeneity and the

prevalence of herding, with its accompanying information loss, which we will see has consequences

for the (in)efficiency of organ selection, measured by the fraction of good organs discarded; i.e. false

discards and the fraction of bad organs accepted; i.e. false acceptances.

Although the risk index provides an objective measure of organ quality, it does not tell us whether

a given organ in the data is good and should be accepted or bad and should be rejected. The

efficiency analysis is thus based on 1000 hypothetical “good” livers (kidneys) and 1000 hypothetical

“bad” livers (kidneys). Recall that the sequence lengths for the organs in our data rarely exceed

eight positions. For each organ we thus draw eight centers randomly from our pool of transplantation

22Based on the model, centers should always reject when they are herding. Centers reject 91% of the time for livers
and 81% of the time for kidneys in positions where the estimated model predicts they will herd. In contrast, rejection
rates are 67% for livers and 62% for kidneys in positions where centers are not predicted to herd. The discrepancy
between the model and observed rejection decisions (at positions where centers are predicted to be herding) can be
reconciled by incorporating idiosyncratic shocks, associated with the patient-organ match and the organ’s condition, in
center decisions. These shocks wash out when estimating π̃ across all decisions, but will be relevant when predicting
specific decisions.
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centers and then randomly order the selected centers, without regard to their ability, in line with the

allocation procedure that is in place. Given the estimated organ-quality and center-specific βj , γj

ability parameters and the estimated π, π̃, we draw information signals for each center (using βj for

bad organs and γj for good organs) and then compute decisions at each position. If an organ is not

accepted by the eighth position, then it is assumed to be discarded. In addition, we allow for discards

at earlier positions, based on NHSBT’s discard rate by position and organ quality, as observed in the

data, while simultaneously allowing for the effect of these discards on center beliefs.23

Table 6 reports the resulting false discard rates and false acceptance rates, for livers and kidneys.

These statistics are reported for two learning models: our herding model, which was validated above,

in which the information contained in the signals that are ignored is lost to those that follow and

a counter-factual pooled information model in which all predecessors’ signals are made available to

centers when they make their decisions. The results reported in Table 6 can be summarized as

follows: (i) Both false discard rates and false acceptance rates are very similar with the two models

of learning. Herding does not generate substantial inefficiencies in our setting. (ii) False discards and

false acceptances are low overall. This is true when these inefficiencies are measured as rates; i.e. with

respect to the number of good and bad organs, respectively, or in absolute terms based on the number

of incorrectly assigned organs (over the 2006-2015 analysis period, 13,540 livers and 19,225 kidneys

were offered for transplantation).24 The analysis that follows will examine whether and how ability

heterogeneity has contributed to these low levels of inefficiency.

For the counter-factual analysis that follows, we construct the following measures of ability at

different levels of heterogeneity:

β̂j(h) = β + h(βj − β)

γ̂j(h) = γ + h(γj − γ)

where β, γ denote the mean abilities across all centers and h ∈ [0, 1.2] is a heterogeneity parameter.

When h = 0, all centers have the same ability, β, γ. When h = 1, ability levels match what we

estimate in the data, βj , γj . In general, there is a mean-preserving increase in ability heterogeneity

as h grows larger; centers with higher (lower) than average ability see an increase (decrease) in their

ability. We restrict the maximum value of h to 1.2 because the estimated βj parameters (at h = 1)

are close to one and further dispersion in ability raises some of these values above one.

Figure 12 plots the false discard rate and the false acceptance rate against ability heterogeneity,

23Although the efficiency analysis is conducted separately for G and B organs, centers do not know the type of organ
they are offered and, hence, beliefs are adjusted to account for discards at each position (both for G and B organs) just
as we did earlier when estimating π̃ and predicting rejection rates. However, the rates at which organs are discarded are
now quality-specific. These rates can be determined at each position, given the observed overall discard rate and the
estimated fraction of good organs before and after discarding (based on the risk indices).

24Notice that false acceptance rates and false discard rates are comparable, despite the fact that the βj parameter,
which determines the accuracy of signals received with bad organs, is generally much larger than the γj parameter, which
determines the accuracy of signals received with good organs, in Figure 8. This is because a single mistake with a bad
organ results in a false acceptance, whereas a false discard only occurs when all centers who are offered a good organ
reject.
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Table 6: False Discards and False Acceptances

model: herding pooled information

liver
false discard rate 0.0306 0.0235
false acceptance rate 0.0357 0.0315

kidney
false discard rate 0.0362 0.0339
false acceptance rate 0.0358 0.0350

False discard (acceptance) rate is the fraction of good (bad) organs that are discarded (accepted).

These statistics are computed with the estimated ability parameters; i.e. at the observed level of ability heterogeneity.

separately for the herding model and the pooled information model and separately for livers and

kidneys. The first observation is that false discard rates are declining in ability heterogeneity, whereas

false acceptance rates are increasing in heterogeneity for both models. The second observation is that

the inefficiency due to herding, measured by the gap between the two models, is decreasing in ability

heterogeneity. This is especially true for the false discard rate. We discuss each observation, in turn,

below.

False discards arise when good organs fail to be accepted by all centers to which they are offered.

As heterogeneity increases, higher ability centers are better able to detect good organs, whereas lower

ability centers are less able to detect good organs, leaving the average detection ability unchanged.

What changes asymmetrically with an increase in heterogeneity is the fraction of decision taken by

centers with different levels of ability. When more able centers are positioned earlier, they now detect

more good organs and so the less able centers decide less often. When less able centers go earlier, they

now pass on more (good) organs to the higher ability centers that follow. Regardless of the ordering

of centers, an increase in ability heterogeneity increases the fraction of decisions taken by more able

centers, with an accompanying decline in the false discard rate.

False acceptances arise when any center that is offered a bad organ accepts it. Following the same

reasoning as above, when more able centers go earlier in line, they will pass on more bad organs to

later positions as heterogeneity (and, hence, their ability) increases. Conversely, when less able centers

go earlier, they will falsely accept more often as heterogeneity increases (with a commensurate decline

in their ability) passing on fewer bad organs to the now more able centers that follow. Regardless of

the ordering, an increase in ability heterogeneity increases the fraction of decisions taken by less able

centers, with an accompanying increase in the false acceptance rate.

The preceding arguments apply to both the herding model and the pooled information model.

To explain why the gap between the two models declines with ability heterogeneity; i.e. the second

observation from Figure 12, recall that the only difference between the two models is that signals
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Figure 12: False Discard Rate and False Acceptance Rate

Note: False discard (acceptance) rate is the fraction of good (bad) organs that are discarded (accepted).

Ability heterogeneity has value one at the level observed in the data.

received by centers that herd are lost to those that follow with the herding model. The information

loss and, by extension, the difference in outcomes generated by the alternative learning models will

thus depend on (i) the prevalence of herding and (ii) the information loss conditional on herding; i.e.

on the ability of centers who herd. In general, the relationship between the prevalence of herding and

ability heterogeneity is ambiguous. When higher ability centers follow lower ability centers, herding

is less likely and this effect is amplified by an increase in heterogeneity (a mean-preserving spread of

the ability distribution). When lower ability centers follow higher ability centers, the converse is true.

Figure 13 plots the relationship between the fraction of decisions with herding and ability het-

erogeneity, separately for good and bad organs, with livers and kidneys. At each level of ability

heterogeneity, h, with its corresponding center abilities, β̂j γ̂j , we use the model to predict center

decisions and outcomes (acceptances or discards) just as we did in Table 6. We see that the herding

rate is declining in ability heterogeneity, without exception. We also see that ability, conditional on

herding, is declining in ability heterogeneity. This can be explained by two reinforcing effects: (i) less

able centers are more likely to herd and since the prevalence of herding has declined, centers that herd

will be drawn from lower in the ability distribution, and (ii) the ability distribution spreads out with

an increase in heterogeneity.25

25Notice that the herding rate is higher with bad organs than with good organs at each level of ability heterogeneity in
Figure 13. Although beliefs evolve and centers make decisions just as in the model, we now draw signals for centers that
are specific to the quality of the organ; i.e. using β̂j (γ̂j) to draw signals with bad (good) organs. Given that βj > 1−γj ,
as verified above, and hence that β̂j > 1− γ̂j , it follows that bad organs are more likely to be rejected than good organs
and will thus travel further down the line, where the prevalence of herding is greater on average, as observed in Figure
11. Based on the preceding discussion, this also explains why ability, conditional on herding, is lower for good organs.
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Figure 13: Herding Rate and Ability Conditional on Herding

Note: Herding rate is computed as the fraction of decisions in positions 2-8 at which centers are predicted to reject
regardless of their signal.
Average ability conditional on herding is based on the composite ability measure used in the herding tests.

Ability heterogeneity has value one at the level observed in the data.

Based on Figure 12 and Figure 13, an increase in ability heterogeneity is associated with a decline

in the prevalence of herding, the information loss that goes with it and, hence, with inefficiency in

organ selection. Although the prevalence of herding is quite high in our data, which corresponds to

h = 1 in the figures, herding would be much higher if centers were homogeneous in their abilities

(h = 0). This would substantially increase inefficiencies in organ selection, especially the rate of

false discards. While ability heterogeneity reduces herding and its accompanying inefficiencies, the

important qualifier to these findings is that they apply to the current setting. In other environments,

the inefficiencies due to herding might well be substantial.

7 Conclusion

There are many economic environments in which prospective buyers, acting sequentially, must choose

whether or not to acquire an object. It is often observed that (rejection) decisions across buyers are

correlated. One explanation for this correlation is that buyers independently assess that the object is

of poor quality. An alternative explanation, which goes back to Banerjee (1992) and Bikhchandani et

al. (1992) is that agents further in line herd behind their predecessors and (rationally) ignore their own

assessment of the object’s quality. Our research adds a new dimension to the canonical herding model

by allowing agents to differ in their ability to assess the quality of the offered object. We develop

new tests of herding based on this ability heterogeneity and also examine its efficiency consequences,
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applied to liver and kidney transplantation in the U.K. over the 2006-2015 period.

Organ transplantation in the U.K. is an ideal setting for our analysis for a number of reasons.

First, the ordering of centers for a given organ is independent of their ability to distinguish between

good and bad organs. Second, the payoff from transplanting an organ is independent of center ability,

as we define it. Third, most decisions are made at very early positions and almost never past the

eighth position. This implies that the patient-organ mismatch and organ deterioration, which will

mechanically increase by position, are less relevant, as are strategic dynamic considerations in decision-

making. Center decisions are based on an assessment of objective organ quality and we detect herding

in these decisions with multiple independent tests.

Although herding is common, our analysis indicates, nevertheless, that the level of inefficiency,

measured by false discards of good organs and false acceptances of bad organs, is surprisingly low

relative to the pooled information benchmark. Although the relationship between herding inefficiency

and ability heterogeneity is theoretically ambiguous, in our setting, the prevalence of herding and

the accompanying inefficiency are declining in center heterogeneity. In particular, the false discard

rate, based on our counter-factual analysis, would have doubled if centers were homogeneous in their

abilities. There is, however, no obvious reason why the conditions that reduce herding inefficiencies in

the U.K. should hold in other settings, such as the U.S., where organ transplantation is organized very

differently and where the ability distribution could well be different. An examination of the efficiency

of organ transplantation in such settings, along the lines of the analysis in this paper, together with

an investigation of appropriate corrective policies, would thus appear to be fruitful areas for future

research.
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Çelen, Boğaçhan and Shachar Kariv, “Distinguishing informational cascades from herd behavior

in the laboratory,” American Economic Review, 2004, 94 (3), 484–498.

and , “Observational learning under imperfect information,” Games and Economic behavior,

2004, 47 (1), 72–86.

Chamley, Christophe P, Rational herds: Economic models of social learning, Cambridge University

Press, 2004.

40



Cipriani, Marco and Antonio Guarino, “Estimating a structural model of herd behavior in

financial markets,” American Economic Review, 2014, 104 (1), 224–51.

Collett, David, Peter J Friend, and Christopher JE Watson, “Factors associated with short-

and long-term liver graft survival in the United Kingdom: development of a UK donor liver index,”

Transplantation, 2017, 101 (4), 786–792.

Conley, Timothy G and Christopher R Udry, “Learning about a new technology: Pineapple in

Ghana,” American Economic Review, 2010, 100 (1), 35–69.

Dupas, Pascaline, “Short-run subsidies and long-run adoption of new health products: Evidence

from a field experiment,” Econometrica, 2014, 82 (1), 197–228.

Foster, Andrew D and Mark R Rosenzweig, “Learning by doing and learning from others:

Human capital and technical change in agriculture,” Journal of Political Economy, 1995, 103 (6),

1176–1209.

Frick, Mira, Ryota Iijima, and Yuhta Ishii, “Misinterpreting Others and the Fragility of Social

Learning,” 2019.

Gale, Douglas, “What have we learned from social learning?,” European Economic Review, 1996,

40 (3-5), 617–628.

Golub, Benjamin and Matthew O Jackson, “Naive learning in social networks and the wisdom

of crowds,” American Economic Journal: Microeconomics, 2010, 2 (1), 112–49.

Grinblatt, Mark, Sheridan Titman, and Russ Wermers, “Momentum investment strategies,

portfolio performance, and herding: A study of mutual fund behavior,” The American Economic

Review, 1995, pp. 1088–1105.

Lakonishok, Josef, Andrei Shleifer, and Robert W Vishny, “The impact of institutional

trading on stock prices,” Journal of Financial Economics, 1992, 32 (1), 23–43.

Mobius, Markus, Tuan Phan, and Adam Szeidl, “Treasure hunt: Social learning in the field,”

Technical Report, National Bureau of Economic Research 2015.

Munshi, Kaivan, “Social learning in a heterogeneous population: technology diffusion in the Indian

Green Revolution,” Journal of Development Economics, 2004, 73 (1), 185–213.

Park, Andreas and Hamid Sabourian, “Herding and contrarian behavior in financial markets,”

Econometrica, 2011, 79 (4), 973–1026.
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8 Appendix (not for publication)

This appendix sets up an alternative model in which centers do not differ in their ability to distinguish

between good and bad organs but, instead, are heterogeneous in their cut-off beliefs, π̃. First, we show

formally (Lemma 1) that there is a positive relationship between a center’s cut-off belief π̃ and p1, its

probability of rejecting an organ in first position. As noted in Section 4.1, center 1’s rejection rate p1

is equivalent to p1, and hence the interpretation of p1 in our alternative model is that it proxies for π̃.

Next, we show (Lemma 2) that there is an unambiguously negative relationship between π̃ and p2, the

probability of rejection of the center in second position (conditional on being offered the organ). This

is true regardless of whether centers are herding or not. This is inconsistent with the results in Table

2. Finally, we show (Lemma 3) that, without herding, if centers 1 and 2 have the same cut-off beliefs,

the effect of an increase in center 1’s belief on p3, the probability of rejection of the center in third

position, is the same as an increase in center 2’s belief. This is inconsistent with the results in Tables

4 and 5. We formalize our argument within the context of a model with a continuum of signals, for

ease of exposition, but the results easily extend to finite signals.

Assume that a G (B) organ generates signals s in [s, s] ⊂ R according to a cumulative distribution

function FG (FB) with continuous density fG (fB). The distribution functions are common to all

centers, i.e. centers are homogenous in their abilities to identify G and B organs. We assume further

that FG and FB satisfy the weak MLRP, in the sense that higher signals are no less likely to be received

with good organs than bad organs: fG(s)
fB(s) is weakly increasing in s. This assumption is analogous to

Assumption 1 in our model, which states that centers are not systematically misinformed. For any

j = 1, 2, ..., we denote by π̃j the cut-off belief of center j (i.e. the center placed at position j), by πj

the probability that an organ offered at position j is a G organ (note, that π1 = π), and by πj(sj)

the posterior belief of center j that, after receiving signal sj , the organ offered at position j is a G

organ. We assume that π1(s) < π̃1 < π1(s), that is, center 1 rejects (accepts) the organ after the

lowest (highest) signal realization. This assumption says that center 1 both accepts and rejects with

positive probability and is thus similar to Assumption 2 in our model, which states that each centre, if

it is first in line, rejects the organ after a b signal and accepts after a g signal. In what follows (proofs

of Claim 2 and Lemma 3), we will also use the following notation: H(s) := FB(s)
FG(s) .

Lemma 1 p1 is weakly increasing in π̃1.

Proof: Weak MLRP implies that

π1(s1) =
πfG(s1)

πfG(s1) + (1− π)fB(s1)
=

1

1 + 1−π
π

fB(s1)
fG(s1)

(16)

is weakly increasing in s1. Denote by s̃1 the lowest signal s1, such that π1(s1) = π̃1. s̃1 ∈ [s, s] is

uniquely defined and is weakly increasing in π̃1 (because π1(s1) is weakly increasing in π̃1). Center 1’s
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optimal decision is to reject upon observing any signal s1 < s̃1 and to accept otherwise. Therefore,

center 1’s rejection probability p1 is a function of s̃1 with

p1 = πFG(s̃1) + (1− π)FB(s̃1)

Since s̃1 is weakly increasing in π̃1, so is p1. QED

Lemma 2 Center 2’s rejection probability p2 is weakly decreasing in center 1’s cut-off belief π̃1,

independent of whether there is social learning or not.

Proof:
dp2
dp1

=
dp2
dπ2
· dπ2
dπ̃1
≤ 0.

The inequality follows from Claims 1 and 2.

Claim 1: π2 is weakly increasing in π̃1.

Claim 2: p2 is weakly decreasing in π2, independent of whether there is social learning or not.

Proof Claim 1: When center 2 is offered an organ it must be that the organ has been turned

down by center 1, implying that s1 ∈ [s, s̃1]. The probability that this organ is a G organ is therefore

π2 =
πFG(s̃1)

πFG(s̃1) + (1− π)FB(s̃1)
=

1

1 + 1−π
π H(s̃1)

(17)

Since s̃1 is weakly increasing in π̃1, π2 is weakly increasing in π̃1 if and only if H(s̃1) is weakly

decreasing in s̃1. The derivative of H(s̃1) with respect to s̃1 is

fB(s̃1)FG(s̃1)− fG(s̃1)FB(s̃1)

F 2
G(s̃1)

,

which is weakly negative if and only if

fB(s̃1)FG(s̃1) =

s̃1∫
s

fB(s̃1)fG(s)ds ≤
s̃1∫
s

fG(s̃1)fB(s)ds = fG(s̃1)FB(s̃1).

The latter inequality holds because weak MLRP implies that

fB(s̃1)fG(s) ≤ fG(s̃1)fB(s) for all s ≤ s̃1.

Therefore, π2 is weakly increasing in π̃1. QED

Proof Claim 2: Like center 1, center 2 with cut-off belief π̃2 and corresponding signal s̃2, the

lowest signal s2, such that π2(s2) = π̃2, will reject the organ if and only if s2 < s̃2. Center 2’s rejection
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probability is therefore

p2 = π2FG(s̃2) + (1− π2)FB(s̃2). (18)

Assume first, that center 2 does not learn from center 1’s rejection. Then, center 2 behaves as if

it was first in line, and so its belief after receiving signal s2 is

π2(s2) =
πfG(s2)

πfG(s2) + (1− π)fB(s2)
=

1

1 + 1−π
π

fB(s2)
fG(s2)

(19)

This is independent of π2, and s̃2 is therefore also independent of π2. Taking derivative of (18) with

respect to π2 gives
dp2
dπ2

= FG(s̃2)− FB(s̃2) ≤ 0,

because FG first order stochastically dominates FB, which follows from weak MLRP.

Assume second, that center 2 does learn from center 1’s rejection. Then, center 2’s prior belief is

π2 and its posterior belief after receiving signal s2, is

π2(s2) =
π2fG(s2)

π2fG(s2) + (1− π2)fB(s2)
=

1

1 + 1−π2
π2

fB(s2)
fG(s2)

(20)

It is easy to see that π2(s2) is increasing in π2, and, therefore, s̃2 is decreasing in π2.

Taking derivative of (18) with respect to π2, we obtain

dp2
dπ2

= FG(s̃2)− FB(s̃2) + π2fG(s̃2)
ds̃2
dπ2

+ (1− π2)fB(s̃2)
ds̃2
dπ2

,

which, based on our previous argument and the fact that ds̃2
dπ2

< 0, is no greater than zero. QED

Lemma 3: Suppose there is no herding. Then, the effect of an increase in center 1’s cut-off belief,

π̃1, on center 3’s rejection probability, p3, is of the same magnitude as the effect of an increase in

center 2’s cut-off belief, π̃2, i.e.
∂p3
∂π̃1

=
∂p3
∂π̃2

.

Proof: The proof procedes in 3 steps. We first show that π̃1 = π̃2 implies

s̃1 = s̃2 and
ds̃1
dπ̃1

=
ds̃2
dπ̃2

. (21)

(21) follows because, if center 2 does not learn from center 1’s rejection, π1(s1) is identical to π2(s2)

(compare (16) and (19)). Therefore, if π̃1 = π̃2, it must be that s̃1 (its derivative with respect to π̃1)

is identical to s̃2 (its derivative with respect to π̃2).
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We next show
∂π3
∂π̃1

=
∂π3
∂π̃2

. (22)

When center 3 is offered an organ it must be that the organ has been turned down by both centers 1

and 2, implying that sj ∈ [s, s̃j ], j = 1, 2. The probability that this organ is a G organ at round 3 is

therefore

π3 =
π2FG(s̃2)

π2FG(s̃2) + (1− π2)FB(s̃2)
=

1

1 + 1−π2
π2

H(s̃2)
. (23)

Using (17), we can replace π2 in (23) to obtain

π3 =
1

1 + 1−π
π H(s̃1)H(s̃2)

.

This expression is symmetric in s̃1 and s̃2, and so (21) implies (22).

Finally, we show
∂p3
∂π̃1

=
∂p3
∂π̃2

. (24)

Like centers 1 and 2, center 3 does not learn from its predecessors and, after receiving signal s3, has

belief

π3(s3) =
πfG(s3)

πfG(s3) + (1− π)fB(s3)
=

1

1 + 1−π
π

fB(s3)
fG(s3)

.

Assume that center 3 has a cut-off belief π̃3 and define the corresponding signal s̃3 as the lowest signal

s3, such that π3(s3) = π̃3. Given the expression for π3(s3), s̃3 is independent of π̃i (and s̃i) for i = 1, 2.

Center 3’s rejection probability is

p3 = π3FG(s̃3) + (1− π3)FB(s̃3). (25)

The derivative of p3 with respect to π̃j , j = 1, 2, is

dp3
dπ̃j

=
∂π3
∂π̃j

[FG(s̃3)− FB(s̃3)],

and so (24) follows from (22). QED
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