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Abstract 

Colorectal cancer (CRC) is the third major cause of cancer-related deaths in the United States in 

2020. Sex-related differences in CRC stage, prognosis, and metabolism have become 

increasingly popular in cancer research. Males have poorer survival for CRC, but females with 

right-sided colon cancer (RCC) have aberrant metabolism correlated with poor survival. Delay in 

knowing the condition of CRC in female patients would result in poor prognosis, which could be 

avoided by predicting prognostic outcomes. Random Survival Forest (RSF) is ideal for 

exploration and making predictions using metabolomics data with high dimension, strong 

collinearity, and heterogeneity, which CPH models could not efficiently address. In this 

retrospective study including 197 patients, we applied an RSF prediction method based on the 

backward selection algorithm in 5-year overall survival (OS) for 95 female CRC patients and 

validated its performance. We also investigated Cox proportional hazard models (CPH), lasso 

penalized Cox regression (Cox-Lasso), and Logistic Regression (LR) and compared their 

predictive performances. RSF using the backward selection algorithm showed the best 

performance with the C-index of the training and testing sets reaching 0.81(95% CI: 0.810-

0.813) and 0.78 (95% CI: 0.776-0.777) respectively and identified the five most predictive 

metabolites for female 5-year OS: glutathione, citrulline, phosphoenolpyruvate, lysoPC (16:0), 

and asparagine. Accordingly, the backward selection algorithm-based Random Survival Forest 

model using tumor tissue metabolic profile is promising for predicting 5-year OS for female 

CRC patients. The results could be easily interpreted and applied in preventive medicine and 

precision medicine, guiding clinicians in choosing targeted treatments by sex for better survival 

and avoiding unnecessary treatments.  
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List of Tables  

Table 1. Demographic Characteristics and Clinical Factors 

Characteristics No. of Patients 
5-Year Overall Survival (OS) 5-Year Recurrence-free Survival (RFS) 

Deaths, No. Rate, %a P* Cases, No. Rate, %a P* 

Age at diagnosis, y 

55-60 19 2 88.9 

0.048 

3 84.2 

0.208 
61-69 64 9 83.4 14 72.4 

70-79 81 15 78.7 12 81.4 

≥80 33 11 61.5 1 96.3 

Sex, n 

Male 102 23 74.3 
0.176 

17 77.5 
0.478 

Female 95 14 83.2 13 84.0 

Chemotherapy, n 

Yes 66 18 68.5 
0.026 

15 73.1 
0.027 

No 131 19 83.7 15 85.0 

Clinical stage, n 

I 47 3 92.5 

0.001 

5 88.4 

0.091 II 86 13 82.4 11 82.0 

III 64 21 63.5 14 73.8 

Anatomic tumor location, n 

Left 99 17 81.2 
0.422 

19 77.2 
0.230 

Right 98 20 75.6 11 85.3 

* P value of Log-rank test. 

a Survival rates were calculated by the Kaplan-Meier estimation method.  

 

 

 

Table 2. Results of fitting Cox model including sex, anatomic tumor location, clinical stage, and age on 5-year 

OS and RFS of patients with colorectal cancer (n = 197) 

Variables 
OS RFS 

HR 95% CI P HR 95% CI P 

Sex: male 2.05 1.04-4.05 0.039 1.25 (0.60, 2.59) 0.555 

Anatomic tumor location: RCC 0.84 0.42-1.68 0.623 0.72 (0.33, 1.56) 0.410 

Clinical stage: Late 4.17 2.11-8.24 <0.001 2.08 (1.01, 4.27) 0.047 

Age 1.09 1.05-1.14 <0.001 0.97 (0.92, 1.02) 0.261 
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Table 3. Primary exploration of predictive performance using RSF for CRC prognosis. The MPER might 

slightly fluctuate due to randomness. MPER: Minimum prediction error rate. 

Outcome Population MPER Selected metabolites 

OS 

All patients (n = 197) 0.3085 
CDP-Ethanolamine, CMP, Dimethylsphingosine, Glutathione, 

disulfide, Hypoxanthine, Tyrosine 

Females (n = 95) 0.2100 Asparagine, Citrulline, Creatinine, DHAPorG3P, Glutathione  

Males (n = 102) 0.3407 Tyrosine, Uracil  

RFS 

All patients (n = 197) 0.3001 
Acetyl-lysine, Cytidine, Dimethylsphingosine, Glutathione 

disulfide, LysoPE (22:5), Palmitic acid, Xanthosine  

Females (n = 95) 0.3257 Glutathione, Glutathione disulfide  

Males (n = 102) 0.2356 Acetyl-lysine, Hypoxanthine, N1-Acetylspermine, Xanthosine  

 

Table 4. Characteristics of training and testing sets for CRC female patients (n = 95). 

Variables 
Training set Testing set 

P* 

(n = 58) (n = 37) 

Age (mean (SD))  70.98 (8.03) 72.11 (7.51) 0.490 

Chemotherapy, n     

Yes  21 14 
0.342 

No  37 23 

Clinical stage     

Early  38 22 
0.705 

Late  20 15 

Anatomic tumor location     

Left  28 17 
0.991 

Right  30 20 

Death     

Yes  9 5 
1.000 

No  49 32 

Follow-up months (mean (SD)) 48.43 (19.30) 44.79 (21.87) 0.560 

* P values calculated by Mann-Whitney U test for continuous variables; Chi square test or Fisher’s exact test for 

categorical variables. 
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Table 5. Results of COX1 and COX2 model with determined factors on 5-year OS of female CRC patients 

based on the training set (n = 58). These two models were only for reference and comparison. They were invalid 

for interpretation or making predictions because they violated the proportional hazard assumption. Additionally, a 

small sample size with limited death events led to extremely high HRs. Thus, HRs were invalid and biased.  

Model Variables HR (95% CI) P 

Variable 

violated PH 

assumption 

Model 

violated PH 

assumption 

Model C-

index (Se) 

COX1 

glutathione 0.50 (0.20, 1.21) 0.123 No 

Yes 
0.949 

(0.023) 

glutathione disulfide 1.08 (0.48, 2.44) 0.852 Yes 

glycerol 3-phosphate 8.92 (1.17, 68.22) 0.035 Yes 

phosphoenolpyruvate 1.26 (0.60, 2.65) 0.544 Yes 

succinate 0.02 (0.00, 1.68) 0.084 No 

UDP-D-Glucose 1.23 (0.67, 2.25) 0.504 No 

Tumor location: RCC 1.09 (0.14, 8.54) 0.936 No 

Clinical stage: late 66.29 (3.51, 1251.58) 0.005 No 

Age 1.27 (1.08, 1.49) 0.004 Yes 

COX2 

glutathione 0.58 (0.39, 0.88) 0.009 No 

Yes 
0.952 

(0.020) 

glycerol 3-phosphate 9.43 (1.52, 58.55) 0.020 Yes 

succinate 0.08 (0.01, 0.71) 0.020 No 

Tumor location: RCC 1.60 (0.27, 9.55) 0.610 No 

Clinical stage: late 48.48 (4.87, 482.10) <0.001 No 

Age 1.25 (1.08, 1.44) 0.003 No 

 

Table 6. Variables with relative importance larger than 20% using RSF based on the training set (58 female 

patients). VIMP: variable importance. 

Variables VIMP Relative importance 

Citrulline 0.0228 100.00% 

Glutathione 0.0185 81.14% 

Asparagine 0.0117 51.45% 

LysoPC(16:0) 0.0104 45.60% 

Clinical Stage 0.0096 41.88% 

Creatinine 0.0079 34.62% 

Glucosamine 6-phosphate 0.0078 33.97% 

Age 0.0073 31.88% 

Glycerol 3-phosphate 0.0057 24.84% 

Taurine 0.0049 21.38% 

Hypoxanthine 0.0047 20.69% 
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Table 7. Comparing predictive performance for models in both training set and testing set. COX1 model 

adopted statistically significant metabolites in individual analysis with clinical stage, tumor location, and age. COX2 

model included remaining variables generated from COX1 after forward stepwise selection procedure with 

minimum AIC. Cox-LASSO was a Cox regression model using all the variables with lasso penalty for feature 

selection. RSF1 was constructed by the stepwise RSF backward algorithm with a minimum prediction error rate. 

RSF2 used variables with VIMP > 0.005.  

Models 
C-index Estimates (95% CI) 

Training set (n = 58) Testing set (n = 37) 

COX1 0.9494 (0.9043-0.9945) 0.6000 (0.3656-0.8344) 

COX2 0.9448 (0.8938-0.9958) 0.6370 (0.4257-0.8483) 

Cox-LASSO 0.7056 (0.6903-0.7210) 0.6440 (0.6321-0.6558) 

RSF1 0.8117 (0.8104-0.8131) 0.7765 (0.7756-0.7773) 

RSF2 0.8469 (0.8462-0.8476) 0.6589 (0.6578-0.6600) 

LR 0.7732 (0.6090-0.9375) 0.6125 (0.3686-0.8564) 
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List of Figures  

 

Figure 1. Flowchart for the modeling process. RSF: random survival forest. LR: logistic regression. LASSO: least 

absolute shrinkage and selection operator. K-fold CV: k-fold cross-validation. C-index: concordance index. External 

validation: an important procedure to ensure sufficient robustness and generalizability using independent external 

data sets after the models are tested to be valid from internal validation (the current data set we have).  
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† LysoPC: Lysophosphatidylcholine. 

Figure 2.  Sex differences in metabolites associated with CRC prognosis. Hazard ratios (HRs) for CRC by sex 

for individual metabolites (per 1 standard deviation, adjusted for anatomic location, clinical stage, and age 

(continuous)) (A) 5-year Overall survival (OS) and (B) 5-year Recurrence-free survival (RFS). A metabolite with 

HR <1 was associated with a protective effect on prognosis; metabolite with HR > 1 was associated with an adverse 

effect on prognosis. Metabolites with confidence intervals (CIs) marked with asterisks were significantly associated 

with the presented prognosis (Raw P values < 0.05). All the metabolites abundance (continuous) was log2 

transformed. The x-axes are log-scaled. Sex interaction P values < 0.05. 
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Figure 3. Kaplan-Meier curve of training and testing sets. There was no statistically significant difference between 

the survival of training and testing sets in log-rank test (P = 0.94). 
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Figure 4. Cox-LASSO modeling based on the training set (58 female patients). (A) 10-fold cross-validation 

curve using the training set as a function of the λ with upper and lower standard deviation bar. The optimum λ 

corresponded to the highest C-index. (B) a coefficient profile plot of the coefficient paths for a fitted Cox-LASSO 

model using the training set. At Log(λ)= -2.06, only coefficients of two variables were not penalized to 0: Clinical 

stage (coefficient = 0.3486) and lysoPC (16:0) (coefficient = 0.2178). 

 

 

Log( )

Log( ) = -2.06

Remaining  ariables with 

coefficients   0:

Clinical stage, LysoPC(16:0)
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Figure 5. Partial 5-year predicted survival for nine most predictive variables on survival in colorectal cancer 

data based on the training set (58 female patients). Values on the vertical axis represent predicted survival 

probability for a given predictor after adjusting for all other predictors (A-I). (J) Error rates of RSF for log-rank 

splitting rule. (K) Identified metabolites that are most predictive for 5-year OS among females by the minimal depth 

measurement. Metabolites were identified using the random survival forest backward algorithm. Metabolites with 

lower minimal depth values are more predictive regarding 5-year OS. Abbreviations LysoPC:  

Lysophosphatidylcholine. Dark dots in A-F represented survivors, and blue dots represented dead patients. 
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Figure 6. Variable importance (VIMP) for variables with relative importance larger than 20% based on the 

training set (58 female patients) 
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Figure 7. Prediction performance for Logistic Regression (LR). ROC curve for training set (n = 58) (A) and 

testing set (n = 37) (B). ROC curve: receiver operating characteristic curve. AUC: Area under the ROC Curve. Pos 

Pred Value: Positive prediction value. Neg Pred Value: Negative prediction value. 
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Figure 8. Prediction performance over time for the four models in the testing set (n = 37). RSF1 model had the 

best predictive performance since month 20, followed by RSF2, COX2 and COX1. The dotted pink line indicates a 

C-index = 0.75 as an acceptance threshold for a valid predictive model. The dotted grey line indicates a C-index = 

0.5. Models with C-index < 0.5 were considered no better than predicting an outcome than random chance. RSF1 

reached above the acceptance threshold after month 53.  
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Introduction  

According to CDC reports, colorectal cancer (CRC) is the third major cause of cancer-related 

deaths in the United States in 20201. CRC survival is not only related to the stage at diagnosis 

but is also strongly affected by the implementation of population-based screening that reduces 

colorectal cancer incidence and mortality2. Studies have shown that conventional risk factors 

included aging, family history of cancer, obesity, diets, alcohol consumption, smoking, low 

physical activity, and socioeconomic status3. Clinical and pathological variables such as 

inflammatory response, body mass index (BMI), tumor location and size, metastasis, lymph node 

metastasis, and pathological stage of tumors also greatly influence CRC survival and have been 

incorporated into prognosis prediction4. An emerging amount of new biomarker-based 

approaches have been applied in colorectal cancer screening programs due to less invasiveness, 

lower costs, and potentially higher detection accuracy, such as DNA methylation biomarker test 

using blood samples5 and tumor endothelial marker test6. In addition, stratified screening 

programs by risk factors including sex allow screening and preventive strategies to be targeted at 

those most likely to benefit while reducing the number of patients undergoing harmful or 

invasive tests, which unleash the potential to improve screening efficiency78.  

Sex-related differences in CRC prevalence, prognosis, clinical stage, and metabolism have 

become increasingly popular in cancer research91011. Males have poorer survival for CRC12. 

However, females have a higher prevalence of right-sided colon cancer (RCC)12, which was 

associated with and poor overall survival (OS)1314. Johnson Lab investigated untargeted 

metabolomics on tumor tissue, looked at the biological mechanisms, and found a positive 

association between aberrant metabolism in asparagine synthetase (ASNS) expression and poor 

survival15, which laid the foundation of this study. These findings suggest that sex plays a vital 
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role in CRC prognosis together with the influence of anatomic tumor location, clinical stage, and 

metabolism. Thus, it is promising to gain a complete view of how sex interacts with CRC 

prognosis by addressing the clinical problem from the perspectives of metabolomics that helps to 

reveal the biological background. Therefore, this study hypothesized that the untargeted 

metabolic profile of primary tumor tissue metabolites could reveal sex differences in the 

associations with CRC prognosis, and it could be used to predict CRC prognosis by sex.  

A couple of studies have built robust prediction models for CRC prognosis in recent years using 

clinical factors, biomarker data, and histopathological image data. Roshanaei et al. validated a 

random survival forest (RSF) model to identify important risk factors (metastasis to other organs, 

WBC count, disease stage, and the number of lymphomas) on mortality in CRC patients based 

on their demographic and clinical-related variables16. Xu et al. used logistic regression (LR) to 

predict the recurrence of stage IV CRC after tumor resection by considering time-to-event 

outcome as a binary outcome (whether recurrence occurred)17. Bychkov et al. developed an 

image-based deep learning approach to predict colorectal cancer outcomes based on images of 

tumor tissue samples that outperform an experienced human observer in extracting more 

prognostic information18. Kather et al. confirmed that convolutional neural networks (CNN) 

were able to assess the human tumor microenvironment and predict prognosis directly using 

histopathological images19. Biomarker-based prediction models such as the Circulating free 

DNA (cfDNA) -based prognostic prediction model based on LASSO-Cox methods achieved an 

excellent discriminating ability20.  

There are multiple statistics and machine learning approaches available to build models for 

prognosis prediction in clinical practice. In common, the Cox proportional hazards (CPH) 

models are used to evaluate the relationships between cancer prognosis and risk factors. 
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However, CPH is sometimes not suitable for analyzing data with high dimension, complex 

interactions between variables because it assumes that the outcome is a linear combination of 

covariates21. The proportional hazard assumption is often violated in some survival data22 , 

which could produce biased hazard ratios. To avoid the defects of CPH, other non-parametric 

models are more appropriate in this scenario. For metabolite data specifically, the exploratory 

analysis of high dimensional metabolomic data containing hundreds of highly correlated 

variables using regression approaches has unique statistical challenges related to multiple testing 

and multicollinearity, which had been a major difficulty in this study. Multiple studies have 

demonstrated that random survival forest (RSF) was a promising approach for identifying 

disease-associated variables in complex time to event data with a large number of highly 

correlated metabolites by utilizing a set of decision trees for prediction and ranking variables by 

their importance232425. With RSF backward elimination procedure, Dietrich et al. successfully 

extracted a series of informative metabolites for predicting type 2 diabetes mellitus (T2D) 5-year 

disease-free survival, some of which showed nonlinear relationships with prognosis, indicating 

the necessity of using RSF instead of CPH23. Likewise, our study also hypothesized that we 

could find predictive metabolites for CRC prognosis using advanced statistical methods. 

This study is a follow-up to the recent study at Johnson Lab, where we saw that high expression 

of genes encoding metabolic enzymes were associated with poorer survival in females with 

RCC15. We first looked at tumor tissue metabolites with sex differences in their associations with 

CRC prognosis (5-year overall survival and 5-year recurrence-free survival) considering 

anatomic tumor location, clinical stage, and age at diagnosis. Moreover, we examined the 

possibility of making predictions for CRC prognosis using tumor tissue metabolome considering 

sex difference, then identified predictive metabolites based on the RSF model for 5-year OS 
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among female patients. Finally, we built several predictive models, compared their predictive 

performances, and obtained the optimal one. 

Methods and materials  

Sample Collection and Metabolites Measurements 

Metabolites were extracted and analyzed by hydrophilic interaction chromatography mass 

spectrometry (HILIC-MS) and reverse phase liquid chromatography mass spectrometry (RPLC-

MS)-based metabolomics as previously described in an article by Cai et al.15. Only tumor tissue 

samples from RCCs and LCCs within stage I-III (n=197) were selected in this study. Finally, 

abundances of 91 metabolites were obtained. 

Statistical Analysis 

We included age, sex, anatomic tumor location, and clinical stage as covariates. Multivariable 

Cox proportional hazard regression models were constructed to evaluate the associations 

between prognosis with both individual metabolite abundance (1 SD differences on a log-scale) 

adjusted for covariates for all patients and for both sexes. Two prognostic outcomes were 

considered: 5-year overall survival (OS), 5-year recurrence-free survival (RFS). Due to the 

absence of death events among females at clinical stage I, we recoded the clinical stages I and II 

as “early stage”, and III as “late stage”. Patients with any types of chemotherapy prior to the 

follow-up were coded as having chemotherapy history. Survival analyses were conducted using 

package “survival” in R (version 4.0.4).  
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Random survival forest (RSF) 

An RSF is computed by a cluster of binary decision trees that have been frequently used to select 

the most important variables linked with time to event26. Minimal depth measurement is 

implemented to assess how informative a variable is regarding the time until event23. Harrell’s 

concordance index (C-index) is equal to 1- prediction error rate, which is commonly applied to 

evaluate the predictability of a model. Random survival forest models were trained using the 

“RandomForestSRC” R package. The RSF parameter number of trees and number of node splits 

were fixed at 1000 and 10 initially. We applied a random survival forest backward selection 

algorithm for variable selection to detect the most predictive and informative metabolites while 

forcing covariates into our models23, which finally automatically chose the set of metabolites 

producing the lowest prediction error rate. We used raw abundance in RSF modeling. 

LASSO-based CPH 

Regression with LASSO (least absolute shrinkage and selection operator) penalty is a commonly 

used method for variable selection in a high‐dimensional data analysis that produces results 

depend on the shrinkage parameter λ27. The R package “glmnet” was applied to Cox-LASSO 

modeling based on 10-fold cross-validation. 

Logistic Regression (LR) 

Logistic regression (LR) can predict the probability of occurrence of an event by fitting data to a 

sigmoidal S-shaped logistic curve28. Unlike survival models, LR dropped the time information 

and coded the event within a certain length of time as a binary variable (e.g., survival during the 

5-year of follow-up = 0, death within 5-year follow-up = 1).  
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Modeling process 

We ran RSF based on the backward selection algorithm for all patients and by sex for 5-year OS 

and RFS and then calculated minimum prediction error rates (MPER) for these six models that 

were forced to include clinical stage, age, anatomic tumor location, chemotherapy as covariates. 

MPER lower than 25% was considered as a standard indicating potential good predictive 

ability16, and we only further investigate models with MPER < 25% in our study. 

The whole modeling process could be summarized in Figure 1. To obtain a model with high 

generalizability, it is essential to split the data set into a training set and a testing set. The training 

procedure was conducted using an “inner” training set and validation set if we adopted the k-fold 

cross-validation technique for parameter tuning based on the machine learning algorithm of our 

choice. After multiple training cycles, we achieved a model with high fitting performance for the 

“outer” training set with 60% of the samples. If the performance was poor, we considered it as 

underfitting, and we would not proceed with further testing on the testing set. In this study, we 

aimed to build models with C-index at least over 0.75 (equal to prediction error rate < 0.25) in 

the training set (outer) that represented a promising potential of good predictive ability and then 

to test them in the testing set. If the C-index for the fitted model on the testing set is high (> 

0.75), the model is robust and generalizable and would be considered for external validation 

using data from other independent cohorts. Otherwise, if the predictive accuracy is not high 

enough, more valuable information should be collected and analyzed in future modeling for 

improvement, and combination with other screening, testing approaches would be necessary as a 

supplementation in clinical practice.  
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Results 

Clinical characteristics 

Baseline characteristics of 197 CRC cases (102 males and 95 females), including 5-year overall 

survival (OS) and 5-year recurrence-free survival (RFS), are shown in Table 1. In the cohort, 37 

total deaths and 30 recurrences were documented. The median follow-up time since the date of 

surgery for primary tumor was 74.8 months (range, 0.1-169.2 months). Older age at which the 

surgery was performed, having chemotherapy history, and advanced clinical stage were inversely 

related to OS survival rate. For each subgroup by anatomic tumor location and clinical stage, the 

demographic characteristics are displayed in Supplementary Table 1. Prognosis among different 

subgroups is shown in Supplementary Table 2. Among these variables, chemotherapy history 

was significantly associated with clinical stage for all patients (Wilcoxon rank-sum test P value < 

0.001), and the treatment effects of chemotherapy on prognosis counteracted the harmful effects 

of being late stages, which would make models hard to interpret. Thus, we believed that clinical 

stage provided enough information, and we did not include chemotherapy history as a covariate 

in the Cox Proportion Hazard (CPH). But we used both variables in other models using machine 

learning algorithms that could carry feature selection automatically and produce interpretable 

results. 

Cox proportional hazard regression (CPH) analysis  

In Table 2, sex was significantly associated with 5-year OS adjusted for anatomic tumor location, 

clinical stage, age. We then examined the sex differences in the associations between OS and 

metabolome and whether it was necessary to build different models by sex for prognosis 



20 

 

prediction. Sex seemed to be independently associated with RFS but still conducted the same 

analysis for RFS to see if any metabolites had sex heterogeneity in the associations with RFS. 

We first analyzed the relationships between the abundance of 91 metabolites and OS. 

Multivariate Cox proportional hazard (CPH) models estimated associations between 91 tumor 

tissue metabolites and CRC prognosis individually by sex with 1 SD differences (log-metabolite 

scale), adjusted for anatomic location, clinical stage, and age: 18 metabolites were significantly 

associated with OS (Supplementary Table 3) for either female or male patients (Supplementary 

Table 4). Twenty-five metabolites had statistically significant correlations with RFS for either 

females or males (Supplementary Table 4). For both supplementary tables 3 and 4, the P values 

were raw values before FDR adjustment. Only carnitine and hypoxanthine remained significantly 

associated with RFS for males after FDR adjustment. Fig. 2 summarizes metabolites whose 

associations with CRC prognosis differed by sex (interaction P values < 0.05).  

Adenosine, asparagine, citrulline, glycerol 3-phosphate, LysoPC (16:0) (lysophosphatidylcholine 

(16:0)), ornithine, succinate, threonine, UDP-D-Glucose, uracil, and xanthosine were found to 

have significant sex differences in their associations with CRC OS (Supplementary Table 3, Fig. 

2A). Among these 11 metabolites, succinate was associated with better OS for females 

(HROS=0.34 per SD, 95% CI: 0.12-0.96, P = 0.042), while it was associated with poorer overall 

survival for males (HROS=1.77 per SD, 95% CI: 1.21-2.58, P = 0.003) (Fig. 2A). 

Argininosuccinic acid, asparagine, creatinine, hypoxanthine, and serine were found to have 

significant but opposite associations with RFS between female and male patients (Supplementary 

Table 4, Fig. 2B). These metabolites were all significantly associated with RFS in males but 

were not associated with RFS in females. Interestingly, asparagine was observed to have sex 

differences for both OS and RFS (Fig. 2). Asparagine was significantly associated with better 
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CRC prognosis in male patients (both OS and RFS): HROS=0.72 per SD, 95% CI: 0.55-0.96, P = 

0.025; HRRFS=0.74 per SD, 95% CI: 0.56-0.98, P = 0.039, but there were no significant trends in 

female patients (interaction POS = 0.029, interaction PRFS = 0.009) (Supplementary Table 3, 4). 

None of the results in Fig. 2 violated the proportional hazards assumption. 

Multivariate CPH analysis that includes all metabolites with clinical variables was inappropriate 

because of strong collinearity and divergent results, given relatively small sample size and high 

dimension with around 100 variables. Thus, we hoped to reduce dimension by Principal 

Component Analysis (PCA). We tried to implement CPH analyses combined with PCA, but 

there was no statistically significant result for OS among female CRC patients (Supplementary 

Fig. 1, Supplementary Table 5, Supplementary Table 6). Thus, we sought other methods to 

identify predictive metabolites.  

Predictive modeling 

Primary exploration of the possibility to predict CRC prognosis using tumor 
tissue untargeted metabolic profile 

The identified sex interactions indicated potential sex heterogeneity. Thus, we conducted 

predictive modeling taking sex differences into account. We found that CPH models that 

included all the metabolites to select features could not converge for all patients or both sexes, 

even with stepwise selection methods. So, we turned to the Random Survival Forest algorithm 

(RSF) to handle high dimensional data and collinearity problems without having to consider the 

proportional hazard assumption. We ran RSF based on the backward selection algorithm for all 

patients and by sex for 5-year OS and RFS and then calculated prediction error rates (PER) of 

the model with selected variables together with clinical stage, age, anatomic tumor location, 

chemotherapy as covariates. We further investigated models with minimum PER lower than 
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25%, which was considered as a standard indicating potential good predictive ability in our 

study. The selected metabolites were different by sex. 

For example, the minimum prediction error rate for all patients was 0.3085 (Table 3). Thus, it 

was not good to predict OS for all patients using our metabolomic profile based on RSF. It 

seemed that predictive modeling using tumor tissue metabolome based on RSF for OS in females 

and RFS for males was plausible with a minimum PER of 0.2100 and 0.2356, respectively 

(Table 3). To justify the model, it is necessary to follow a standard machine learning modeling 

process that split the data into a training set and testing set, and picked a trained model based on 

the training set and tested it on the testing set (Fig. 1). It is worth mentioning that the training set 

results might not be the same as results from the entire data set for 95 female CRC patients due 

to sampling randomness. Furthermore, a successful random split would not cause too extreme 

deviations between the two results. So far, this step was only meant to explore the possibility of 

making predictions for different prognostic outcomes and populations. We could make 

inferences using the results, but it would be better to test the findings in an independent data set. 

Since we only obtained one cohort data, the only way is to split it into two independent parts to 

for modeling, as Fig.1 described. We used a training set with 60% randomly selected patients to 

select features and test it in a test set consisting of the remaining 40% patients.  

For simplicity, in this thesis, we only further investigated models for OS for female patients with 

a lower prediction error rate of 0.21 using the RSF algorithm. The entire dataset was split into 

two independent groups, 60% for training and 40% for testing. There were no statistically 

significant differences among the features of the two groups (Table 4). Mann-Whitney U test for 

continuous variables; Chi-square test and Fisher’s exact test for categorical variables. The 

difference in survival outcome was absent between the two sets as well (Fig. 3) so that the death 

https://www.nature.com/articles/s41598-019-43372-7#Fig2
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events were balanced. Then it was safe to use the training set to generate a prediction model and 

employ the testing set to estimate the model’s accuracy.  

Cox proportional hazard regression (CPH) models with variable selection 
using forward stepwise and LASSO  

We built the first CPH model (COX1) with statistically significant metabolites in the individual 

analysis with clinical covariates from the training set: glutathione, glutathione disulfide, glycerol 

3-phosphate, phosphoenolpyruvate, succinate, UDP-D-Glucose (Table 5). Then we used forward 

selection methods to select a group of variables with the least AIC (Akaike information criterion) 

for CPH model (COX2) that included clinical stage, age, succinate, glycerol 3-phosphate, and 

glutathione (Table 5). Recurrence status was correlated with OS (Fisher's Exact Test: P < 0.001), 

but it should not be included in any of the models since this was observed simultaneously with 

OS in practice. For COX1, the C-index was 0.9494 (0.9043-0.9945) for training set and 0.6000 

(0.3656-0.8344) for testing set as shown in Table 7; for COX2, C-index was 0.9448 (0.8938-

0.9958) for training set and 0.6370 (0.4257-0.8483) for the testing set. However, both models 

violated the proportional hazard assumption, which might be due to nonlinear covariate 

relationships or lack of independence that made the results less reliable. These two models in 

Table 5 were only for illustration and reference; they were invalid for making predictions and 

interpretation because the violations of the proportional hazard assumption produced biased 

hazard ratios. 

The variable selection methods for both COX1 and COX2 were primitively conducted manually, 

and thus we turned to other methods suitable for addressing dimensionality reduction. Cox-

LASSO regression could use L1 penalty for feature selection and dimension reduction. Using 10-

fold cross-validation (C ), we tuned the λ parameter and selected the best one to produce a 
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selected set of variables. We trained the Cox-LASSO in our training set, as shown in Fig. 4, 

where the C-index peaked at 0.7173 when λ was around 0.1273 (Log λ = -2.06). When λ is very 

small, the LASSO produced results similar to a CPH model with all the coefficients included. As 

λ grew, the regularization term had a greater effect on penalizing more variable coefficients to 

zero, leaving fewer variables in the model. Finally, only variables that were influential enough 

were included in the model. The training process was summarized in Fig. 4. At Log(λ)= -2.06, 

only two variables had coefficients > 0:  Clinical stage (coefficient = 0.3486) and lysoPC (16:0) 

(coefficient = 0.2178), both of which were positive indicating their contribution to lower overall 

survival probabilities. We used this λ to test the prediction performance on the testing set, and we 

got a C-index of 0.6667. To obtain a mean and 95% CI for the C-index for the training set and 

testing set, we ran the model 1000 times, and the C-index was 0.7056 (0.6903-0.7210) for the 

training set and 0.6440 (0.6321-0.6558) for the testing set as shown in Table 7.  

Random survival forest (RSF) model  

We first used the stepwise RSF backward algorithm by selecting a group of variables that 

produced the best prediction performance using the training set. The model (RSF1) included 

asparagine, citrulline, glutathione, lysoPC (16:0), phosphoenolpyruvate together with forcibly 

included covariates (tumor stage, clinical location, age, and chemotherapy history), and the 

prediction error rate reaches a minimum of 0.1883 (C-index=0.8117). Then we built an RSF 

model (RSF2) including variables with relative variable importance (VIMP) > 5% (RSF1) for 

both females: clinical stage, citrulline, chemotherapy history, age, hypoxanthine, glycerol 3-

phosphate, glutathione, asparagine, DHAPorG3P, and spermine (Table 6, Fig. 6). We ran the 

models 1000 times to obtain their mean and 95% CI. RSF1 had a high C-index in the training set 

of 0.8117 (95% CI: 0.8104-0.8131) and a lower C-index for the testing set 0.7765 (95% CI: 
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0.7756-0.7773). RSF2 had a high C-index in the training set of 0.8469 (95% CI: 0.8462-0.8476), 

but its C-index for the testing set is much lower (0.6589, 95% CI: 0.6578-0.6600). 

The associations between the nine most predictive variables by RSF1 and OS are demonstrated 

in Fig. 5. The estimated partial survival for a covariate indicates estimated survival for different 

levels of the covariate after accounting for the average effects of the other selected metabolites 

and the covariates. It can be seen from Figure 5, in continuous risk factor for example, as the 

asparagine abundance increased up to about 4000, the 5-year predicted overall survival 

probability decreases slowly from 95% to 90%, and then it decreased at a sharper rate until reach 

65% (Fig. 5A), and a similar trend was found in citrulline (Fig. 5B). Glutathione, lysoPC (16:0) 

and phosphoenolpyruvate had nonlinear relationships between predicted survival probability 

their abundances with several turning points in their plots. For categorical variables such as 

anatomic tumor location, right-sided cancer (RCC) demonstrated a lower 5-year predicted 

survival estimated at around 5% compared with LCC on average (Fig. 5I), which agreed with 

many previous findings2930. Female patients with chemotherapy history or at the late clinical 

stage had about a 5% lower probability of survival. As Fig. 5J shows, the prediction error rates 

decreased drastically and became stable and stayed around 0.18 as the number of trees grew to 

1000. It is worth mentioning that calculation methods for these partial survival plots were not the 

same as Kaplan–Meier curve or CPH models, and RSF models do not have to observe the 

proportional hazard assumption.  

Logistic regression model (LR) 

Logistic regression (LR) was not the same as other methods that treated the data as time-to-event 

data. Instead, it neglected the survival time and coded the death event as a binary variable 

https://link.springer.com/article/10.1007/s12029-020-00544-3#Fig3
https://link.springer.com/article/10.1007/s12029-020-00544-3#Fig3
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(survival = 0, death = 1). The methods simplified the question into predicting “whether the 

patient would die or not within the 5-year interval” without considering when the death would 

occur. The predictive performance in the training set was better than the testing set, which 

indicated a typical overfitting problem within the LR method (Fig. 7): LR had good specificity 

(0.875) but inferior sensitivity (0.200). High specificity demonstrated this method had a strong 

ability to correctly designate an individual who would not die in 5 years as a survivor, which 

would help avoid unnecessary financial costs or mental burden for CRC patients. Low sensitivity 

corresponded to more false-negative results, and thus more events of death within 5-years would 

be not be anticipated, resulting in losing opportunities for early preventive intervention for CRC 

female patients. The low sensitivity made its AUC (area under the curve) for the testing set 

relatively low with a lower bound below 0.5. As a result, this method should be improved before 

being used in clinical practice. 

Comparing predictive performance for the models 

The performances of these five models were evaluated based on C-index (1-prediction error 

rate). A C-index larger than 0.75 is desired and indicates a good model. C-index < 0.5 indicates a 

poor performance meaning that the model is no better than predicting an outcome than random 

chance. 95% CI that includes 0.5 is considered to be not significant. For RSF1, RSF2, and Cox-

LASSO, 95% CIs were calculated by running the models in the testing set 1000 times. COX1 

and COX2 fit the training data well with less error rate than other methods. However, their 

predictive abilities in the testing set were not satisfying, with a lower bound of 95% CI below 0.5 

(Table 7). Again, COX1 and COX2 were invalid and were just for comparison because of biased 

hazard ratios due to violations of the proportional hazard assumption. RSF1 model outperformed 

in predicting female 5-year OS with two stable and relatively high C-indexes of 0.8117 (95% CI: 
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0.8104-0.8131) and 0.7765 (95% CI: 0.7756-0.7773) for the training set and the testing set, 

respectively; both were above the acceptance threshold of 0.75. Results show an overfitting 

problem with RSF2 as its performance in the training set (C-index = 0.8469, 95% CI: 0.8462-

0.8476) was good, while its prediction error in the testing set was huge (nearly 0.34). Cox-

LASSO had problems of underfitting with the lowest C-index for the training set among the six 

models (C-index = 0.7056, 95% CI: 0.6903-0.7210), though the performance was more stable 

than LR. For future clinical practice purposes, RSF1 has the potential to be accepted if updated 

using other established clinical and biological variables combined with other screening 

measurements. Other models suffered from either underfitting or overfitting with a lack of 

robustness in the testing set.     

The prediction performances over time of COX1, COX2, RSF1 and RSF2 were examined as 

shown in Fig. 8. The predictive abilities of the four models in the testing set were examined over 

time (the testing set did not have a death event before month 20). All four models showed better 

predictive abilities at a later time. RSF1 had a stably good prediction performance since month 

30 in general. C-index of RSF1 during month 30 to month 40 hit 0.75, then dropped a little bit 

before month 53, and soon reached above 0.75, indicating a promising possibility of predicting 

OS at any time during 3-5 years. 
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Discussion 

This study is the first cohort using untargeted metabolomics to investigate possible associations 

between 91 tumor tissue metabolites and colorectal cancer prognosis. Our analyses on individual 

metabolites identified 11 metabolites with sex interactions in the associations with colorectal 

cancer 5-year overall survival (OS) and five metabolites for 5-year recurrence-free survival 

(RFS), among which asparagine was observed to have sex dimorphisms for both OS and RFS. 

These findings suggest that different metabolism by sex were associated with different CRC 

prognostic outcomes, and it was vital to build targeted predictive models by sex from the point of 

view of precision medicine. By applying an RSF backward selection procedure within the 

training set for female CRC patients (n = 58), five metabolites were identified to be most 

predictive for the 5-year OS: glutathione, citrulline, phosphoenolpyruvate, lysoPC (16:0), and 

asparagine. As demonstrated by the RSF1 model that incorporated these five metabolites might 

provide new insights to the prediction of colorectal cancer 5-year OS for female patients when 

used together with known epidemiological risk factors of CRC (clinical stage, chemotherapy 

history, anatomic tumor location, and age). The comparison of the C-index (1- prediction error 

rate) of five other different models revealed that especially noise metabolites were removed by 

the RSF backward selection process, resulting in identifying the most predictive metabolites. In 

contrast, RSF2 that included relative variable importance > 20% showed a better fitting 

performance in the training set than RSF1, but it could not achieve a comparable C-index in the 

testing set, which suggested its poor generalizability due to overfitting. Moreover, the 

visualization by partial plots revealed nonlinear associations between the abundance of identified 

metabolites and predicted 5-year overall survival, indicating possible diagnostic cut points for 

further research. 
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Our exploratory analyses and modeling indicated that traditional hazards-based models such as 

CPH were not designed for prediction but to infer variables’ impact on a prognostic outcome21, 

and were too primitive for high-dimensional metabolomics data. Instead, machine learning 

algorithms performed better in predicting prognosis when we faced nonlinear interactions that 

were presented in Fig. 5, which would violate the linear proportional hazards condition (Table 

5). For example, Fig.5 I showed that RSF successfully distinguished the difference in 5-year 

predicted survival between right-sided cancer (RCC) and left-sided cancer (LCC), which might 

be hidden under the complex interactions between anatomic tumor location and tumor tissue 

metabolites. As expected, none of the CPH models discovered the location-specific difference, as 

CPH could not handle intricate inner interactions between metabolites and clinical variables so 

explicitly. A similar modeling process to model nonlinear gene interactions made comparisons 

between CPH and other machine learning methods, including RSF, which also proved the 

applicability of automatically assessing nonlinear effects and complex interactions by RSF21. 

These data-driven machine learning algorithms are unaffected to problems due to their natures 

that perform robust feature selection against multicollinearity internally. As a result, collinearity 

between variables did not impair the predictive accuracy and satisfied our goal of disengaging 

from multicollinearity problems21. In our study, RSF has also shown its ability to outperform 

classic CPH regressions at any time within the 5-year follow-up. As can be seen in Table 7, the 

two CPH models COX1 and COX2, had very high C-index in the training set, while they failed 

to handle the testing set. RSF1 using the backward selection algorithm showed the best 

performance, with the C-index of the training and testing sets reaching 0.812 and 0.777, 

respectively. The performance of RSF1 kept at a steady high C-index over time since month 20.  
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Interestingly, the variables with coefficients larger than 0 in the Cox-LASSO model were lysoPC 

(16:0) and clinical stage, which were also selected as predictors in RSF1 and RSF2, while COX1 

and COX2 did not include the lysoPC (16:0) metabolite. LysoPC (16:0) had a significant sex 

difference in overall survival in the individual metabolite analysis and was a risk factor for 

female OS (HROS=1.54 per SD, 95% CI: 1.04 - 2.27, P = 0.031). Cai et al. found that the 

lysophospholipids lysophosphatidylcholine were upregulated in women with RCC (stage I) but 

not in men, suggesting that the higher levels of lysophospholipids in women with RCC would 

promote fatty acid supply15 that was essential for cancer cell growth31. These findings justified 

our findings identifying lysoPC (16:0) as an important predictor for CRC prognosis for females. 

We also found that asparagine was an essential metabolite for female prognosis. Asparagine had 

sex interactions with both OS and RFS and was tested to be an important predictor in both RSF1 

and RSF2 models. Asparagine (Asn) abundance was associated with lower probabilities of 

overall survival, which agreed with the previous finding of female survival and asparagine 

synthetase (ASNS) expression15. Johnson Lab found that asparagine increased threonine uptake in 

females RCCS that were nutrient deplete and could lead to aggressive phenotypes in those 

patients15. In Fig.2, asparagine and threonine were all not significantly associated with OS for 

female patients but were both associated with better OS for males. In cancer research based on in 

vitro experiments, ASNS catalyzed asparagine was crucial for cancer cell growth by promoting 

cancer cell amino acid homeostasis, anabolic metabolism, proliferation32, and Asn availability in 

vitro strongly interplayed the metastatic progression of breast cancer33. For CRC specifically, 

SOX12 expression promoted colorectal cancer cell proliferation and metastasis and facilitated 

ASNS expression34. Another frequently found mutation in the KRAS gene in colorectal cancer35 

was observed with a marked decrease in aspartate level and increased asparagine level by an 
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upregulated ASNS expression, which indicated that ASNS might be a novel therapeutic target for 

KRAS-mutant CRC 36. Moreover, SLC25A22 served as an essential metabolic regulator for CRC 

progression by promoting the synthesis of aspartate-derived amino acids (asparagine) in KRAS-

mutant CRC cells37. Knott et al. reported that increased dietary asparagine in animals promotes 

metastatic progression in breast cancer, and dietary asparagine restriction inhibits metastasis 

without affecting the primary tumor growth38. The study drew great attention from academics 

and the media worldwide in 2018, ranked the 97th percentile (ranked 24th) of the 896 tracked 

articles of a similar age in Nature on Altmetric39. According to BBC News, researchers from 

Cambridge University claimed that patients with specific cancers might have developed an 

addiction to specific components of diets, and it may be necessary to modify a patient’s diet or 

change the way tumor cells get access to those nutrients with potential risks using drugs40. 

Consequently, both internally produced asparagine and external exposure to asparagine may 

influence CRC tumor progression. These studies provided strong evidence to support our 

identification of asparagine as a predictive risk factor of OS for female CRC patients. 

Besides, application of RSF with backward selection for all 95 female patients revealed that 

creatinine was a predictive factor for 5-year OS. Creatinine was found to be a valid variable for 

predicting CRC cases41 and was also reported with correlations to colon cancer based on other 

studies of urine42 and serum43 samples from colon cancer patients. Also, creatinine is a measure 

of cachexia, a syndrome characterized by unintentional weight loss44. The female patients we 

studied were all over 55 years old (with an average age of 71), which might allow us to identify 

creatinine as a predictive metabolite. However, whether creatinine has predictive ability among 

other age groups requires further investigations. 



32 

 

Some of the metabolites we observed might have multiple uses and are not just used by the 

cancer cells, such as polyamine, which could be used by both colon cancer cells and bacterial 

cells to build biofilms in colon adenomas/carcinomas45. Among the identified metabolites, 

asparagine utilization could be regulated by L-glutamine via gut microbiota46. Hence if the 

environmental milieu of the colon or rectum differs between males and females, it could 

determine how metabolites are used and thus affect cancer progression.  

Admittedly, because of the heterogeneity of different metabolomics data, there is no panacea 

model for predicting CRC based on any types of metabolomics data. The flowchart in Fig. 1 

illustrates a flexible, dynamic path for disease-related metabolomics research discovery. An 

increasing number of biomedical studies utilizing Automated Machine Learning (AutoML) 

methods have been applied to diseases such as cancer47, Alzheimer’s disease48, and 

cardiovascular diseases49, which leveraged advances in hyperparameter search and model 

selection based on metabolomics. Those studies used greater numbers of machine learning 

algorithms and selected the optimal ones that suit their data best. Therefore, chances are that the 

best model we built might not be the optimal one for our data, though random forest-based 

models tend to be more stable than the simple decision tree model. Nevertheless, this study could 

offer some insights into using metabolome to predicting CRC prognosis accounting for sex 

differences for future studies. 

The strength of this study is the application of untargeted metabolomics for CRC tumor tissue in 

a well-described population-based retrospective cohort with strictly standardized study protocols 

and a decades-long follow-up time. Tumor tissue metabolites have advantages over biomarkers 

extracted from blood and urine samples because tumor tissues directly reflect tumor 

microenvironment and metabolism, whereas components of other biofluids are liable to external 
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environmental interactions such as dietary intake. Also, tumor tissue samples are easier to store 

and more reliable for evaluating and predicting long-term prognosis than plasma samples that 

tend to degrade in hours or days50. In addition, Cai et al. discovered that CRC tumor tissue 

metabolites also differed by anatomic tumor location, and females with RCC were at higher risks 

of poor overall survival15, implying that studying sex differences in prognosis should include 

tumor location. Hence tumor tissue metabolic profiling considering tumor location was the 

optimum approach.  

Nonetheless, we should also admit the huge gap between real-world medical practice and 

bioinformatics studies due to low reproducibility, even some of which claimed to provide robust 

models. Evaluation of 184 studies on new prognostic markers of outcomes in acute pancreatitis 

showed that only 15% had a sample size > 100 patients, and < 40% reported information about 

patient recruitment, and none had power calculations51. Lack of replication efforts, small sample 

sizes, insufficient subsequent external validation, unclear evaluation criteria were the major 

causes of the failures in cancer biomarker discovery and translation along the biomarker 

pipeline525354. There is still a long way to go before our findings are applied to actual medical 

practice for colorectal cancer, such as providing risk scores by measuring tumor tissue metabolic 

profile. Despite these possible defects and obstacles, this study could provide hints about 

predictive prognostic biomarkers for colorectal cancer from the perspectives of sex difference 

and tumor tissue metabolome. 
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Conclusion 

We identified five predictive metabolites for female CRC patients that could be used to predict 

5-year overall survival using the random survival forest (RSF) backward selection algorithm. We 

concluded that the RSF prediction method based on the backward selection algorithm was 

promising in predicting 5-year overall survival (OS) for female CRC patients. The results could 

also justify the urgent need for personalized CRC screening programs by sex or other factors 

which benefit a targeted group of the population at higher risks with optimal resource allocation. 

Due to a large number of correlated variables that brought problems of multiple comparison, 

insufficient statistical power, and higher risks of multicollinearity, false-positive detection with 

significant P values by chance are sometimes unavoidable in exploratory data analysis of 

complex metabolomic data based on traditional statistical regression approaches. Moreover, most 

metabolites identified with sex differences in CRC prognosis had insignificant P values after 

FDR adjustment., which need future replication studies to confirm their associations with CRC 

prognosis and sex differences. Fortunately, we were able to take advantage of bootstrapping and 

the interruption of intercorrelation structures by random node splitting to reduce overfitting, 

multicollinearity, and select reliable predictive variables using RSF. Furthermore, nonlinear 

relationships between the identified metabolites and predicted survival time could be visualized 

to determine potential clinical thresholds after validated in further population studies.  

The predictive performance of this method in the training set was satisfactory (C-index = 0.81), 

and the prediction accuracy in the testing set was slightly lower but still acceptable (C-index = 

0.78). The model is reliable in the statistic aspect but may need further improvement in clinical 

practice that requires much higher accuracy. Several limitations might lead to these results: 1) a 
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small sample size with limited death event for data mining could only provide limited 

information; 2) established covariates for predicting CRC development and poor prognosis were 

absent in our data set, such as genotype, family history, metastasis, BMI, dietary factors, alcohol 

consumption, smoking behaviors; 3) incomplete information of the treatment or drug history 

within the follow-up period. The already good predictive accuracy in the testing set laid the 

foundation for improving the prediction performance after adding more variables mentioned 

above using a larger cohort. Moreover, it is also helpful to conduct a multi-omics analysis that is 

more comprehensive than metabolomics alone. Afterward, several external validation processes 

using independent cohort data are necessary before being applied to clinical practice. We foresee 

the enormous potential of using novel biomarkers to predict prognosis by multi-omics 

approaches based on machine learning, statistical learning methods.  

Ultimately, my recommendations for the YSPH MPH program would be to set up new courses 

focusing on biomarker discovery for cancer epidemiology (both methodology, data analysis, and 

causal inference).  
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Appendix  
 
Supplementary Table 1. Demographic characteristics and clinical factors for each subgroup. RCC = right-sided colon cancer, LCC = left-sided colon cancer. 

Subgroup  

Stage I (n=47) Stage II (n=86) Stage III (n=64) 

RCC 

(n=22) 

LCC 

(n=25) 

RCC 

(n=44) 

LCC 

(n=42) 

RCC 

(n=32) 

LCC 

(n=32) 

Sex, n 

Males 10  15  23  25  15  14  

Females 12  10  21  17  17  18  

Age, mean (SD) 

Males  73.9 (6.5) 69.3 (5.8) 72.9 (7.8) 72.2 (8.5) 73.5 (7.8) 63.7 (5.8) 

Females 72.1 (6.2) 69.6 (7.6) 73.5 (9.8) 69.1 (7.8) 72.2 (6.6) 71.1 (6.0) 

5-year Overall survival rate, %a  

Males 87.5 85.1 76.5 74.1 47.1 78.6 

Females 100 100 82.9 100 65.2 61.8 

5-year Recurrence-free survival rate, %a 

Males 90.0 78.3 86.8 67.6 82.1 70.1 

Females 90.9 100.0 87.5 87.4 76.0 68.8 
a The survival rates were calculated using the Kaplan-Meier estimation method.  
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Supplementary Table 2. Prognosis among different subgroups of patients after combining stage I and II together to allow analysis of Anatomic location: RCC 

vs. LCC females  

5-year Overall Survival (OS) 

Subgroup RCC males RCC females LCC males LCC females 

Eventc 0 1 0 1 0 1 0 1 

Stage aa 28 5 30 3 32 8 27 0 

Stage bb 8 7 12 5 11 3 12 6 

Total 36 12 42 8 43 11 39 6 

5-year Recurrence-free Survival (RFS) 

Subgroup  RCC males RCC females LCC males LCC females 

Eventd 0 1 0 1 0 1 0 1 

Stage aa 30 3 30 3 32 8 25 2 

Stage bb 13 2 14 3 10 4 13 5 

Total 43 5 44 6 42 12 38 7 

 
a Stage a combines Stage I and II together which refers to earlier stages. 
b Stage b refers to Stage III.  

c Event = death. 1= the event occurred within 5 years of follow-up, 0 = the event did not occur within 5 years of follow-up (survived or censored). 
d Event = recurrence. 1= recurrence occurred within 5 years of follow-up, 0 = recurrence does not occur within 5 years of follow-up. If a patient died before CRC 

recurrence, it will be counted towards a death event. 

 

Notes: 

If a patient died for any reason without recurrence within follow-up time (no more than 5 years), it was only counted toward a death event in OS.  

If a patient experienced recurrence but did not die within follow-up time (no more than 5 years), it was only counted toward a recurrence event in RFS. 

If a patient experienced recurrence and then died within follow-up time (no more than 5 years), it was counted toward a recurrence event in RFS and a death 

event in OS.  

If a patient experienced neither recurrence nor death within follow-up time (no more than 5 years), the event was 0 for both OS and RFS. 

Due to the absence of death events among females at clinical stage I, we regarded stage I and II patients as “stage a” (early stage) and stage III patients as “stage 

b” (late stage). Still, all the LCC females  
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Supplementary Table 3. Associations between individual metabolites and 5-year overall survival (OS) by sex, adjusted for anatomic location, clinical stages, 

and age).   

Metabolite name 
Females Males 

Int. Sex P value * 

HR 95% CI P valuea HR 95% CI P valuea 

Acetyl-lysine 0.96 0.74 - 1.25 0.786 0.83 0.72 - 0.96 0.012 0.342 

Adenosine 0.91 0.70 - 1.19 0.507 1.29 1.03 - 1.62 0.026 0.044 

Alanine 1.05 0.77 - 1.42 0.762 0.77 0.61 - 0.98 0.034 0.096 

Argininosuccinic acid 0.93 0.71 - 1.23 0.613 0.74 0.58 - 0.93 0.010 0.154 

Asparagine 1.45 0.87 - 2.42 0.154 0.72 0.55 - 0.96 0.025 0.029 

Carnitine 0.62 0.04 - 9.47 0.733 0.56 0.34 - 0.93 0.026 0.881 

Citrulline 1.66 0.98 - 2.81 0.061 0.65 0.46 - 0.92 0.014 0.002 

Glycerol 3-phosphate 3.64 1.30 - 10.2 0.014 0.91 0.47 - 1.77 0.777 0.017 

Hypoxanthine 1.04 0.35 - 3.13 0.943 0.65 0.44 - 0.95 0.027 0.444 

LysoPC(16:0) 1.54 1.04 - 2.27 0.031 0.85 0.66 - 1.11 0.244 0.008 

Ornithine 0.96 0.56 - 1.66 0.895 0.68 0.47 - 0.97 0.035 0.316 

Serine 1.24 0.65 - 2.38 0.519 0.55 0.37 - 0.81 0.002 0.035 

Spermine 1.40 1.01 - 1.93 0.041 1.03 0.83 - 1.27 0.813 0.086 

Succinate 0.34 0.12 - 0.96 0.042 1.77 1.21 - 2.58 0.003 0.004 

Threonine 1.11 0.67 - 1.86 0.685 0.61 0.44 - 0.85 0.004 0.035 

UDP-D-Glucose 0.81 0.67 - 0.97 0.023 1.15 0.95 - 1.40 0.161 0.012 

Uracil 1.21 0.54 - 2.69 0.643 0.44 0.28 - 0.70 0.001 0.024 

Xanthosine 1.21 0.86 - 1.71 0.283 0.71 0.54 - 0.94 0.016 0.027 

a Raw P value before FDR adjustment. *Each metabolite with sex-interaction P value. The abundance of each metabolite was treated as a continuous variable and 

was log2 transformed.  
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Supplementary Table 4. Associations between individual metabolites and 5-year recurrence-free survival (RFS) by sex, adjusted for anatomic location, clinical 

stages, and age).   

Metabolite name 
Females Males 

Int. Sex P value * 
HR 95% CI P valuea HR 95% CI P valuea 

Acetyl-lysine 0.97 0.75 - 1.25 0.795 0.79 0.68 - 0.93 0.003 0.102 

Alanine 1.09 0.79 - 1.51 0.607 0.75 0.59 - 0.95 0.017 0.070 

AMP 1.1 0.68 - 1.78 0.699 0.71 0.53 - 0.95 0.019 0.113 

Argininosuccinic acid 1.02 0.77 - 1.34 0.906 0.71 0.54 - 0.93 0.012 0.041 

Asparagine 1.45 0.91 - 2.32 0.119 0.74 0.56 - 0.98 0.039 0.009 

Carnitine 3.23 0.23 - 44.44 0.382 0.38 0.23 - 0.65 <0.001 0.115 

CMP 0.97 0.56 - 1.67 0.908 0.70 0.51 - 0.96 0.028 0.278 

Creatinine 0.72 0.41 - 1.26 0.251 1.63 1.13 - 2.36 0.009 0.033 

Cytidine 0.56 0.34 - 0.9 0.017 0.75 0.49 - 1.15 0.185 0.246 

Fructose 6-phosphate 0.82 0.53 - 1.26 0.355 0.68 0.49 - 0.95 0.025 0.556 

Glutathione 0.74 0.57 - 0.95 0.018 0.92 0.80 - 1.06 0.236 0.104 

Glutathione disulfide 0.73 0.58 - 0.91 0.006 0.82 0.68 - 0.99 0.037 0.329 

GMP 1.05 0.69 - 1.61 0.818 0.74 0.57 - 0.96 0.024 0.157 

Hypoxanthine 1.87 0.57 - 6.19 0.304 0.32 0.21 - 0.51 <0.001 0.009 

LysoPC(16:1) 1.05 0.75 - 1.47 0.765 0.77 0.61 - 0.96 0.023 0.100 

LysoPE(18:1) 0.98 0.73 - 1.31 0.897 0.83 0.69 – 1.00 0.049 0.294 

LysoPE(20:1) 0.97 0.77 - 1.23 0.812 0.84 0.71 - 0.98 0.028 0.218 

LysoPE(22:5) 1.08 0.70 - 1.67 0.721 0.70 0.53 - 0.91 0.009 0.070 

LysoPE(18:2) 1.07 0.70 - 1.63 0.767 0.73 0.55 - 0.95 0.021 0.119 

Serine 1.39 0.72 - 2.69 0.329 0.59 0.41 - 0.85 0.005 0.013 

Sphinganine-1-phosphate 0.92 0.59 - 1.44 0.715 0.67 0.48 - 0.94 0.022 0.206 

Stearamide 0.91 0.62 - 1.33 0.629 0.70 0.53 - 0.92 0.011 0.206 

Threonine 0.96 0.58 - 1.60 0.885 0.65 0.47 - 0.90 0.009 0.086 

Xanthine 0.59 0.36 - 0.98 0.043 0.69 0.49 - 0.98 0.036 0.869 

Xanthosine 1.01 0.73 - 1.38 0.972 0.72 0.52 - 0.99 0.044 0.112 

a Raw P value before FDR adjustment. *Each metabolite with sex-interaction P value. The abundance of each metabolite was treated as a continuous variable and 

was log2 transformed.  
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Principal Component Analysis results for females and males 

 

Supplementary Figure 1. Results of 

Principal Component Analysis (PCA) by 

sex. Screen plot for females (A) and for 

males (B) illustrated the explained 

variance by top 10 components. PCA 

biplot for females (C) and males (D) 

indicated a poor overall survival (OS) 

classification ability by considering the 

first two components based on metabolite 

abundance. Amino acids (e.g., threonine, 

alanine, serine, and asparagine etc.) were 

successfully distinguished and clustered 

around at the positive direction of 

dimension 2 for both females (C) and 

males (D).  
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Supplementary Table 5. Eigenvalue and variance of components retained for females and males. We only analyzed components with an eigenvalue greater than 

1 based on the Kaiser rule1. For females, 19 dimensions were adopted in further analysis, which accounted for 83.23% of the total variance. For males, 20 

dimensions were included with a cumulative variance of 83.70%. 

 Females Males 

Eigenvalue Variance percent Cumulative variance percent Eigenvalue Variance percent Cumulative variance percent 

Dim.1 18.93 20.81 20.81 17.45 19.18 19.18 

Dim.2 15.59 17.13 37.94 14.37 15.79 34.96 

Dim.3 9.39 10.32 48.26 9.44 10.38 45.34 

Dim.4 4.23 4.65 52.91 4.08 4.49 49.83 

Dim.5 3.39 3.73 56.64 3.87 4.25 54.08 

Dim.6 3.10 3.41 60.05 3.07 3.38 57.46 

Dim.7 2.70 2.96 63.01 2.90 3.19 60.65 

Dim.8 2.25 2.47 65.48 2.57 2.82 63.47 

Dim.9 1.93 2.12 67.60 2.25 2.48 65.95 

Dim.10 1.89 2.08 69.67 2.12 2.33 68.28 

Dim.11 1.73 1.90 71.58 1.77 1.95 70.23 

Dim.12 1.68 1.85 73.43 1.69 1.86 72.08 

Dim.13 1.49 1.64 75.06 1.63 1.79 73.87 

Dim.14 1.41 1.55 76.62 1.52 1.67 75.54 

Dim.15 1.39 1.53 78.15 1.47 1.61 77.15 

Dim.16 1.29 1.41 79.56 1.42 1.56 78.72 

Dim.17 1.22 1.34 80.90 1.28 1.41 80.13 

Dim.18 1.11 1.22 82.12 1.16 1.27 81.40 

Dim.19 1.01 1.11 83.23 1.08 1.19 82.58 

Dim.20 - - - 1.01 1.11 83.70 

 

 
 
 
 
 
 
 
 
 
 

 
1 KAISER, H. E (1960). The application of electronic computers to factor analysis. Education & Psychological Measurement, 20, 14I-151. 
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Supplementary Table 6. Statistically significant results using CPH analysis for individual top 19 components for females and top 20 components (with 

eigenvalues > 1) for males adjusted for clinical stage, tumor location, and age. No component was associated with OS for female patients. Component 5 and 19 

were associated with RSF among females. Metabolites noted with (+) were positively associated with the corresponding component, and the higher the absolute 

value of loading, the greater the relationship, vice versa. A component with HR > 1 was associated with an increased risk of poorer prognosis. E.g., component 5 

was associated with both poor OS and RSF for males. Males with higher levels of succinate, creatinine, L-phenylalanine, and lower levels of carnitine and 

cytidine have higher risks of all-cause mortality and CRC recurrence.  

 

Outcome 
Component 

number 

Influential metabolites: 

(+): loading > 0.2; (-): loading <- 0.2 
HR (95% CI) P 

C-index 

(Se) 

Any variable Violated 

PH assumption 

OS (Females) None - - - - - 

OS (Males) 5 
Succinate (+), Creatinine (+), L-Phenylalanine (-), 

Carnitine (-), Cytidine (-) 
1.20 (1.02-1.42) 0.026 

0.751 

(0.052) 
No 

RSF (Females) 

5 

Palmitic acid (+), Diacetylspermine (+), Stearic acid (+), 

Oleic acid (+), Glutathione disulfide (-), Adenosine (-), 

Xanthine (-) 

1.72 (1.22-2.43) 0.002 
0.799 

(0.048) 
No 

19 
Vitamin E (+), CMP, PC(36:2) (+), Lactate (+), D-

Glucuronate (+), Adenosine (+), 
1.91 (1.09-3.34) 0.023 

0.749 

(0.063) 
No 

RSF (Males) 

2 
Ribulose 5-phosphate (+), AMP (+), ADP-ribose (+), L-

Phenylalanine (-), Carnitine (-), Cytidine (-) 
0.87 (0.76-0.98) 0.027 

0.716 

(0.06) 
Yes 

5 
Succinate (+), Creatinine (+), L-Phenylalanine (-), 

Carnitine (-), Cytidine (-) 
1.34 (1.13-1.59) 0.001 

0.706 

(0.07) 
Yes 
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