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Abstract. This paper proposes a new edge based stereo matching approach for
road applications. The new approach consists in matching the edge points ex-
tracted from the input stereo images using temporal constraints. At the current
frame, we propose to estimate a disparity range for each image line based on the
disparity map of its preceding one. The stereo images are divided into multiple
parts according to the estimated disparity ranges. The optimal solution of each
part is independently approximated via the state-of-the-art energy minimization
approach Graph cuts. The disparity search space at each image part is very
small compared to the global one, which improves the results and reduces the
execution time. Furthermore, as a similarity criterion between corresponding
edge points, we propose a new cost function based on the intensity, the gradient
magnitude and gradient orientation. The proposed method has been tested on
virtual stereo images, and it has been compared to a recently proposed method
and the results are satisfactory.

1 Introduction

In the field of vehicle navigation, stereo vision has mainly been applied to a large variety of
applications, such as obstacle detection and tracking [1, 2], traffic sign detection and recogni-
tion [3–6], pedestrian detection and tracking [7], and so on. The key problem in stereo vision
is the stereo matching problem, also called disparity estimation. By comparing information
about a scene from two viewpoints, 3D information can be extracted by examining the rela-
tive positions of objects in the two stereo image [8, 9, 9, 10]. Which allows having accurate
and detailed 3D representation of the environment around the Intelligent Vehicle (IV). Exam-
ple of disparity estimation Methods are available in [11–15]. A taxonomy of dense disparity
estimation algorithms together with a testbed for quantitative evaluation of stereo algorithms
is provided by Scharstein and Szeliski [16]. It was demonstrated from [16] that Graph cuts
methods [17–20] produce good results. However, they are time consuming, In order to avoid
this problem in this work, the edges of the stereo images are extracted to reconstruct the
scene.

The present work is devoted to road applications. Consequently, the matching algorithm
will be applied to each stereo images acquired at each time. Incorporating temporal informa-
tion in stereo approaches can improve the results of the matching as mentioned in [21–25].
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This work is an improvement of our recently proposed method [26]. Instead of using
Dynamic Programming to match the edge points of the stereo images, we use the Graph
Cuts algorithm to take into account the smoothness that should be between neighboring edge
points. In addition, we improved the cost function used in [26] by considering the neighboring
pixels of the edge points to be matched. The same idea in [26] is used to compute a disparity
range for each image line. The stereo images are divided into multiple parts according to
the estimated disparity ranges. Graph cuts algorithm is applied to match the edge points of
each part independently. The estimated disparity ranges reduce the possible matches, which
discard the false candidates and consequently improve the results. They also reduce the
execution time of the applied energy minimization approach.

2 Related work

The use of sequence-frame stereo presents advantages over single-frame stereo. The tempo-
ral information may help the matching process to improve accuracy and to enforce temporal
consistency of disparity maps in the case when the matching is ambiguous. In the literature,
to improve the results of the stereo matching, temporal consistency has been used where dif-
ferent types of methods have been developed, e.g. optical flow, spatio-temporal and disparity
prediction [27–31].

Optical flow methods extend the optical flow to 3D motion field and takes stereo and mo-
tion into account simultaneously [32]. Toa et al. [30] proposed a depth estimation method
for non-rigid dynamic 3D scenes, in which the scene is represented by a collection of 3D
piecewise planar surface patches based on color segmentation of input images. This repre-
sentation is estimated by an incremental formulation. The spatial match measurement and
the scene flow constraint [33, 34] are employed in the matching process. The algorithm’s ex-
ecution time and the accuracy of the results are limited by the image segmentation algorithm
used. Hung et al. [35] proposed a depth and image scene flow estimation method to preserve
motion-depth temporal consistency. Zhang et al. [34] proposed a 3D scene flow computa-
tion method, in which 3D motion model is fit to each local image region and adaptive global
smoothness regularization is applied to the whole image.

Spatio temporal methods extend the spatial window used in the cost function to a spatio
temporal window, which takes the spatial information of stereo image pairs and temporal
information between consecutive images into account simultaneously. Zhang et al. [31]
use spatial and temporal information by extending the spatial window to a spatio temporal
window, spatial window used to compute the sum of squared di↵erence (SSD) cost function,
spatio temporal window to compute the sum of SSD (SSSD). Their method performs well
in static scenes, but it fails to do so with dynamic scenes. Davis et al. [28] has developed
a framework called space-time stereo similar to the one developed in [31] to recover shapes
by studying the space-time windows, however, the method does not give good results in the
dynamic scenes. Zhang et al. [36] presented a novel method for recovering depth maps from
video sequence.

Disparity prediction methods use the results computed at the previous frame to compute
the disparity map of the current frame. Jiang et al. A method to predict depth map between
consecutive frames based on features detection, edge motion estimation and motion detection
was proposed in [25, 37]. Dobias et al. [38] presented a method to transfer the depth map
of the previous frame already computed to the current frame using estimated motion of the
calibrated stereo rig. Cech et al. [39] predicted pixels correspondences based on the motion of
pixels to compute a disparity map as well as an optical flow map between consecutive frames.
In [29] an algorithm has been developed to compute both disparity maps and disparity flow
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Figure 1: Main steps of the proposed algorithm.

maps in an integrated process. The disparity map generated for the current frame used to
predict the disparity map for the next frame.

Other methods do not use any of the above types. El Ansari et al. [22] presented a stereo
method that use temporal information in the matching process. A disparity range is deduced
based on both an association algorithm and the disparity of the previous frame. The new
disparity range is integrated in DP to compute the current dispraity map. Mazoul et al. [24]
match edges curves in the adjacent frames based on the same technique in [22]. The matched
edge curves are then used to estimate a disparity ranges together with "matching control edge"
points to dived the search space of the DP.

3 Proposed approach

In this section, we describe the main steps, summarized in Fig. 1, of the proposed stereo
matching approach. We noted that the stereoscopic sensor used in our experiments is mounted
aboard an IV and provides rectified images (i.e., corresponding pixels have the same y-
coordinate). We start by mentioning the features to be matched by the proposed approach.
Then, we present the constraints that the pairs of corresponding edge points should meet.
Afterword, we present the proposed cost function. The last sub-section describes the Graph
cuts algorithm used for the matching process.

The following notations are considered for the rest of the paper:

• IL
k and IR

k denote the left and right stereo images acquired at time k, respectively.

• Dk and Dk−1 denote the disparity maps computed at the current frame and its preceding
one, respectively.

3.1 Edge extraction

The first step consists in extracting significant features from the stereo images to be matched.
In this work, we are interested in employing the edge points as features. The edges of the
stereo images are extracted to reconstruct the scene in the goal to solve both the problem
that large areas of pixels are similar and the time consuming of the dense reconstruction. To
extract edges, we used canny edge operator [40] for the reason that it yields continuous edge
curves which are vital to the proposed matching method and for its detection precision.
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3.2 Disparity constraints

In order to discard false matches, we consider three constraints. The first one is the geometric
constraint that defines the minimum disparity threshold, resulting from the sensor geometry,
which assumes that a pair of edge points eL

i and eR
j appearing in the left and right image

lines, respectively, represent possible match only if the constraint xL
i > xR

j is satisfied [41],
xL

i and xR
j are the x-coordinate of eL

i and eR
j , respectively. The second one, is the constraint of

similarity between candidate pairs. Finally, the third one, is the maximum disparity threshold.

3.2.1 Disparity ranges estimation

In this work, we use the same idea of [26] to determine the disparity range for each image
line, by analyzing the v-disparity of the disparity map computed at the previous frame. In the
context of IV, the fps is very important. Therefore, the disparity values at the objects in the
images will not undergo big variations. We can also say that the oblique line, representing
the road in the v-disparity map of the current frame, will have its position very close to that
appearing in the v-disparity map of the preceding frame. The v-disparity map of the previous
frame will be divided into two parts. The top part containing objects, while the bottom part
containing the road.

Figure 2: The global range computed from the v-disparity. The vertical axis refers to the
image lines and the horizontal one refers to the disparity values. The possible disparities are
in the region between the blue lines.

For the top part, the maximum disparity is that of the closest object in the scene. Knowing
the disparity dO

k−1 of the closest object at the preceding frame, we can deduce that the dispar-
ity of this object at the current frame is less than dO

k−1 + ∆dmax, where ∆dmax is maximum
di↵erence of disparity possible between two adjacent frames. It is set to 4 in this work. The
disparity range in this part is [0, dO

k−1 + ∆dmax + ↵] (see Fig. 2), where ↵ is an uncertainty
value to select.
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For the bottom part, the road is represented by an oblique line. We have only one possible
disparity value for each image line. For the image line yi, the only possible disparity is
(yi − b)/a, where a and b are the oblique line equation parameters. In order to take into
account the uncertainty inherent to the estimation, the disparity range in this part is [(yi −
b)/a − ↵, (yi − b)/a + ↵] (see Fig. 2).

The line separating the two parts is Lk
0 in which the disparity is equal to the disparity of

the closest object, assuming the maximum displacement Lk
0 = a.(dO

k−1 + ∆dmax) + b. Fig. 2,
illustrates how to get both disparity ranges from both top and bottom parts of the v-disparity
map.

3.2.2 Image parts search

The two stereo images are divided into multiple parts according to the disparity ranges com-
puted in the sub-section 3.2.1. In the top part of the v-disparity, we have only one disparity
range that is [0, dO

k−1 +∆dmax + ↵]. Thus, all the image lines belonging to this v-disparity part
are considered as the first image part. However, in the bottom part of the v-disparity, we have
a disparity range for each image line yi which is [(yi−b)/a−↵, (yi−b)/a+↵]. We divide this
v-disparity part into several image parts. Each part contains a well-defined number of image
lines. The disparity range of each part is defined as follows:

• The minimum disparity value is (yi − b)/a− ↵, where yi is the line that has the lower index
i in the part.

• The maximum disparity value is (yi−b)/a+↵, where yi is the line that has the higher index
i in the part.

Fig. 3, illustrates how to get the image parts and their disparity ranges from both top and
bottom parts of the v-disparity map. The image part and its disparity range are represented
with the same color. The first image part and its disparity range are deduced directly from
the top part of the v-disparity. The disparity range in this part is [0, 14]. In this example, the
bottom part of this v-disparity is divided into three image parts (part 2, part 3 and part 4). The
disparity range of the part 3 for example is gotten as follows: The minimum disparity value
of the first image line in this part is 9. The maximum disparity value of the last image line in
this part is 22. Thus, the disparity range of this image part is [9, 22].

3.3 Proposed cost function

One of the most important step of the stereo matching algorithms is the cost computation
[42], which is crucial for quality of the disparity map. A given cost function is used to find
similarities between corresponding features, which helps find the best candidate between the
possible matches. In this work, as a similarity criterion between corresponding edge points,
we propose a new cost function based on the one used in [26]. Which is defined based on
the intensity, the gradient magnitude and the orientation at the edge points. Let’s denote this
cost function as CDIGO (Di↵erence of Intensity, Gradient and Orientation). Let eL

i and eR
i be

two edge points belonging to two corresponding epipolar lines on the left and right images,
CDIGO is defined as follows:

CDIGO(eL
i , e

R
i ) =

⇢

⇣

IL(eL
i ) − IR(eR

i )
⌘2
+ ML(eL

i )2+

MR(eR
i )2−

2 ⇤ ML(eL
i ) ⇤ MR(eR

i ) ⇤ cos(✓L(eL
i ) − ✓R(eR

i ))
o1/2

(1)
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Figure 3: The image parts and their disparity ranges obtained from both top and bottom parts
of the v-disparity map.

The cost function we propose take into account the considered pixel and its neighbor-
hoods. It is defined as follows:

C(eL
i (x, y), d) =

1
n
Pn

(a,b)2N(x,y) CDIGO(p(a, b), p(a, b − d)) (2)

where d is the disparity, N are neighboring pixels of edge point eL
i .

3.4 Graph cuts

As discussed in [18, 43], a graph is composed of a set V of nodes and a set E of directed
edges, each with a non-negative weight. A cut on a graph is partitioning the nodes in the
graph into two disjoint subsets VS and VT such that the source S is in VS and the sink T is in
VT . The cost of the cut is the sum of the weights of the edges between the two partitions VS

and VT . A minimum cut of the graph is a cut with minimal cost. The minimum cut problem
can be solved by finding a maximum flow from the source S to the sink T . In [18, 43], the
matching problem is considered as a minimization of an energy function (see equation 3),
which is done based on graph cuts. The minimum cut corresponds to the minimum cost. The
energy function of a configuration f is defined as follows:

E( f ) = Edata( f ) + Eocc( f ) + Esmooth( f ) (3)

This energy has four terms. The data term measures how well matched pairs fit, the
occlusion term minimizes the number of occluded pixels and the last one forces neighboring
pixels in the same image to have similar disparities. The data term used in [18, 43] imposes
a penalty based on intensity di↵erences of corresponding pixels. In this work, the data term
is based on the cost function proposed in the section 3.3.

6

E3S Web of Conferences 297, 01055 (2021) https://doi.org/10.1051/e3sconf/202129701055
ICCSRE’2021



Figure 4: (left) Left image of the stereo pair #293 of the virtual stereo sequence and (right)
its corresponding edge image.

The accurate choice of the maximum and the minimum disparity thresholds for almost
any known stereo matching method is crucial to the quality of the output disparity map and
the computation time. Instead of applying the energy minimization algorithm on the global
image where the disparity range is very large, we apply it on each image part searched in the
section 3.2.2 independently. The disparity range at each image part is very small compared
to the global disparity range which improves the results and reduces the execution time. The
graph cuts algorithm was applied on the edge points extracted from the stereo images.

4 Experimental results

In this section, we discuss the experimental results obtained by the proposed stereo matching
approach on virtual stereo sequences. The new method has been compared with a recently
proposed method [26], with the method proposed in [24]and with the same Graph cuts al-
gorithm used in the new method without integrating temporal information. Let us refer to
the proposed method as "New method", the one proposed in [26] as "Method 1", the one
proposed in [24] as "Method 2" and the Graph cuts algorithm without temporal information
as "Method 3". The hardware used in our experiments is a Lenovo T420 Intel(R) Core(TM)
i5-5220M CPU 2.50GHz running under Windows 8.

The method has been tested on the MARS/PRESCAN virtual stereo sequence [44]. The
dataset contains a sequence of 512 ⇥ 512 stereo images and their ground truth. Fig. 4 illus-
trates the left stereo image #293 of the virtual sequence and its corresponding edge image.
Fig. 5 depicts the disparity map computed by new method at the frame #293. We used false
color to make the disparity map clear. The blue color represents the nearest 3D points and
the red one represents the farthest 3D points.

The Table 1 shows the comparison between the results obtained by the four methods at
the frame #293. It provides, for each method the number of correct matches (NCM), the
percentage of the correct matches (PCM) and the execution time (ETime) for the frame #293.

From Table 1 we remark clearly the improvements inherent to the new method. It has
matched correctly more pairs of edge points, which means that it provides less sparse dis-
parity map compared to other ones. The NCM of the new method, Method 1, Method 2
and Method 3 are 42905, 36811, 35163 and 40623, respectively. The new method matches
correctly 6094, 7742 and 2282 pairs more compared to Method 1, Method 2 and Method 3,
respectively. Related to the Method 1, the new method improves the PCM by 1.31%. Com-
pared to the Method 2, the PCM is improved by 3.11%. And compared to the Method 3, the
PCM is improved by 7.89%.
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Figure 5: The disparity map computed at the frame #293 by the new method.

The results prove the success of the new approach compared to the three other methods.
(Comparison between the four methods at other frames is given in Table 2).

Table 1: Summary of the results obtained by the new method, method 1, method 2 and method
3 at the frame #293.

Method NCM PCM (%) ETime (ms)

New method 42905 97.54 231.13
Method 1 36811 96.23 109.71
Method 2 35163 94.43 181.72
Method 3 40623 89.65 391.84

5 conclusion

In this paper, the authors presented a new fast spatio temporal stereo matching method de-
voted to road applications. The main idea consists in using the disparity map obtained in
the previous frame in the computation of one at the current frame. The disparity map of the
preceding frame is served to compute a disparity range for each image line. The stereo im-
ages are divided into multiple parts according to the estimated disparity ranges. The optimal
solution of each part is independently approximated via the Graph cuts algorithm. The search
space at each image part is very small compared to the global search space which improves
the results and reduces the execution time. To choose the best candidate between the possible
matches, we proposed a new cost function based on the intensity, the gradient magnitude and
gradient orientation. The proposed method has been tested on virtual sequences and the re-
sults are satisfactory. For future work, we will use the matching results to tackle the problem
of obstacle detection and tracking.

Table 2: Summary of the results obtained by the new method, method 1, method 2 and method
3 at the frames between #290 and #299.

PCM(%)

Method #290 #291 #292 #293 #294 #295 #296 #297 #298 #299 AVG

N. method 97.32 97.15 97.45 97.54 97.34 97.67 97.13 97.29 97.66 97.82 97.43
Method 1 95.69 95.78 96.14 96.23 96.15 96.09 96.17 96.03 95.40 96.51 96.01
Method 2 94.23 94.16 94.52 94.43 93.99 93.25 94.18 94.29 93.83 94.64 94.12
Method 3 89.17 89.40 90.10 89.65 89.94 89.19 88.97 89.85 90.15 89.69 89.61
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