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Abstract. Clustering of variables is the task of grouping similar variables into different groups. It may be 
useful in several situations such as dimensionality reduction, feature selection, and detect redundancies. In 
the present study, we combine two methods of features clustering the clustering of variables around latent 
variables (CLV) algorithm and the k-means based co-clustering algorithm (kCC). Indeed, classical CLV 
cannot be applied to high dimensional data because this approach becomes tedious when the number of 
features increases.  

1 Introduction 
Cluster analysis is the process of the partitioning of 

data into subsets of identical characteristics, and it can be 

used to construct clusters in such a way that objects in 

the same group are similar to each other [1] [2]. 

Clustering technique also concerns the task of grouping 

similar variables into different groups [3].  

The Clustering of variables is an alternative 

technique that allows variables to arrange in 

homogeneous clusters [4, 5]. Moreover, it may be used 

to describe objects. The classification of variables around 

latent variables CLV [4] method involves two stages, a 

hierarchical clustering algorithm is used to find an initial 

partition of dataset followed by a partitioning algorithm.  

CLV method works well when applied to small datasets; 

mainly, it is hard to apply to high dimensional dataset 

because of memory and analyze barriers.  

Large datasets are difficult to manage, visualize, and 

analyze on a massive scale in terms of volume. Two 

computational barriers for large datasets analysis: (i) the 

data can be too big to support in a computer’s memory; 

(ii) the computing task can take too long to wait for the 

results [5]. 

CLV method shows a good results when applied to 

several datasets; However, in the case of high 

dimensional data, it is difficult at the time of big dataset 

[6]. Indeed, it is no longer able to group similar variables 

to develop meaningful structure. It becomes 

computationally expensive in terms of memory and 

execution time requirements. 

There is a need to manage such large volumes of data 

and to cluster them easily for data analysis [7] while 

choosing a cluster’s number and maximizing the 

clustering criteria for large datasets. Therefore, CLV 

algorithms should be efficient, scalable, and highly 
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accurate. There is a need to enhance them to suit large 

datasets. 

To deal with this problem, a k-means based co-

clustering (kCC) algorithm [8] have proposed better 

cluster initialization dealing with outliers, instead of the 

hierarchical clustering algorithm proposed in the CLV 

algorithm, accordingly, we propose a novel method by 

using cluster initialization algorithm of kCC in the CLV 

algorithm. 

 

The rest of this paper is organized as follows.  In 

section 2, the background work related to the CLV and 

kCC algorithms is briefly described. The proposed 

solution is explained in section 3. Section 4 contains our 

obtained results, and we conclude this paper by 

discussing some limitations and prospects in Section 5. 

2 Background Literature 

2.1 Clustering of variables around latent 
variables 

The objective of Classification of variables around 

Latent Variables (CLV) [4] is to find meaningful clusters 

of variables according to the criteria and algorithms on 

which the method is based. 

 

Let us denote by: 

- ! = #$%&'()%)*,()&), a dataset with - centred 

variables observed on . examples. 

- ℱ = {1(, 12, … , 1,} of -	columns of !. 

- 6 = {7(, 72, … , 78} a partition of ℱ into 9 clusters 

of variables associated with : = {;(, ;2, … , ;8} a set of 

latent variables. 
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The aim of CLV method is to get a couple (6,:), 
and thus to maximize the internal coherence of the 

clusters concerning the following clustering criterion: 

ℒ(6,:) = ? Γ(7A, ;A)
8

AB(
(1)	

 

where Γ measures the linear link, in each cluster 7A, 

between the variables 1& in this cluster and ;A the 

associated latent variable. 

Two types of criteria (6,:) are considered, which 

define two different cluster types of variables: directional 

groups and local groups. 

Directional groups 

Positively or negatively correlated variables will be 

merged together, no matter whether their sign of the 

correlation coefficients (Figure 1), and the Γ considered 

for maximization on (1) is: 

ΓD(CF, uF) = ? γFIcov2#xI, uF'
NO∈QR

	 (2)
 

 with#1&'()&), are the - variables to be clustered, 

TUV2#1&, ;A' the squared correlation measuring the link 

between the variable 1& and the latent variable ;A, the 

variance of ;A equal to 1, and  γA& = W 1		if	1& ∈ 7A
			0		U[ℎ]^_`a].	 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Local groups 

Only positively correlated variables will be 

associated in the same group (Figure 2), and the Γ 

considered for maximization on (1) is: 

Γc(7A, ;A) = ? γA&TUV#1&, ;A'
de∈fg

(3)
 

with #1&'()&), are the - variables to be clustered, 

TUV#1&, ;A' the covariance measuring the link between 

the variable 1& and the latent variable ;A, the variance of 

;A equal to 1, and  iA& = W 1		if	1& ∈ 7A
			0		U[ℎ]^_`a]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Latent Variable 

In cluster 7A, the latent variable ;A used on (2,3) is 

defined as: the first standardized principal component of 

jA formed with the variables belonging to their 7A for 

direction groups, and the standardized centroid variable 

in 7A for local groups. 

 

2.2 Partitioning Algorithm 

The aim of a partitioning algorithm is to find an 

optimum couple (6,:), therefore it is used for 

optimization of the clustering criterion ℒ(6,:) given in 

(1). 

It consists of two alternating steps: the estimation 

step, on which the latent variables ;A are defined given 

the initial partition 6, and the allocation step of the 

variables given the latent variables. More precisely, this 

algorithm is developed as follows: 

Group 1 

Group 2 

Group 1 

Group 2 

Group 3 

Fig. 1. Directional groups: positively and negatively 

correlated variables. 

Fig. 2. Local groups: positively correlated variables. 
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2.3 k-means based co-clustering algorithm 

 
In the case of k-means algorithm, the optimization 

problem is to find a number of homogeneous clusters. 

However, finding the initial k cluster centers is a big 

challenge, these initial clusters are chosen at random, 

consequently, it can lead to poor starting points. This 

means that the final clusters of k-means are highly 

dependent on the initial clusters. To improve the 

selection of such cluster centers, k-means based co-

clustering (kCC) algorithm proposes a new cluster 

initialization algorithm based on a random walk based 

similarity measure. 

This method constructs clusters in such a way that 

objects/variables are merged according to find k	data 

objects/variables instead of a single cluster center. These 

selecting k points represent each cluster. This helps to 

decrease the chance of selecting a single outlier. The 

points selected in the same cluster have high intra-cluster 

similarity amongst themselves but have low inter-cluster 

similarity with all other clusters. 

Given two documents $land $m, the t
th
 order walk 

between them is given by 

nlmo = ??;lp.qpr
os(. ;rm

,

rB(

,

pB(
(4) 

 

 

and the t
th
 order walk between two words _l and _m 

is given by 

qlmo = ??Vlp. npros(. Vrm
*

rB(

*

pB(
(5) 

Where ;%&	(V%&) are the probability of starting at 

document $%(word _%) and arriving at word _& 
(document $&) given by ;%& =

dve
wxy(dv)

 and V%& =
dve

wxy#de'
 

Using the similarity measure given in (4), the zo{ (z ∈
1. . k) cluster center for the |o{

 (| ∈ 1. .9) cluster is 

given by 

TA} = argmax
pB(...*

Ç
∑ npros(}s(
rB(
z − 1 +

∑ 1 − npÜos(As(
ÜB(

(z − 1)(| − 1)á (6) 

The aim of the kCC algorithm is to find M number of 

initial clusters   6â = (7(â, 72â, . . . , 78â ), it is considered as 

the initialization step on the CLV algorithm (algorithm 1) 
 

 

3 Proposed kCC+CLV 
The problem of initializing the partitioning algorithm 

is solved in the CLV method by implementing a 

hierarchical clustering algorithm (HCA) [12] based on 

the maximization of the criteria ℒ(6,:).   
However, when the number of variables is large, the 

HCA needs time consuming to execute. For this reason, 

we change the initialization phase with the kCC method. 

This method has the same parameters and options as the 

classic k-means [13] but performs only the partitioning 

procedure. In this case, the objective is to find a partition 

6â = (710, 720, … , 790 )	of a set ! = #$%&'. Indeed, the 

result of the algorithm dependent not only on the choice 

of the number of clusters but especially on the initial 

cluster centers. The number of clusters 9, should be 

given as an input parameter.  

 

 

 

Algorithm 1 Partitioning Algorithm  

 

Input:  6â = (7(â,72â, . . . , 78â ). 
Output: (6,:). 
Repeat until convergence 
Estimation Phase 

Find : = ;(,;2,… , ;8 

Compute ;A the latent variable of 7A; 

for |	 = 	1,… ,9 do 

Directional groups: ;A is the first standardized 

principal component of the matrix jA formed by the 

variables belonging to 7A. 

Local groups: ;A is the centroid variable of the 

variables in 7A. 

end for 
Assignment Phase 

Find 6ã = #7(%, 72% ,… ,78% '.  
Each variable is allowed to the cluster if its correlation 

criterion between 1& and ;A is higher; 

for i=1 to maximum iterations do 

while 6ã! = 6ãç(
 do 

find é such that, 

Directional groups:  é = argmax
AB(…8

		TUV2#1&, ;A' 
Local groups: é = argmax		

AB(…8
TUV#1&, ;A' 

let 6ãs( = #7(%s(, 72%s(,… , 78%s(' the previous 

partition of 7A, 

if é	 ≠ |  

7ê% = 7ê%s( ∪ {1&} and, 7A% = 7A%s(\{1&} 
else stop 

end if 
end while 

end for 
 

Algorithm 2 kCC Algorithm  

 

Input: ì = #îïñ' a data set, number of centroid clusters 

L, and M number of clusters. 

Output: 6â = (7(â,72â, . . . , 78â ). 
Repeat until convergence 

Find T((, … , T8c centroid clusters; 

Select at random 1& as the first center of the first 

cluster T((. 

for z = 	1…k 

for | = 1…9 

Set TA}  using (6) 

endfor 
endfor 
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4 Results  
To evaluate the performance of the proposed method 

kCC+CLV, an experiment was used on artificial data to 

analyze its effectiveness compared to other methods. The 

results are evaluated using the accuracy mesure which 

describes the correctness of an algorithm with respect to 

the real class labels of the data. 

 

 

 

The results of the accuracy measure, kCC shows an 

improvement of 62% over the other methods h-means 

and HCA.  

In general, the running time of our proposed kCC is 

lower than other approaches when either the number of 

variables is high or the number of clusters are large 

(Table 1). 

 

 p=50 p=100 p=1000 p=10000 p=50000 

CLV+HC

A 

2.03 102.15 506.15 ----- ---- 

CLV+ 

k-means 

3.17 153.08 405.6 567.19 684.25 

CLV+ 

kCC 

3.00 142.12 315.75 388.26 408.64 

 

 

 

We calculate the CPU time in seconds for p variables 

(from p=50 to p=50000) and n fixed objects (n=1000). 

Table 1 shows that the kCC+CLV remain fast even if the 

number p of variables increases. In the same case, the 

CLV with HCA is the slower function. 

Conclusion 
Clustering method converts information into various 

clusters where the object in that group has similar 

properties as compared to other but not same to other 

clusters properties. 

The iterative procedure of CLV algorithm 

initialization supplies a partition into 9 clusters, which 

maximizes the criteria ℒ.  

However, this optimum is often local and can depend 

on the initial partition [14]. 

A solution to avoid this problem and to reduce the 

influence of the arbitrary choice of the initial partition is 

to consider kCC initialization algorithm. 

In this case, all phases in the algorithm (algorithm1) 

are repeated several times, and the highest value of ℒ is 

considered as the best one. 
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Figure 3 : Accuracy of cluster initialization algorithms 

Table 1 : CPU time in seconds for n= 10000 objects in 

varying number of variables  
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