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Mapping and Pursuit-Evasion Strategies For a
Simple Wall-Following Robot

Anna Yershova, Benjamin Tovar, Robert Ghrist, Steven M/dlie

Abstract—This paper defines and analyzes a simple robot with
local sensors that moves in an unknown polygonal environmen
The robot can execute wall-following motions and can travese
the interior of the environment only when following parallel
to an edge. The robot has no global sensors that would allow
precise mapping or localization. Special information spaes are
introduced for this particular model. Using these, strateges
are presented for solving several tasks: 1) counting vert&s, 2)
computing the path winding number, 3) learning a combinatoiial
map, called the cut ordering, that encodes partial geometric
information, and 4) solving pursuit-evasion problems.

I. INTRODUCTION

Imagine designing motion strategies for a simple, low-
cost, differential-drive robot such as the Roomba. The main
objective in this paper is to investigate what kinds of globa
information can be learned and what kinds of tasks can be
accomplished with as little sensing and actuation as plessib
In a planar, indoor environment, wall-following is a simple
operation that is easily accomplished using a contact senso (®)
or short-range infrared sensor. Suppose the walls are poilg Fig. 1. (a) The robot can execute three movements: followliegwall when
and the robot approaches a vertex. If the interior anglet t'gl'rzitghtthgr{ﬁgtfef(?b&;f{;gﬂgﬂ:&”gaﬂsfgt:'eeﬂé‘f(ﬂv(éfé;ﬁ’g)'([;"‘)”%Lé":gg‘(?t
vertex is greater tham, then it is possible for the robot to movenas a sensor that can distinguish between being in thednteti a convex
past the wall by continuing to travel in the direction thag thvertex, at a convex vertex, or in the interior of an edge.
wheels are pointing. This case is callededlex vertex See
Figure 1(a). These assumptions lead to a motion model that
allows following walls and occasionally extending beyohd t
wall until another wall is contacted. Suppose that sensans dWO simple tasks: counting the number of vertices and deter-
be used to determine whether the robot is at a reflex vert&ining the number of times the robot “wrapped around” the
a convex vertex (interior angle less thai), the interior of boundary. Itis furthermore established thatebble(common
an edge, or the interior of the environment. This is shown iR on-line exploration [3], [7], [17]) is required to accoirgh
Figure 1(b). The robot has no sensors that can measuregreti§se tasks.
distances or angles. Section V considers a combinatorial mapping and localiza-

What kind of tasks can be accomplished with such téon problem. Thecut orderingis introduced, which is a new
simple model, when the robot is dropped into an unknownap that encodes precisely the geometric information that c
environment? This question is answered from Sections IV b& learned using the simple robot. We introduce a strategy
VI, which represent the main technical contributions okthithat learns the cut ordering using a quadratic number oftrobo
paper. Before these are presented, related literature @sid bmotions in terms of the number of polygonal environment
definitions are provided in Sections Il and Ill, respectjvel edges. By building on the cut ordering, Section VI considers
Following this, Section IV shows that the robot can accosipli the pursuit-evasion problem, which involves systemdiical
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pursuit status at every step, which leads to strategiesatteat addresses a pursuit-evasion problem that involves finding a
guaranteed to be successful. Finally, Section VII dessribenpredictable moving target in an unknown environmentgisin
numerous interesting questions and open problems that ate robot with weak sensing and motion capabilities. Ptrsui
based on models considered in this paper. An earlier versiewasion problems in general were first studied in diffeednti
of this work was presented in [78]. game theory [1], [29], [30]. Pursuit-evasion in a graph was
introduced in [63], and related theoretical analysis appéa
[5], [39], [52]. Visibility-based pursuit-evasion was iotluced
in [72], and the first complete algorithm appeared in [45].
At the highest level, there are numerous efforts in robotigen algorithm that runs inO(n?) for a single pursuer in a
literature that attempt to accomplish tasks with as litlesing simple polygon was given in [61]. Variations that consider
as possible. Examples include sensorless manipulatiol [1€urved environments, beams of light, and other considerati
[20], [22], [25], [49], bug strategies [32], [33], [40], [B0and appear in [10], [12], [19], [42], [48], [56], [68], [69], [71
gap navigation trees: [38], [54], [28], [75]. On-line exption [73], [76]. Pursuit-evasion in three dimensions is disedss
strategies make simple motion models and try to reduce tfag]. Versions that involve minimal sensing and no prioregiv
amount of memory or total distance traveled [6], [13], [14Jnap are most closely related to Section VI: [28], [31], [65],
(23], [24], [34], [35], [51], [60], [66]. [67], [78].
Most of these works that aim at understanding minimal re-
qguirements involve defining and analyziimjormation spaces I11. BASIC DEFINITIONS
associated with the sensing and actuation models (see [‘H-.]'State, Action, and Observation Spaces

Chapter 11). The general idea is that the space of sensin . .
and actuation histories can be compressed into smalleespac q’he robot is modeled as a point that can translate and rotate

that are used for filtering and planning, without requiring f In a simply connected polygonal environment. The configura-

state estimation. The basic concept of an information spatfz%n space of the robot i$ E(2), in which each configuration

H 2
can be traced back to work of Kuhn [36] in the context of 'cPresented by:fp_’ Yp, 0), with (z;,7,) € R” as the robot
game trees. There, the nondeterministic information s'tatepos.'t'on andy € § 2'5 the orientation. It is _assgmed that the
referred to as amformation set After spreading throughoutenv'ronmemE C R, an obstacle-free region, is the closure

game theory, the concept was also borrowed into stocha Tca.l simply .connected, bounded, polygonal open set. The
control theory (see [4], [37]). The terinformation state I- environment is unknown to the robot; therefore ddie the set

f all possible environments. LétE denote the boundary of

state for short, is used extensively in [1] in the context O .
sequential and differential game theory. For further negdin % e-g_ Note that gaclE < € can be encoded by spemfymg_ t.he
vertices alon@F in cyclic order. We make a general position

information spaces in game theory, see [1], [59]. In ar#fici . 7 . .
intelligence literature, I-states are referred tobadief states assumption by restricting only to include environments that
: ﬁontain no three collinear vertices.

and are particularly important in the study of POMDPs. | In addition to the robot, the environment may contain a
robotics literature, they have been callegberstate§26] and S ) .
y $26] ebble which is a special point that can be detected and moved

knowledge state§21]. Concepts closely related to I-spaceg " ; )
: . the robot. If the robot and pebble positions are identical
also appear agerceptual equivalence classés [18] and thyen the robot may or may n(?t be caF;rying the pebblg Lot

the information invariantsin [17]. Information spaces Wereg _ {0,1} represent the set of values for a state variaple
roposed as a general way to represent planning under gensin '™ . )
prop g y P b 9 8 in which ¢ = 1 means that the robot is holding the pebble;

uncertainty in [2], [43], [44]. .
o . gtherwise,qg = 0.

There are numerous related works on localization, mappingd, " v e the state space which encodes all possible
or both, often referred to as SLAM (Simultaneous Localiati
and Mapping). Most of this work focuses on exploring al
information space that represents probability distriimsiover
all possible configurations and environments [8], [9], [11
[15], [53], [62], [74], [77]. Aside from our previous paper
[78], the most related work is [70], in which tliembinatorial
visibility vector (cw) is introduced as a sensing models th owever, the environment is unknown and properties of it are
allows a minimalist robot to count the number of holes ig '

) - iscovered as the robot moves. Therefore, the state space is
an unknown polygonal environment. The model indicates tr(lje . )
. : L éfined as:
numbers of environment vertices that are visible betweeh ea
depth discontinuity when performing an angular sweep. The
information is combinatorial; however, the sensing range For a particular state, we require that both the positiorhef t
unbounded. In Sections 1V and V, we will consider localizarobot and the pebble to be inside the environment.
tion and mapping problems using sensors that have only localThe robot sensors are modeled as follows. Ketbe an
range (for example, contact sensors). observation spagewhich is a set of possible sensor readings.
Although mapping and localization is an important, basi& sensor mappind : X — Y is defined that indicates what
operation, we often want robots to solve more complex taskhe sensor is supposed to observe from state X. Two

such as tracking or searching for moving targets. Section $&nsors mappings are defined. For the first one,tdieh

Il. RELATED WORK

configurations for the robot and the pebble in the envirortmen

Possible configurations of the robot are a subsef 5Y2),
hereas for the pebble are a subseRéf If E were given in
dvance, then a reasonable choice for the state space would

be X C SE(2) x R? x @, which could be parametrized in
articular asX = E? x S x Q. For the problems in this paper,

X CSEQ)xR*xQ xE. (N}



sensor consider the robot's positiofiz,,y,) € E. Every B. Information Spaces

environmentE can be partitioned into four sets: 1) the interior Although we assume that the staspaceis known, the

of E, 2) the interior of an edge alongF, 3) a convex vertex particular state will be, in general, unknown to the robot.
(interior angle less tham), and 4) a reflex vertex (interior Therefore, we need to be precise about what information the
angle greater tham). The touch sensok; : X — Y yields ropot has available. In general, such information is cadad

an observation that correctly determines which of these fojformation stateor I-state for short. For further details and

sets containgz,, y,). The observation space is alternative formulations of information spaces, see Gévapt
of [41].
Y; = {INTERIOR, EDGE, CONVEX, REFLEX}. @) This most direct and basic I-state will be called thistory

I-state and is defined at stageas

The second sensor mappimegbble sensorconsiders the M = (U1, Uk—1, Y15 - - Yk ), 3)
position of the robot and the pebble i The pebble sensor ,hich is simply the sequence (or “memory”) of all actions

hq : X — {0,1} indicates withh,(z) = 1 if the robot and axen and observations received up to stag&he set of all

pebble positions are identical; otherwisg,(z) = 0. Theses ,qqinien, for all possiblek is called thehistory I-spaceand

two sensors are combm(_ad into a single sensor mapping is denoted byZy;s:.

X —Y; x{0,1}, which yieldsy = h(z) from anyz € X. Although Z;,.; is natural because it arises directly from
An action spacd/ is defined to model robot motions. Eachhe problem, it is difficult to analyze, due in part to the tne

actionu € U causes the robot to move until some interngJrowth of I-state components with respecttoT his motivates

termination condition is met. This results in a set of di&:rethe construction of mappings that attempt to projgglst

stagesin which stage = 1 is the initial stage, and stage= k£ down to a “smaller” space that will be more manageable for

is the resulting stage aftér— 1 actions have been applied. Aanalysis and computation. L&, be any set and consider a

state transition functionf : X x U — X is defined, which mappings : Zp:se — Zuer. In generalZy., is called aderived

yields a new stater;+1 Whenuy, € U is applied from some |-spaceand « is called aninformation mappingor I-map

z, € X. Ideally, Z4.,- and x should be chosen so that amformation
For the robot model in this papel] is defined as the settransition functioncan be defined:

of the following actions (the first three were shown in Figure

1(a)). K(Mk11) = faer (K(Mk), Uk, Y1) (4)

1) u = RFoOLLOW, which traverses an edge in the coun- This means thatx(r;) can be computed incrementally
terclockwise direction until either the next vertex ofwithout storing elements of},;.:. The derived I-state:(n;,),
the pebble is reached. This action can only be appligéhich is usually smaller, can be used together withand
when the robot is making contact withz, and during 4, ., to obtainn;,;. An example of this occurs in the Kalman
execution, the edge transversed is to the right of thiter, in which the current mean, covariance, action, and
robot. observation are sufficient for obtaining the new mean and
2) u = LFoLLOW, which traverses an edge in the clockcovariance, rather than referring back to the completetyist

wise direction until a vertex or the pebble is reachegLstate. In one trivial cases is the identity function, which
Analogously torFoLLOW, the edge is to the left of the yields

robot, and the robot is in contact with®.

3) u = JumP, which is applicable only from a reflex vertex. ) ) ) ) )
Assume that the robot arrived at the reflex vertex aft@ased on simply inserting, andyj..1 into 7, to obtainyy.1.
traversing a wall. Whem = Jump is applied, the robot  If @ mapping of the form in (4) exists, then a kind of filter
continues to move straight into the interior &f until ¢an be made that essentially “lives” iy, rather tharZys:.
dF is hit again. The goal in the coming sections will be to chodgg, and

4) u = GRAB, which picks up the pebble, enabling the® carefully so that the derived I-space can be analyzed and
robot to carry it. This action can only be applied if théhe derived I-states contain information that is sufficieat

M1 = Sfhist (M, Wk, Yr41), %)

robot and pebble are at the same position. solving a specified task.
5) u = DROP, which places the pebble at the current robot
position. IV. COUNTING WINDINGS AND VERTICES

6) uw = INIT, which applies from any configuration and Now we consider basic filtering problems, which includes
terminates whenever the robot reaches any vertex @termining simple properties of the robot path and the-envi
OF. Imagine the robot uses a standard differentiafopnment. In this section we consider a model in which only
drive mechanism. The robot can move straight from thfie actionaniT, RFOLLOW, andLFOLLOW are available, and
interior of £/ until a wall is hit and then follow the wall that the pebble is fixed at some vertex. This brings a couple of
in an arbitrary direction (sagFoLLOW) until a vertex restrictions. First, the robot can sense the pebble, barihot
is reached. Assume that once the vertex is reached, f@nipulate it. Second, it can move from vertex to vertex, but
wheels are pointing in the direction parallel to the waldannot jump and cannot determine whether a vertex is convex
that was just traversed. or reflex. To simplify the expressions below, assume thahin a



initial stage: = 0, ug = INIT is successfully applied so thatduring the entire execution. Each time the pebble is crgssed

robot is already at a vertex df. w; = 1. The pebble is crossedh times, and (10) therefore
yields the correct winding number. Now suppose that the

A. Determining the Winding Number monotonic path starts and stops at the pebble. The sum in (10)
does not count the first pebble contact; however, the ladilpeb

The first task is to determine the number of times that tI?:‘?)ntact is counted once; hence, the correct winding nunsber i

robot haswra_pped aroundJE. T_h's is called thewinding optained. By similar arguments, a clockwise monotonic path
numbery and is the number of times the robot has travelgg, 45 _,, because(a;_; + a;)/2 yields —1 each time the

aroulndaE by systema_ltic_ally eliminating all reversals. In ebble is crossed.

continuous setting, this is obtained by taking the shortestNOW consider non-monotonic paths
path within its homotopy class. The winding number cag ,
be positive, negative, or zero. A positive winding numb

If a reversal occurs

t the pebble, theifa;—1 + a;)/2 yields 0, which is correct

; YBecause the pebble was not crossed. If a path crosses the
means that the robot wrapped counterclockwise aroifid pebble counterclockwise and the next crossing is clockwise

and negative means clockwise. then the corresponding two terms in (10) cancel, once

We now introduce de_nved I-spaces to cpmpute |nterest|%%ain preserving the correct winding number. After all such
statistics based on the history I-state. For thisulet U be the cancellations occur,s(,) reports the correct winding

action applled at stage Foru;, leta; = 1 if u; = LFOLLOW,  umber. n
a; = —1 if u; = RFOLLOW, anda; = 0 otherwise.
The I-map

B. Counting Polygon Vertices

k—1
r1 (k) = Z |ai (6) Now suppose that the robot needs to count the number
i=1 of vertices that lie alongdE. One possibility is to move
indicates the total number of edges traversed by the robesunterclockwise until the pebble is encountered twice and
Note thatx; can be implemented recursively as a filter:  make an I-map that subtracts the stage indices at which the
pebble is contacted. To make the problem more interesting,
K1(Mey1) = K1(Mk) + |ax, (7) consider how to make an I-map that does not constrain the
which is in the form of (4). Hence, it is possible to “live” robot to a partlculgr path bL_Jt allows it _to neverthe_less_nnfe_
the number of vertices. In this case, a kind of passive fiter i

in a derived I-space that indicates only the number of asnogbtained for obtaining the vertex count,

taken. As an intermediate step, define
The I-map
k—1 k—1
Ka(m) =D i ®) ke(me) = > ai, (11)
i=1 i=ra(nK)+1

yields the distance traveled after eliminating all revisghis which indicates the combinatorial distance relative to ftre

is called thecombinatorial distanceand is the number of encounter of the pebble. Let; () be the minimumi < k

edges in the shortest path among all those homotopic to theh thatks (1;)ke(1;) # 0, or O if there is not such.

actual path taken by the robot, with the start and end points

fixed. Proposition 2 Let i = r7(nx), and ks(ng) = |ke(ni)|. If
If y; is the observation at stage i, then tet = 1 if the xg(n,) # 0, thenksg(ny) is the number of vertices iAE.

pebble is detected, and; = 0 otherwise. The I-map ) ) ) )
Proof: If ks(ng) is zero, then either the combinatorial

k distance kg (n,) from the first encounter of the pebble is
K3 (k) = Zwi (9)  zero, or the winding numbets(n;) is zero. The first time
i=1 ks(nk)ke(n) is different from zero occurs when the robot
yields the number of times the pebble has been contacted. Eatounter the pebble after winding aroundf exactly once,
k4(nx) be the smallest for which w; = 1. and the result follows. [ |

Proposition 1 The winding number at stage > r4(n;) is

given by C. Termination Issues
k-1 A pebble was used in the models above because the robot
rs(me) = Y wilaion +a,)/2, (10) cannot solve the tasks without it (assuming the rest of the
i=ra(nr)+1 model remains fixed), as established by the following propo-
using the pebble location as the base point. sition:

Proof: Consider a path that monotonically traverseg Proposition 3 Without a pebble, it is impossible to compute
counterclockwisen times, starting and stopping from a vertesthe winding number or count the number of environment
other than the base point. The term,_; + a;)/2 yields 1  vertices.



Proof: Consider an infinite sequence of regular polygons v : - s
in which the number of verticea increases incrementally \ y

from n = 3. Imagine that we place the robot in one of the Ny
regular polygons, without indicating which one it is. The /N
robot is capable of taking counterclockwise or clockwise / \
steps alon@F, but it has no additional information that it N ,
can use to infer which polygon it is traveling in. Hence, it Ny,
cannot count the number of vertices or the winding number if AN
presented with this sequence of possible environmentseSin / \
this sequence is a strict subset&fit is not possible for the Vg 7

robot to compute the winding number or count the number 2

of environment vertices.

U1
Fig. 2. An environment that has two reflex vertices and fosoemted cuts.

V. LEARNING THE ENVIRONMENT STRUCTURE

This section considers what can be learned about the (01,02, 03, £5, 72, V4, U5, Vg, Lo, 75 ) (12)

environment using the actuation and sensing model definedsince the ordering is cyclic, it can be equivalently expeess
in Section Ill. We now use the complete set of actions, th§ starting from any element af/. Furthermore, the vertex
touch sensor, and the pebble sensor. We introduce a n@umbering overdE is arbitrary. Assuming that vertices are
combinatorial map, called theut ordering which precisely named consecutively in counterclockwise order fromto
characterizes what can be learned about the environment @ndthere aren possible ways to name vertices depending on
how the robot can localize itself combinatorially. which vertex is calleds;. Two cut orderings are said to be
equivalentif the cyclic ordering is preserved after relabeling
A. The Cut Ordering the vertices. For example, if in _Figu_re 2 we relabglt(_) be

v; and enumerate the other vertices in counterclockwise prder

Consider the paths traversed by themp action from then (12) becomes

Section Il and Figure 1(a). Each path can be viewed as a
directed segment that starts at a reflex vertex and ends at a (v1, 03,76, v, v3, 04, Lg, T3, Vs, Vg )- (13)
point ondE. Each such segment will be referred to asua If
the robot is following the wall to the left (theroLLow action) This can be made more similar in appearance to (12) by
before JumP is applied, then it is called eft cut Suppose cyclically shifting each index by two to obtain:
that the vertices alongFE are enumerated from; to v,, in
counterclockwise order. For a reflex vertex the terminal (vs,v6,v1,3,76, V2,03, V4, l6,73). (14)
point of the left cut ondE is denoted ag; and is called the

C.Ut endpqintSimiIarIy, if the rot_)ot s fqllowing the wall to the The cut ordering can be visualized geometrically by defining
right and jumps, then gght cutis obtained. The cut endpomta cut diagramas shown in Figure 3(a) for the polygon in

is denoted as;. S_ee_ F_|gure 2 for_a 5|mp|e_ example. Note th‘%igure 3(b). Take the points in/ and point them around a
every cut endpoint izisible from its associated reflex VerteX. iccle in their proper cyclic order. Connect each reflex awert
Two points in E are said to be (mutually) visible if the Iinev_ with a line segment to each of and r;. This clearly

segment that joins them is completel){ contal_nedfl.n identifies some points alongE that are mutually visible. The
The set of all cuts off’ together with0F, is calledthe o, giagram is closely related to other structures for emzpd

cut arrangement of. The combinatorial structure of a cutysmetric information in polygons, such as the visibilitpgh

arrangement is determined by the order in which the cu[ 1, [57], the chord diagram [72], the visibility obstrimm

intersect in the interior oy, and by the order in which the diagram [46], and the link diagram [19].

endpoints of the cuts appear drE. Note that the cut diagram indicates segment crossing infor-

The general position assumption introduced in Sectio®\ - 5tion from the original polygon, even though it is constedc
guarantees that no cut endpoint lands on another vertekigt tentirely from the cut ordering:

point, to simplify further presentation we also assume titat

two cut endpoints land on each other. Proposition 4 For any environmentE, each pair of cuts

Let M be the complete collection of all vertices and allytersects if and only if their corresponding segmentsriseet
endpoints of cuts from reflex vertices. If an environment, ihe cut diagram.

boundary has: vertices,m < n of which are reflex, thed/

containsn + 2m points. Thecut orderingof an environment Proof: Consider any pair of segmentss’ and tt/, with
E is the cyclic permutation ofd/ that is consistent with distinct endpoints{s, s’,t,t'} € OFE. They intersect in the
the ordering of all points il as they appear alongF in interior of E' if and only if the cyclic ordering of the endpoints
counterclockwise order. For the example in Figure 2, the calbng OF alternates between or s’ and¢ or t'. Examples
ordering is are(s,t,s',t') and(s,t’, s, t). If the cyclic ordering obtained

If two cut orderings are not equivalent, they are caliéstinct
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may have quite different scales, relative edge lengths, and
angles between edges.

Let the power set ofC be denoted ag.,, which is as
a derived I-space under an I-maR, : Zpist — Zco- TO
definer.,, let k.,(nx) be the set of all cut orderings that are
consistent with all of the data inp.. As will be seen shortly, the
cut ordering is incrementally constructed fropp by moving
the robot according to a specified plan. At any given time,
a partial cut ordering has been learned. The set of all cut
orderings into which the partial cut ordering can be embddde
forms k.o (k). Intuitively, k., (nx) corresponds to all full cut

orderings that could possibly be obtained by extending the

Fig. 3. The cut diagram indicates which cuts intersect, budoes not

h binatorial i o t current, partial cut ordering.
preserve the combinatorial structure of the cut arrangé segments in : - ;
(a), which is a partial cut diagram, intersect differenttprh the actual cuts Therefore, a kind of localization and mapping problem

in’ E, which is shown in (b); note that in (aj/p passes to the left of the arises. The problem is to construct a sequence of actions (or
intersection of the other two segments; however, in (b)ctireesponding cut plan) that always results in a unique cut ordering, regasdle
passed o the left of the particular initial configuration or environmest € £.
Expressed differently, the goal is to obtain,(n;)| = 1 after
some numbek of stages (the particuldr may depend on the

by traveling aroundFE is (s,s’,t,t'), for example, then the >
initial state).

segments do not intersect. Likewise, the intersectionsaokp
of segments in the cut diagram are completely determined

from the cyclic ordering of endpoints around the circle.c8in C. Learning the Cut Ordering
the cut diagram preserves the cyclic ordering of endeimSConsider the following stratedy
alongoF, the cuts intersect it if and only if they intersect

in the cut diagram. |

Note however, that the cut diagram does not recover the fgﬁrategy 1 Learning the cut ordering

combinatorial structure of the cut arrangementtbfin other Description: Initially, the robot executesuIT, drops a pebble
words, the cell decomposition induced by the cut arrangem%ing DROP, and executes a sequence LBfOLLOW actions
does not necessarily correspond to the cell decompositigatjl the pebble is reached again. As shown in Section IV,
induced by the cut diagram. An example is shown in Figure e numbem of vertices can easily be counted. Furthermore,

the touch sensor can be used to determine the location of each
B. Derived I-Spaces reflex vertex. Let the vertices be enumerated during exacuti

Suppose that some actions have been executed by the rgi@#ting from1 at the pebble, and lef'(E) C {v1,...,va}
and some sensor observations have been obtained. AfteP€ the recorded set of reflex vertices/of _
stages, this results in a history I-stafg as given in (3). To To construct the cut ordering, the robot needs to determine

construct derived I-spaces, recall the state space SE(2)x Where every left and right cut endpoint reachs. The
R? x P x €. Based ony,, we would like to reason about thePrécise location need not be determined; however, the cut

set of possible current states € X. It turns out that the cut Ordering requires determining only the cyclic permutategn

ordering provides a convenient way to characterize these s@!l vertices and cut endpoints. For eaghe F'(£), the robot
Recall the collectiore of all environments, as defined inMust determing; andr;. The method proceeds inductively. To

Section Ill. EveryE < € has a unique associated cut ordering!€t€rmine’;, the robot executes = LFoLLOW actions until

once the equivalence described in Section V-A is taken inY§'€X vi is reached and then executesvip. After arriving
account. LetC' denote the set of all possible distinct cuPn 9F, the robot executes a sequencepiFOLLOW actions

orderings, for any. > 3 vertices andn < n reflex vertices. until the pebble is reached. The rqbqt infers thais b_etween
Since eachi € £ maps to a cut ordering, it is natural to aske"eXVa—m 1 (Modr) andv,,_,. Similarly, the location of;
whether the mapping fror to C is onto. This is not the case, S determined by a sequencewf= RFOLLOW actions to reach

as many cut orderings are not realizable. For example, leVgtexuvi, followed by asump action, and finally a concluding
reflex chainrefer to a sequence of consecutive reflex vertic€§duence ofn RFOLLOW actions to reach the pebble.
alongdE. By simple geometry, it is clear that the cut endpoint Based on the construction so far, the robot knows only
of a vertexv along a reflex chain cannot appear between tf{ge €dges on which the cut endpoints lie; however, it does
vertices of the same chain. The edges incident tdock the not know the ordering of the cut endpoints within an edge.
cuts. To determine this ordering, a comparison operation can be

Note that for our problem, numerous environments have tg¥ecuted for each pair of cuts that have endpoints on the

same cut ordering. The preimages of the mapping féotm C
9 P 9 bpINg 1We intentionally use the worstrategyrather tharalgorithmto emphasize

partition& into equalence Classe§ of polygonal env'ronmenﬁ%t the statelf, robot position, and pebble position) is unknown to the tpbo
that produce the same cut ordering. Polygons within a classrefore, it is not aiinput to an algorithm in the usual sense.



same edge. For the first cut, its corresponding/P action

is executed and a pebble is dropped usigpr at the cut
endpoint. For the second cut, its correspondingiP action

is executed. Following this, the robot executesoLLow. If

the pebble is encountered, then the first cut endpoint is to 1
the right of the second one; otherwise, the order is reversed

Proposition 5 The robot can learn the cut ordering associ-
ated with E using O(n?) actions andO(n) space, in which
n is the number of vertices i6F.

. . . Fig. 4. For the given environment, the cut diagram with alltleé cuts
Proof: Using Strategy 1, the number of actions is boundqﬂgnerated by our program, is shown on the left.

above byO(n?) since there are)(n) actions executed for
each cut and there are at ma3tn) cuts. There are exactly
two cuts per reflex vertex; hence, the cut ordering and the
strategy use)(n) space.

V1. SOLVING PURSUIT-EVASION PROBLEMS

Now consider the challenging task of winning a pursuit-
The next proposition determines whether both the pebtfi¥asion game. The robot is gursuerthat must find one or
sensor is required for learning the cut ordering/f moreevaderghat are initially hidden and move unpredictably
throughE. The robot has all of the sensors and actions defined

Proposition 6 Without sensing a pebble, the robot canndf Section Il
construct the cut ordering.

Proof: As in the proof of Proposition 3, there existA' Extending the Models

polygons for which the robot cannot determine whether it hasAn additional sensor is needed to detect evaders. For now,
returned to a previous vertex. In the present setting, densiassume there is only one evader. The coming approach will
any convex polygon. There are no cuts and no additiorggtually find all evaders if there are many; however, there

information that can be used to recognize that the robot HgsnO need to complicate the notation at this stage. The
returned to the initial vertex after winding around the guip  €vader is modeled as a point that starts at some unknown

boundary. Hence, it cannot infer the number of vertices fife:¥e) € E and moves arbitrarily fast along a continuous,
OE, which is needed to construct the cut ordering. W  time-parametrized path that is unknown to the robot. Thiesta

space is extended from (1) to obtain

It Furns out that the_cut ord(_ering associated withis the X CSEQ2)xRExR2x PxE. (15)
maximum amount of information that the robot can gather . N
about reachable positions in the environment: in which we included an addition&l” to representu., p.) €

E. A detection sensor, : X — {0,1} yields hy(z) = 1 if
Proposition 7 Once the cut ordering has been learned, nand only if the robot positiotiz,,, y,,) and the evader position
additional combinatorial information regarding the cut-ar (z.,y.) are mutually visible in the particulab € £. Note
rangement off can be obtained. that the detection sensor provides no information about the

Proof: Consider the set of all possible action sequencesst,ruCture OfE; it yields only a single bit of information. The

L . . : robot must rely on whatever information it can learn abbut
applied in some particular environmeht together with the L . . .
T : . which is precisely the cut ordering from Section V.
points in E reached. After each action, the robot terminates at ; )
The task is to compute a sequence of actions, callgida

a p"?‘T“C“'af point alongE. Let 7 be the set of all ppssmle that guarantees that the evader will be detected, regardfes
positions alongdFE that can be reached by an action. Thﬁ1 . . L .
e particular environment, the initial position of the obb

elements ofZ correspond directly to vertices af and all S .
. : ursuer), the initial evader position, and the path takgn b
cut endpoints. Once the cut ordering has been learned, ﬁg evader

cut ordering predicts precisely which point id will be

reached by applying any action sequence from any initial ) )

position in Z. Thus, no “surprises” can be obtained by3: Solution Using a Gap Sensor

further exploration. The sensors are not powerful enough toThe planning problem is complicated by the challenge of

learn any information regarding precise distances; tloeeef maintaining the status of the pursuit as the robot movess Thi

the ordering of points inZ along F is the most that can corresponds to computing a derived I-state that indicdtes t

be obtained. Therefore, the cut ordering corresponds to #et of states that are possible given the history I-statés Th

maximal amount of combinatorial information about the cigection gives the robot a sensor that enables it to exactly

arrangement ofz. B maintain the status and leads t@@mpleteplanning strategy.

This means that the strategy computes a solution if onesexist

The strategy was implemented in simulation, and a coratherwise, it reports failure after a finite number of stéfise

puted example is shown in Figure 4. given sensor is too powerful in this context; therefore tides
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Fig. 5.  When the robot is at some positi¢ay,, y,), the detection sensor
detects the evader if it lies in the visible regidf(z,, yp) C E. The shadow
region S(zp, yp) is the complement, which corresponds to places where the .

evader cannot be detected frdm,, yp). (c) Split (d) Merge

Fig. 6. The four types of events in terms of shadow components

VI-C and VI-D weaken the sensing requirement until the robot
is left only with its binary detection sensor and the sensdrs
Section Il

Suppose the robot is &t,,y,) € E and letV (zp,y,) C E
denote thevisibility region, which is the set of all points visible

from (z,, y,). The evader is detected if and only(i., y.) € 3) v; andw;. The first two are calledbitangent raysand are
V(@p, yp). Let theshadow regions(xy, yp) = £\ V{2, yp) illustrated by the dashed lines in Figure 6(c).

be the set of positions where the evader is undetected.d=f§jur . i )
. Now imagine having a powerful sensor that detects when a
shows a simple example. One reasonable way to represent the

pursuit status would be to maintain the set of possible gidirIIOpOIOg'Cal change occurs lﬁ(xp’yp?‘ If the pursuer moves
places for the evader. This means tt#tz,, y,) should be along a path, one of four topolggmahentsmay oceur i
partitioned into two regions: 1) places where the evadigiht S(ap, yp) (assuming general position fd).

endpoints are iDE. Letb; ; € OF denote the endpoint of the
bitangent that is closest tg. Likewise, letb;; € F denote
the endpoint closest to;. Any bitangent can be divided into
three segments, connecting: i), andv;, 2) b;; andv;, and

be, and 2) places where the evadannotbe. 1) Appear: A shadow component appears, which is caused
Looking at Figure 5, it should be clear that $f(z,, y,) by crossing an inflection as shown in Figure 6(a).

is nonempty, then it must have a finite number of connected?) Disappear: A shadow component disappears, which

components, given that evader moves arbitrarily fast. hese IS caqsed by crossing an inflection ray in the other

be calledshadow componentsnagine placing a label af on direction; see Figure 6(b).

each shadow component that might contain the evaderpand 3) Split: A shadow component separates into two, which
on the remaining shadow components. This is sufficient for IS caused by crossing a bitangent ray, which is shown
characterizingany pursuit status that might arise. For every  in Figure 6(c).
shadow component, either all points are possible locafions 4) Merge: Two shadow components merge into one, which
the evader or none of them are. There is no need for multiple 1S caused by crossing a bitangent ray in the other
labels within a component. This observation forms the basis direction; see Figure 6(d).
of the pursuit-evasion strategies in [27], [42]. The sensor will be called @ap sensar as defined in
To proceed further, some terminology is needed. Travelifgl], [75]. The name has the following motivation. Imag-
counterclockwise aroundE, the right cut of a reflex vertex ine sweeping radially to measure the distanced#® from
that is immediately preceded by a convex vertex is calléd,,y,). Every discontinuity in distance, as a function of
a right inflection The left cut of a reflex vertex that isangle, corresponds to a unique shadow component. Therefore
immediately followed by a convex vertex is calledleft maintaining topological changes 8(z,,y,) requires sensing
inflection the dashed line in Figure 6(a) shows an exampléhe discontinuities, callegaps The precise distance and angle
Note that if both neighboring vertices of a reflex vertex glonis not needed; it is only assumed that as the pursuer moves
OF are convex, then both of its cuts are inflections. it can track the gaps (in other words, as the gaps move over
Now we define the important notion of a bitangent. A lindime, it knows the correspondence between previous gaps and
is tangentto a reflex vertew if it containsv and both edges current ones). For the split and merge events, it is furtioeem
incident tov lie on the same side of the line. Bitangentis a assumed that the sensor indicates precisely which gaps were
maximal line segment contained i, and whose supporting involved in the split or merge (for example, gapsand b
line is tangent at two distinct, mutually visible reflex veels, merged intoc).
sayv; andv;. Since a bitangent is a maximal line segment, its The gap sensor can then be used to define a filter that
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incrementally maintains the correct labels on the shadow g} 7;1 g{ = 7:1
components. If a component disappears, its label disappea \\gilttivgf/
along with it. If a component appears, it receive$ dabel \ /
because the area was just visible and the evader cannot S
hiding there. If a component splits, the new componentg Ly active Ry active
receive the same label. The final case is more interesting. vy
two components merge, then the new component receiles a
label if either (or both) of the two components havd dabel.
Note that if the same components are involved in a merge (a) (b)
followed by a split, then the labels may change frorand 1 by "1 n 6,3
to 1 and1. Thus, the evader can find new hiding places after \%%1{51}\1,2{/ ‘' both
every merge. N ', active
We are now ready to describe a complete pursuit-evasioh AN " Vo )
strategy based on the gap sensor: Ly active A Ry active Ly 1Ry
mn active /' active
U1 U2 U1 U3
both
Strategy 2 Pursuit with the gap sensor () (d)

o Fig. 7. (a) There are two primitives associated with evefiexevertex. In
Description: Assume that the pursuer has learned the ctifs example,R; is the primitive obtained after the robot crossasto the

ordering using the Strategy 1. A derived |-spaia, and Hoft Liewiss Ly s he pimilue staned aer crossit o e et 5

information transition functlon_ will now be described (MC or ngither is active. (c) and (d) show cas?es in, which variais alnd’riglh’t

(4)). At each stage, the following are recorded, as a detivedorimitives are active

state: 1) the position of the pursuer in the cut ordering,ral

label of 0 or 1 for each component o¥(x,,, y,). As described

above, the labels indicate whether each shadow compongntsolution Using a Bitangent Sensor

may contain the evader. _ _ _ _
Initially, all shadow components (or gaps) receiviabels. ~ S€ction VI-B described a clean solution to the pursuit-

The initial position, together with the label assignmenire- €vVasion problem; however, it is not fully satisfying beaaus

spond to an element &,,,. The planning strategy proceedéhe gap sensor §eems_much more powerful than the sensors

by exhaustively exploring,,,. Consider traveling from any of Section Ill. This section considerably weakens the sansi

k(1) € Tyap t0 anothers(n) € Zyqp. Based on the position assumption and nevertheless results in a complete strategy

in the cut ordering and the action that was applied, the nelpe idea is to introduce a sensor that indicates split and

position in the cut ordering is known. Furthermore, based ¢R€rge information when a bitangent ray is crossed. This
the labels assigned in, the pursuer can use the gap sensor fyodel is much closer to mformauon that is |_nferred_ using
determine the resulting labels after moving to the new jmsit the basic model from Section Ill. As shown in Section V,
The strategy searché,, until it finds any I-state for which the _robot can determ_lne wh_|ch |r_1flect|on rays were crossed,
all labels are. The corresponding action sequence guarantddd it cannot determine which bitangent rays were crossed

that the evader will be detected regardless of its initiaipen  Without additional sensing. Section VI-D presents a pursui
or motion. evasion strategy that works without sensing bitangent tayts

it remains open to show whether the strategy is complete.
Consider the set of all possible shadow components ob-

tained by varyingz,, y,) over all of E. There is a finite total
Proposition 8 The systematic search ovEy,, of Strategy 2 number of distinct shadow components. Figure 7 shows severa
finds an strategy for the pursuer whenever one exists; otheases that lead to what will be call@dimitive shadow com-
wise, it reports failure after a finite number of steps. ponents, omprimitives for short. Every primitive corresponds

to an inflection, as defined in Section VI-B. For each reflex
Proof: The set of possible positions in the cut orderingertexv;, if it has a right inflection, the associated primitive is
is finite. Furthermore, the set of all possible labelings idenoted byR;. Likewise, if it has a left inflection, the primitive
finite. Therefore,Z,,, is finite. Systematic search exploress L;.
every |-state inZ,,, that is reachable from the initial state. If (x,,y,) € F lies to the right of a right inflection, then the
Therefore, the strategy either finds a solution 7, or corresponding primitive is calledctive Likewise, if (xp, yp)
terminates in finite time after exhausting the reachableaublies to the left of a left inflection, the corresponding priie
of Z,p,. If the method does not find a solution, then nds also called active. Figure 7 shows cases in which varieits |
solution exists because all possible action sequencesi@de tand right primitives are active. Note that the complete det o
and the pursuit status is correctly maintained at every. #lep primitives can be inferred from the cut ordering. Furtherejo

the setA(x,,y,) of primitives that are active frontz,, y,)

can be determined from any position along the boundary of
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Fig. 10. When the pursuer crosses the bitangent ray, as simotke right,

Position Partition of4 the bitangent sensor indicates: 49 and v12 form the bitangent, 2)15 is

a {{LS}, {Lz}, {Ll}} closer, and 3) the other bitangent ray ends betweeand vs.

b {{Ls}, {Br}}

c {{Rs}, {R2}, {R1}}

d {{Ls},{L2,L1}} is active. However, when it passes to positigmote that the

e {{Ls, L2, L1}} gap (boundary of the shadow component) makes a jump from
f {{Ls, L2}, {R1}} vertex v, to v1. This will be called asliding primitive. The

g {{Ls},{R2, R1}} reflex vertexve, which generated.,, is now in the interior

h {{R3, R2}, {R1}} of the shadow component. The shadow component that exists
i {{Rs3, Rz, R1}} when the pursuer is dt is essentially the same component

as Lo. Therefore, it can continue to be calléd (rather than
Fig. 8. The partitions ofA(xp, yp) are shown from nine different locations. changing its name td.;). When using the gap sensor, this
jump fromuwvs to v; was in fact not even detectable.
82 Now consider keeping track of the pursuit status, as done
: in Strategy 2. As before, there is a label for 1 for each
! shadow component. In Section VI-B, the shadow component is
oa : expressed as a gap. Here, the shadow component is expressed
|

as a set of primitives. Each shadow component is therefore
61 _____ U1 V2 expressed as a subset A{z,,y,), and all components of
ob S(xp,y,) together yield a partition ofi(x,, yp).

In this section, the gap sensor is replaced bgitangent
sensor Unlike the gap sensor, it cannot detect the crossing
of an inflection; this is closer to the models defined in
Fig. 9. An illustration of a sliding primitive. Section Ill. Thus, the appearance or disappearance of a gap

is not sensed, which is equivalent to being unable to sense
] ] ) whether a particular primitive becomes active or is deattid.
the cut orderlng from the reading given by the touch sens@lowever, it is assumed that “perfect” information regaggin
Thus, A(zp,yp) is known after the completion of any actionyjiangent is sensed. In particular, whenever a bitangsnisra
RFOLLOW, LFOLLOW, Or JUMP. _ crossed, it is assumed that the pursuer immediately kndws: t
So far the discussion has characterized the appearance @&g of reflex verticesy;, v; that contribute to the bitangent, 2)

disappearance of gaps from Section VI-B in terms of infleCtiqyhich reflex vertex is closest, and 3) the location of the bthe
crossings. These crossings can fortunately be inferred fhe bitangent ray endpoint in the cut ordering. See Figure 10.

cut ordering. The next challenge is to characterize theefe  Thjs information is sufficient for determining which active
splitting or merging gaps now that we do not have a gap sensfimitives split or merge:

The result of splits and merges will be encoded as a partition

of A(p, yp), which is denoted as(A). This is illustrated in - pronasition 9 When a bitangent ray is crossed, the infor-

Figure 8. Recall from Section VI-B that crossing a bitangemtsiion provided by the bitangent sensor is sufficient for
may cause shadow components to merge. A pair of primitivg§termining precisely which primitives split or merge.
may merge into one component, which may eventually merge

into another component. Any shadow component obtained Byoof: To determine which primitives split and merge,
one or more merges is calledcampound Every compound the following procedure can be followed. First, determine
can be uniquely described by listing all primitives that erwhich of the two events (split or merge) of the primitives
merged to obtain it. See Figure 8. associated withy; andv; occurs. This can be done using the
The example in Figure 8 involves onlisolated reflex cut ordering by determining the direction in which a cut is
vertices. For consecutive reflex vertices, the situatiatightly crossed (clockwise or counterclockwise). Without loose of
more complicated, but not problematic. Figure 9 shows a@enerality, assume that the bitangent ray crossed has iesipo
example in which there are two consecutive reflex verticest,v; andb;;. Next, consider the two different intervals ot
vy and vo. When the pursuer is in positiom, primitive L,  with endpoints at; and b;;. Choose the interval that does
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not containv;. Determine the active primitives associategrimitives split or merge, which is equivalent to knowing
with all of the reflex vertices lying in the interval. This ise which gaps split or merge.

first set of the active primitives participating in the cutre  Using these equivalences, one complication remains: the
split or merge. The second set contains all of the actiwaitial compounds are not given. This can be handled by
primitives lying in an interval ofdE betweenwv; and v;. (incorrectly) assuming that there are no compounds. This
Here choose the interval that does not contain the bitangémplies that every active primitive can be assigned a unique
endpoints. The exact partition of the primitives within gbe label. Clearly this is not accurate if they truly belong to a
sets into compounds is not determined yet, however, the twompound that cannot be detected by the sensors initially.
compounds resulting from the current split or merge is noldowever, this is not a problem because all active primitives

determined. B are initially assigned al label. As they merge to form
compounds, the resulting pursuit status is the same, with or
A complete pursuit-evasion strategy can now be describedthout correctly obtaining the initial compounds. |

Strategy 3 Pursuit with the bitangent sensor D. Solution With No Special Sensors

Description: As in strategy 2, assume that the pursuer hasNow we return to the original sensing model, which was
learned the cut ordering. Consider the initial state. The geresented in Section Ill. The only additional sensor is the
Ay of initial active primitives is determined using the pursuesimple binary detection sensor of Section VI-A. It would be
position in the cut ordering. The partition of(x,,y,) into convenient to follow the approach of Strategy 3; however,
compounds and primitives is not known initially, but thisllwi without the bitangent sensor, the pursuer is unable to wbtai
not cause trouble. It can be assumed without harm that imformation about split and merge events. Neverthelesseda
primitives in A(z,,y,) are merged into compounds. Everyn information in the cut ordering, the pursuer can reason
primitive is initially given a label ofl to indicate that the about where bitangentsight be. For such candidates, the
corresponding shadow region might contain the evader.  pursuer also constructs approximationto the bitangent ray
Let A be the current active set, let(A) be the current endpoints. Using this approach, the pursuer pretends that i
partition, and let(w(A)) be the assigned labels. receives all necessary bitangent information and applies a
Suppose that the pursuer executes an actigmLLOw, Strategy similar to Strategy 3.
RFOLLOW, or JUMP. At the end of the action, it uses the The approach proceeds by carefully studying the relative
new position in the cut ordering to compute the new actiygositions of points alongdE. For any s,t € OF, let
set, A’. Any primitives that became active during the actiofis,¢) denote the open interval afE obtained by traveling
execution are assignef labels before considering any newcounterclockwise frons to ¢. Similarly, let [s,¢] denote the
merges. The detected bitangents are used to determinegequiorresponding closed interval.
splits and merges that are made when going frofrl) to Let F(F) denote the set of all reflex vertices &f. For
7(A’). Regarding the labels, the rules from Strategy 2 applny pairv;, v; € F(E), let B(i, ) indicate whether there is a
The 0 label is preserved in a merge only if both componentstangent between; andv;, Thus,B can be considered as a
have the( label. The pursuer position in the cut orderingpinary-valued function or logical predicate.
together withA, ©(A), andl(r(A)), constitute a derived I- The following proposition establishes a necessary (but not
state. The update just described is the information triansit sufficient) condition forB(i, j):
function on a derived I-spac&y;;.
Now that the information transitions have been determingdfoposition 11 For any E' € £ and anyv;,v; € F(E), if
any systematic search can be usedZgp to find an I-state in B(¢,7), thenv; & (r;,¢;) andv; & (r;,¢;).

which all labels are. Proof: If B(i,j), then 9F must be tangent to the line

throughv, andv;, precisely at; andv;. If v; € (r;,¢;), then
of Strategy 3 the line thr_oughvi andv; is nqt tangent ab; (informally,
g\fhen looking fromw;, there is no gap anchored at).
Similarly, If v; € (r;, ¢;), then the line through; andv; is
not tangent av;. |
Proof: If the strategy records the pursuit status in exactly the

same way as Strategy 2, then clearly it is complete becaus&or any pair,v;,v; € F(E), let C(i,j) be a predicate
both would systematically explorg,,,. Although the new indicating that they satisfy Proposition 11. @(z,j), then
strategy does not directly use the gaps, labels are insteadindv; are called abitangent candidateNote thatB(i, j)
placed on elements af(A4). Rather than maintaining the gapimpliesC(%, j), butC(i, ) does not necessarily impB (i, j).
events, operations are maintained in primitives. The cdéler Why? Even thoughy; andv; are in the right positions along
ing indicates which inflections are crossed, and hence whigliy for a bitangent, they might not be mutually visible.
primitives become active or non-active during executitiis t It will be convenient to make a notational convention
is equivalent to indicating whether gaps appear or disappe@garding each pair;, v; € F(E). Suppose’(i, j) for some
Using Proposition 9, the bitangent detector indicates Whiw;,v; € F(FE). If v; € [v;,74], then the bitangent is called

Proposition 10 The systematic search ov&y,,
finds an strategy for the pursuer whenever one exists; oth
wise, it reports failure after a finite number of steps.
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Bj,i € OF, respectively. Applying Proposition 12, we obtain
an initial approximation of)l-_j =/; or 131-7]- = ¢;, depending
on which is closest t@; in counterclockwise order. Similarly,
we obtainb;; = r; or b;; = r;, whichever is reached first
b. . after traveling counterclockwise fromy.
b These approximations can be improved by looking for any
cuts that satisfy Proposition 13. Each cut is a candidate for
t the pair s, t, if either the reflex vertex or the cut endpoint
lies in (v;, j;). Among all cuts that satisfy Proposition 13,
pick the cut for whichs is closest forp in counterclockwise
order. In this case, lét; ; = s. Similarly, b; ; can be obtained
ngd Slé- (chi)r?n?tl ff;rgyvi"i’h\éisgb'ee(g?"zti;Ea fffhg()tzi?fgc(f‘sf zi)(.vuvy) by applying Proposition 14 on every possible cut. With these
approximations, we now state the strategy for our original
sensor model:

S

right-handed If v; € [¢;,4], then it is calledleft-handed
Note that if v; € [r;,¢;], then it cannot be a bitangent. If
the bitangent is right-handed, then we can swapndv; to
obtain one that is left handed; hence, we can always write itDescription: Strategy 3 is executed by assuming thgt, 5)
a canonical way. From now on, assume that the paio; is implies B(i, j) every time in the worst case and by using
always chosen so that the bitangent candidate is rightdeandand b, ; instead ofb; ; andb; ;.

SupposeC'(i, j) for somew;,v; € F(E). If B(i,j), then
where could the bitangent endpoirits; andb; ; possibly lie  To argue the correctness of Strategy 4, first we introduce
alongdE? It will be important to make a conservative approxthe following lemma:
imation. Upper bounds will be determined on their locations
A simple conservative bound is given by the following: Lemma 15 For a single actionLFOLLOW, RFOLLOW, or

Jump, the labeling of shadow components in Strategy 3 is
Proposition 12 For any E € £ and anyv;,v; € F(E), if invariant with respect to the order in which inflections and

B(i, ), thenb; ; € [¢;,v;]N[¢;,v;] andb;; € [v;,7:]N[v;,7;]. bitangents are crossed.

Proof: If b, ; appears beforé;, then an edge incident to Proof: F_irst we note that any appear or _disappear eve_nt not
must be at least partially visible from;, which contradicts iNvolved in a split or merge can be placed in any order without
the assumptionB(i, j). Similarly, if b; ; appears beford;, affecting the labeling. Likewise, any disjoint merges olitsp

then an edge incident to; must be at least partially visible ¢an be swapped. _
from v;. Similar arguments apply fa, ;. m Since therFoLLOW, LFOLLOW, and JUMP motions each

produce a linear motion, it is impossible to cross the same

Using information from the cut ordering, a tighter bounditangent ray or inflection more than once. Therefore, appea

on the location ob; ; can be obtained. See Figure 11 and disappear events of the same primitive, as well as split
i, . . ;
! and merge events of the same compound can not occur simul-

taneously after execution of a single action. Consider now a
situation in which a single merge or split appears togethtr w

the appear or disappear event of the same primitive. Dueeto th
geometry of the inflections and bitangents used in Propositi
Proof: The proposition follows from the simple fact thatl3, the appear or disappear event must occur before the merge
the segment froms to ¢ must intersect the bitangent lineévent, and the appear or disappear event must occur after the
somewhere betweep and ¢. This implies thats must Split event. This guarantees that the order of such events is
hit OF before b; ;. Otherwise, the segment from to ¢ fixed, and can not affect the labeling.

would intersect the bitangent line in two places, which is Now consider there are multiple splits and/or merges which
geometrically impossible. B occur during a single action. The order of multiple spliteslo

not matter; the same label propagates to the final companents
Similarly, there is a symmetric equivalent that corresponimilarly, the order of multiple merges does not matter
to the other bitangent endpoirtt; ;: because all resulting components will share the same label i
the end. The only difficulty appears if multiple merges occur

Proposition 14 For any E € £, anyv;,v; € F(E), and any together with multiple splits of the compounds consistirig o
mutually visible pair of points, ¢t € OF such thats € [v;,r;] the same primitives. However, this is not possible, since an
andt € [v;,v;), if B(i, ), thenb;; € [s,r;]. approximation of a bitangent ray can cross a stra|ght line
‘ only once. Thus regardless of the crossing order, the fegult
Now we can use Propositions 12 to 14 to obtain approximatartition 7(A), after applying the action, is invariant. W
locations of; ; andb; ;. Let these be denoted &s; € OF and

Strategy 4 Pursuit with the pebble and the contact sensors

Proposition 13 For any E € &, anyv;,v; € F(E), and any
mutually visible pair of points, ¢ € OF such thats € [¢;, v;]
andt € [v;,v,], If B(34,7), thenb; ; € [v;, s].
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Fig. 12. Between any pair of reflex chains, there are at masthiiangents,
and the contributing reflex vertices are sorted froto 4 alongdE as shown.

Proposition 16 If Strategy 4 finds a pursuit strategy, then the
strategy is correct.

Proof: In the current setting, the order in which inflections
and bitangents are crossed while executing a single action,
such aSLFOLL.OW’ (?annOt be determined. .Lem.ma. 15 .I‘Is:i . 13. Computed example for pursuit-evasion. Shadedmnsghre shadow
Useml here, Since it states that the labeling is 'nva”afégions in which an evader might be. Note that from (a) to {h§ robot
with respect to this order. Furthermore, all events due tavels along the boundary of a shadow region, neverthetesdabeling of
inflection crossings are detected, as in Strategy 3. The OHA shadow region cannot be updated until the action endsirdés (c) and
. . . . show the last steps of the plan.
danger of having an incorrect plan is therefore assouatSe
with bitangents. With a perfect bitangent detector, we have

Strategy 3, which always returns correct plans. In the atirre u u >
setting, merges may potentially be applied too liberally. S:t- . 1 ,

For eachC(i,j) a merge is performed that approximates ' I
conservatively the set of potential locations for the evade HI l *‘

This implies that if a plan forces all labels to zero, then the Te- =

evader cannot escape detection. B rig. 14. Computed solution path for detecting the evaders.

The only remaining question is whether the strategy is

comple_te: Does it return a solution for any cut Ordermﬁot produce actual bitangents. It remains an interestirenop

for which there exists a guaranteed solution? The troublelzJestion to establish completeness of the strategy

with establishing completeness is that we have to consi Fhe pursuit-evasion strategy was implemented.in simula-

all possible environments that could be realized from a cPt S

ordering. Since we have made a conservative approximatipp " Two computed examples are shown in Figures 13, and
ring. . PP P Using only the cut ordering and the strategy for pursuit-

to bitangents, we must consider worst-case environment tha

. . . : . vasion, the robot generates the plan for finding all of the
realize as many bitangents as possible. Is it possible trat . . .
. 4 : : vaders in the environment. The computed solution paths are
any cut ordering, all bitangent candidates are realized8 T

was an open conjecture in [78], and the following propoaitioShown‘

implies that the conjecture is false:
VII. CONCLUSIONS

Proposition 17 Between any pair of reflex vertex chains, there This paper has developed and analyzed I-spaces associated
are at most four bitangents. with a simple robot that follows walls, jumps from reflex
vertices, and carries a pebble. Each of Sections IV to VI
Proof: See Figure 12. Consider two mutually visible discqresented problems that were progressively more cometicat
which are approximated by numerous tiny edges and reflex Section IV, simple I-spaces arose from a robot that can
vertices. Along the reflex chain of one disc, at most one of tlumly follow walls and sense a fixed pebble. In that case,
left cuts can be tangent to the other disc. Likewise, at masie robot can count the number of vertices and how many
one right cut can be tangent to the other disc. By symmettimes it wrapped around the polygon; however, without the
there are at most two more bitangents by considering left apdbble we proved that it cannot even accomplish these tasks.
right cuts from the second disc to the first one. B In Section V, the robot gained the ability to classify thetegr
type, jump from reflex vertices, and also move a pebble. The
Thus, there may be numerous bitangent candidates thatad ordering was introduced as the precise characterizafio
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what can be learned about the environment under this mod#imensional version of the problems presented in this paper
A strategy for learning the cut ordering was presented awen also be presented. In this case, we would be confronted
the method was proved to be complete in the sense thatwith the known complexity of three-dimensional visibility
further information about the environment can possibly beomputations [58], [64]. To further complicate matters,llwa
acquired by the robot. In Section VI, the robot was equippéddllowing obtains a second degree of freedom; how can the
with an additional sensor that enabled it to detect any egadeobot be forced to reach a particular vertex?
that are within its field of view. Assuming the existence Numerous complexity questions arise in the context of this
of sensors that can determine bitangent structure, coenplgfork. As sensing and actuation become simpler, how does the
pursuit-evasion strategies were presented in Sectiosafid complexity increase in terms of the number of actions and
VI-C. Without such sensors, the cut ordering itself can ke amount of computation? What are the precise upper and
used to make inferences regarding possible bitangentsein bwer complexity bounds for accomplishing the tasks in this
environment. For this case, Section VI-D presented a pursyiaper? Understanding tradeoffs between sensing, aatyatio
evasion strategy that computes plans that are guarantéied toand computation are crucial to the development of robotic
any evaders; however, it remains an open problem to prosggstems that use reduced amounts of sensing and actuation.
completeness. Finally, there is the important connection between the
‘Many other open questions and possible future reseajgfesented work and the development of robotic systems that
directions remain. In terms of information spaces, two g&ne can accomplish tasks with less information. The models used
directions are: 1) developing filters, and 2) planning in lhere are inspired by the success of commercial systems such
spaces. It is important to develop minimalispmbinatorial as the Roomba vacuum cleaning robot. However, substantial
filters that incrementally maintain small amounts of neaBss work remains to carefully validate the models and strategie
information using I-maps and derived I-spaces. These ctgnpgresented in this paper. What adaptations to the models are
important statistics to solving tasks, but do not tell thea most appropriate in experimental robot systems? What kinds
how to move. Furthermore, these do not need to perfom failures must be accounted for in practice?
state estimation, as in classical filtering. Once such éilter
are developed, the challenge is to develop planning stesteg
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