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ABSTRACT 

Flow and heat transfer in a wavy passage are analyzed using an accurate numerical scheme 

that solves the two-dimensional unsteady flow and energy equations, for both developing and 

periodically fully-developed flow conditions. Developing flow calculations are presented for two 

different wavy channels, each consisting of 14 waves. It is observed that the flow is steady in part 

of the channel and unsteady in the remainder. As the Reynolds number is progressively increased, 

the unsteadiness is onset at a much earlier location, leading to increased heat transfer rates. 

Calculations for fully-developed flow were performed using periodic boundary conditions. The 

ensuing results reveal the effects of individually varying the height, amplitude, and wavelength of 

a selected wavy passage. 
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avg Spatially-averaged quantity 

Index corresponding to the ~ direction 
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quantity 
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CHAPTER 1: INTRODUCTION 

1.1 Overview of Present Research 

For air-side heat transfer applications, special surfaces are often employed to obtain high 

rates of heat transfer within the imposed size constraints. One geometty that can be used to 

enhance heat exchanger performance is a sinusoidally curved wavy passage. Wavy channels are 

easy to fabricate, and can provide significant heat transfer enhancement if implemented in an 

appropriate (transitional) Reynolds number regime. Several studies have been conducted to 

evaluate the degree of heat transfer enhancement attained by utilizing wavy passages. These 

studies have shown that wavy passages can be vety effective enhancement devices when the flow 

is unsteady, but they do not provide significant enhancement in the steady flow regime. 

In a previous study of unsteady heat transfer in a periodic wavy passage, Wang and Vanka 

(1995) found that the flow becomes unstable for Reynolds numbers as low as 160. This means 

that for an infinitely long periodic passage, the flow will eventually transition to an unsteady state 

with self-sustaining oscillations downstream of a certain point in the passage. This onset location 

varies strongly with Reynolds number. However, numerical studies conducted so far have 

primarily considered the flow to be periodic in the streamwise direction. One of the purposes of 

the current study is to use numerical simulations to thoroughly examine developing flow and heat 

transfer in a wavy passage, and determine how long such a channel must be for instabilities to 

evolve and cause the flow to become unsteady. This is important, because heat transfer 
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enhancement in a wavy passage is not achieved until the flow transitions to an oscillatory state. 

Thus, if the onset location for the instabilities is far downstream of the entrance at a given 

Reynolds number, the practical benefits of the wavy geometry in this regime would be minimal, 

even though the flow can actually become unstable in a longer channel. This study determines the 

onset location where the flow becomes unsteady as a function of the Reynolds number for three 

specific geometrical configurations. In addition, the characteristics of the developing flow 

patterns are investigated, and comprehensive heat transfer and pressure drop data are presented. 

Simulations of developing flow provide valuable insight regarding the degree of heat 

transfer enhancement that can be expected in an actual finite wavy passage. Unfortunately, 

developing flow calculations are quite cumbersome, because the entire length of the passage must 

be modeled. Thus, one cannot extensively analyze many different channel configurations. The 

effects of varying the geometry can be more effectively studied using fully-developed flow 

simulations. For fully-developed flow, periodic boundary conditions are employed, and the 

computational domain need only consist of a single wave (Wang and Vanka, 1995). The 

numerical results presented herein for developing flow are complemented by concurrent 

experimental data (Rush, 1997). 
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1.2 Motivation for Heat Transfer Enhancement 

For well over a century, efforts have been made to produce more efficient heat exchangers 

by employing various methods of heat transfer augmentation. The study of enhanced heat transfer 

has gained serious momentum during recent years due to increased demands by industry for heat 

exchange equipment that is less expensive to build and operate. Savings in materials and energy 

use also provide strong motivation for the development of improved methods of enhancement. 

When designing heat exchangers for air conditioning and refrigeration applications, it is 

imperative that they are made as compact and lightweight as possible. This is especially true for 

cooling systems in automobiles and spacecraft, where volume and weight constraints are 

particularly stringent. 

Numerous methods have been developed to increase the rates of heat transfer in compact 

exchange devices operated in the laminar regime (Webb, 1994). The objective behind these 

methods is to efficiently interrupt the boundary layer that forms on the exchange surface and 

replace it with fluid from the core, thereby creating a fresh boundary layer that has increased near

wall temperature gradients. This leads not only to higher rates of heat transfer, but to greater 

frictional losses as well. Therefore, the primary goal for any enhancement scheme is to increase 

heat transfer as much as possible while minimizing pressure drop. 

Enhancement techniques can be separated into two categories: passIve and active. 

Passive methods require no direct application of external power. Instead, passive techniques 

employ special surface geometries or fluid additives which induce a higher rate of heat transfer. 
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On the other hand, active schemes do require external power for operation (Bergles, et al. 1979). 

Some examples are: electromagnetic fields, direct surface vibration, and acoustic excitation of the 

flow. In general, active techniques have attracted little enthusiasm because of the costs involved, 

and the problems that are associated with vibration or acoustic noise (Webb, 1987). As a result, 

passive enhancement through the use of various special surface geometries tends to be preferred. 

Examples of such devices are: offset strip fins, louvers, and vortex generators. 

The wavy passage is another special surface that can be used to promote heat transfer. 

This is accomplished due to complex recirculatory flows and boundary layer separation. Several 

studies have been conducted to evaluate the degree of enhancement provided by this geometry. 

However, the developing section of the passage has not been numerically analyzed for unsteady 

laminar flow in the low Reynolds number regime (Re < 1000) that is relevant to compact heat 

exchanger operation. 

1.3 Compact Heat Exchangers 

In forced-convection heat transfer between a gas and a liquid, the heat transfer coefficient 

of the gas may be 10 to 50 times smaller than that of the liquid. The use of specially-configured 

surfaces can be used to reduce the gas-side thermal resistance. For heat transfer between two 

gases, the difficulty in inducing the desired heat exchange is even more pronounced. In this case 

especially, the use of enhanced surfaces can substantially reduce heat exchanger size. This is the 

motivation behind the design of a category of heat exchangers with reduced size and greatly 

enhanced gas-side heat transfer, which are referred to as "compact". 
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A compact heat exchanger is generally defined as one which incorporates a heat transfer 

surface having a high "area density". In other words, it possesses a high ratio of heat transfer 

surface area to volume. This does not necessarily mean that compact heat exchangers are of small 

mass or volume. However, if they did not incorporate a surface of such high area density, the 

resulting units would be much more bulky and massive than their compact counterparts. 

Various techniques can be used to make heat exchangers more compact. Three general 

types of extended surface geometries which can be used to increase gas-side heat transfer 

coefficients include: ( a) finned-tube heat exchangers with flat fins, (b) finned-tube heat 

exchangers with individually finned tubes, and (c) plate-fin heat exchangers. One type of plate-fin 

exchanger that can be employed for augmenting heat transfer rates is a periodically converging

diverging (C-D) channel, such as those addressed in the present work. Due to their small 

hydraulic diameter and the low density of gases, special surface geometries must be effective in 

the low Reynolds number regime. 

1.4 Outline of Thesis 

In the present work, flow through wavy passages is analyzed numerically for both 

developing and fully-developed flow conditions. The computational simulations were performed 

using a privately-developed FORTRAN program that numerically integrates the time-dependent 

flow and energy equations. This study expands on previous work by Wang and Vanka (1995), in 

which they analyzed fully-developed flow for a single wavy channel. 
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A comprehensive review of pertinent literature is presented in Chapter 2. Although this 

summary is by no means all-inclusive, it covers a wide range of different studies that have been 

conducted on this topic, with an emphasis on those which are most closely related to the current 

mqUlry. The papers are categorized based on the method of investigation (numerical or 

experimental), and on the geometrical configurations of the passages that were analyzed. 

In Chapter 3, the governing equations for 2-D laminar incompressible flow are presented. 

The equations are discretized and solved on an orthogonal curvilinear mesh, using a fractional 

step method with Adams-Bashforth differencing of the momentum equations. The pressure 

equation is solved using the conjugate gradient technique without preconditioning. Different 

boundary conditions must be employed, depending on whether one wishes to model fully

developed flow, or flow in the entrance region of the passage. 

In Chapter 4, the results of calculations for flow in the entrance length of a wavy passage 

are discussed. Developing flow simulations were performed for two different wave geometries. 

The first corresponds to the passage analyzed by Wang and Vanka (1995). The second passage 

has the same wall geometry, but the minimum distance between the two walls is doubled. For 

each case, a channel with 14 periodic waves is examined. 

In Chapter 5, the results of calculations for fully-developed flow are presented. Because 

these simulations feature periodic boundary conditions, only one wave is needed for the 

computational domain. Thus, calculations can be performed more rapidly, and the parameter 
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space can be further expanded. For fully-developed flow, the effects of separately varying the 

height, amplitude, and wavelength of furrowed passages are considered. 
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CHAPTER 2: REVIEW OF RELEVANT LITERATURE 

2.1 Examples of Other Non-Wavy Enhancement Geometries 

A high-performance enhancement surface will increase the heat transfer that takes place 

within a heat exchanger, without incurring penalties on friction and pressure drop that are severe 

enough to negate the benefits of the augmented heat transfer. A wide variety of plate-fin 

configurations have been suggested to perform this function in compact heat exchangers. 

Included among these are wavy and corrugated channels that are at least conceptually similar to 

the geometries investigated in the present work. Previous studies which have focused on such 

geometries are discussed further in Section 2.2. 

For any proposed enhancement mechanism to be considered as a viable alternative for 

practical heat exchanger applications, they must exhibit performance that is at least comparable to 

other existing plate-fin configurations. Figure 2.1.1 includes general examples of five such 

geometries: (A) rectangular plain fins, (B) triangular plain fins, (C) offset strip fins, (D) louvered 

fins, and (E) vortex generators. The remainder of Section 2.1 features a brief description of each 

of these designs. 
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Plain Fins 

Plain fins are the most basic special surface geometry. Plain fin surfaces are characterized 

by long uninterrupted flow passages with performance comparable to that obtained inside long 

circular tubes (Kays and London, 1964). The plain fins that are most commonly used have flow 

channels with either a rectangular or triangular cross-section, corresponding to surfaces A and B 

in Figure 2.1.1. The enhancement in heat transfer achieved with plain fins results mainly from 

increased area density, rather than any substantial rise in heat transfer coefficient (Brockmeier, et 

al. 1993). Plain fins require a smaller flow frontal area than interrupted surfaces (i. e. offset strip 

fins and louvered fins) for given values of heat duty, pressure drop, and flow rate, but the flow 

length with plain fins will be greater, resulting in a higher overall heat exchanger volume (Shah 

and Webb, 1983). 

Offset Strip Fins 

The offset strip fin geometry (Figure 2.1.1(C)) is one of the most widely-used 

enhancement surfaces in compact heat exchangers. As fluid flows over one of the strips, a 

laminar boundary layer develops on the short strip length, and is then dissipated in the wake 

region between strips. This process is then repeated throughout the entire array. The recurrent 

cycles of boundary layer growth and destruction resulting from the interrupted nature of the 

surface lead to higher rates of heat transfer than those which can be attained using plain fins. 

Offset strip fins are usually operated in the laminar flow regime. Typical strip lengths range from 

3 to 6 mm (Webb, 1987). It should be noted that the enhancement provided by offset strip fins 
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results from expanding the effective surface area within the exchanger, as well as increasing the 

heat transfer coefficient (Brockmeier, et al. 1993). 

Louvered Fins 

Louvered fin surfaces (Figure 2.1. 1 (D» are commonly used in automobile radiators. The 

louvered fin geometry consists of an interrupted surface similar to that of the offset-strip fin. 

However, the slit strips of louvered fins are not completely offset. Instead, the slit fin is rotated 

between 20° and 60° relative to the direction of the airflow. Most radiators use a louver strip 

width of 1.0 to 1.25 mm (Webb, 1987). For equal strip width, the louvered fin configuration 

provides enhancement comparable to that of offset strip fins. Moreover, louvered fins are less 

expensive than offset strip fins for large-quantity production, by virtue of their ease of 

manufacture using high-speed mass production technology (Shah and Webb, 1983). 

Vortex Generators 

Vortex generators are a relatively new class of enhancement devices. One such structure 

is the wing-type vortex generator plate shown in Figure 2.1.1(E). Vortex generators do not 

significantly change the effective heat transfer surface area of the plate. Instead, they increase the 

heat transfer coefficient by creating longitudinally spiraling vortices which promote mixing 

between the core and near-wall regions of the flow (Brockmeier, et al. 1993). Lately, vortex 

generators have spawned a great deal of interest. However, because thorough examination of 

these surfaces has only recently begun, quality data for vortex generators is still fairly scarce. This 
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is due in part to the fact that there are numerous possibilities for different vortex generator 

surfaces. One can vary the size, angle of attack, aspect ratio, and/or arrangement for any given 

shape of vortex generator. As a result, an optimal configuration has not yet been found. 

2.2 Experimental Studies of Flow in Wavy Channels 

Rush (1997) has performed a series of flow visualization and wind tunnel experiments 

which correspond to the calculations presented herein, and to those of Voelker and Vanka (1997). 

The results of Rush's experiments can be compared directly with the numerical results for 

developing flow presented in Chapter 4. Therefore, no further mention of Rush's work is made in 

this chapter. But there are a number of other previously published findings concerning similar 

flow problems. 

Viscous flow in wavy channels was first treated analytically by Bums and Parks (1967). 

They obtained a solution by expressing the stream function in a Fourier series under the 

assumption of Stokes flow. Since then, several investigations have been conducted to analyze 

flow through various types of wavy and triangular corrugated passages. Experimental studies that 

are pertinent to the present work are discussed in the remainder of Section 2.2. Earlier relevant 

numerical work is reviewed in Section 2.3. 
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2.2.1 Serpentine Channels 

Triangular corrugated channels 

Goldstein and Sparrow (1977) were probably the first to study the local heat and mass 

transfer characteristics of a triangular corrugated channel with a uniform cross-sectional area for 

the laminar, transitional, and low Reynolds number turbulent flow regimes. Their experiments 

showed only minimal enhancement in the laminar regime. However, for low Reynolds number 

turbulent flow (Re ~ 6000-8000), the heat transfer rates exceeded those of a conventional straight 

channel by a factor of 3. Because the passage had only two corrugation cycles, entrance effects 

influenced the results. O'Brien and Sparrow (1982) conducted one of the first comprehensive 

studies for the fully-developed region of a corrugated channel for flow in the range of 1500 < Re 

< 25,000. They observed heat transfer rates that were approximately 2.5 times greater than for 

the straight channel. But the pressure drop for the corrugated duct was significantly larger as 

well. 

Sparrow and Comb (1983) performed a similar study for a corrugated channel with an 

interwall spacing that was approximately 45% greater than the channel used by O'Brien and 

Sparrow (1982), and then analyzed the effects of this variation. The increase in spacing led to a 

30% rise in the fully-developed Nusselt number, but the friction factor more than doubled. To 

further assess these findings, performance evaluations were carried out for three different 

constraints. For all three cases, the performance differences between the two ducts were not 

sufficiently great to indicate a clear superiority of one over the other. 
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Ali and Ramadhyani (1992) conducted experiments to analyze the developing flow region 

of triangular corrugated channels. They examined laminar and transitional flow for two different 

interwall spacings. For both channels, they observed a transition to unsteady flow at Re ~ 500, 

accompanied by a sharp increase in Nusselt number. As a result, optimal heat transfer 

enhancement was found to occur in the transitional flow regime. No substantial enhancement was 

detected when the flow was steady. 

Sinusoidally curved wavy passages 

Beginning with Goldstein and Sparrow (1977), several experimental studies were 

performed which demonstrated that a triangular corrugated channel with two in-phase walls could 

be used to achieve increased rates of heat transfer, at least within the transitional flow regime. 

But the gains in heat transfer were accompanied by substantial rises in pressure drop. One way to 

decrease the frictional losses while maintaining the same flow structure is to use walls with 

smoother wavy or curved corrugations, rather than abrupt triangular corrugations. 

The most voluminous body of work concerrung flow through wavy passages is 

encompassed by a series of flow visualization and mass transfer experiments performed by 

Japanese research groups headed by T. Nishimura. Nishimura, et al. (1986) investigated the 

relationship between flow structure and mass transfer for fully-developed flow in a sinusoidally 

curved wavy channel for laminar, transitional, and turbulent flows. Nishimura, et al. (1990a) 

examined the occurrence and structure of longitudinal vortices in wavy channels, at relatively low 
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Reynolds numbers (Re = 50 - 500). They observed that the developing flow becomes less stable 

as it proceeds downstream, and that flow can become three-dimensional for Reynolds numbers as 

low as 100. Nishimura's groups also performed many experiments for wavy channels with a 

symmetric converging-diverging cross-section. These are discussed in Section 2.2.2. 

Oyakawa, et al. (1989) examined how heat transfer and fluid flow are affected by varying 

the height of a wavy sinusoidal passage. From these experiments, they obtained an optimum 

spacing for fully-developed flow using the chosen wall geometry. A study with similar goals was 

conducted by Gschwind, et al. (1995), using flow visualization and mass transfer experiments 

with air. In addition to demonstrating the qualitative effects of varying the Reynolds number and 

the channel spacing, they also provide a stability diagram that describes the existing range of 

longitudinal vortices. 

Other serpentine channels without triangular or sinusoidally curved walls 

Snyder, et al. (1993) measured heat transfer rates and pressure drops in the thermally 

fully-developed region of a serpentine channel for Reynolds numbers ranging from 250 to 10,000. 

The channel used for these experiments looks very similar to the sinusoidally curved wavy 

passages discussed above. But this channel consists of two walls, each comprised of 30 recursive 

arc circles, resulting in a passage with 15 waves. This design was chosen with the purpose of 

minimizing the extent of flow separation. On an equal Reynolds number basis, Snyder, et al. 

found that, for air, the heat transfer in the serpentine channel was as much as 9 times greater than 

in a straight parallel-plate channel. 
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Recently, Choi, et al. (1996) studied mass transfer (and by extension, heat transfer) for 

turbulent flow in a serpentine channel with right-angled turns. Using local and regional 

measurements for heat/mass transfer, they determined that the flow may be considered periodic 

downstream of the fifth period in their channel. They also found that the heat transfer 

enhancement attained was offset by large pressure drops. 

2.2.2 Furrowed Channels 

Mendes and Sparrow (1984) performed a comprehensive experimental study to analyze 

turbulent fluid flow for the entrance region and for fully-developed flow in periodically 

converging-diverging tubes. The Reynolds number for these experiments ranged from 6000 to 

70,000. The geometry of the tubes was also varied. Mendes and Sparrow compared the 

performance of the C-D tubes to a conventional straight tube for two sets of constraints. In both 

cases, the C-D channel provided significant enhancements over the straight channel. 

The Japanese research group led by T. Nishimura has produced a number of experimental 

studies regarding sinusoidally curved wavy channels with a periodic C-D, or ''furrowed,'' cross

section. Nishimura, et al. (1984) examined the characteristics for steady flow in a symmetric 

wavy channel, over a Reynolds number regime ranging from fully laminar to fully turbulent flow. 

They also conducted a numerical investigation for laminar steady flow, using a two-dimensional 

finite-element approach to calculate vorticity and stream function. The dimensions of their 

channel have been adopted as the base configuration for the present study. 
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Nishimura, et al. (1985) investigated the mass transfer characteristics resulting from the 

flow dynamics observed by Nishimura, et al. (1984). They determined, analytically and 

experimentally, the mass transfer coefficients for the same wavy channel at high Peelet numbers 

for laminar and turbulent flow. They found that although there is minimal mass transfer 

enhancement over a straight channel for steady laminar flow, there is a large degree of 

enhancement for turbulent flow. 

Nishimura, et al. (1987) analyzed the flow and mass transfer characteristics for oscillatory 

inflow with the same wall geometry. In this study, however, they also varied the phase shift 

between the upper and lower walls. Three different geometries were employed (q, = 0°, 90°, and 

180°). Nishimura, et al. (1990b) compared the flow and mass transfer properties of the symmetric 

wavy-walled channel to those of a similar arc-shaped channel. Experiments were performed for 

Re = 20-300. 

Stephanoff, et al. (1980) provide photographs of the flow patterns observed through a 

furrowed channel with sinusoidally curved wavy walls. Flow visualizations were performed for 

steady and oscillatory inflow at relatively low Reynolds numbers. This experimental study serves 

as a companion to the numerical work performed by Sobey (1980) (see Section 2.3.2). 

Stephanoff (1986) provides an extension of these two companion reports. Fourier analysis is 

utilized to determine the amplified frequencies of the observed self-excited shear-layer oscillations 

present in the developing flow profile. 
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2.2.3 Channels with a Single Wavy/Corrugated Wall 

During the past decade, Greiner, et al. have published a series of papers dealing with heat 

transfer augmentation in a grooved channel. The channel features a flat upper waIl, and a lower 

wall with a series of periodic triangular grooves. The geometry of the passage is designed to 

excite normally damped Tollmien-Schlichting modes in order to enhance mixing. 

Greiner, et af. (1990) performed flow visualizations and convective heat transfer 

measurements for developing flow in this channel over the Reynolds number range, Re = 300-

15,000. The flow visualizations revealed that the flow is steady near the entrance, but becomes 

oscillatory downstream of a certain onset location. This location is found to move upstream with 

increasing Reynolds number. The onset location for oscillatory flow also corresponds to the place 

where heat transfer enhancement is first realized. The degree of heat transfer enhancement 

increases with the distance downstream from the onset location. Heat transfer measurements 

along the smooth channel boundary indicate an augmentation of approximately 65% over an 

equivalent straight channel in the transitional flow regime. Also, the flow is found to be 

intermittently unsteady over a very narrow range of Reynolds numbers, which will vary as a 

function of streamwise location. 

Greiner, et af. (1991) performed experiments with a similar grooved channel. This 

channel had a minimum spacing equal to half the spacing used by Greiner, et af. (1990). This 

experiment included measurements for pressure drop along the flat surface, as well as for heat 
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transfer. Measurements were made using air for the Reynolds number range, Re = 300-5000. 

For a given Reynolds number, the development length is observed to be shorter for the narrower 

channel. Greiner, et al. (1995) extended this study even further, by examining heat transfer 

augmentation in the recovery section immediately downstream of the grooved passage. 

Interestingly, they find that the mechanics for heat and momentum transport are uncoupled in the 

recovery region. They conclude, therefore, that short flat regions placed intermittently in a 

grooved passage may be useful in reducing the overall pumping power required to obtain a 

desired amount of heat transfer. 

Saniei and Dini (1993) performed an experimental study of convective heat transfer in the 

turbulent regime for flow over a single wavy wall in a duct. Data were obtained for developing 

flow over seven waves. Local Nusselt number distribution is plotted over the entire wavy wall. 

Average Nusselt numbers for each wave are plotted as a function of the number of waves 

downstream of the inlet. Similar plots for average Nu vs. wave number are given in the present 

work for laminar/transitional flow in furrowed wavy passages. 
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2.3 Numerical Studies of Flow in Wavy Channels 

2.3.1 Serpentine Channels 

Voelker and Vanka (1997) have performed numerical simulations for developing and 

fully-developed flow in a serpentine channel. These calculations were conducted concurrently 

with those presented herein for the furrowed passage. The wall geometry for the serpentine 

channel is the same one used as the base case for the furrowed channel study. That is, a 

sinusoidally curved wavy wall with the dimensions used by Nishimura, et al. (1984). Voelker and 

Vanka analyzed a serpentine channel with a 0° phase shift between the top and bottom walls. 

Several other numerical analyses have focused on. the flow and heat transfer 

characteristics of corrugated and wavy channels with a serpentine geometry. Amano, et al. 

(1987) used a full Reynolds-stress model to examine turbulent flow and heat transfer in a channel 

composed of two triangular corrugated walls aligned in phase with each other. Asako and Faghri 

(1987) obtained solutions for fully-developed flow and heat transfer in a corrugated duct using 

finite-volume based simulations. Only flow in the laminar regime was considered. The 

performance of the corrugated duct is compared to that of a straight duct under three different 

constraints - fixed pumping power, fixed pressure drop, and fixed mass flow rate. Small 

differences in the enhancement ratios were observed under these constraints. Asako, et al. (1988) 

assessed the heat transfer and pressure drop characteristics of a similar corrugated duct with 

rounded comers. The duct boundaries were approximated by a cosine function. Computations 
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were carried out in the Reynolds number range, Re = 100-1000, for several geometrical 

configurations. It was determined that the change in heat transfer rates caused by rounding the 

comers depends on the specific flow conditions, geometry, and performance constraints. 

Garg and Maji (1988a) applied a finite-difference numerical scheme to laminar flow 

through a serpentine channel with sinusoidally curved wavy walls. Results were tabulated for 

both developing and fully-developed flow, for Reynolds numbers ranging from 100 to 500. The 

channel dimensions were varied as well. For one chosen configuration, a number of figures are 

featured which detail the behavior of velocity, pressure, and enthalpy for developing laminar flow. 

2.3.2 Furrowed Channels 

Wang and Vanka (1995) analyzed convective heat transfer for fully-developed flow in a 

periodic wavy passage for several Reynolds numbers. This study is a direct predecessor to the 

current investigation. For the base geometry presented in this paper, developing flow is examined 

in what can be viewed as the entry section for the periodic wavy passage analyzed by Wang and 

Vanka. In addition, their periodic channel geometry serves as the basis of comparison for the 

other periodic channel simulations presented in Chapter 5. 

Sparrow and Prata (1983) examined a family of periodic ducts, using both numerical and 

experimental methods. The periodic duct is a tube consisting of a succession of alternately 

converging and diverging conical sections. Numerical simulations were carried out for fully

developed laminar flow in the Reynolds number range, Re = 100-1000, for various duct 
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configurations. The resulting data indicated that the periodic C-D tube is not conducive to heat 

transfer enhancement for steady laminar flow. 

Vajravelu (1980) solved the governing equations for fluid flow and heat transfer in a wavy 

passage by separating the solution into two parts: a mean part and a perturbed part. The mean 

part of the solution was found to correspond closely with that of plane Poiseuille flow, while the 

perturbed part of the solution represents the contribution from the waviness of the walls. Four 

different values of cj) were considered: 0°, 90°, 180°, 270°. The mean, perturbed, and total 

solutions were evaluated numerically for each configuration. 

As mentioned previously in Section 2.2.2, Sobey (1980) conducted a numerical study of 

flow through furrowed channels in conjunction with a related experimental investigation 

(Stephanoff, et al., 1980). Sobey calculated the flow patterns obtained using both steady and 

pulsatile inflow. The effects of varying the dimensional parameters and the Reynolds number 

were examined. Furthermore, the flow structures that occur in a channel with arc-shaped walls 

are compared with the patterns induced by sinusoidally curved wavy walls. Oscillatory flow in 

various types of wavy passages is examined further in subsequent studies performed by Sobey 

(1982, 1983). 

Garg and Maji (1988b) used a finite-difference methodology to solve the governing 

equations for steady laminar flow and heat transfer in a furrowed wavy channel. Calculations 

were performed using various wall amplitudes for Re = 100-500. Both the developing and the 

fully-developed flow regions were analyzed. The local Nusselt number was observed to fluctuate 
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sinusoidally in the fully-developed region. Moreover, the Nusselt number increased with the 

Reynolds number, unlike what transpires for laminar flow through a straight channel. 

Recently, Guzman and Amon have published research documenting the transition to chaos 

for fully-developed flow in furrowed wavy channels. Specifically, the Ruelle-Takens-Newhouse 

scenario for the onset of chaos is verified using direct numerical simulations (DNS) (Guzman and 

Amon, 1994). The results are illustrated for various Reynolds numbers using velocity time 

signals, Fourier power spectra, and phase space trajectories. The dimensions for the 2-D 

sinusoidally curved wavy channel are the same as those used for the base case in this paper. 

Guzman and Amon (1996) extended their previous study by using DNS to calculate 

dynamical system parameters. Dynamical system techniques, such as time-delay reconstructions 

of pseudophase spaces, Poincare maps, autocorrelation functions,fractal dimensions, and Eulerian 

Lyapunov exponents are employed to characterize laminar, transitional, and chaotic flow regimes. 

Also, 3-D simulations are performed to determine the effect of the spanwise direction on the route 

of transition to chaos. 

2.3.3 Channels with a Single Wavy Wall 

Patel, et al. published a pair of papers dealing with flow through a channel with a single 

wavy wall. One of the papers dealt with steady laminar flow over a wall with six waves (patel, et 

ai., 1991a), and the other addressed turbulent flow over the same wall (patel, et al., 1991b). For 

the laminar case, the pressure and friction coefficients are plotted over the course of the wavy 
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wall. It should be noted, however, that these calculations are performed for a channel Reynolds 

number of 10,760, a value that is considerably higher than the expected transition Reynolds 

number. Therefore, the results are not indicative of what would actually occur in an analogous 

physical situation. 
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CHAPTER 3: MATHEMATICAL FORMULATION AND NUMERICAL 

PROCEDURE 

3.1 Governing Equations 

In the present study, laminar flow of a Newtonian fluid through wavy passages is 

investigated. This type of flow is governed by the familiar time-dependent Navier-Stokes 

equations. The flow is also considered to be two-dimensional with no variation in the spanwise 

direction. Assuming incompressible flow and constant fluid properties, the governing equations 

for mass continuity, momentum, and energy take the following general forms: 

mass continuity: 

V·u=o (3.1) 

momentum: 

On -at + V . (uu) = -Vp+ vV 2 u (3.2) 

energy: 
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(3.3) 

where v and a are the kinematic viscosity and the thermal diifusivity, respectively. Also, note that 

density is assumed to be unity throughout this paper. The dimensionless temperature 9 is defined 

as: 

(3.4) 

where Tw is the temperature prescribed uniformly along the wall, and Tm,in is the bulk mean 

temperature evaluated at the inlet section of the computational domain. The temperature 

distribution at the inlet is prescribed uniformly for the developing flow calculations (see Section 

3.5 for more details on boundary conditions), but in general, the bulk mean temperature is 

calculated by taking the mass-averaged value of the temperature along the selected cross-section, 

3.2 Grid Generation 

J T(s) u(s) ds 

Tm = J u(s)ds 
(3.5) 

The discretized versions of the conservation equations presented in Section 3.1 are solved 

on a two-dimensional curvilinear orthogonal grid. Rather than describing the flow geometry in 
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Cartesian coordinates (x,y), it is described with a general coordinat~ system (~,TJ). A combination 

of algebraic and differential equation techniques is used to generate the final mesh. 

First, an initial non-orthogonal mesh IS derived algebraically from the prescribed 

boundaries for a single wave in the domain. The technique used here is Lagrange linear 

interpolation, where one family of grid lines (in this case, the constant-TJ lines) are straight, 

connecting corresponding boundary points. A linear distribution for the x-coordinates is assigned 

throughout: 

i-I 
x· . = A. 

I,J i -1 max)., 
(3.6) 

where i and j represent the node numbers in the ~ and TJ directions, respectively. The nodes are 

numbered with consecutive integers, beginning at 1 for the first node in each direction. For the 

meshes generated here, the wave is divided into 64 x 64 internal cells. Therefore, 

(3.7) 

For a specified wavelength, amplitude, and average spacing, the y-coordinates along the 

wall boundaries are determined from the following cosine functions: 

Havg (21tXi,1) 
Yi,l = --2- + a* co\. A. (3.8) 
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H avg { 210( i,jmax,A. J y.. =---a*co 
1 ,Jmax, A. 2 J.. (3.9) 

The y-coordinates for the interior nodes are then found by interpolating between the two 

boundaries defined above: 

(3.10) 

Now, a mesh such as the one shown in Figure 3.2.1 has been defined for the entire wave. This 

grid serves as the initial condition for the transformation to general curvilinear coordinates. 

The orthogonal mesh is now generated by solving a system of two discretized Poisson 

equations (Temperton, 1979). The extremum characteristics that are exhibited by some elliptic 

systems can guarantee a one-to-one sequential mapping between the physical and transformed 

regions. The principle behind this is that extrema cannot occur within the solution field. The 

most simple system of elliptic partial differential equations, and one that features the desired 

extremum properties, is the Laplace system: 

2 
V x = x~~ + xTJTJ = 0 (3.11) 

(3.12) 
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These two equations are solved iteratively using a fourth-order ADI routine by lagging the 

coefficients and treating the cross-derivatives explicitly. A boundary value for x or y is computed 

from the orthogonality constraint, and the other coordinate value is then determined by the 

relation describing the shape of the boundary (Thompson, et ai., 1985). 

The final solution to Equations 3.11 and 3.12 provides an orthogonal grid such as the one 

in Figure 3.2.2 for a single wave with the specified boundaries. For periodic, fully-developed 

simulations, the governing equations are solved over a single wavelength, so the computed mesh 

will serve as the actual computational domain. In this case, 

imax = i max.A = 65 

jmax = jmax.A = 65 

and the domain will have a total of 4096 internal cells. 

(3.13) 

(3.14) 

For simulations of developing flow in the entrance region, the single wave mesh can be 

periodically extrapolated over the desired total channel length. For the calculations presented 

here, 14 waves are used. In addition, straight sections of height Hmm and length A. are appended 

to both ends of the channel, forming a 161.. passage, like the one shown in Figure 3.2.3. Now, 

imax = 16{i max.A -I) + 1 = 1025 

jmax = jmax.A = 65 
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so the domain has a total of 65,536 internal cells. Consequently, developing flow computations 

take considerably longer than those for periodic fully-developed flow. 

3.3 Spatial Discretization and Coordinate Transformation 

The variables are spatially discretized using a collocated arrangement with the two 

Cartesian velocities and the scalar quantities positioned at the centers of discrete finite volumes in 

the computational domain. The continuity equation is satisfied by the mass fluxes passing through 

the cell faces. These contravariant mass fluxes (0, V) are related to the Cartesian velocities (u, v) 

by 

(3.17) 

(3.18) 

where x.;, x"' y.;, and y" determine the metrics of the coordinate transformation. These 

metrics, along with the Jacobian (1), 

(3.19) 
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are used to obtain the governing equations for the curvilinear coordinate system. Partial 

derivatives with respect to Cartesian space are related to partial derivatives with respect to 

curvilinear coordinates through chain rule differentiation: 

(3.20) 

(3.21) 

The metrics can be expressed as: 

~ -~ x - J (3.22) 

y~ 
~y =-1 (3.23) 

XTl 
(3.24) llx =--

J 

x~ 
(3.25) lly =1 

In discretizing the transformed equations, it is conventional to stipulate the distance between 

nodes in curvilinear space to be unity for the sake of simplicity: 
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(3.26) 

Note that with the collocated storage scheme, the cell-centered Cartesian velocities do not 

precisely satisfy continuity, even after the corrections are added. However, the resulting error is 

of the same order as the error in the spatial discretization. 

3.4 Fractional Step Method 

The numerical integration of the governing equations is based on a two-step fractional 

step procedure with backward Euler differencing of the time derivative and Adams-Bashforth 

explicit differencing for the convection-diffusion terms. Fourth-order differencing is used to 

approximate all of the spatial derivatives. 

Calculation of intermediate velocities 

In the fractional step procedure, the first stage of the numerical integration consists of 

solving the momentum equations for an intermediate velocity field u. Applying the Adams-

Bashforth differencing technique to the momentum equation produces 

u-un 3 n 1 n 1 --J=-H --H-
At 2 2 

(3.27) 
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where H represents the sum of the convection and diffusion terms, 

(3.28) 

For a two-dimensional curvilinear mesh, the sum of the convection terms at the cell faces can be 

expressed as: 

(3.29) 

Using an orthogonal grid allows one to neglect the cross-derivative quantities in the diffusion 

terms, leaving, 

Du = {(al1 )<. (:) <' -(al1)<- (:) <_ ]+ 

{(a22 )n' (~) n' -(a22)n- (:) n- ] 

where the metric coefficients a 11 and a 22 are: 

x2 +y2 S S 
a2" = - J 
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Pressure equation 

Once u is detennined, the following Poisson equation is solved for the pressure field: 

(3.33) 

Expanding Equation 3.33 using curvilinear coordinates yields: 

[(all ).+ (:).+ -(all).- (:)._ ]+ 

[(an )"+ (:)"+ -(an)"- (:) "_ ] = ~t (: + :J 
(3.34) 

Again, the cross-derivative terms resulting from the coordinate transformation are neglected, 

since the mesh is orthogonal. The intermediate values for the contravariant mass fluxes (U, V ) 

are calculated by substituting the intermediate values for the Cartesian velocities (ii, v) into 

Equations 3.17 and 3.18. Equation 3.34 is solved using the conjugate gradient technique without 

preconditioning. 

33 



Update velocities 

Using the new pressure field, the intennediate cell-centered velocities are corrected and 

updated as follows: 

(3.35) 

Using i and j to represent the nodal coordinates for a general interior node, the discretized 

versions of Equation 3.35 for u and v are written as: 

0+1 A L\t [ (0+1 n+1 ) (n+1 n+1 )] 
Ui,j = Ui,j - 2J Y T) Pi+1,j - Pi-1,j - Y S Pi,j+1 - Pi,j-1 (3.36) 

0+1 A L\t [ (0+1 0+1 ) (n+1 0+1 )] 
Vi,j = Vi,j - 2J -XT) Pi+1,j -Pi-1,j +Xs Pi,j+1 -Pi,j-l (3.37) 

The contravariant velocities at the cell faces are updated as well: 

U o+1 = iT - L\tVpn+1 (3.38) 

For an orthogonal mesh, the discretized versions of Equation 3.38 for U and V simplify to: 
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u n+1 iT ~ (n+l n+l) i+lf2,j = i+1I2,j - tall Pi+l,j -Pi,j (3.39) 

vn+1 V. ~ (n+l n+l) i,j+1I2 = i,j+1I2 - t a22 Pi,j+l - Pi,j (3.40) 

Energy equation 

The equation for the temperature field takes on the same form as Equation 3.27 which was 

used to solve for the intermediate velocities: 

sn+l _Sn 3 1 
----J = - H n --H n- l 

~t 2 2 
(3.41) 

But now, 

H = -Ce +_1 De = -V· (uS) +aV 2S (3.42) 
Pr 

where Pr is taken to be 0.7, the known Prandtl number for air. Ce and De can be readily 

obtained by substituting S for u in Equations 3.29 and 3.30, respectively. 
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3.5 Boundary Conditions 

Along the walls of the channel, no-slip boundary conditions are prescribed for the 

Cartesian velocities, along with a constant isothermal temperature distribution. Therefore, 

(3.43) 

(3.44) 

e =0 w (3.45) 

F or the pressure equation, no boundary conditions are necessary at the walls since the cell face 

fluxes are known (to be zero) directly. However, wall pressures are still necessary in updating the 

cell-centered Cartesian velocities. In the algorithm used here, these are obtained by a zero normal 

derivative condition: 

ap =0 
Ort w 

(3.46) 

The boundary conditions at the inlet and outlet are prescribed differently depending on 

whether the simulations are for developing or fully-developed flow. 
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Developing Flow 

At the inlet to the passage, uniform velocity and temperature distributions are applied, 

where, 

Ul . = 1 ,J 

VI· = 0 ,J 

61 . = 1 ,J 

(3.47) 

(3.48) 

(3.49) 

This condition also specifies the mass flow through the channel, which is used to determine the 

Reynolds number. 

A fully-developed flow condition IS specified for the velocities along the outflow 

boundary: 

001 =0 
Ox· . 

1max ,J 

(3.50) 

Because the passage for this problem is so long, a uniform temperature distribution, 

6· . =0 
1max ,J (3.51) 
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is prescribed at the outlet. 

The boundary pressures at the inlet and outlet are calculated usmg a second-order 

approximation: 

Pl,j = 2P2,j - P3,j (3.52) 

(3.53) 

Fully-developed flow 

Since the flow is assumed to be fully-developed in the streamwise direction, the following 

periodic boundary conditions are used for a domain of length A: 

u(O,y) = U(A,y) (3.54) 

9(0, y) 9(A, y) 
(3.55) 

9 m,in and 9 m,out denote the bulk mean dimensionless temperatures at the inlet and outlet 

sections, respectively. The mass-averaged value of the dimensionless temperature for a given 

cross-section is calculated as in Equation 3.5, substituting 9 for T. 

The boundary conditions in Equations 3.54 and 3.55 are enforced by simply swapping 

values between the inflow and outflow boundaries. For the velocities, 
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(3.56) 

(3.57) 

and for the temperatures, 

9· 1 . 9 _ lmax- ,J 
l,j - 9 

m,out 
(3.58) 

9· . =92 ·9 lmax ,J ,J m,out (3.59) 

The boundary pressures are handled by prescribing a constant pressure drop across the 

length of the domain. For this problem, the relation 

p(2,y) - p(O,y) = 20v (3.60) 

has been found to be effective. This pressure drop indirectly determines the mass flow through 

the channel. 

3.6 Expressions for Dimensionless Parameters 

Because of the complex flow mechanics in wavy passages, it can be difficult to make valid 

performance comparisons between channels with different geometrical configurations and/or flow 
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parameters, relying solely on the properties of the flow and temperature fields. Three significant 

dimensionless parameters help to quantify and evaluate the flow and heat transfer characteristics 

of the wavy channels. These are: Reynolds number, Nusselt number, and fiiction factor. 

Reynolds number 

The Reynolds number is defined as the volumetric flow rate divided by the kinematic 

viscosity: 

Re= Q/v 

The flow rate for this 2-D passage is defined as: 

H/2 

Q = f u(x, y)dy = u avg (x)H(x) 
-H/2 

(3.61) 

(3.62) 

where uavg is the average u-velocity over the entire cross-section at streamwise location x. For the 

developing flow simulations, a uniform velocity profile is prescribed at the inlet, so the Reynolds 

number is known in advance to be 

u avg in Hmin 
Re=--=':""'--

v 
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The value of Uavg,in is unity (Equation 3.47) for all the developing flow calculations, so the 

Reynolds number becomes inversely proportional to the kinematic viscosity for each geometrical 

configuration. 

For fully-developed flow, the velocity profile at the inlet to the computational domain may 

be continuously changing, so the Reynolds number must be repeatedly recalculated as the flow 

field evolves. As a result, the Reynolds number for a given set of flow parameters is not known 

beforehand. As with the developing flow situation, the Reynolds number is dependent only on the 

kinematic viscosity for a fixed geometry. But now the exact relationship between v and Re is not 

known. Appropriate values of v for a desired Reynolds number regime must be arrived at 

iteratively. Because v is the independent variable, the actual Reynolds numbers will not be round 

values. Also, the flow rate varies over time for unsteady flow, so a time-averaged Reynolds 

number is used as the defining parameter for a given set of flow conditions. 

Nusselt number 

The Nusselt number is a parameter that reflects the non-dimensional heat transfer rate at a 

point on the wall. The local Nusselt number is defined as: 

(3.64) 
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where Havg was chosen as the hydraulic diameter. The average Nusselt number over a single 

wavelength is calculated by integrating the local values: 

nJ.. 

JNu(l;)dl; 
N _ (n-l)l 

U avg - ":"-"":""-nJ..-- (3.65) 

J dl; 
(n-l)I .. 

where n represents the number of waves downstream from the inlet, beginning with 1. For the 

developing flow simulations, the time-averaged value of NUavg for each wave is plotted as a 

function of n to show how Nu avg varies as a function of streamwise location. 

Friction factor 

To evaluate the pressure drop losses that are incurred from flow through a wavy passage, 

a dimensionless friction factor is calculated, based on the total pressure drop across a single 

wavelength: 

Ap 
favg = 1 2 

"2puavg,in 
= 

p(n-l)A)- p(nA) 
1 2 
"2 pUavg,in 

(3.66) 

For the developing flow simulations, the time-averaged value offavg across each wave is plotted as 

a function ofn to show how favg varies as a function of stream wise location. 
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CHAPTER 4: DEVELOPING FLOW CALCULATIONS 

4.1 Computational Details 

In the present study, the flow is considered to be two-dimensional with no variation in the 

spanwise direction. A curvilinear orthogonal grid, generated by solving a pair of elliptic partial 

differential equations, is used to represent the flow domain (see Section 3.2). The numerical 

integration of the two-dimensional conservation equations is based on a two-step fractional step 

procedure with backward Euler differencing of the time derivative and Adams-Bashforth explicit 

differencing of the convection-diffusion terms (see Section 3.3). 

The spatial discretization uses a collocated arrangement with the two Cartesian velocities 

and the pressure positioned at the centers of discrete finite volumes in the computational domain. 

The continuity equation is satisfied by the mass fluxes located at the cell faces. The pressure 

Poisson equation is solved using the conjugate gradient technique without preconditioning. A 

dimensionless time step of 0.005 was used for all of the developing flow calculations. 

Figure 4.1. 1 shows a section of the flow domain for which computations were performed. 

Each passage includes fourteen periodic waves, bounded by two straight sections at the inlet and 

outlet. The dimensions of the wavy portion of the base passage (Channel #1) were chosen to 

correspond exactly with those used in the experiments of Nishimura, et al. (1984), as well as 

several subsequent experimental and numerical studies. The wavy channel consists of two 

43 



sinusoidally curved wavy walls that are arranged with a mean spacing (H..vg) of 1.3 dimensionless 

units. Each wave has a minimum height (Hmin) of 0.6 and a maximum height (Hmax) of2.0, due to 

the fact that the amplitude (a) of the sinusoidal walls is 0.35. Each periodic wavelength (A) spans 

2.8 units in the streamwise direction. Two straight sections with height Hmm and length A are 

attached at the entrance and exit of the computational domain. They are added to minimize the 

effects of the inherent assumptions required to determine the boundary variables. 

The two walls in Channel #2 are identical to those of Channel #l. However, the spacing 

between the walls has been increased by 0.6 units, yielding a mean spacing of 1.9. By comparing 

the flow and heat transfer and characteristics of the two channels, one can determine the effects of 

varying the spacing between the two walls while maintaining constant wall dimensions. 

For both passages, the Reynolds number was systematically varied by changing the value 

of the kinematic viscosity while maintaining a constant volumetric flow rate. It should be noted 

that the flow/temperature fields which were calculated at lower Reynolds numbers were 

designated as the flow conditions at t = 0 for simulations conducted at higher Reynolds numbers. 

This was done to increase the rate of convergence for the calculations. All of the simulations 

were carried out for a sufficiently long time so that the initial conditions were completely 

convected out of the passage, and had no effect on the final results. 

During each simulation, the instantaneous u-velocities were monitored to determine the 

streamwise position in the channel where the onset of instabilities causes the flow to become 

unsteady. Anywhere upstream of the onset location, the flow will be completely steady. Hence, 
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for the simulations presented in this chapter, a non-oscillatory time signal in the 14th wave implies 

that the flow is steady throughout the entire computational domain. This simply means that the 

onset location for the flow instabilities lies more than 14 waves downstream of the inlet, assuming 

that the fully-developed flow is unsteady at that Reynolds number. Near the onset location itself, 

the fluctuations in the flow will be relatively small. However, as the flow proceeds further 

downstream, the amplitude of the oscillations will grow, until they reach the limit where the flow 

can be defined as fully-developed. 

The velocity "probes" were arbitrarily placed at a height of o. 75Hmax in the tallest part of 

each wave. Obviously, the values of the velocities that are calculated vary greatly over each 

wave. However, for this study, the actual values of the monitored velocities are less important 

than the qualitative nature of the time signals. By focusing on a single point within each wave, it 

is easy to compare the signals produced at various streamwise locations within the channel, and at 

various Reynolds numbers. This is important, because previous work has shown that heat transfer 

enhancement in wavy passages is realized only when the flow is unsteady. It should be noted that 

the flow will generally be much more oscillatory in the vicinity of the cavities of the channel than 

near the center. The area where the core and cavity fluid meet is where most of the improved 

mixing that promotes heat transfer takes place. Thus, the chosen spot for the velocity probes is in 

a key position. But while the flow may be clearly oscillatory with large-amplitude fluctuations at 

the probed location, the fluctuations are generally much smaller along the centerline of the 

channel. 
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Time signals were also generated for the average friction factors and Nusselt numbers 

across each wavelength of the passage. If the flow is unsteady, then the time signals for the wave

averaged f and Nu values will be oscillatory, just as the velocity time signals are. However, these 

can be integrated to produce time-averaged values (see Section 3.6) which are indicative of the 

average dimensionless heat transfer and pressure drop across each wave of the passage. 

All of the developing flow calculations were performed using an orthogonal curvilinear 

grid containing 64 x 64 internal cells over each wavelength. This translates to an overall 

computational domain containing 1024 x 64 cells for the fourteen-wave channel (plus the straight 

inlet and outlet sections). Grid refinement studies have shown that the 64 x 64 grid provides 

accurate results with a reasonable degree of computational efficiency. 

Before performing the final set of calculations that are the subject of this paper, some 

calculations were performed using coarser grids, in order to determine how much the results of 

the calculations depend on: i) mesh density, and ii) the overall length of the wavy passage that is 

modeled. The wave geometry of Channel #1 was used for all of the coarse grid computations. 

First, simulations were conducted using a 32 x 32 grid for each wave for flow through a passage 

containing only eight waves, rather than fourteen. Simulations for this case were conducted for 

Reynolds numbers of 300, 400, 500, and 700. Next similar computations were executed using a 

64 x 32 grid for flow through a passage with fourteen waves. By comparing these results with 

those obtained using a 32 x 32 grid over eight waves, the effects of varying the mesh density and 

the effects of varying the overall length of the passage can be evaluated simultaneously. 
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Qualitatively, the results for these two sets of coarse grid calculations showed good 

agreement. For Re = 300 and Re = 400, the flow was completely steady throughout the entire 

channel in both cases, producing relatively trivial results. For Re = 500 and Re = 700, u-velocity 

time signals revealed a transition to unsteadiness at a certain point within the bounds of the 

channels being investigated. For both Reynolds numbers, this transition occurred at the same 

position relative to the inlet regardless of the total length of the channel. Furthermore, the 

patterns of the time signals did not vary with the refinement of the grid. However, in order to 

ensure the highest possible degree of accuracy within the constraints of available computational 

resources, 64 x 64 cells per wave are employed for all of the results that follow, both for the 

developing flow results presented within this chapter, and for the fully-developed flows addressed 

in Chapter 5. 

Computations were performed on a Silicon Graphics PowerChallenge Array, and also on 

Pentium-based PC's. In either case, approximately two weeks real time was required to complete 

a single developing flow simulation. The PowerChallenge Array required fewer total CPU hours 

per simulation. But because the simulations were so lengthy (approximately 12 CPU hours for 

5000 time steps), each simulation had to be divided into manageable segments. The turnaround 

time between runs, combined with the dilution of computational resources among several users, 

severely lengthened the runs. Consequently, no real time was lost by executing the program on a 

dedicated Pentium Pc. 
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4.2 Channel #1 (Havg = 1.3) 

Calculations were performed using a 64 x 64 mesh for each wavelength, for flow through 

a 14-wave passage, at Re = 300, 500, 600, 700. This provides a representative sampling of 

developing flow in a wavy passage in the regime where transition to an oscillatory state takes 

place. These simulations use the wave dimensions described in Section 4.1, where the average 

separation distance between the top and bottom walls is equal to 1.3 units. 

Figure 4.2.1 shows the u-velocity time signal in wave 14 for Re = 300. At Re = 300, it is 

evident from the time signals that the flow becomes steady throughout the entire passage 

immediately after the initial conditions are convected out of the channel. The streamline plot in 

Figure 4.2.2 shows single trapped vortices in the cavities and almost perfectly straight core flow. 

These are expected patterns for steady flow in a wavy passage (Wang and Vanka, 1995). From 

the isotherm plot in Figure 4.2.3, one can see that the warm core fluid passes straight through the 

center of the passage, without significantly mixing with the cooler fluid near the walls. This 

shows that when the flow is steady, only minimal increases in heat transfer rates can be expected, 

due to the fact that the cooler fluid becomes isolated in the large recirculating vortices that fill the 

two furrows of each wave. The quantitative heat transfer performance of the wavy passage is 

addressed later in this section. 

The coarse grid calculations discussed in Section 4.1 revealed that the flow is also steady 

at Re = 400, and consequently, exhibits the same behavior observed at Re = 300. In the interest 

of saving computer time, those calculations were not repeated using the finer mesh. 
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At Re = 500, however, the flow behavior becomes more interesting. Looking at the time 

signals for waves 8, 10, 12, and 14 in Figure 4.2.4, one can see a unique pattern developing. For 

a certain period of time, the time signal does not fluctuate significantly, and the flow appears to be 

steady, leading to flow and temperature profiles similar to what is seen in Figures 4.2.2 and 4.2.3 

for the Re = 300 case. Then, suddenly, large oscillations appear in the time signals. The resulting 

flow pattern contains multiple vortices and divergent core flow, especially in the last two waves of 

the passage, as shown in Figure 4.2.5. Thus, the temperature profile in Figure 4.2.6 reveals better 

mixing of the core and near-wall fluid. This unsteady flow lasts for a certain amount of time, until 

the oscillations quickly die out, and the flow becomes steady again. After awhile, the cycle 

repeats itself Thus, beginning eight waves downstream and continuing at least through the 

fourteenth wave, the flow is "intermittently" unsteady. It is unsteady for a certain period of time, 

and steady for the rest of the time. However, the time signals indicate that the fluctuating sections 

become longer as the flow moves downstream. The period of time that the flow is unsteady also 

increases. By the fourteenth wave, there are small oscillations in the portion of the signal where 

the flow is completely steady in the upstream waves. 

Figure 4.2.7 shows the percentage of time that the flow is unsteady at Re = 500, plotted as 

a function of streamwise location. The flow is completely steady through the sixth wave 

downstream, but by the twelfth wave, the flow is unsteady almost 80% of the time. This is crucial 

information, because heat transfer enhancement is not realized while the flow remains steady. 

Intermittently unsteady flow was also observed in the experiments of Greiner et al. (1990) at 
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comparable Re for flow in a channel with a triangular grooved wall. However, the intermittency 

only existed over a small range of Reynolds numbers. 

At Re = 600, the flow is oscillatory beginning at the fifth wave, and is completely unsteady 

downstream of this point. The time signals in Figure 4.2.8 do not display the intermittent 

behavior seen in the Re = 500 case. Again, though, the amplitude of the oscillations does increase 

as the flow progresses downstream. Through the tenth wave, the oscillations are fundamentally 

periodic with a single dominant frequency, but further downstream, multiple frequencies are 

present in the signals. The instantaneous streamline plot in Figure 4.2.9 and the instantaneous 

isotherm plot in Figure 4.2.10 reflect the unsteady behavior triggered by instabilities in the flow. 

Finally, at Re = 700, the flow is unsteady beginning at the third wave. And once again, the 

oscillations are completely self-sustaining downstream of this point, with their amplitude 

increasing as the flow proceeds downstream. The time signals in Figure 4.2.11 exhibit patterns 

similar to those of the Re = 600 case. The flow is basically periodic with a single frequency 

through the eighth wave, but multiple frequencies are introduced downstream of this point. The 

instantaneous streamline plot in Figure 4.2.12 exhibits the multiple vortices and divergent core 

flow that result from the oscillatory nature of the flow. In the instantaneous isotherm plot in 

Figure 4.2.13, there is obviously far more mixing between the core and near-wall fluid than there 

would be if the flow was steady. 

The time-averaged values for the friction factors and Nusselt numbers averaged across 

each wavelength are plotted in Figures 4.2.14 and 4.2.15, respectively, as a function of wave 
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location relative to the inlet for all four Reynolds numbers investigated using this geometrical 

configuration. Note that two sets of data are presented for Re = 500. One set of quantities was 

tabulated during the time the flow was steady, and the other set was obtained while it was 

unsteady. 

In Figure 4.2.14, favg is very low in the first wave of the channel. Because the boundary 

layers have developed through the straight section, the velocity profile entering the first wave is 

more parabolic than for flow entering the narrow portions of subsequent waves. By the second 

wave, the friction factor has reached a value that remains constant as long as the flow is steady. 

Thus, for Re = 300, favg is basically the same for each wave from wave 2 through the final wave 

of the passage. As expected, favg decreases as Re increases for steady laminar flow. For higher 

Re, however, there is a noticeable increase in the friction factor once the flow becomes unsteady. 

Figure 4.2.15 clearly reveals how unsteady flow in a wavy channel can enhance heat 

transfer, while steady flow in the same geometry produces only minimal benefits. For Re = 300, 

and the steady flow at Re = 500, the Nusselt number remains virtually constant throughout the 

passage, beginning at the second wave from the inlet. The slight increases in the last few waves 

for the Re = 500 case is due to the fact that in these locations, the flow is still slightly oscillatory 

even during the time when the flow is considered "steady". However, these oscillations are tiny 

compared with those which occur when the flow is fully unsteady. For steady flow at Re = 300 

and 500, the values of NU avg are not substantially greater than the Nu = 7.54 yielded by a 

straight channel. When the flow is unsteady at Re = 500, though, the Nusselt number rises 

51 



significantly beginning in the eighth wave, at the onset location for unsteady flow. At Re = 600, 

in the portion of the passage where the flow is steady, the Nusselt number remains constant from 

wave to wave, and is only slightly higher than for steady flow at Re = 500. However, once the 

flow becomes unsteady, beginning around the fifth wave, the value of NU avg begins to increase 

dramatically as the flow travels downstream. This rate of increase becomes even larger once the 

oscillations begin to exhibit markedly increased amplitudes, accompanied by multiple frequencies, 

around the twelfth wave. By the end of the wavy passage, the time-averaged Nusselt number is 

almost twice as large as the value in the waves near the inlet where the flow is completely steady. 

At Re = 700, the Nu plot is similar to that for Re = 600, but now the onset location is the third 

wave, corresponding to the area where Nu begins to increase. The values of Nu avg are higher 

throughout the passage, exceeding 23 by the fourteenth wave. 

Comparing the Nusselt number plot in Figure 4.2.15 with Table 4.1, which gives the onset 

location for each Re examined here, one can see that the initial increases in Nu avg coincide 

exactly with the point where the flow becomes unsteady. The friction factor also increases when 

the flow becomes unsteady, but the correspondence between this increase and the onset location 

is not quite as direct as for Nu. At Re = 500, the growth in f does begin at the onset location in 

wave 8, when the flow is unsteady. But at Re = 600 and 700, favg remains constant for a few 

waves after the initial onset location, before finally rising. Looking at the time signals, though, it 

appears that this increase begins instead at the point where multiple frequencies are introduced to 

the flow, complementing the continually rising amplitudes of oscillation. So, there is a decoupling 

of the heat transfer and pressure drop mechanisms, but only over a few wavelengths. 
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Reynolds number 

300 

400 

500 

600 

700 

First wave of unsteadiness 

> 14 

> 14 

8 

5 

3 

Table 4.1 Onset location for unsteady flow as a function of Reynolds number for Channel #1 

4.3 Channel #2 (Havg = 1.9) 

The simulations presented in this section use the wave dimensions described in Section 

4.1, but with the average separation distance between the top and bottom walls equal to 1.9 units. 

This geometry was considered to investigate the effect of the channel height on the flow 

dynamics. The dimensions for Channel #2 were chosen, because it has Hmm = 1.2, which is equal 

to twice the inlet height of Channel # 1. Thus, it is possible to observe the effects of doubling the 

inlet height while maintaining a constant wall geometry. 

For Re = Q / v, the inlet height is the dimension that determines Re, if the inlet velocity is 

held constant, as it is here. But it is possible that the dimension which has the greatest impact on 

the flow mechanisms may be the amplitude of the wave. Choosing another dimension would 

change the actual value of Re for a given set of flow conditions. Regardless, Re = Q / v is used 

here, because this definition has a physical meaning that is easily understood. And, this Re 
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directly reflects the change in the separation distance between the two plates. Expanding the 

distance between the two walls increased the Reynolds number at which the flow became 

unsteady, at least for the Re as it is defined in this paper. Consequently, simulations for this 

geometry were conducted for Re = 300,500, 700, 1000, and 1400. 

When the flow is completely steady, the flow and temperature mechanisms are very similar 

to those of the narrower channel. Figure 4.3.1 shows the u-velocity time signal in wave 14 for Re 

= 300. From Figure 4.3.1, it is evident that at Re = 300 the flow becomes steady throughout the 

entire passage immediately after the initial conditions are convected out of the channel. The 

streamline plot in Figure 4.3.2 shows the familiar pattern of single trapped vortices in the cavities 

accompanied by straight core flow. But now, the ratio of the amount of fluid in the cavities to 

that flowing through the core is much smaller. From the isotherm plot in Figure 4.3.3, one can 

see that the warm core fluid passes straight through the wide center of the passage, essentially 

unperturbed by the furrows along the walls. As discussed previously, wavy passages are not 

effective enhancement devices when the flow is steady. And, with the increased channel height, 

the steady heat transfer rates are even lower than before. The quantitative heat transfer 

performance of the wavy passage is addressed further later on. 

As with the previous geometry, the Reynolds number was then increased from 300 to 500. 

But this time, the flow became steady at this Reynolds number as well. At Re = 700, instabilities 

in the initial flow field triggered oscillations shown in the time signal in Figure 4.3.4, but these 

oscillations were not self-sustaining, and disappeared after the initial conditions were convected 

out of the channel. The steady state flow patterns for Re = 500 and 700 look exactly like the plot 
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in Figure 4.3.2 for Re = 300. The corresponding isotherm plots are also very similar, with the 

exception of increased temperature gradients within the channel. But the general patterns are the 

same, and there is still only minimal mixing between the core and near-wall fluid. 

It is clear that increasing the wall spacing causes the flow to remain stable at higher 

Reynolds numbers. Once the Re was increased to 1000, however, the flow did become unsteady. 

The flow is unsteady beginning at the sixth wave, and the oscillations feature a single dominant 

frequency throughout, as shown in Figure 4.3.5. The instantaneous streamline plot in Figure 

4.3.6 features multiple vortices, as seen with unsteady flow in the narrower channel. But here, a 

larger amount of fluid passes straight through the center of the channel, virtually unaffected by the 

instabilities triggered by the wavy walls. The instantaneous isotherm plot in Figure 4.3.7 confirms 

that there is some increased exchange between the core and near-wall fluids, but the warmest fluid 

still proceeds straight down the center of the channel. 

Finally, at Re = 1400, the flow is unsteady beginning in the fourth wave. The flow is 

always unsteady, but the amplitude of the oscillations varies intermittently over some of the 

channel, as shown in Figure 4.3.8. But by the 14th wave of the passage, the fluctuations remain 

large for the entire time, once the transients die out. The instantaneous streamline and isotherm 

plots in Figures 4.3.9 and 4.3.10, respectively, are very similar to the corresponding plots for Re = 

1000 in Figures 4.3.6 and 4.3.7. Although there are multiple vortices and improved mixing, a 

significant portion of the fluid still flows straight through the center of the channel, with minimal 

fluctuations in velocity. 
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The time-averaged values for the fiiction factors and Nusselt numbers averaged across 

each wavelength are plotted in Figures 4.3.11 and 4.3.12, respectively, as a function of wave 

location relative to the inlet for all five Reynolds numbers investigated using Channel #2. In 

Figure 4.3.11, favg is very low in the first wave of the channel, due to the near-parabolic profile 

of the flow entering from the straight section. Then, after peaking in the second wave, it 

decreases slowly over the next few wavelengths. The exact length of this decrease depends on Re. 

Because the distance between the two walls has been extended, the shear layers take even longer 

to develop than before. Once the boundary layers have formed, the fiiction factor remains 

essentially constant for a given Re, as long as the flow is steady. Thus, for Re = 300, 500, and 

700, favg is basically the same for each wave from wave 5 through the wave 13, with a slight 

upturn in the final wave of the passage, due to the permanent contraction of the channel to lLrun. 

As expected, favg decreases as Re increases for steady laminar flow. It is seen that, even at 

higher Re, this trend continues, at least over the length of the channel modeled here. When the 

flow becomes unsteady, there are slight fluctuations in favg , but nothing remotely approaching 

the sharp increase that occurs with unsteady flow in the narrower channel. 

Figure 4.3.12 shows that the rates of heat transfer for the wavy passage are again directly 

determined by whether or not the flow is unsteady. Increasing Re only produces small gains in 

Nu as long as the flow is steady. For Re = 300, 500, and 700, the Nusselt number remains 

virtually constant through most of the passage, once the shear layers have developed fully. The 
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length needed for this development increases with Re, but in all three cases, NU avg settles to a 

value only slightly greater than the Nu = 7.54 yielded by a straight channel. 

At Re = 1000 and 1400, NUavg once again begins decreasing over the first few waves of 

the channel. But once the transition to unsteadiness takes place, NU avg undergoes a rapid rise 

before peaking a few waves later, at which point it slowly decreases. For Re = 1000, this 

decrease continues through the final wave, but at Re = 1400, NUavg levels out and even begins to 

slowly increase again. Also, over the last 6 waves of the passage, NUavg is noticeably larger for 

the Re = 1000 case than for Re = 1400. There could be several reasons for this. Firstly, there is 

the intermittent nature of the time signals for Re = 1400. If Nu avg is calculated only where the 

oscillations are largest, then it will be much higher than the value obtained when integrating over 

both the small and large fluctuation cycles. In a related issue, it is possible that the amount of 

time over which the flow properties were sampled was not large enough in this instance to 

provide the most accurate time-averaged values. More likely, though, the channel must be more 

than 14 waves long before the temperature profiles reach a pseudo-steady state. Farther down the 

hypothetical periodic passage, NU avg may be higher at Re = 1400 than at Re = 1000. 

Comparing the Nusselt number plot in Figure 4.3.12 with Table 4.2 which provides the 

onset location for each Re investigated here, one can see that the initial increases in NUavg 

coincide exactly with the points where the flow becomes unsteady. But the behavior of the 

friction factor undergoes only minimal changes due to the unsteady flow. For this geometry, there 
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is a strong decoupling of the heat transfer and pressure drop mechanisms within the computational 

domain modeled here. This decoupling would have a very favorable effect on heat exchange 

performance, because f avg decreases with increasing Re for laminar flow while Nu avg increases 

due to the enhanced mixing provided by oscillatory flow. However, one may recall that for the 

narrower channel, there was also a temporary decoupling over the course of a few wavelengths, 

before f avg also began to increase further downstream. Thus, it is likely that f avg will begin to 

increase further down a passage with the geometry of Channel #2 as well. But more than 14 

wavelengths would be required before this will occur. 

Reynolds number 

300 

500 

700 

1000 

1400 

First wave of unsteadiness 

> 14 

> 14 

> 14 

6 

4 

Table 4.2 Onset location for unsteady flow as a function of Reynolds number for Channel #2 

58 



CHAPTER 5: FULLY-DEVELOPED FLOW CALCULATIONS USING 

PERIODIC B.C. 's 

5.1 Computational Details 

As with the developing flow simulations, the flow and energy equations are solved on a 

two-dimensional curvilinear orthogonal mesh, using a collocated fractional step scheme. A few 

subtle adjustments were made to accommodate the fully-developed flow. For these simulations, 

the computational domain consisted solely of one wave. Wang and Vanka (1995) demonstrated 

that only a single wavelength was needed to model fully-developed flow in wavy passages when 

using periodic boundary conditions at the inlet and outlet of the domain, as presented in Equations 

3.56-3.59. 

Instead of directly specifying the mass flow through the channel, a constant pressure 

gradient is prescribed across each wavelength, using the relationship in Equation 3.60. Because v 

is the independent variable, appropriate values of v for a desired Reynolds number regime must be 

arrived at iteratively. Consequently, the actual Reynolds numbers may not be round values. The 

dimensionless time step was varied with the purpose of employing the largest feasible time step 

that would yield a stable and accurate solution. Lower Reynolds numbers required smaller time 

steps, due to the diffusive stability restrictions. Actual time steps ranged from 0.001 to 0.01, 

depending on the Reynolds number and the geometrical configuration being investigated. 

59 



Six u-velocity probes were arbitrarily placed throughout the wave in order to monitor the 

fluctuations in the flow at various points throughout the domain. These time signals indicated 

whether the fully-developed flow was steady or unsteady, once a stationary solution had been 

obtained. Probes were placed along the y-centerline and at 0.75H near the inlet and outlet of the 

domain, and along the x-centerline. The fluctuations along the y-centerline were always smaller 

than those which occurred at 0.75H. For ease of comparison, the time signals presented 

throughout the remainder of Chapter 5 indicate the behavior of the u-velocity at 0.75H along the 

x-centerline. This is the same point that was used to generate the time signals for the developing 

flow simulations in Chapter 4. Time signals were also generated for the average friction factors 

and Nusselt numbers across the domain. These values were integrated to produce time-averaged 

quantities (see Section 3.6) which are indicative of the average dimensionless heat transfer and 

pressure drop across each wave of the passage. 

All of the fully-developed flow calculations were performed usmg an orthogonal 

curvilinear grid containing 64 x 64 internal cells. Grid refinement studies have shown that the 64 

x 64 grid provides accurate results with a reasonable degree of computational efficiency (Wang 

and Vanka, 1995). This mesh is 1116 as large as the mesh required for the developing flow 

calculations discussed in Chapter 4. Also, the solution for the pressure field, which limits the 

speed of the computation, converges monotonically, and in fewer iterations than for the fully

developed case. Thus, far less computational time was required. All simulations discussed in this 

chapter were performed using Pentium-based PC's. A single simulation could take up to 20 

hours, but many required fewer than 5 hours. Because the fully-developed flow calculations are 
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less cumbersome, they allow for more compansons between wavy passages with different 

dimensions. 

In the remainder of Chapter 5, the effects of varying three different dimensions of the 

wavy passage are analyzed. In Section 5.2, results are presented for fully-developed flow in the 

base channel. In Section 5.3, the height, or separation distance between the two walls, is varied. 

In Section 5.4, the amplitude of the wavy walls is varied, while maintaining a constant average 

separation distance. And in Section 5.5, the wavelength of the walls is varied. In all three cases, 

the geometry which serves as the basis for comparison has the same wave dimensions as Channel 

# 1 in Chapter 4: 

Havg = 1.3, a = 0.35, and A = 2.8 (5.1) 

F or each dimension that is examined, two additional configurations are compared to the 

base geometry: one where the parameter in question is less than the value in Equation 5.1, and 

one where it is greater. The other two dimensions are held constant. 

5.2 Base Channel 

For fully-developed flow through the base channel, the flow was observed to become 

unsteady around Re = 190. In the finite-length Channel # 1 addressed in Chapter 4, self-sustaining 

oscillations were not observed in the 14-wave domain below Re = 500. For lower Reynolds 

numbers, the instabilities develop slowly over a long entrance length. 
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Representative time signals for the base channel are presented in Figures 5.2.1 and 5.2.2. 

In both cases, a single dominant frequency is evident, but additional frequencies are present as 

well. Between Re = 268 and Re = 425, the amplitude of the oscillations remains essentially the 

same. Figure 5.2.3 shows the streamlines for steady flow. As with the developing flow cases, 

steady flow yields single recirculating vortices in each of the cavities, accompanied by straight 

core flow. This pattern was observed for steady flow in all of the passages considered here, 

regardless of the specific dimensions. A single trapped vortex fills each of the cavities, regardless 

of the actual cavity size. Altering the wave dimensions changes the flow patterns only in the 

unsteady regime. 

An instantaneous streamline plot for unsteady flow in the base channel is given in Figure 

5.2.4. The specific pattern will vary with time, but the unsteady flow always produces increased 

mixing and heat transfer rates for all of the wavy passages. This can be seen for the base channel 

in Figure 5.2.5. For steady flow, the Nusselt number remains constant at a value around 9, 

regardless of Reynolds number. Once the flow becomes unsteady, though, Nu avg steadily 

increases with Reynolds number. After a slight increase in friction factor when the flow first 

becomes unsteady, favg continues to decrease with Re. However, the rate of this decrease slows 

down as Re is increased. Hence, there comes a point where increasing Re renders diminishing 

benefits in heat transfer performance. The optimal value of Re depends on the specific criteria for 

evaluating performance, and on the dimensions of the passage. But it is known that wavy 

passages generally offer the best enhancement in the transitional regime. For flow in this regime, 
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the base channel is now compared to passages where the height, amplitude, and wavelength are 

individually varied. 

5.3 Height Variation 

For the base channel, Havg = 1.3. With a = 0.35, this yields a minimum separation 

distance, Hmm = 0.6. The other two values of Havg that are investigated are 1. 0 and 1. 9. These 

two values were chosen because they represent a halving and doubling, respectively, of Hmin 

relative to the base case. The approximate transition Reynolds numbers for the three different 

heights are given in Table 5.1. 

Havg Transition Re 

1.0 130 

1.3 190 

1.9 240 

Table 5.1 Transition Reynolds number as a function ofHavg 

Decreasing the channel height causes the flow to become significantly less stable. Figure 

5.3.1 shows the time signal at Re = 182 for the narrower channel. The signal is periodic with a 

single frequency. This changes when the Reynolds number is increased. The time signal for Re = 

400 is given in Figure 5.3.2. Now, several frequencies are present, including a dominant low 

frequency. Also, the amplitude of the fluctuations is much greater. This more chaotic behavior is 

reflected in the streamline plot in Figure 5.3.3. The patterns of the friction factor and Nusselt 
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number plots in Figure 5.3.4 are more chaotic as well. The actual values of the friction factor are 

much greater than for the base case, because the expansion ratio <Hmax / Hmm) has increased by 

70%, leading to increased pressure drop. However, the Nusselt numbers are also somewhat 

larger. 

Expanding the channel height causes the flow to become more stable. Figures 5.3.5 and 

5.3.6 show two representative time signals for the wider channel. The signal is periodic with a 

single frequency in both cases. As the Reynolds number is incremented, the frequency of the 

oscillations becomes smaller, while their amplitude becomes greater. Although the streamline plot 

in Figure 5.3.7 exhibits divergent core flow and irregular vortices, the flow pattern is not nearly as 

chaotic as for the narrower channel, even at Re = 1001. The friction factor and Nusselt number 

plots in Figure 5.3.8 follow smooth patterns. The Nusselt number increases linearly with Re once 

the flow becomes unsteady, while the rate of decrease in the friction factor slowly levels off. The 

values of the friction factor are equal to about 113 of those for corresponding Reynolds numbers 

with the base case, but the Nusselt numbers are lower as well. 

5.4 Amplitude Variation 

For the base channel, the amplitude of the sinusoidal wavy walls, a = 0.35. The other two 

values of a that are investigated are 0.25 and 0.50. Hmm and Hmax will change as the amplitude is 

varied, but Havg is held constant at 1.3. The approximate transition Reynolds numbers for the 

three different amplitudes are given in Table 5.2. 
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a Transition Re 

0.25 245 

0.35 190 

0.50 135 

Table 5.2 Transition Reynolds number as a function of the amplitude of the wavy walls 

The results produced by increasing the amplitude of the walls are similar to those obtained 

for the narrowest passage described in Section 5.3. The flow became significantly less stable as 

the amplitude was increased. Figure 5.4.1 shows the time signal at Re = 174 for the channel with 

a = 0.50. The signal is periodic with a single frequency. But when the Reynolds number is 

increased, multiple frequencies emerge, including a dominant low frequency, as in Figure 5.4.2 for 

Re = 363. Figure 5.4.3 shows a corresponding streamline plot for this Reynolds number. This 

geometry has an expansion ratio equal to 2.3 times that of the base geometry, so the friction 

factors in Figure 5.4.4 are even higher than for those for Havg = 1.0. However, the friction factor 

and Nusselt number obey more conventional functions of Reynolds number. They follow the 

trends observed for the base case, and for all the other geometries with less severe expansion 

ratios discussed in this chapter. 

Decreasing the amplitude from the base case caused the flow to become more stable. 

Figures 5.4.5 and 5.4.6 show time signals for the passage with a = 0.25 at Re = 260 and Re = 

668, respectively. At Re =260, the signal is periodic with only a single frequency. At Re = 668, 

the signal is basically periodic, but there is an underlying low frequency that manifests itself over 
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long periods of time. A corresponding streamline plot for this Reynolds number is given in Figure 

5.4.7. Friction factor and Nusselt number are plotted vs. Reynolds number for this geometry in 

Figure 5.4.8. favg actually increases between Re = 572 and Re = 668. favg would eventually 

begin increasing with Reynolds number for the other configurations as well, but this increase 

occurs at higher Reynolds numbers than those that are considered here. 

5.5 Wavelength Variation 

For the base channel, A = 2.80. The other two values of A that are investigated are 2.24 

and 3.36. These two values were chosen because they represent a 20010 decrease and increase, 

respectively, of A relative to the base case. This variation was examined experimentally by· Rush 

(1997) for developing flow. The approximate transition Reynolds numbers for the three different 

wavelengths are given in Table 5.3. 

A Transition Re 

2.24 175 

2.80 190 

3.36 195 

Table 5.3 Transition Reynolds number as a function of wavelength 

Varying the wavelength produced only minimal differences in the flow behavior, even 

between the passages with the smallest and largest wavelengths. The transition Reynolds number 
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is similar for all three cases. Figure 5.5.1 shows the time signal at Re = 189 for the channel with 

the shortest wavelength. The signal is periodic with a single frequency. Figure 5.5.2 shows the 

time signal after the Reynolds number is increased to 492. The signal still follows a predictable 

periodic pattern. A corresponding streamline plot for this Reynolds number is given in Figure 

5.5.3. Friction factor and Nusselt number are plotted versus Reynolds number in Figure 5.5.4. 

For varying wavelength, the friction factors have been calculated based on a projected pressure 

drop over the base wavelength of 2.80. The resulting values of favg are become larger as the 

wavelength is compressed. But the effect of reducing the wavelength is not nearly as pronounced 

as that of decreasing the channel height or increasing the amplitude of the walls. 

Figure 5.5.5 shows the time signal at Re = 213 for the passage A. = 3.36. As expected for 

a Reynolds number just above the transtion number, the signal is periodic. Figure 5.5.6 shows the 

time signal at Re = 443. Although the signal follows a distinct pattern, multiple frequencies are 

evident, and the amplitude of the oscillations is not constant. A corresponding streamline plot for 

this Reynolds number is given in Figure 5.5.7. Friction factor and Nusselt number are plotted 

versus Reynolds number for this geometry in Figure 5.5.8. The value of NU avg at a given 

Reynolds number remains essentially the same for all three of the wavelengths addressed in this 

section. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

In the current study, the time-dependent governing equations for flow and heat transfer in 

wavy passages are solved on a 2-D curvilinear mesh using an accurate numerical scheme. 

Computations have been performed for developing flow in the entrance length of the passage, and 

for periodic fully-developed flow conditions. The data for developing flow in the entrance length 

of the passage supply new information about how long a wavy channel must be for the flow to 

become unsteady. Periodic fully-developed flow calculations were used to make comparisons 

between wavy passages with different dimensions. 

Flow patterns have been examined in the developing portion of two wavy passages, The 

first channel studied corresponds to the geometry of Nishimura, et al. (1984). For Re = 300 and 

400, more than fourteen waves are needed for the flow instabilities to develop. At Re = 500, the 

flow becomes unsteady beginning at the eighth wave downstream from the inlet. Furthermore, 

the unsteadiness is observed to be intermittent. For Re = 600, completely self-sustaining 

oscillations are evident as far upstream as the fifth wave, and at Re = 700, the unsteady behavior 

is present in the third wave. When the inlet height of the channel is doubled, the flow remains 

stable at higher Reynolds numbers. Thus, it appears that the transition Reynolds number may be 

one that is defined based on wave height, not channel height. For this configuration, the flow is 

steady through the entire fourteen-wave passage at least up to Re = 700. The flow was observed 

to become unsteady in the sixth wave for Re = 1000, and in the fourth wave for Re = 1400. 
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For both channels. there was minimal heat transfer enhancement under steady flow 

conditions. regardless of Reynolds number. When the Reynolds number was high enough to 

trigger flow instabilities within the computational domain. the wave-averaged Nusselt number 

showed a marked increase beginning at the onset location for unsteady flow. A corresponding 

rise in the friction factor occurred shortly after. indicating a moderate decoupling of the heat 

transfer and pressure drop mechanisms. 

Information about the developing section of the channel is crucial. because effective heat 

transfer enhancement cannot be realized unless the flow is unsteady. However. calculations for 

developing flow are quite lengthy. because the flow patterns must be accurately resolved over a 

computational domain equal to the entire length of the finite passage being modeled. This makes 

it difficult to investigate developing flow for diverse geometrical configurations. Computations 

for fully-developed flow are less troublesome, because periodic· boundary conditions allow the 

computational domain to be reduced to a single wavelength. Here, fully-developed flow 

calculations are used to expand the parameter space under consideration. Three different 

dimensions of the wavy passage were separately varied. and their effects on flow and heat transfer 

behavior were observed. 

The channel which serves as the basis for comparison has the same geometry as Channel 

#1 for the developing flow calculations (Nishimura, et al .• 1984). For each dimension that is 

examined. two additional configurations are compared to the base geometry: one where the 

parameter in question is less than the corresponding value for the base case, and one where it is 

greater. The other two dimensions are held constant. 
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First, the height, or separation distance between the two walls, was varied. Decreasing the 

height caused the flow to become less stable, meaning that the flow became unsteady at a lower 

Reynolds number. The friction factor increased, due in part to an increase in the expansion ratio 

(Hmax / Hnun), but the Nusselt number rose as well. Similar trends were observed when the 

amplitude of the wavy walls was modified, while maintaining a constant average separation 

distance. Increasing the amplitude promoted flow instabilities, and resulted in the highest friction 

factors of any of the configurations for which fully-developed calculations were conducted. 

Lastly, the wavelength was varied by 20% in either direction to complement a concurrent 

experimental study (Rush, 1997). This had a minimal effect on the flow behavior and stability. 

The friction factor increased slightly as the wavelength was decreased. The Nusselt number for 

any given Reynolds number remained essentially constant regardless of wavelength. 

The results presented in this thesis strengthen our understanding about how heat 

exchangers can be made more compact and efficient using wavy channels. This report can be 

added to the growing body of work pertaining to this topic. 
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FIGURES 
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~c 

Figure 2.1.1 (A) Rectangular plain fins, (B) triangular plain fins, (C) offset strip fins, 
(D) louvered fins, (E) vortex generators (Brockmeier, et ai., 1993) 
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Figure 3.2. ) Initial non-orthogonal mesh for a single wave 
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Figure 3.2.2 Orthogonal mesh for a single wave 
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Figure 3.2.3 Sixteen-wavelength passage for developing flow simulations 
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Figure 4.1.1 Schematic of computational domain for developing flow simulations 
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Figure 4.2.1 Time signal for u-velocity in 14th wave of Channel #1 
atRe = 300 
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Figure 4.2.2 Instantaneous streamline plot in 13th and 14th waves of Channel #1 at Re = 300 
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Figure 4.2.3 Instantaneous isotherm plot in 13th and 14th waves of Channel #1 at Re = 300 
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Figure 4.2.4 Time signals for u-velocity in Channel #1 at Re = 500 
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Figure 4.2.5 Instantaneous streamline plot in 13th and 14th waves of Channel #1 at Re = 500 (unsteady flow) 
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Figure 4.2.6 Instantaneous isotherm plot in 13th and 14th waves of Channel #1 at Re = 500 (unsteady flow) 
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Figure 4.2.7 Percentage of time flow is unsteady as a function 
of location at Re = 500 
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Figure 4.2.9 Instantaneous streamline plot in 13th and 14th waves of Channel #1 at Re = 600 
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Figure 4.2.10 Instantaneous isotherm plot in 13th and 14th waves of Channel #1 at Re = 600 
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Figure 4.2.l2 Instantaneous streamline plot in 13th and 14th waves of Channel #1 at Re = 700 
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Figure 4.2.13 Instantaneous isotherm plot in 13th and 14th waves of Channel #1 at Re = 700 
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Figure 4.3.2 Instantaneous streamline plot in 13th and 14th waves of Channel #2 at Re = 300 
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Figure 4.3.5 Time signal for u-velocity in 14th wave of Channel #2 
atRe = 1000 

95 



10 
0\ 

Figure 4.3.6 Instantaneous streamline plot in 13th and 14th waves of Channel #2 at Re = 1000 



\0 
-....J 

Figure 4.3.7 Instantaneous isotherm plot in 13th and 14th waves of Channel #2 at Re = 1000 
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Figure 4.3.8 Time signals for u-velocity in Channel #2 at Re = 1400 
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Figure 4.3.9 Instantaneous streamline plot in 13th and 14th waves of Channel #2 at Re = 1400 
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Figure 4.3.10 Instantaneous isotherm plot in 13th and 14th waves of Channel #2 at Re = 1400 
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Figure 4.3.11 Time-averaged friction factor averaged across each 
wavelength as a function of location for Channel #2 
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Figure 5.2.2 Time signal for u-velocity in channel 
with base geometry at Re = 425 
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Figure 5.2.3 Instantaneous streamline plot for steady flow in channel 
with base geometry at Re = 169 
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Figure 5.2.4 Instantaneous streamline plot for unsteady flow in channel 
with base geometry at Re = 364 
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Figure 5.3.3 Instantaneous streamline plot for channel with Havg = 1.0 
at Re = 400 
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Figure 5.3.7 Instantaneous streamline plot for channel with Havg = 1.9 
at Re = 1001 
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Figure 5.4.3 Instantaneous streamline plot for channel with a = 0.50 
atRe = 363 
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Figure 5.4.4 Time averaged friction factor and Nusselt number averaged across 
one wavelength as a function of Reynolds number for a = 0.50 
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Figure 5.4.7 Instantaneous streamline plot for channel with a = 0.25 
atRe= 668 
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one wavelength as a function of Reynolds number for a = 0.25 
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Figure 5.5.3 Instantaneous streamline plot for channel with A = 2.24 at Re = 492 
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Figure 5.5.4 Time averaged friction factor and Nusselt number averaged across 
one wavelength as a function of Reynolds number for lambda = 2.24 

120 



u 

u 

0.4 

0.3 

0.2 

0.1 

0.0 

-0.1 -

-0.2 

t 

Figure 5.5.5 Time signal for u-velocity in channel 
with lambda = 3.36 atRe = 213 

I I I I I 

N W 
N 

I I I I I 

100 150 200 250 300 350 

t 
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Figure 5.5.7 Instantaneous streamline plot for channel with A = 3.36 
atRe = 443 
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Figure 5.5.8 Time averaged friction factor and Nusselt number averaged across 
one wavelength as a function of Reynolds number for lambda = 3.36 
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