
University of Dayton University of Dayton 

eCommons eCommons 

Electrical and Computer Engineering Faculty 
Publications 

Department of Electrical and Computer 
Engineering 

3-1-2021 

Color-compressive bilateral filter and nonlocal means for high-Color-compressive bilateral filter and nonlocal means for high-

dimensional images dimensional images 

Christina Karam 
University of Dayton 

Kenjiro Sugimoto 
Waseda University 

Keigo Hirakawa 
University of Dayton 

Follow this and additional works at: https://ecommons.udayton.edu/ece_fac_pub 

 Part of the Computer Engineering Commons, Electrical and Electronics Commons, Electromagnetics 

and Photonics Commons, Optics Commons, Other Electrical and Computer Engineering Commons, and 

the Systems and Communications Commons 

eCommons Citation eCommons Citation 
Karam, Christina; Sugimoto, Kenjiro; and Hirakawa, Keigo, "Color-compressive bilateral filter and nonlocal 
means for high-dimensional images" (2021). Electrical and Computer Engineering Faculty Publications. 
439. 
https://ecommons.udayton.edu/ece_fac_pub/439 

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering 
at eCommons. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications by an 
authorized administrator of eCommons. For more information, please contact mschlangen1@udayton.edu, 
ecommons@udayton.edu. 

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/ece_fac_pub
https://ecommons.udayton.edu/ece_fac_pub
https://ecommons.udayton.edu/ece
https://ecommons.udayton.edu/ece
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub/439?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mschlangen1@udayton.edu,%20ecommons@udayton.edu
mailto:mschlangen1@udayton.edu,%20ecommons@udayton.edu


Color-compressive bilateral filter and nonlocal means
for high-dimensional images

Christina Karam,a,* Kenjiro Sugimoto ,b and Keigo Hirakawac
aUniversity of Dayton Research Institute, Sensors and Systems Division, Dayton,

Ohio, United States
bWaseda University, Graduate School of Information, Production and Systems IPS,

Fukuoka, Japan
cUniversity of Dayton, Department of Electrical and Computer Engineering, Dayton,
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Abstract. We propose accelerated implementations of bilateral filter (BF) and nonlocal means
(NLM) called color-compressive bilateral filter (CCBF) and color-compressive nonlocal means
(CCNLM). CCBF and CCNLM are random filters, whose Monte-Carlo averaged output images
are identical to the output images of conventional BF and NLM, respectively. However, CCBF
and CCNLM are considerably faster because the spatial processing of multiple color channels
are combined into a single random filtering process. This implies that the complexity of CCBF
and CCNLM is less sensitive to color dimension (e.g., hyperspectral images) relatively to other
BF and NLM methods. We experimentally verified that the execution time of CCBF and
CCNLM are faster than the existing “fast” implementations of BF and NLM, respectively.
© 2021 SPIE and IS&T [DOI: 10.1117/1.JEI.30.2.023001]

Keywords: bilateral filter; nonlocal means; random filters.
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1 Introduction

Bilateral filter (BF) is an image smoothing filtering technique introduced by Tomasi and
Maduchi.1–3 Image features such as textures and edges are preserved by BF due to the adaptive
weighting of the spatial and range kernels. The former assigns higher weights to the spatially
nearby pixels, while the latter gives more importance to the pixels of similar appearance. Despite
the proven usefulness of BF in many image processing and computer vision applications—as
evidenced by prior examples in denoising,4 demosaicking,5 tone mapping,6 stereo matching,7

and segmentation8—the complexity of BF remains a limiting factor.
Similarly, nonlocal means (NLM) is a generalization of the BF that has shown advantages in

denoising.9 It replaces the notion of pixel-to-pixel similarity9 in a range kernel with a block-to-
block similarity. While edges and textures are better preserved by the block extension of the
range kernel, the computational complexity increases significantly. Although there are arguably
superior denoising techniques available,10 NLM remains popular today owing to its intuitive-
ness, filtering quality, and suitability for working with color images.

Significant work has followed BF and NLM to accelerate them.11–22 The key technique
employed to reduce complexity is to replace the range kernel computation by an efficient,
approximately equivalent convolutional filtering process. The speedup in the resultant “fast”
implementations is achieved by ensuring that the required number of convolutions are invariant
to window size, quantization step size, color dimension of the edge image, and NLM block size.

One main challenge that has not been resolved by any of the previous “fast” implementations
is that the complexities of BF and NLM grow linearly or exponentially with respect to the color
dimension N of the filter image.11–20 That is, although previous methods successfully addressed
the scenario that the edge image is a large dimension (including our previous method called
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SBF/SNLM20), these BF/NLM implementations are nevertheless slow when filtering RGB
(N ¼ 3) and hyperspectral images (N ≫ 3). In this paper, we propose a technique to accelerate
BF and NLM further by combining the convolutional filtering of multiple color channels into a
single random filtering process. The resultant color-compressive bilateral filter (CCBF) and
color-compressive nonlocal means (CCNLM) implementations require far fewer convolutions
than the existing methods when the color dimension of the filtering image is large. That is, they
allow the processing of high-dimensional images (N ≫ 3 such as hyperspectral images) with
only a modest complexity.

Another way to speed up BF and NLM is via GPU acceleration, involving massive paral-
lization. These methods do not fundamentally reduce the computational complexity of BF and
NLM (unlike CCBF and CCNLM), but execute them faster. Proposed CCBF and CCNLM are
also compatible with GPU parallelization, in fact, meaning further speedup can be expected by
implementing parallel versions of CCBF and CCNLM.

This paper is organized as follows. In Sec. 2, we briefly review of state-of-the-art fast algo-
rithms, including our previous work SBF/SNLM.20 In Sec. 3, we develop the proposed CCBF
and CCNLM methods, whose complexity is analyzed in Sec. 4. We demonstrate the speedup in
Sec. 5 before making concluding remarks in Sec. 6.

We note that the simplified versions of Lemmas 1 and 2, Theorem 1, and Corollary 1 have
appeared in our preliminary work.23 In this paper, more general versions are rederived to accom-
modate the NLM weights in Eq. (5) (subsequently used to derive the CCNLM results in
Lemma 3 and Theorem 2). It is also worth emphasizing that the work presented in this paper
is not meant to improve the filtering qualities of BF or NLM. Rather, CCBF and CCNLM con-
cern the complexity issues of BF and NLM, particularly for high-dimensional data.

2 Background and Related Works

2.1 Bilateral Filter and Nonlocal Means

Let u∶Z2 → RN be the input filter image, where uðiÞ ∈ RN is a color vector at the pixel position
i ∈ Z2. The BF yields the output image x∶Z2 → RN defined by the relation:

EQ-TARGET;temp:intralink-;e001;116;367xfugðiÞ ≔
P

j∈Z2ρði − jÞ · δðuðiÞ − uðjÞÞ · uðjÞP
j∈Z2ρði − jÞ · δðuðiÞ − uðjÞÞ ; (1)

where the spatial kernel ρ∶Z2 → R and range kernel δ∶RN → R are defined as

EQ-TARGET;temp:intralink-;e002;116;304

ρði − jÞ ≔ exp

�
−
ki − jk2
2γ2

�

δðuðiÞ − uðjÞÞ ≔ exp

�
−
ðuðiÞ − uðjÞÞTΦ−1ðuðiÞ − uðjÞÞ

2

�
: (2)

Here, k · k denotes the l2 norm in Z2, and γ2 ∈ R and Φ ∈ RN×N are smoothing parameters.
Intuitively, BF preserves edges by ensuring kernels ρ and δ are small when ki − jk and/or
ðuðiÞ − uðjÞÞTΦ−1ðuðiÞ − uðjÞÞ are large. Although smoothing parameter Φ in most cases is
a constant diagonal matrix of the form

EQ-TARGET;temp:intralink-;e003;116;175Φ ¼

2
64
ϕ2

. .
.

ϕ2

3
75; (3)

which gives equal importance to each color component, we use the general form of Φ later
in this paper. Cross-color correlation can be considered by introducing off-diagonal elements
in Φ.
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Recall that the bilateral pixel range kernel determines the weight of the linear combination
in Eq. (1) based on the pixel-to-pixel similarity of i and j.1–3 The NLM generalizes this by
computing the linear weight based on the similarity of pixel blocks centered at i and j.
Define y∶Z2 → R2 be the result of filtering the input image u using the relation:

EQ-TARGET;temp:intralink-;e004;116;687yfugðiÞ ≔
P

j∈Z2ρði − jÞ · ηfugði; jÞ · uðjÞP
j∈Z2ρði − jÞ · ηfugði; jÞ ; (4)

where NLM range kernel η∶Z2 × Z2 → R is defined as

EQ-TARGET;temp:intralink-;e005;116;617ηfugði; jÞ ≔ exp

�
−
X
ω∈Ω

ðuði − ωÞ − uðj − ωÞÞTΦ−1
ω ðuði − ωÞ − uðj − ωÞÞ
2

�
; (5)

and Ω ⊂ Z2 indicates the pixel indexes in the B × B block. In other words, pixel similarity of
uði − ωÞ and sðj − ωÞ for all ω ∈ Ω are considered jointly to determine the range weight
ηfugði; jÞ. The usual choice for the smoothing parameter Φω ∈ RN×N is a constant diagonal
matrix:

EQ-TARGET;temp:intralink-;e006;116;508

Φω ¼

2
664
ϕ2
ω

. .
.

ϕ2
ω

3
775; (6)

but within-block weights ϕ2
ω can be varied optionally to increase the influence of the pixels at

the center of the block.
The complexities of the BF and NLM are reported in Tables 1 and 2, respectively. The bottle-

neck is highlighted in bold. Due to the fact that the spatial kernel ρði − jÞ decays quickly relative

Table 1 Complexity of bilateral filtering implementations. The bottlenecks are shown in bold.
N =# color/spectrum of filtering image, W =window size, T =# quantization steps, K =# summa-
tions12 or # clustering,16 M =# Monte-Carlo draws. Expected per-pixel costs of convolution and
clustering are of order Oð1Þ and OðNKMÞ, respectively. Table extended.20

Per pixel Per image

Multiply Add Divide
Exp

sin/cos Memory Conv Cluster

Naive BF1–3 ð2Nþ 2ÞW2 ð2N − 1ÞW 2 þ
ðW 2 − 1ÞðN þ 1Þ

N W 2 1þ 2N 0 0

Paris11 ðN þ 2ÞTN ðN þ 1ÞTN N TN NTN 2 0

Chaudhury12 ð3N þ 1ÞKN NKN þ 2KN−1 N KN 1þ 2N ðNþ 1ÞKN 0

Sugimoto13

Deng14 ð3N þ 1ÞKN NKN þ 2KN−1 þ N N 2KN 1þ 2N KN 0

Karam20 ð5N þ 2ÞM 2NM þ ðN þ 1ÞðM − 1Þ N 2M 1þ 2N ð2Nþ 2ÞM 0

Sugimoto15 ðN þ 1ÞK KN þ 2ðK − 1Þ N þ 1 K 1þ 2N ðNþ 1ÞK K

Nair16 NK NK N K 1þ 2N ðNþ 1ÞK K

CCBF
(proposed)23

ð2N þ 4ÞM ðN þ 1ÞM þ
ðN þ 1ÞðM − 1Þ þ N

N 2M 1þ 2N 2M 0

Karam, Sugimoto, and Hirakawa: Color-compressive bilateral filter and nonlocal means. . .
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to increasing ki − jk2, it is common to limit the summation in Eq. (4) to a spatial neighborhood of
the window size W ×W. Hence, the overall per-pixel complexity is OðW2NÞ for BF and
OðW2B2NÞ for NLM.

2.2 Prior Work on Accelerated Filters

To date, various techniques have been introduced to replace the range kernels δ∶RN → R and
η∶Z2 × Z2 → R by efficient, approximately equivalent convolutional filtering processes. The
techniques and their complexities are shown in Tables 1 and 2. Early efforts to accelerate
BF and NLM have largely focused on developing implementations whose complexities are
invariant to the window sizeW2 and block size B2. The dependence of BF and NLM complexity
on W2 and B2 is unattractive because the resolutions of modern imaging devices are increasing
rapidly—a larger window/block neighborhood around the pixel i is needed to represent the
same underlying image feature near i. Indeed, the complexity of “fast” BF implementa-
tions11–16 shown in Table 1 are constant with respect to W; and “fast” NLM implementation
of Goosens19 as shown in Table 2 is invariant to block size B.

To process high-dimensional images in a reasonable amount of time, however, the imple-
mentation12–14 complexity of OðNCNÞ and OðCNÞ for some constant C is unacceptably large
unless color dimension N is 1 (i.e., u∶Z2 → R is a grayscale image). This fact is evident in
Fig. 1, where the number of required convolutions increases rapidly with the color dimension.
More recent treatments of BF (including SBF) further reduced the complexity (as determined by
the number of convolution operators) to OðNKÞ, where K is the number of basis summations

Table 2 Complexity analysis of NLM implementations. Complexity bottleneck is marked in bold.
N =# color/spectrum of filtering image, W =window size, B =block size, Q = percentage of pixels
kept in a window, M =# Monte-Carlo draws. Expected per-pixel cost of convolution is of order
Oð1Þ. Table extended.20

Per pixel Per image

Multiply Add Divide
Exp

sin/cos Ineq Sqrt Conv/FFT Sqrt

Naive NLM9 ðB2Nþ 2þ NÞW2 ð2B2N − 1ÞW 2 þ
ðW 2 − 1ÞðN þ 1Þ

N W 2 0 0 0 0

BNLM ð2B2Nþ 2ÞW2 þ 1 ð2B2N − 1ÞW 2 þ
ðW 2 − 1ÞðB2N þ 1Þ þ

ðB2 − 1ÞN

NB2 W 2 0 0 0 0

Dauwe17 ðB2Nþ 2þ NÞW2Qþ 10 ð2B2N − NÞW 2Q þ
ðN − 1Þ þ

ðW 2Q − 1ÞðN þ 1Þ þ
3W 2 þ 24

N þ 1 W 2Q 6W 2 1 0 1

Chan18 ðB2Nþ 2þ NÞW2Q ð2B2N − NÞW 2Q þ
ðN − 1Þ þ

ðW 2Q − 1ÞðN þ 1Þ

N W 2Q 0 0 0 0

Goossens19 NW2 þ ðNþ 1ÞW2 ð2N − 1ÞW 2 þ
ðN þ 1ÞðW 2 − 1Þ

N W 2 0 0 W2 0

Karam20 ð5N þ 2ÞM 2NM þ
ðN þ 1ÞðM − 1Þ

N 2M 0 0 ð2Nþ 3ÞMþ N 0

CCNLM
(proposed)

ðN þ 4ÞM 2M þ
ðN þ 1ÞðM − 1Þ þ N

N 2M 0 0 3Mþ N 0

CCBNLM
(proposed)

ðB2N þ 4ÞM 2M þ
ðB2N þ 1ÞðM − 1Þ þ

B2N

NB2 2M 0 0 3Mþ N 0

Karam, Sugimoto, and Hirakawa: Color-compressive bilateral filter and nonlocal means. . .
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used in Sugimoto and Nair’s implementation.15,16 Similarly, earlier efforts to accelerate NLM
resulted in only a slight improvement at OðW2B2NQÞ where 0 < Q < 1 is a random sampling
rate.17,18 More recent NLM implementations yielded complexities of OðW2NÞ19 and OðNMÞ20
whereM is a number of Monte-Carlo draws—that is, invariant to the block size B. Note that the
complexity of these methods15–19 scales with color dimension N because the convolution needs
to be applied to each color channel separately.

By contrast, the CCBF and CCNLM implementations proposed in this paper achieve the per-
pixel complexity of OðMÞ whereM is the number of Monte-Carlo draw, i.e., independent ofW,
B, and N. We achieve this feat by combining the convolutional filtering of N color channels into
a single random filtering process shared by all N color channels. Thus, CCBF and CCNLM
are advantageous when processing high-dimensional images, such as color imaging (N ¼ 3),
color + depth imaging (N ¼ 4), multispectral imaging (N > 3), and hyperspectral imaging
(N ≫ 3).

2.3 Review: Stochastic Bilateral Filter and Stochastic Nonlocal Means

We briefly review stochastic bilateral filter (SBF) and stochastic nonlocal means (SNLM)
method we previously developed to accelerate BF and NLM, respectively.20 SBF/SNLM filters
x̃fugðiÞ and ỹfugðiÞ are random filters which agree on average with the BF xfugðiÞ and NLM
yfugðiÞ results, respectively.

Proposition 1 (SBF). Let ξ ∼N ð0;Φ−1Þ, ξ ∈ RN be a normal random vector. Define

EQ-TARGET;temp:intralink-;e007;116;201x̃fugðiÞ ≔
E

��
cosðξTuðiÞÞ
sinðξTuðiÞÞ

�
T
�
ρðiÞ⋆

�
uðiÞ

�
cosðξTuðjÞÞ
sinðξTuðjÞÞ

����

E

��
cosðξTuðiÞÞ
sinðξTuðiÞÞ

�
T
�
ρðiÞ⋆

�
cosðξTuðjÞÞ
sinðξTuðjÞÞ

��� ; (7)

where u∶Z2 → RN is the input image and ρ∶Z2 → R the spatial kernel. Then, x̃fugðiÞ is equiv-
alent to the BF xfugðiÞ in Eq. (1).

Proposition 2 (SNLM). Let ξðωÞ ∼N ð0;Φ−1
ω Þ, ξðωÞ ∈ RN , be independent random vectors

defined over a block ω ∈ Ω of size B × B. Define convolution-sum operator � as

Fig. 1 (a) Graph showing the execution time (necessary to achieve MSE averaged over color
channels of 5) of the BF, SBF, and proposed CCBF as well as other fast implementation,12,15,16

as a function of color channels N. (b) Graph showing the number of convolutions for SBF and
CCBF to obtain the results in (a). A hyperspectral image24 (1392 × 1040 × 31) with 8-bits per pixel
was used.

Karam, Sugimoto, and Hirakawa: Color-compressive bilateral filter and nonlocal means. . .
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EQ-TARGET;temp:intralink-;e008;116;735fξ � ugðiÞ ≔
X
ω∈Ω

ξTðωÞuði − ωÞ: (8)

The SNLM ỹfugðiÞ defined as

EQ-TARGET;temp:intralink-;e009;116;690ỹfugðiÞ ¼
E

��
cosðξ � uÞ
sinðξ � uÞ

�
T
�
ρðiÞ⋆

�
uðiÞ

�
cosðξ � uÞ
sinðξ � uÞ

����

E

��
cosðξ � uÞ
sinðξ � uÞ

�
T
�
ρðiÞ⋆

�
cosðξ � uÞ
sinðξ � uÞ

��� ; (9)

is also equivalent to NLM yfugðiÞ in Eq. (4), where u∶Z2 → RN is the input image and
ρ∶Z2 → R the spatial kernel.

Proof of Propositions 1 and 2 are provided in Ref. 20. In practice, the range kernel is approxi-
mated by Monte-Carlo. As a Monte-Carlo implementations of Propositions 1 and 2, a random
vector ξ ∼N ð0;Φ−1Þ is generated M times, and then averaged to obtain an approximation of
the expected value E½·�. Practically speaking, convolutions in the numerators of Eqs. (7) and (9)
are actually repeated MN times in their implementations due to the fact that the input image
u∶Z2 → RN is an N-dimensional signal. Thus, the execution times of SBF and SNLM are
OðNMÞ—considerably faster than original BF/NLM, but nevertheless scaling linearly with
N. See Tables 1 and 2.

3 Proposed Stochastic Filters

3.1 Color-Compressive Bilateral Filter

In this section, we aim to reduce the number of convolution operators by leveraging prior work
known as fast compressive bilateral filtering, or FCBF.14 The computational complexity of FCBF
is OðCNÞ for some constant C > 1, which is unacceptably slow unless color dimension N is 1
(i.e., u∶Z2 → RN is a grayscale image). Nevertheless, we begin the development of CCBF by
first extending a key result of FCBF in Ref. 14 to the color BF version (i.e., N > 1), as follows.

Lemma 1. Define the gradient of a range kernel δðqÞ for Nth dimensional vector
q ¼ ðq1; : : : ; qNÞT ∈ RN as

EQ-TARGET;temp:intralink-;e010;116;328∇δðqÞ ¼

2
6664

∂
∂q1

δðqÞ
..
.

∂
∂qN

δðqÞ

3
7775: (10)

Then, the BF xfugðiÞ applied to an image u∶Z2 → RN in Eq. (1) can be rewritten as

EQ-TARGET;temp:intralink-;e011;116;241

xfugðiÞ ¼ uðiÞ þΦ ·

P
j∈Z2

ρði−jÞ·∇δðuðiÞ−uðjÞÞP
j∈Z2

ρði−jÞ·δðuðiÞ−uðjÞÞ ; (11)

where ρ is a spatial kernel.

Proof. Consider the difference image of the form:

EQ-TARGET;temp:intralink-;st4;116;156uðiÞ − xfugðiÞ ¼
P

j∈Z2ρði − jÞ · δðuðiÞ − uðjÞÞ · ðuðiÞ − uðjÞÞP
j∈Z2ρði − jÞ · δðuðiÞ − uðjÞÞ :

Following recursion is a well-known property of Gaussian functions:

EQ-TARGET;temp:intralink-;e012;116;99∇δðqÞ ¼ −Φ−1q exp

�
−
qTΦ−1q

2

�
¼ −Φ−1qδðqÞ: (12)

Karam, Sugimoto, and Hirakawa: Color-compressive bilateral filter and nonlocal means. . .
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Substituting qδðqÞ by −Φ∇δðqÞ in Eq. (12) with q ¼ uðiÞ − uðjÞ, we have

EQ-TARGET;temp:intralink-;st4;116;723uðiÞ − xfugðiÞ ¼ −Φ ·

P
j∈Z2ρði − jÞ · ∇δðuðiÞ − uðjÞÞP
j∈Z2

ρði − jÞ · δðuðiÞ − uðjÞÞ :

Reorganizing the above proves the Lemma.

The literal implementation of Eq. (11) incurs per-pixel complexity of OðNW2Þ, where N is
the color dimension and W is the window size, which is same as the original BF. Readers are
referred to Ref. 14 for the remainder of steps taken by FCBF to achieve the complexity order of
OðCNÞ (but this is not necessary for our paper). To overcome this prohibitively large computa-
tional burden, we instead consider applying Lemma 1 by appealing to the random filtering
approach in SBF.20 Consider the following relation.

Lemma 2. Let ξ ∼N ð0;Φ−1Þ, ξ ∈ RN be a normal random vector, and q ∈ RN . Then, the
range kernel δ∶RN → R and its gradient can be written as expected values:

EQ-TARGET;temp:intralink-;e013;116;543δðqÞ ¼ E½cosðξTqÞ�; (13)

EQ-TARGET;temp:intralink-;e014;116;501∇δðqÞ ¼ −E½ξ sinðξTqÞ�: (14)

Proof. The proof of Eq. (13) is a classical result of characteristic function of normal random
vector.20 For Eq. (14), we apply derivatives in Eq. (10) to the cosine functions in Eq. (13) in the
following manner:

EQ-TARGET;temp:intralink-;e015;116;451∇δðqÞ ¼ E

2
6664

∂
∂q1

cosðξTqÞ
..
.

∂
∂qN

cosðξTqÞ

3
7775 ¼ E

2
6664
−ξ1 sinðξTqÞ

..

.

−ξN sinðξTqÞ

3
7775 ¼ −E½ξ sinðξTqÞ�: (15)

Lemma 2 allows us to rewrite the range kernel δ∶RN → R as averaged random phenomena.
Combining Lemmas 1 and 2, we arrive at the proposed CCBF below.

Theorem 1 (CCBF). Let ξ ∼N ð0;ΦÞ, ξ ∈ RN be a normal random vector. Define

EQ-TARGET;temp:intralink-;e016;116;318x̂fugðiÞ ≔ uðiÞ þΦ
E

�
ξ

�
− sinðξTuðiÞÞ
cosðξTuðiÞÞ

�
T
�
ρðiÞ⋆

�
cosðξTuðiÞÞ
sinðξTuðiÞÞ

���

E

��
cosðξTuðiÞÞ
sinðξTuðiÞÞ

�
T
�
ρðiÞ⋆

�
cosðξTuðiÞÞ
sinðξTuðiÞÞ

��� : (16)

Then, x̂fugðiÞ is equivalent to xfugðiÞ in Eq. (1), where u∶Z2 → RN is the input image and ρ is
the spatial kernel.

Proof. Lemma 2 inspires separable representations of range kernal δð·Þ and its gradient
∇δð·Þ, respectively, as follows:

EQ-TARGET;temp:intralink-;e017;116;182

δðuðiÞ − uðjÞÞ ¼ E½cosðξTðuðiÞ − uðjÞÞÞ�;

¼ E

�
½ cosðξTuðiÞÞ sinðξTuðiÞÞ �

�
cosðξTuðjÞÞ
sinðξTuðjÞÞ

��
(17)

EQ-TARGET;temp:intralink-;e018;116;106

∇δðuðiÞ − uðjÞÞ ¼ E½−ξ sinðξTðuðiÞ − uðjÞÞÞ�

¼ E

�
ξ½− sinðξTuðiÞÞ cosðξTuðiÞÞ �

�
cosðξTuðjÞÞ
sinðξTuðjÞÞ

��
; (18)
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where trig identities were used to expand cosð·Þ and sinð·Þ. Thus, Eq. (16) follows from sub-
stituting Eqs. (17) and (18) into Lemma 1.

In practice, CCBF proposed in Eq. (16) is carried out by Monte-Carlo. We approximate
the expectation by drawing M random vectors ξ ∼N ð0;ΦÞ, executing the computations
inside the expectation operator, and averaging. To emphasize the significance of CCBF in
Theorem 1, we now draw contrast to SBF20 and FCBF.14 First, the convolutions in the numer-
ator and the denominator of CCFB in Eq. (16) are identical [unlike SBF in Eq. (7) but like
FCBF], meaning their computational burden can be shared. Second, the convolution in the
numerator of CCBF in Eq. (16) combines all N color channels into two “color-compressive”
convolutions—ρ⋆ cosðξTuÞ ∈ R and ρ⋆ sinðξTuÞ ∈ R (i.e., not RN) where ρ is the spatial
kernel. This is in contrast to the 2N convolutions required to compute the numerator of
SBF in Eq. (7) because of the presence of the N-dimensional color image uðiÞ ∈ RN .
Similarly, CN convolutions are carried out in FCBF because decoupling between the random
vector ξ and sinðξTqÞ in Eq. (14) is not possible without randomization. As a result, the pro-
posed CCBF achieves a far superior overall complexity (as determined by the number of
convolutions) of OðMÞ where M is the number of Monte-Carlo instantiations—a significant
improvement over SBF and FCBF of complexity order OðNMÞ and OðCNÞ, respectively. See
Table 1 and an example results in Fig. 2. The rate of Monte-Carlo convergence determiningM
is described in Sec. 4.1.

We also emphasize that the “color-compressive” convolutions ρ⋆ cosðξTuÞ ∈ R and
ρ⋆ sinðξTuÞ ∈ R by spatial kernel ρ are mathematically equivalent ways to implement the
multicolor gradient range kernel in Eq. (10). Thus, the change from the random filtering
of multiple color channels (SBF) into a single random filtering process (CCBF) will behave
correctly, regardless of the differences of intensity patterns in N-dimensional color image
u∶Z2 → RN .

3.2 Color-Compressive Nonlocal Means

We propose CCNLM as a block generalization of CCBF we proposed in Theorem 1. The rela-
tionship between the conventional NLM and the conventional BF is made explicit in the
Lemma 3 below.

Lemma 3. Define e∶Z2 → RB2N as

EQ-TARGET;temp:intralink-;e019;116;172eðiÞ ¼

2
664

uði − ω1Þ
..
.

uði − ωB2Þ

3
775; (19)

where u∶Z2 → RN is aN-dimensional color image and fω1; : : : ;ωB2g ∈ Ω refers to the indexes
of the B × B block. Set BF parameter Φ ∈ RB2N×B2N as a block diagonal matrix of the form:

Fig. 2 Example bilateral filtering results. (a)–(d) Parameters were γ ¼ 10, ϕ ¼ 51, W ¼ 61.
(a) Input image, (b) BF (61.98 s), (c) BF implementation16 (2.96 s), and (d) proposed CCBF
(0.93 s, with M ¼ 31, #conv = 62). Iteration numbers were chosen to yield PSNR ≥ 41.14 dB
relative to the BF output. Image11 (876 × 584 × 3) with 8-bits per pixel.
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EQ-TARGET;temp:intralink-;e020;116;735Φ ¼

2
664
Φω1

. .
.

ΦωB2

3
775: (20)

Suppose we apply the BF xfegðiÞ ∈ RB2N to an B2 × N dimensional color image e∶Z2 → RB2×N .

Partition the output of xfegðiÞ ∈ RB2N as

EQ-TARGET;temp:intralink-;e021;116;649xfegðiÞ ¼

2
664

xω1
fegðiÞ
..
.

xωB2
fegðiÞ

3
775: (21)

Then, the NLM output yfugðiÞ can be rewritten as

EQ-TARGET;temp:intralink-;e022;116;568yfugðiÞ ¼ xωm
fegðiÞ; (22)

where the pixel indexm ¼ ðB2 þ 1Þ∕2 corresponds to the center position within the B × B block
(i.e., “xωm

” is the middle pixel in the B × B block, as shown in Fig. 3).

Proof. Using the BF equation in Eq. (1), and the definition of e as Eq. (19), the bilateral
filtered image xωfegðiÞ applied to an N-dimensional color image u∶Z2 → RN takes the form:

EQ-TARGET;temp:intralink-;e023;116;471xωfegðiÞ ¼
P

j∈Z2ρði − jÞ · δðeðiÞ − eðjÞÞ · uðj − ωÞP
j∈Z2ρði − jÞ · δðeðiÞ − eðjÞÞ ; (23)

where ρ is the spatial kernel and δ is the range kernel. Plugging eð·Þ in δð·Þ, we get
EQ-TARGET;temp:intralink-;e024;116;412

δðeðiÞ − eðjÞÞ ¼ exp

�
−
ðeðiÞ − eðjÞÞTΦ−1ðeðiÞ − eðjÞÞ

2

�

¼ exp

�
−
X
ω∈Ω

ðeði − ωÞ − eðj − ωÞÞTΦ−1
ω ðeði − ωÞ − eðj − ωÞÞ
2

�

¼ ηfegði; jÞ: (24)

Plugging Eq. (24) into Eq. (23) with ω ¼ ωm proves the Lemma.

The significance of Lemma 3 is that we may regard NLM as a special case of BF. Thus, we
substitute CCBF (Theorem 1) into Lemma 3 to arrive at the proposed CCNLM implementation.

Theorem 2 (CCNLM). Let ξðωÞ ∼N ð0;Φ−1
ω Þ, ξðωÞ ∈ RN , be independent random vectors

defined over ω ∈ Ω. Let u∶Z2 → RN be N-dimensional color image and ρ is a spatial kernel.
Define ŷ∶Z2 → RN as

Fig. 3 Pixel locations within a B × B block Ω.
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EQ-TARGET;temp:intralink-;e025;116;735ŷfugðiÞ ≔ uðiÞ þ μωm
ðiÞ; (25)

where

EQ-TARGET;temp:intralink-;e026;116;701μωðiÞ ¼ Φω

E

�
ξðωÞ

�
− sinðfξ � uÞg
cosðξ � uÞ

�
T
�
ρ⋆

�
cosðξ � uÞ
sinðξ � uÞ

���

E

��
cosðξ � uÞ
sinðξ � uÞ

�
T
�
ρ⋆

�
cosðξ � uÞ
sinðξ � uÞ

��� : (26)

Then ŷfugðiÞ is equivalent to NLM yfugðiÞ in Eq. (4).

Proof. Let e∶Z2 → RB2N be a B2 × N-dimensional color image defined as Eq. (19). Define a
new random vector

EQ-TARGET;temp:intralink-;e027;116;578Ξ ≔

2
664

ξðω1Þ
..
.

ξðωB2Þ

3
775: (27)

Or equivalently, Ξ ∼N ð0;Φ−1Þ, where Φ ∈ RB2N×B2N is as defined in Eq. (20). Substituting
Theorem 1 into Lemma 3 and recalling that uði − ωmÞ ¼ uðiÞ (where ωm is the middle pixel
within the B × B block, as described in Lemma 3), we have

EQ-TARGET;temp:intralink-;e028;116;472yfugðiÞ ¼ x̂ωm
fegðiÞ ¼ uðiÞ þΦωm

E

�
ξðωmÞ

�
− sinðΞTeðiÞÞ
cosðΞTeðiÞÞ

�
T
�
ρðiÞ⋆

�
cosðΞTeðiÞÞ
sinðΞTeðiÞÞ

���

E

��
cosðΞTeðiÞÞ
sinðΞTeðiÞÞ

�
T
�
ρðiÞ⋆

�
cosðΞTeðiÞÞ
sinðΞTeðiÞÞ

��� :

(28)

Furthermore, the inner product ΞTeðiÞ can be rewritten as a convolution-sum in Eq. (8), as
follows:

EQ-TARGET;temp:intralink-;e029;116;362ΞTeðiÞ ¼
X
ω∈Ω

ξTðωÞuði − ωÞ ¼ fξ � ugðiÞ: (29)

Substituting Eq. (29) into Eq. (28) proves the Theorem.

Steps required to carry out the proposed CCNLM in Theorem 2 are summarized in
Algorithm 2. Similar to CCBF, the expectation operator in CCNLM is carried out by the
Monte-Carlo averaging over M random vectors. The convolution operator is shared between
the denominator and all of the color channels in the numerator, reducing the number of con-
volutions (denoted by ⋆) to OðMÞ. [Compare this to SNLM in Eq. (9) with OðNMÞ convolu-
tions.] As described earlier, the complexity of convolution-sum defined in Eq. (8) is invariant to
block size B and color dimension N, and comparable to a conventional convolution if imple-
mented with fast Fourier transform (FFT).

4 Complexity Analysis and Further Acceleration Techniques

4.1 Convergence Rate

The complexities of CCBF in Algorithm 1 and CCNLM in Algorithm 2 are dominated by the
Gaussian filters. Recent advancements in filter designs established that Gaussian filtering can
be approximated by Oð1Þ per-pixel complexity processes using feedback25–28 or short-time dis-
crete cosine transform.29–32 Hence, the per-pixel complexity of CCBF/CCNLM implemented
with such filters would be OðMÞ, i.e., linearly dependent on Monte-Carlo drawsM but invariant
to the filter window size and image size.
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Furthermore, Corollary 1 below suggests that the iteration numberM grows very slowly with
the increased color dimension. Recalling Theorem 1, the convergence rate of Monte-Carlo aver-
aging in CCBF and CCNLM is proportional to the variances of cosðξTqÞ and ξ sinðξTqÞ (which
are fixed values) in Lemma (2).

Algorithm 1 Color-compressive bilateral filter

input: u∶Z2 → RN

output: x̂∶Z2 → RN

parameters: γ, Φ

initialize numerator nðiÞ ⇐ 0 and denominator dðiÞ ⇐ 0

for M times do

generate ξ ∼N ð0;Φ−1Þ

compute ρðiÞ ⇐ ξTuðiÞ

compute ϵðiÞ ⇐ cosðρðiÞÞ and λðiÞ ¼ sinðρðiÞÞ

compute τðiÞ ⇐ ρðiÞ⋆ϵðiÞ

compute βðiÞ ⇐ ρðiÞ⋆λðiÞ

update nðiÞ ⇐ nðiÞ þ ξðβðiÞϵðiÞ − τðiÞsðiÞÞ

update dðiÞ ⇐ dðiÞ þ ϵðiÞτðiÞ þ λðiÞβðiÞ

end for

set x̂ðiÞ ⇐ uðiÞ þΦnðiÞ∕dðiÞ

Algorithm 2 Color-compressive nonlocal means.

input: u∶Z2 → RN

output: ŷ∶Z2 → RN

parameter: γ, Φ

initialize numerator nðiÞ ⇐ 0

initialize denominator dðiÞ ⇐ 0

for M times do

generate ξ ∈ RB×B×N : ξðωÞ ∼N ð0;Φ−1
b Þ, ∀ ω ∈ Ω

compute ρðiÞ ⇐ ξðiÞ � uðiÞ

compute ϵðiÞ ⇐ cosðρðiÞÞ and λðiÞ ¼ sinðρðiÞÞ

compute τðiÞ ⇐ ρðiÞ⋆ϵðiÞ

compute βðiÞ ⇐ ρðiÞ⋆λðiÞ

update nðiÞ ⇐ nðiÞ þ ξðωmÞðβðiÞϵðiÞ − τðiÞλðiÞÞ

update dðiÞ ⇐ dðiÞ þ ϵðiÞτðiÞ þ λðiÞβðiÞ

end for

set ŷðiÞ ⇐ uðiÞ þΦωm
nðiÞ∕dðiÞ
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Corollary 1. Let ξ ∼N ð0;Φ−1Þ, ξ ∈ RN be a normal random vector, and q ∈ RN . Then, the
variance of cosðξTqÞ is no greater than 1

2
. The covariance matrix of ξ sinðξTqÞ is

EQ-TARGET;temp:intralink-;e030;116;434Φ−1 1 − α2

2
þΦ−1qqTΦ−1ð2α2 − αÞ; (30)

where

EQ-TARGET;temp:intralink-;e031;116;379α ¼ expð−qTΦ−1qÞ: (31)

The proof is found in the Appendix. The significance of Corollary 1 is that the Monte-Carlo
convergence rate of range kernel δðqÞ ¼ E½cosðξTqÞ� in the denominator of Eq. (17) is bounded
by a constant—i.e., invariant with respect to color dimension N (in the worst case; faster in the
usual case). The numerator of Eq. (16) is similarly governed by Φ∇δðqÞ ¼ E½Φξ sinðξTqÞ� in
Eq. (18), whose Monte-Carlo convergence rate is proportional to the diagonal entries of its
covariance matrix

EQ-TARGET;temp:intralink-;e032;116;274Φ
1 − α2

2
þ qqTð2α2 − αÞ: (32)

We therefore conclude that the overall convergence rate of the proposed CCBF is invariant to the
color dimension N, and so MSE scales only with the number of convolutions (as determined by
M only). See Fig. 4. It ensures that the accuracy requirement for higher color dimensional images
can be met without increasing the number of iterations significantly.

4.2 Color-Compressive Block Nonlocal Means

Leveraging block/patch-based denoising idea that pixels within the B × B block share filtering
weights, suppose we approximate the conventional NLM in Eq. (4) by a block nonlocal means
(BNLM) of the form:

EQ-TARGET;temp:intralink-;e033;116;111zfugðiÞ ≔
X
ω∈Ω

P
j∈Z2ρðiþ ω − jÞ · ηfugðiþ ω; jÞ · uðj − ωÞ
B2

P
j∈Z2ρðiþ ω − jÞ · ηfugðiþ ω; jÞ ; (33)

Fig. 4 Graph showing the MSE (averaged over color channels) (a) for SBF and proposed CCNLM
with respect to BF; (b) for SNLM and proposed CCNLM with respect to NLM, and proposed
CCBNLM with respect to BNLM. The results are obtained averaging over 100 images with 8-bits
per pixel taken from the McGill Color Image Database.33
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where u is the input image, ρ is the spatial kernel, and η is the range kernel. Intuitively, we have
allowed pixels within the block j − ω to be averaged together using the shifted weights
ηfugði; jÞ—to compensate for the shift, we shift the output pixel in the opposite direction (hence
iþ ω term). This can be written equivalently as

EQ-TARGET;temp:intralink-;e034;116;371zfugðiÞ ¼ 1

B2

X
ω∈Ω

xωfegðiþ ωÞ; (34)

where xωfugðiþ ωÞ is the shifted BF output in Eq. (23) for each pixel within the block. The
BNLM complexity found in Table 2 is similar to that of the NLM, with some extraadditions to
carry out Eq. (34) and a small overhead for carrying out Eq. (23) B2 times. In practice, BNLM
approximates NLM well because they share the same weights ηfugði; jÞ. Averaged over 90
images, the mean squared error 1

N Eky − zk2 between NLM and BNLM was only 11
when B ¼ 3.

Due to the averaging in Eq. (34), BNLM has a great potential to reduce the required number
of Monte-Carlo instantiations by a factor of B2. The color-compressive BNLM (CCBNLM)
follows directly from Theorem 2:

Corollary 2 (CCBNLM). Let ξðωÞ ∼N ð0;Φ−1
ω Þ, ξðωÞ ∈ RN , be independent random vec-

tors defined over ω ∈ Ω. Define ẑ∶Z2 → RN as

EQ-TARGET;temp:intralink-;e035;116;180ẑfug ¼ 1

B2

X
ω∈Ω

x̂ωfegðiþ ωÞ ¼ uðiÞ þ 1

B2

X
ω∈Ω

μωðiþ ωÞ; (35)

where μωðiÞ is as defined in Eq. (26) with B × B being the block size of NLM. Then, ẑfugðiÞ is
equivalent to zfugðiÞ in Eq. (33).

Proof is omitted because it is very similar to Theorem 2. In terms of complexity, Eq. (35) is
comparable to Eq. (25)—the additional cost of computing μω for allω ≠ ωm is almost negligible
because μω and μωm

share the convolution operations. Yet, CCBNLM converges significantly

Algorithm 3 Color-compressive block nonlocal means.

input: u∶Z2 → RN

output: ẑ∶Z2 → RN

parameter: γ, Φ

initialize numerator nωðiÞ ⇐ 0

initialize denominator dðiÞ ⇐ 0

for M times do

generate ξ ∈ RB×B×N : ξðωÞ ∼N ð0;Φ−1
b Þ, ∀ ω ∈ Ω

compute ρðiÞ ⇐ ξðiÞ � uðiÞ

compute ϵðiÞ ⇐ cosðρðiÞÞ and λðiÞ ¼ sinðρðiÞÞ

compute γðiÞ ⇐ ρðiÞ⋆ϵðiÞ

compute βðiÞ ⇐ ρðiÞ⋆λðiÞ

update nωðiÞ ⇐ nωðiÞ þ ξðωÞðβðiÞϵðiÞ − τðiÞλðiÞÞ

update dðiÞ ⇐ dðiÞ þ ϵðiÞτðiÞ þ λðiÞβðiÞ

end for

set ẑðiÞ ⇐ uðiÞ þ B−2P
ω∈ΩΦωnωðiþ ωÞ∕dðiÞ
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faster than CCNLM. To see why this is the case, recall that the Monte-Carlo convergence rate of
CCNLM is proportional to Eq. (32). The averaging in Eq. (35) reduces this covariance matrix to

EQ-TARGET;temp:intralink-;sec4.2;116;711½IN∕B2; : : : ; IN∕B2�
�
Φ
1 − α2

2
þ qqTð2α2 − αÞ

�2664
IN∕B2

..

.

IN∕B2

3
775

¼ 1 − α2

2B4

X
ω∈Ω

Φω þ 2α2 − α

B4

X
ω∈Ω

qωqTω;

where IN ∈ RN×N is an identity matrix and Φω ∈ RN×N is as defined in Eq. (20), and qb ∈ RN

is the ω’th subvector of q ∈ RB2N . This is effectively a reduction of covariance matrix by factor
of B2 (since the summation over ω ∈ Ω takes B2 elements). Hence, we conclude that the Monte-
Carlo convergence rate of CCBNLM is faster than CCNLM. Steps required to carry out
CCBNLM are provided in Algorithm 3.

We experimentally verify the speedup in Fig. 4(b). Here, the MSE is computed using the
original NLM as a reference. The CCNLM converges to NLM faster than SNLM—while
SNLM is slightly more computationally complex than CCNLM per iteration, the variance of
Eq. (9) is more favorable than Eq. (32). By contrast, there is an implied MSE penalty associated
with CCBNLM due to the fact that it converges to BNLM instead of NLM:

EQ-TARGET;temp:intralink-;e036;116;492Eky − ẑk2 ≥ Eky − zk2: (36)

However, since CCBNLM converges B2 times faster than CCNLM, the overall performance
of CCBNLM is far more favorable.

5 Experimental Verification

Recall that in literature, NLM and BF serve different purposes—NLM is used as a denoising
filter, while BF is used primarily for smoothing out textures while retaining the edges (often in
computer vision). As such, the input data u in our experiments use non-noisy data for BF, while
NLM experiments used noisy data (additive white Gaussian noise with variance σ2 ¼ 25).

Figure 4 shows the mean squared error convergence rate as a function of number of con-
volutions, averaged over 90 images, between the original and proposed implementations for the
BF and the NLM (1N Ekx − x̂k2, and 1

N Eky − ŷk2 or 1
N Eky − ẑk2), respectively. As expected

CCBF requires far fewer convolutions to converge to desired outputs of BF as opposed to the
SBF [Fig. 4(a)]. Similarly, as seen in Fig. 4(b), CCNLM converges to NLM with fewer con-
volutions than the SNLM. It is also clear that the CCBNLM converges to the desired result with
even fewer convolutions than both the SNLM and CCNLM implementations, with the MSE
between BNLM and the original NLM being ∼11 (averaged over 90 images).

The complexity analysis of Table 1 suggests the proposed BF implementation is four times
faster than the SBF for color images (i.e., when N ¼ 3) as seen in the bottleneck of both algo-
rithms. Similarly, CCNLM is two times faster than the SNLM implementation. For the BF
experiments, range kernel parameters ϕ ¼ 50 converges faster than ϕ ¼ 20, which is expected
because of Corollary 1. NLM is typically used for denoising, and so the experiment was run for
one set of parameters that yield the best visual results (with ϕ ¼ 70, a block size of 3 × 3 and a
window of 19 × 19).

Figure 1 compares the execution time of the conventional BF and several fast implementa-
tions12,15,16,20 and the proposed CCBF, for varying color dimension N. In this experiment, the
range parameter ϕ is varied based on the number of channelsN, as ϕ ¼ 30

ffiffiffiffi
N

p
. This ensures that

the bilateral weights δðuðiÞ − uðjÞÞ remain relatively constant despite the increasing N. These
times are based on Matlab R2019a running on a 2016 ThinkStation P300, with Intel Xeon
E3-1241 v3, 32 GB RAM, and 1.5TB HDD, NVidia Quadro K620.

The reported execution times in Fig. 1(a) confirm that the proposed CCBF filter’s complexity
grows very slowly with respect to N. One implementation15 runs out of memory at N ¼ 6, with
large number of clusters K > 250. We report the times it takes for the other methods,12,15,16,20 to
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yield an MSE (averaged over color channels) of 5 or less. The fast implementations,12,15,16 albeit
being fast for grayscale and color, tend to be slower than the proposed method—and sometimes
even the conventional BF—with the increase of color dimension N. Their execution times grow
at a faster-than-linear rate. In fact, the execution time required by the proposed CCBF to process
16 color channels is comparable to the execution time to process 10 color channels of SBF20 and
3 color channels of clustering BF method.16 We omit a similar test for NLM because its original
implementation of NLM cannot process the high-dimensional images in a reasonable time.

Fig. 5 Example bilateral filtering results. (a)–(d) Parameters were γ ¼ 10, ϕ ¼ 130, W ¼ 61.
(a) Input image, (b) BF (1209.29 s), (c) BF implementation16 (76.29 s), and (d) proposed
CCBF (62.43 s, with M ¼ 425, #conv = 850). Iteration numbers were chosen to yield PSNR ≥
41.14 dB relative to the BF output. Image24 (1392 × 1040 × 31) with 8-bits per pixel.

Fig. 6 Example bilateral filtering results: (a), (e), and (i) the inputs. Parameters used were γ ¼ 10,
ϕ ¼ 51, and W ¼ 61. (b), (f), and (j) the BF implementations with 54.825, 54.354, and 53.932 s
respectively. (c), (g), and (k) The SBF results with 34.674 s (M ¼ 350, #conv = 2800), 36.524 s
(M ¼ 376, #conv = 3008) and 3.86 s (M ¼ 38, #conv = 304), respectively. (d), (h), and (l) The
CCBF results with 10.871 s (M ¼ 374, #conv = 748), 16.554 s (M ¼ 537, #conv = 1074), and
2.29 s (M ¼ 29, #conv = 58), respectively. Iteration numbers were chosen to yield PSNR ≥
41.14 dB relative to the BF output. Image from McGill Color Image Database22 (876 × 584 × 3)
with 8-bits per pixel.
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Figure 1(b) shows the number of convolutions needed for the SBF and proposed CCBF
implementations to achieve an MSE of 5 with respect to color dimension N for reference.
Unlike Fig. 1(a) where the gap between execution times of SBF and CCBF become narrower
as color channel N increases, the number of required convolutions in SBF and CCBF diverge as
the color channelN grows. From this opposite behaviors in Figs. 1(a) and 1(b), we may conclude
that although CCBF requires fewer convolutions than SBF, terms such as additions and multi-
plications in Table 1 become non-negligible when N is sufficiently large.

Figures 2, 5, and 6 show the results of BF, the state-of-the-art accelerated BF implementa-
tion,16 and CCBF for a color input image (N ¼ 3) and a hyperspectral image (N ¼ 31). In terms
of the execution times of filtering color images, the implementation16 has a 21-times speedup

Fig. 7 Example NLM results. Parameters used: γ ¼ 10, ϕ ¼ 85, W ¼ 61, B ¼ 3. Execution times
(b) NLM (635.902 s, PSNR = 31.24 dB), (c) BNLM (804.997 s, PSNR = 30.50), (d) SNLM (62.07 s,
PSNR = 30.08 dB, with M ¼ 795, #conv = 7158), (e) proposed CCNLM (21.85 s, PSNR =
30.02 dB, with M ¼ 902, #conv = 2709), and (f) proposed CCBNLM (134.49 s, PSNR = 30.07 dB,
withM ¼ 1109, #conv = 3330). Iteration numbers were chosen to yield a PSNR ≥30 relative to the
clean image. Parrot image from Kodak color image set (768 × 512 × 3) with 8-bits per pixel.

Fig. 8 Example NLM results. (a) Noisy input image. (b) BM3D (7.14 s) (c) BNLM (912.204 s).
(d) CCBNLM (39.659 s, with M ¼ 250, #conv = 753). (e) NLM (720.281 s). (f) SNLM (56.267 s,
with M ¼ 600, #conv = 5403). (g) CCNLM (20.059 s, with M ¼ 600, #conv = 1803). Parameters
used: γ ¼ 10, ϕ ¼ 85, W ¼ 61, and B ¼ 3. Image from McGill Color Image Database22 (876 ×
584 × 3) with 8-bits per pixel. Note that BM3D is implemented in mexfile, and so the speed is not
comparable to Matlab implementations of the CCNLM.
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over the conventional BF, whereas the CCBF has a 66-fold speedup. In the case of the hyper-
spectral image, the speedup of implementation16 over the naive BF implementation is ∼16 times,
and the CCBF speeds it up by 19 times. Figures 7 and 8 show the result of the NLM and block
NLM implementations for denoising. The SNLM execution is 10 times faster than the original
NLM, while CCNLM and CCBNLM speed ups are 29 and 6 times, respectively. We also point

Fig. 9 Example results when number of iterationsM progressively increases. (a)–(c) Results from
SBF, with M ¼ 1 (#conv = 8), M ¼ 10 (#conv = 80), and M ¼ 50 (#conv = 400), respectively.
(d)–(f) Results from CCBF (proposed) with M ¼ 1 (#conv = 2), M ¼ 10 (#conv = 20), and
M ¼ 50 (#conv = 100), respectively. Parameters were γ ¼ 10, ϕ ¼ 51, andW ¼ 61. Image chosen
from the Kodak color image set (768 × 512 × 3) with 8-bits per pixel.

Fig. 10 Example results when number of iterationsM progressively increases. (a)–(d) Results for
SNLM withM ¼ 1 (#conv = 12),M ¼ 10 (#conv = 93),M ¼ 50 (#conv = 453), andM ¼ 200 (#conv
= 1803), respectively. (e)–(h) Results for CCNLM with M ¼ 1 (#conv = 6), M ¼ 10 (#conv = 33),
M ¼ 50 (#conv = 153), and M ¼ 200 (603), respectively. (i)–(l) Results for CCBNLM with M ¼ 1
(#conv = 6), M ¼ 10 (#conv = 93), M ¼ 50 (#conv = 153), and M ¼ 200 (#conv = 603), respec-
tively. Parameters were γ ¼ 10, ϕ ¼ 85, W ¼ 61, and B ¼ 3. Image chosen from the Kodak color
image set (768 × 512 × 3) with 8-bits per pixel.
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out one limitation to this work, which is that CCBF cannot use an edge image separate from
the filtering image (i.e., no cross-bilateral filtering).

Figures 9 and 10 show the progression of CCBF and CCNLB for different number of iter-
ationsM, respectively. We can see that choosing too small of an M yields unsatisfactory results,
as seen for M ¼ 1 and M ¼ 10. When M ¼ 50, the BF implementations output a decent result,
whereas the same can not be said for the NLM implementations. CCNLM results atM ¼ 200 in
Fig. 10 is comparable to CCBNLM at M ¼ 50. This is in agreement with the graph in Fig. 4—
CCBNLM overtakes CCNLM and converges faster after a certain M value.

Figure 11 shows the result of denoising a hyperspectral image using the proposed CCNLM
and CCBNLM. It is clear that CCBNLM yields smoother results for a fewer number of iterations,
but as CCNLM runs longer, it approaches the same results. It is, however, impossible to compare
to the naive implementations of NLM and BNLM since these algorithms do not run within a
reasonable time.

6 Conclusion

We proposed CCBF and CCNLM, new methods aimed at reducing the complexity of the con-
ventional BF and NLM filter, respectively. CCBF and CCNLM combine the random filtering of
multiple color channels into a single random convolutional filtering process, achieving the per-
pixel complexity ofOðMÞ, whereM is the number of random vectors drawn in Monte-Carlo. We
proved theoretically that the Monte-Carlo convergence rate is invariant to the window size, the
block size, and very slowly increasing with the increasing color dimension of the image. Our
experiments confirm of the favorable results in terms of execution times when the color dimen-
sion N is large. We further improved the convergence speed by approximating NLM by BNLM.
Taken as a whole, the complexity reductions have allowed for speedups up to 66 times faster than
the naive implementation for the BF, and almost 30 times for the NLM implementation. To the
best of the authors’ knowledge, CCBF and CCNLM are the only implementations of BF/NLM to
have combined all color channels to a single convolutional process. A future research direction
includes GPU-based parallel implementations of CCBF and CCNLM to further accelerate BF
and NLM.

7 Appendix

Proof of Corollary 1.

Proof. Regarding the variance of cosðξTZÞ, the proof is found in Ref. 20. Let q ∈ RN be
a vector. By basic trigonometry, we have

EQ-TARGET;temp:intralink-;e037;116;125

E½ð−ξ sinðξTqÞÞð−ξ sinðξTqÞÞT � ¼ E

�
1 − cosð2ξTqÞ

2
· ξξT

�

¼ Φ−1

2
þ 1

8
∇2E½cosð2ξTqÞ�; (37)

Fig. 11 Example results for CCBNLM and CCNLM denoising on a hyperspectral image24

(1392 × 1040 × 31). Parameters were γ ¼ 10, ϕ ¼ 14, W ¼ 61, and B ¼ 3. (a) Noisy input image,
(b) CCBNLM results (M ¼ 2500, #conv = 7503), (c) CCNLM result (M ¼ 2500, #conv = 7503), and
(d) CCNLM results (M ¼ 4000, #conv = 12,003).
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where ∇2 is the Laplace operator defined over the vector q ∈ RC, and the last equality stems
from the relation

EQ-TARGET;temp:intralink-;e038;116;711∇2 cosð2ξTqÞ ¼ −∇2ξ sinð2ξTqÞ ¼ −4ξξT cosð2ξTqÞ: (38)

Invoking Lemma 2 yields the following:
EQ-TARGET;temp:intralink-;e039;116;667

E½ð−ξ sinðξTqÞÞð−ξ sinðξTqÞÞT � ¼ Φ−1

2
þ 1

8
∇2 exp

�
−
4qTΦ−1q

2

�

¼ Φ−1 1 − expð−2qTΦ−1qÞ
2

þ 2Φ−1qqTΦ−1 expð−2qTΦ−1qÞ: (39)

Similarly, we obtain from Eq. (38) and Lemma 2 the relation
EQ-TARGET;temp:intralink-;e040;116;566

E½−ξ sinðξTqÞ� ¼ ∇E½cosðξTqÞ�

¼ −Φ−1q exp

�
−
qTΦq
2

�
: (40)

Substituting Eq. (31), we obtain the covariance matrix
EQ-TARGET;temp:intralink-;e041;116;492

E½ð−ξ sinðξTqÞÞð−ξ sinðξTqÞÞT � − ðE½−ξ sinðξTqÞ�ÞðE½−ξ sinðξTqÞ�ÞT

¼ Φ−1 1 − α2

2
þΦ−1qqTΘ−1ð2α2 − αÞ: (41)
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