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ABSTRACT  

Approximately two million pediatric deaths occur every year due to Pneumonia. Detection and diagnosis of Pneumonia 

plays an important role in reducing these deaths. Chest radiography is one of the most commonly used modalities to 

detect pneumonia. In this paper, we propose a novel two-stage deep learning architecture to detect pneumonia and 

classify its type in chest radiographs. This architecture contains one network to classify images as either normal or 

pneumonic, and another deep learning network to classify the type as either bacterial or viral. In this paper, we study and 

compare the performance of various stage one networks such as AlexNet, ResNet, VGG16 and Inception-v3 for 

detection of pneumonia. For these networks, we employ transfer learning to exploit the wealth of information available 

from prior training. For the second stage, we find that transfer learning with these same networks tends to overfit the 

data.  For this reason we propose a simpler CNN architecture for classification of pneumonic chest radiographs and show 

that it overcomes the overfitting problem. We further enhance the performance of our system in a novel way by 

incorporating lung segmentation using a U-Net architecture. We make use of a publicly available dataset comprising 

5856 images (1583 – Normal, 4273 – Pneumonic). Among the pneumonia patients, 2780 patients are identified as 

bacteria type and the rest belongs to virus category. We test our proposed algorithm(s) on a set of 624 images and we 

achieve an area under the receiver operating characteristic curve of 0.996 for pneumonia detection. We also achieve an 

accuracy of 97.8% for classification of pneumonic chest radiographs thereby setting a new benchmark for both detection 

and diagnosis. We believe the proposed two-stage classification of chest radiographs for pneumonia detection and its 

diagnosis would enhance the workflow of radiologists. 

Keywords: Pneumonia Detection, Computer Aided Detection, Computer Aided Diagnosis, Convolutional Neural 

Networks, Lung Segmentation 

1. INTRODUCTION

Computer Aided Detection and Diagnosis (CADD) has been a research area attracting great interest in medical imaging 

over the past decade. CADD tools would assist the doctors and offer a valuable second opinion to the doctors. 

Pneumonia affects 7% of the global population and results in 2 million deaths every year1. Pneumonia is one of the most 

fatal diseases among children. Chest Radiographs (CRs) are one of the most commonly utilized imaging modalities by 

radiologists in order to detect and diagnose pneumonia1. In this research, we present a novel two-stage deep learning 

architecture to detect and diagnose pneumonia on CRs thereby assisting radiologists with the decision-making process.  

Several machine learning and deep learning methods have been published in the literature for CADD in CRs. A 

Computer aided detection system to detect lung nodules in CRs is presented2. Lungs in CRs are segmented using active 

shape model and later the potential nodule candidates are determined using multi-scale weighted convergence index 

filter2. Later, the potential candidates are classified as nodule or non-nodule using 114 hand-crafted features and a Fisher 

linear discriminant classifier2. A novel ‘N-Quoit’ filter is presented for computer aided detection in CRs3. Feature 

selection based cluster and classification approach is presented in order to detect and identify lung nodules in CRs4. 

Comparative study of various traditional classification approaches for lung cancer detection in CRs is presented5. A set 

of 503 hand-crafted features are computed for lung cancer detection using conventional classification approaches6. A U-
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Net architecture for segmentation of lungs in CRs7. CADD tools for pneumonia are presented8-15. A set of hand-crafted 

features are computed in order to detect pneumonia in CRs8-11. Gradient-based visualization method to localize the 

region of interest for pneumonia detection is presented12. An attention guided mask algorithm to locate the region of 

interest for pneumonia detection is presented13. However, very few research papers have emphasized on applying latest 

deep learning architectures for CADD of pneumonia using CRs14, 15. 

Convolutional Neural Networks (CNNs) are effective for pneumonia detection14, 15 and have provided good performance 

for various imaging applications which includes text, handwriting, and natural images. CNNs provide state-of-the-art 

performances for various visualization tasks16-20. We adopt the same in this paper. However, we present a two-stage deep 

learning architecture in order to detect pneumonia and classify its type as either bacterial or viral rather than a single 

stage architecture. We believe this type of architecture would be more helpful for radiologists and also help the CNNs to 

tune its weights/parameters accordingly for both detection and diagnosis stages.  

For stage one, we present transfer learning based approaches for classification of a CR as either normal or pneumonic. 

Transfer learning approaches are implemented using well-established networks such as AlexNet17, ResNet18, VGG-1619 

and Inception-v320. This type of architecture would help us exploit the wealth of information available from prior 

training for distinguishing wide range of classes and have proven to be highly effective for certain medical imaging 

applications21. Later, the overall probability of a CR being pneumonic is determined by averaging probabilities provided 

by all the transfer learning architectures implemented in this paper.  

In stage two, we further subcategorize the pneumonic chest radiographs as either bacterial or viral for further diagnosis. 

We find that the transfer learning approaches tend to overfit the data. This could be attributed to lack of training data. For 

this reason, we present a computationally efficient and a simpler CNN architecture for classification of pneumonic chest 

radiographs as bacterial or viral. Based on the markings by radiologists, we realize that shape and size of the lung plays a 

huge role in determining the bacterial or viral category. Thus, we implement a lung segmentation algorithm using U-Net 

architecture7. In order to train this U-Net architecture, we utilize the true lung segmentation masks provided for a 

different database by radiologists. We present these results for a publicly available dataset thereby setting a new 

benchmark. Our proposed algorithm provides an area under the Receiver Operating Characteristic (ROC) curve value of 

0.996 for pneumonia detection on a set of 624 test images. We also achieve an overall accuracy of 97.9% for 

classification of pneumonic chest radiographs as bacterial or viral thereby setting a new benchmark for both detection 

and diagnosis. We believe this type of two-stage architecture would help in enhancing the workflow of radiologists. 

The remainder of the paper is organized as follows. Section 2 describes the database utilized for this research. Section 3 

presents the computer aided detection architecture for pneumonia. Section 4 presents the CNN architecture implemented 

for classifying pneumonic chest radiographs as bacterial or viral. Experimental results obtained using the proposed 

approaches are presented in Section 5. Finally, conclusions are offered in Section 6. 

2. MATERIALS

For this research, we utilize a publicly available dataset15 containing CRs of children from 1 to 5 years of age. This data 

is collected from Guangzhou Women and Children’s Medical Center in Guangzhou, China. Dataset comprises 5,856 

images manually annotated by an expert reader as normal or bacterial or viral. Distribution of the dataset is as provided 

in Table 1. Figures 1-3 represent certain sample images marked as normal, bacterial or viral by an expert reader. 

Table 1. Dataset Distribution 

For the pneumonia detection stage, we combine the cases marked by reader as either bacterial or viral into a single 

pneumonia category thereby converting it into a binary classification scenario as either normal or pneumonic. We utilize 

the same set of training and testing cases15. We further divide training dataset into groups of 90% and 10% for training 

and validation purposes respectively in order to fine-tune the hyperparameters. Table 2 presents the distribution of 

Type Number of Chest Radiographs 
Normal 1583 

Pneumonia (Bacterial) 2780 

Pneumonia (Viral) 1493 
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samples belonging to each type of dataset. We utilize the same set of cases for all the architectures presented for this 

stage.  

Figure 1. Sample images annotated as ‘Normal’ by Expert Readers. 

Figure 2. Sample images annotated as ‘Bacterial’ by Expert Readers. 

Figure 3. Sample images annotated as ‘Viral’ by Expert Readers. 
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Table 2. Training, Validation  and Testing Dataset for Pneumonia Detection

Type of Dataset Normal Pneumonia 
Training 1214 3494 

Validation 135 389 

Testing 234 390 

For the diagnosis stage of pneumonia, we utilize the same set of cases15 for training and testing purposes. We further 

subdivide training dataset into 10% for validation purposes in order to fine-tune the hyperparameters as implemented in 

the detection stage. The distribution is presented in Table 3.   

Table 3. Training, Validation  and Testing Dataset for Pneumonia Diagnosis 

Type of Dataset Bacteria Virus 

Training 2284 1210 

Validation 254 135 

Testing 242 148 

3. PNEUMONIA DETECTION ARCHITECTURE

In this section, we present the transfer learning based CNN architecture adopted for classification of images as either 

normal or pneumonic. At first, we spatially re-sample all the images to 224 × 224 or 227 × 227 depending on the 

architecture implemented. Aforementioned, we utilize well-established networks such as AlexNet, ResNet, VGG16 and 

Inception-V3 for transfer learning purposes. Utilizing such well-established networks helps us retain wealth of 

information from prior training for classifying different objects. We retain all the weights and layers until the last fully 

connected layer. We replace the last layers with our own fully connected and softmax layers specific to this application. 

These approaches have proven to be highly effective especially for image-based classification problems17-21. Figure 4 

presents the top-level block diagram of the transfer learning approach implemented in this study21. Moreover, study of 

such transfer learning approaches could provide us with insights about the x-ray images and would help us understand 

the effectiveness of such methodologies for medical imaging-based applications.  

Figure 4. Top Level Block Diagram of Transfer Learning Approach. 
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4. PNEUMONIA DIAGNOSIS ARCHITECTURE

In this section, we propose and study various methods for classification of pneumonia chest radiographs as either 

bacteria or virus. We utilize the dataset distribution presented in Table 3 for this study. At first, we study the 

performance of transfer learning approaches based on the same set of networks utilized for detection stage.  

In addition, we propose our own CNN architecture specific to this application and study its performance. Figure 5 

presents our proposed CNN architecture. We resample all cases to a size of 256 × 256. Each convolutional layer present 

in the architecture is comprised of convolution operation (3 × 3), batch normalization, Rectified Linear Unit (ReLU) and 

a maximum pooling layer of window size 2 × 2 with a stride of 2 as shown in Figure 6. However, the number of 

convolution filters present in each layer differ and is as shown in Table 4. Hyperparameters for the proposed CNN 

architecture are determined solely based on the validation dataset. We choose ‘adam’ optimization technique with a mini 

batch size of 64 and an initial learning rate of 0.0001. 

In addition to the CNN architecture, we also preprocess the images by segmenting the lungs using our previously 

proposed U-Net architecture7. U-Net architecture is solely trained based on the true lung masks provided for Shenzhen 

Dataset22, 23 comprising 566 cases. Figure 7 presents the U-Net architecture adopted in this paper for lung segmentaition7. 

Proposed U-Net comprises of 3 stages of encoding and decoding7. All the convolution operations and pooling operations 

are performed using 3 x 3 and 2 x 2 filter. Deconvolution operation and up-pooling operations are performed using 

bilinear interpolation24. Lung segmentation is performed using MATLAB’s built-in function unetLayers25. Based on the 

training dataset, we determine that shape of the lung plays a significant role in determining bacterial or viral type of 

pneumonia. Hence, we believe that segmenting the lungs would help the classifier in distinguishing bacterial and viral 

type of pneumonia.  

Figure 5. Proposed CNN architecture. 

Figure 6. Convolutional Layer Structure. 

Table 4. Number of convolution filters present in each convolutional layer. 

Convolutional Layer# Number of Filters 
Layer #1 8 

Layer #2 16 

Layer #3 32 

Layer #4 64 
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Figure 7. U-Net Architecture for Lung Segmentation in CRs7 

Figure 8 presents the preprocessing results after the application of lung segmentation algorithm. We study the 

performance of our proposed approach with and without additional preprocessing. Note that, after preprocessing we 

solely present the segmented lung as the input image to the CNN architecture. 

Figure 8. Lung Segmentation Results. 

5. EXPERIMENTAL RESULTS

In this section, we present the results obtained for approaches described in Sections 3 and 4. We study the performance 

of pneumonia detection in terms of ROC curve thereby providing an option to radiologists to choose his/her choice of 

operating point. As mentioned earlier, we study the performance of the pneumonia detection based on the dataset 
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distribution provided in Table 2. Table 5 presents the training summary for all the transfer learning based approaches in 

terms of overall accuracy. Table 5 clearly indicates that transfer learning approaches provide good results for validation 

dataset and the systems are well trained without any additional preprocessing. 

Table 5. Training and Validation Accuracy for Pneumonia Detection. 

Network Adopted for Transfer Learning Training Accuracy Validation Accuracy 
AlexNet 97.2 96.5 

VGG16 95.1 94.8 

ResNet 98.5 98.4 

Inception-v3 99 98.9 

We present the results obtained for pneumonia detection in terms of ROC curve for test cases. Figure 9 presents the 

results obtained using transfer learning approaches for the test dataset. Results clearly indicate that transfer learning 

approaches using well established networks are highly effective for classification of normal and pneumonic chest 

radiographs. In addition, we also average all the posterior probabilities provided by all the approaches and study its 

results. We term this method as ‘Average of All’.  We study the results in terms of Area under the ROC curve (AUC) 

and they are summarized for the test dataset in Table 6.  

Figure 9. ROC curve obtained for various classification algorithms for detection of Pneumonia. 
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Table 6. AUC for Detection of Pneumonia on Testing Set. 

Network Adopted for Transfer Learning AUC 
Kermany et al.15 0.968 

AlexNet 0.993 

VGG16 0.990 

ResNet 0.993 

Inception-v3 0.987 

Average of All 0.996 

For diagnosis of pneumonic chest radiographs as either bacterial or viral, Table 7 presents the training summary for all 

the approaches presented in Section 4. Table 7 clearly indicates that transfer learning based approaches tend to overfit 

the dataset and our proposed CNN overcame the overfitting issue due to its simplistic architecture. Table 7 also indicates 

that segmentation of lungs using U-Net architecture increased the validation accuracy by 2.3%. 

Table 7. Training and Validation Accuracy for Pneumonia Diagnosis (Bacterial vs. Viral). 

Network Training Accuracy Validation Accuracy 
AlexNet 96 68 

VGG16 97 75 

ResNet 93 73 

Inception-v3 98 72.2 

Proposed CNN 96.7 96.0 

Proposed CNN with Lung Segmentation 98.5 98.3 

We measure the performance of our proposed CNN architecture for classification of pneumonic chest radiographs in 

terms of confusion matrix for our test dataset. Figure 10 presents the confusion matrix for classification of pneumonic 

chest radiographs without and with lung segmentation using our proposed CNN architecture. Table 8 presents the AUC 

value for viral detection on test cases for pneumonia diagnosis.  

 (a)  (b) 

Figure 10. Confusion matrix on test dataset using our proposed CNN architecture for classification of pneumonic chest 

radiographs (a) without any additional preprocessing, (b) after the application of lung segmentation 
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Table 8. AUC for Pneumonia Diagnosis (Viral Detection) on Testing Set. 

Network AUC 
Kermany et al.15 0.94 

Proposed CNN 0.96 

Proposed CNN with Lung Segmentation 0.99 

6. CONCLUSIONS

In this research, we have presented a two-stage deep learning architecture for detection and diagnosis of pneumonia. All 

the classification algorithms presented in this paper performed relatively well. We observe that the transfer learning 

approaches helped us achieve an AUC value of 0.996 for pneumonia detection thereby setting a high benchmark. Results 

indicated that transfer learning approaches using well-established deep learning networks led to overfitting problem for 

classification of pneumonia images as bacteria and virus. However, we overcame this problem with the help of a simple 

CNN architecture specific to this application and we achieved an accuracy of 93.3%. We enhanced the performance 

further to 97.9% by segmenting lungs using our U-Net architecture. Aforementioned, shape and structure of the lung 

plays an important role in determining the type of pneumonia category. In addition, segmenting lungs also aids in 

identifying region of interest for the classifier and the CNN architecture is tuned accordingly. We believe this type of 

two-stage architecture would help in determining parameters/weights particular to that stage. Having separate network 

architectures for detection and diagnosis would also help in re-training with new labeled data based on the application. 

This type of two-stage architecture would be highly essential for pneumonia detection and its diagnosis and would 

enhance the workflow of radiologists.  
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