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Abstract: In this article, we establish sufficient conditions for the existence of periodic solutions of a nonlinear infinite
delay Volterra difference equation:

∆x(n) = p(n) + b(n)h(x(n)) +

n∑
k=−∞

B(n, k)g(x(k)).

We employ a Krasnosel’skiĭ type fixed point theorem, originally proved by Burton. The primary sufficient condition is
not verifiable in terms of the parameters of the difference equation, and so we provide three applications in which the
primary sufficient condition is verified.

Key words: Large contraction, Volterra difference equation, infinite delay, periodic solution, fixed point

1. Introduction
Krasnosel’skiĭ [11, 19] is credited with a fixed point theorem in Banach spaces in which the fixed point operator
is expressed as the sum of a compact operator and a contraction. This theorem has been generalized in different
ways [2, 3, 5, 13, 14, 20]. In [5], Burton introduced the concept of a large contraction and proved an extension
of the Krasnosel’skiĭ fixed point theorem to the case in which the fixed point operator is expressed as the sum
of a compact operator and a large contraction. Burton’s theorem has proved to be quite useful in the study
of both delay differential equations and delay Volterra difference equations [1, 4–6, 10, 15–18], as well as other
functional or fractional equations [7–9, 12].

In this paper we shall apply Burton’s extended Krasnosel’skiĭ fixed point theorem to

∆x(n) = p(n) + b(n)h(x(n)) +

n∑
k=−∞

B(n, k)g(x(k)), n ∈ Z, (1.1)

and obtain sufficient conditions on the terms p, b, h,B , and g such that there exists a nontrivial periodic solution
of (1.1). The sufficient conditions are not verifiable for general p, b, h,B , and g and so the primary purpose of
this article is to consider three applications in which the sufficient conditions are verifiable.
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In Section 2, we shall provide the definition of a large contraction and state without proof Burton’s
extended Krasnosel’skiĭ fixed point theorem. In Section 3, we shall employ Burton’s theorem and obtain
sufficient conditions for the existence of a nontrivial periodic solution of (1.1). We shall close in Section 4
with three specific applications in which the primary sufficient condition is realized. The three applications are
motivated by two specific large contractions, one observed by Burton [5] and one observed by Raffoul [17, 18].

2. Preliminaries
Denote the set of all integers and real numbers by Z and R , respectively. Define Na = {a, a+1, a+2, · · · } for
any a ∈ R . Assume that empty sums and products are taken to be 0 and 1, respectively. First, we introduce
the concept of large contraction.

Definition 2.1 [5] Let (M, d) be a metric space and B : M → M . B is said to be a large contraction mapping
(or a large contraction) if φ , ψ ∈ M , with φ ̸= ψ, then d

(
Bφ,Bψ

)
≤ d(φ,ψ), and if for all ε > 0 , there exists

a δ < 1 such that [
φ,ψ ∈ M, d(φ,ψ) ≥ ε

]
⇒ d

(
Bφ,Bψ

)
≤ δd(φ,ψ).

Remark 2.2 It is clear from the definition that if δ serves as a large contraction coefficient for ε1 > 0 and
ε2 > ε1, then δ serves as a large contraction coefficient for ε2 > 0. This comment is made since throughout
Section 4, it is assumed that 0 < ε1 < 1.

The following theorem is Burton’s extended Krasnosel’skiĭ fixed point theorem.

Theorem 2.3 [5] Let M be a bounded convex nonempty subset of a Banach space (B, ∥.∥) . Suppose that A
and B map M into B such that:

1. x , y ∈ M , implies Ax+By ∈ M ;

2. A is compact and continuous;

3. B is a large contraction mapping.

Then there exists z ∈ M with z = Az +Bz .

3. Existence of periodic solutions

In this section, we establish sufficient conditions for the existence of periodic solutions of the Volterra difference
equation (1.1). We assume that there exists a least positive real number T such that

p(n+ T ) = p(n), for all n ∈ Z,

b(n+ T ) = b(n), for all n ∈ Z,

and
B(n+ T, k + T ) = B(n, k), for all (n, k) ∈ Z2.

We assume that h and g are real valued mappings.
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Let PT be the set of all T -periodic sequences {x(n)} , periodic in n . Then (PT , ∥.∥) is a Banach space
with respect to the maximum norm

∥x∥ = max
n∈{0,1,2,··· ,T−1}

|x(n)|.

Define a(n) = 1 + b(n) and assume throughout that

1−
n−1∏

k=n−T

a(k) ̸= 0, n ∈ Z. (3.1)

Define the mapping H by
H(x) = h(x)− x, x ∈ R. (3.2)

We begin with the following lemma.

Lemma 3.1 Assume x ∈ PT . Then x(n) is a solution of (1.1) if and only if

x(n) =
(
1−

n−1∏
k=n−T

a(k)
)−1 n−1∑

l=n−T

[
p(l) + b(l)H(x(l)) (3.3)

+

l∑
m=−∞

B(l,m)g(x(m))
] n−1∏
s=l+1

a(s).

Proof Let x ∈ PT . Rewrite (1.1) in the form

x(n+ 1)− a(n)x(n) = p(n) + b(n)H(x(n)) +

n∑
k=−∞

B(n, k)g(x(k)). (3.4)

Thus, x is a solution of (1.1) if and only if x is a solution of (3.4). For each n multiply (3.4) by
(∏n

k=−T a(k)
)−1

and sum the equations from l = (n− T ) to l = (n− 1) to obtain

x(n)
( n−1∏

k=−T

a(k)
)−1

− x(n− T )
( n−T−1∏

k=−T

a(k)
)−1

=

n−1∑
l=n−T

[
p(l) + b(l)H(x(l))

+

l∑
m=−∞

B(l,m)g(x(m))
]( l∏

s=−T

a(s)
)−1

. (3.5)

Thus, x is a solution of (1.1) if and only if x is a solution of (3.5). To obtain the representation in (3.3), note
that x ∈ PT , which implies x(n− T ) = x(n),

( n−1∏
k=−T

a(k)
)−1

−
( n−T−1∏

k=−T

a(k)
)−1

=
( n−1∏

k=−T

a(k)
)−1(

1−
n−1∏

k=n−T

a(k)
)
,

and ( n−1∏
k=−T

a(k)
)( l∏

s=−T

a(s)
)−1

=
( n−1∏

s=l+1

a(s)
)
.
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2

For simplicity, set

η =
∣∣∣(1− n−1∏

k=n−T

a(k)
)−1∣∣∣

and note that η is independent of n due to the periodicity of a(n). Set

M = η

T−1∏
k=0

(1 + |b(k)|).

Then for n ∈ {0, 1, 2, · · · , T − 1} and l ∈ {n− T, n− T + 1, · · · , n− 1} , we have∣∣∣(1− n−1∏
k=n−T

a(k)
)−1 n−1∏

s=l+1

a(s)
∣∣∣ = η

n−1∏
s=l+1

|a(s)| ≤ η

n−1∏
s=l+1

(1 + |b(s)|)

≤ η

n−1∏
k=n−T+1

(1 + |b(k)|) =M. (3.6)

Let J be a positive constant. This constant J will be carefully chosen in the applications. Define the
set

MJ = {φ ∈ PT : ∥φ∥ ≤ J} (3.7)

and note that MJ is a bounded and convex subset of the Banach space PT . Let the mapping A : MJ → PT

be defined by

(
Aφ

)
(n) =

(
1−

n−1∏
k=n−T

a(k)
)−1 n−1∑

l=n−T

[
p(l) +

l∑
m=−∞

B(l,m)g(φ(m))
] n−1∏
s=l+1

a(s), (3.8)

for n ∈ Z . Similarly, we set the map B : MJ → PT by

(
Bψ

)
(n) =

(
1−

n−1∏
k=n−T

a(k)
)−1 n−1∑

l=n−T

[
b(l)H(ψ(l))

] n−1∏
s=l+1

a(s), n ∈ Z. (3.9)

Assume that g(x) satisfies a local Lipschitz condition in x ; in particular, assume there exists a positive constant
L such that

|g(z)− g(w)| ≤ L∥z − w∥, for |z|, |w| ≤ J. (3.10)

Then, for φ ∈ MJ , we obtain

|g(φ(n))| = |g(φ(n))− g(0) + g(0)| ≤ |g(φ(n))− g(0)|+ |g(0)|

≤ L|φ(n)|+ |g(0)| ≤ LJ + |g(0)|. (3.11)

Lemma 3.2 Assume that g satisfies the Lipschitz condition given in (3.10). Suppose that there exists a positive
constant Λ such that

n∑
k=−∞

|B(n, k)| ≤ Λ, (3.12)

for all n . Then the mapping A : MJ → PT is continuous.
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Proof Let φ ∈ MJ and assume {φj} is a sequence of functions in MJ with ∥φj − φ∥ → 0 as j → ∞ . Then∣∣(Aφj

)
(n)−

(
Aφ

)
(n)

∣∣
≤

∣∣∣(1− n−1∏
k=n−T

a(k)
)−1 n−1∑

l=n−T

[ l∑
m=−∞

B(l,m)g(φj(m))
] n−1∏
s=l+1

a(s)

−
(
1−

n−1∏
k=n−T

a(k)
)−1 n−1∑

l=n−T

[ l∑
m=−−∞

B(l,m)g(φ(m))
] n−1∏
s=l+1

a(s)
∣∣∣

≤ η

n−1∑
l=n−T

l∑
m=−∞

|B(l,m)||g(φj(m))− g(φ(m))|
n−1∏

s=l+1

|a(s)|

≤MΛLT∥φj − φ∥,

which implies
∥∥(Aφj

)
−
(
Aφ

)∥∥ → 0 as j → ∞ . 2

Define a parameter Θ > 0 by

Θ = max
x∈[−J,J]

n−1∑
l=n−T

[
|p(l)|+ |b(l)||H(x)|

]
, (3.13)

for all n ∈ Z.

Theorem 3.3 Assume that (3.10), (3.12), and (3.13) hold. Then A(MJ) → PT is relatively compact.

Proof Define the map Ā : MJ → RT by

Āφ = {Aφ(0), . . . , Aφ(T − 1)}.

Since A(MJ) → PT , it is sufficient to show that Ā : MJ → RT is relatively compact. In particular, it is
sufficient to show that Ā(MJ) is uniformly bounded. Using (3.10), (3.12), and (3.13), we obtain

∣∣(Āφ)(n)∣∣ = ∣∣∣(1− n−1∏
k=n−T

a(k)
)−1 n−1∑

l=n−T

[
p(l) +

l∑
m=−∞

B(l,m)g(φ(m))
] n−1∏
s=l+1

a(s)
∣∣∣

≤ η

n−1∑
l=n−T

[
|p(l)|+

l∑
m=−∞

|B(l,m)||g(φ(m))|
] n−1∏
s=l+1

|a(s)|

≤M
[
Θ+ ΛT

(
LJ + |g(0)|

)]
,

which implies that Ā(MJ) is uniformly bounded. 2

The following lemma gives a relationship between the mappings H and B, where B is the mapping
defined in (3.9), in the sense of a large contraction.

Lemma 3.4 Assume that b(n) ≥ 0 for n ∈ Z . If H is a large contraction on MJ , then so is the mapping B .
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Proof If H is a large contraction on MJ then, for x , y ∈ MJ , we have

∥Hx−Hy∥ ≤ ∥x− y∥.

We first note that under the assumption, b(n) ≥ 0 for n ∈ Z , it follows that

∣∣∣(1− n−1∏
k=n−T

a(k)
)−1∣∣∣∣∣∣ n−1∑

l=n−T

b(l)

n−1∏
s=l+1

a(s)
∣∣∣ = 1.

Let c(l) =
∏n−1

s=l+1 a(s) . Then,

(
∇c

)
(l) =

n−1∏
s=l+1

a(s)−
n−1∏
s=l

a(s) = −b(l)
n−1∏

s=l+1

a(s).

Consequently,

∣∣∣(1− n−1∏
k=n−T

a(k)
)−1∣∣∣ n−1∑

l=n−T

b(l)

n−1∏
s=l+1

a(s) = −
∣∣∣(1− n−1∏

k=n−T

a(k)
)−1∣∣∣ n−1∑

l=n−T

(
∇c

)
(l)

= −
∣∣∣(1− n−1∏

k=n−T

a(k)
)−1∣∣∣[c(n− 1)− c(n− T − 1)

]

= −
∣∣∣(1− n−1∏

k=n−T

a(k)
)−1∣∣∣(1− n−1∏

k=n−T

a(k)
)
.

Now, consider

∣∣(Bx)(n)− (
By

)
(n)

∣∣ = ∣∣∣(1− n−1∏
k=n−T

a(k)
)−1 n−1∑

l=n−T

[
b(l)H(x(l))

] n−1∏
s=l+1

a(s)

−
(
1−

n−1∏
k=n−T

a(k)
)−1 n−1∑

l=n−T

[
b(l)H(y(l))

] n−1∏
s=l+1

a(s)
∣∣∣

≤
∣∣∣(1− n−1∏

k=n−T

a(k)
)−1∣∣∣ n−1∑

l=n−T

b(l)|H(x(l))−H(y(l))|
n−1∏

s=l+1

|a(s)|

≤ ∥x− y∥
∣∣∣(1− n−1∏

k=n−T

a(k)
)−1∣∣∣ n−1∑

l=n−T

b(l)

n−1∏
s=l+1

|a(s)| = ∥x− y∥. (3.14)

Thus, we have
∥Bx−By∥ ≤ ∥x− y∥.

Let ε > 0 and assume δ < 1 is such that if ∥x− y∥ ≥ ε then ∥Hx−Hy∥ < δ∥x− y∥. Since

∣∣∣(1− n−1∏
k=n−T

a(k)
)−1∣∣∣∣∣∣ n−1∑

l=n−T

b(l)

n−1∏
s=l+1

a(s)
∣∣∣ = 1,
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(3.14) is readily modified to show
∥Bx−By∥ < δ∥x− y∥;

in particular, B is a large contraction. 2

We state the main theorem, which provides sufficient conditions for the existence of a T periodic solution
of (1.1).

Theorem 3.5 Assume that there exists a least positive real number T such that

p(n+ T ) = p(n), for all n ∈ Z,

b(n+ T ) = b(n), for all n ∈ Z,

and
B(n+ T, k + T ) = B(n, k), for all (n, k) ∈ Z2.

We assume that h and g are real valued mappings and assume g satisfies the Lipschitz condition (3.10). Assume
the kernel B(n, k) satisfies (3.12) and define Θ by (3.13). Assume that b(n) ≥ 0 for n ∈ Z and assume there
exists J > 0 such that H(x) = h(x)− x is a large contraction on [−J, J ]. Finally, assume

M [Θ + ΛT (LJ + |g(0)|)] ≤ J. (3.15)

Then (1.1) has a periodic solution.

Proof Define the operators A and B by (3.8) and (3.9). We have shown that A is compact and continuous,
and that B is a large contraction on MJ . Moreover, (3.15) implies that if φ1, φ2 ∈ MJ then

|Aφ1(n) +Bφ2)| ≤M [Θ + ΛT (LJ + |g(0)|)] ≤ J.

In particular,
Aφ1 +Bφ2 ∈ MJ .

Thus, Theorem 2.3 applies and the theorem is proved. 2

4. Applications

We have seen that (3.15) is the primary sufficient condition. In this section we present three specific applications
of (1.1) and verify (3.15) in each application. Throughout this section it is assumed that 0 < ε1 < 1.

Burton [5] defined the concept of large contraction and showed that

x− x3

is a large contraction in a neighborhood of x = 0. Later, Raffoul [18] extended Burton’s arguments and showed
that

x− x5

is a large contraction in a neighborhood of x = 0. In particular, Raffoul [18] established the following lemma.
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Lemma 4.1 Let J = 5−1/4. If
MJ = {φ : Z → R | ∥φ∥ ≤ J},

then the mapping H defined by
H(x(n)) = −x(n) + (x(n))5

is a large contraction on the set MJ .

Example 1. In [18], Raffoul first showed that for x, y ∈ [−J, J ],

|H(x)−H(y)| ≤ |x− y|[1− (x4 + y4)

2
], (4.1)

and then he showed that H is a large contraction on MJ .
We employ Lemma 4.1 and Theorem 3.5 and find conditions on c > 0 such that the following Volterra

difference equation has a 4-periodic solution. Let c > 0 and consider the Volterra difference equation

∆x(n) = c
(

sin
(nπ

2

)
+
(
1 + cosnπ

)
h(x) +

n∑
k=−∞

2k−nx2(k)
)
, n ∈ Z, (4.2)

where h(x) = x5. We calculate the estimates required to apply Theorem 3.5 for (4.2). Here p(n) = c sin
(
nπ
2

)
,

b(n) = c(1+ cosnπ), B(n, k) = c2k−n , and g(x) = x2. We observe that 4 is the least positive real number such
that p(n + 4) = p(n) , b(n + 4) = b(n) , and B(n + 4, k + 4) = B(n, k) for all n , k ∈ Z . Set h(x) = x5 and
define a(n) = ((1 + c) + c cosnπ) . Note that

1−
n−1∏

k=n−4

a(k) = 1−
4∏

k=1

[(1 + c) + c cos(n− k)π)] = 1− (1 + 2c)2 ̸= 0, n ∈ Z;

in particular, (3.1) is satisfied. Using Lemma 4.1, the mapping

H(x(n)) = h(x(n))− x(n)

is a large contraction on the set MJ for J = 5−1/4. If z , w ∈ [−J, J ],

|g(z)− g(w)| =
∣∣z2 − w2

∣∣ ≤ [
|z|+ |w|

]
|z − w| ≤ 2J |z − w|,

which implies that (3.10) is satisfied with L = 2J. Since b(l) ≥ 0 for all l , M = 1. Note that

n∑
k=−∞

|B(n, k)| = c

n∑
k=−∞

2k−n = Λ <∞

implies (3.12) is satisfied with Λ = 2c . Let ψ ∈ MJ . For all n ∈ Z ,

n−1∑
l=n−4

[
|p(l)|+ |b(l)||H(ψ(l))|

]
= c

n−1∑
l=n−4

[
| sin(l π

2
)|+ (1 + cosnπ)|ψ(l)− ψ5(l)|

]
≤ c(2 + 4|J ||1− J4|) ≤ c(2 + 4J). (4.3)

Set Θ = c(2 + 4J).
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Now we choose c > 0 such that (3.15) is satisfied. In particular, we require that

c[2 + 4J + 2(4(2J)J)] ≤ J.

Thus, define
f(c) = J − c[2 + 4J + 2(4(2J)J)].

Then f(c) > 0 on [0, J
2+4J+16J2 ); in particular, if c ∈ (0, J

2+4J+16J2 ], then (3.15) is satisfied and we have the
following result.

Theorem 4.2 Let h(x) = x5 and J = 5
−1
4 , and set c0 = J

2+4J+16J2 . Then for each c ∈ (0, c0], (4.2) has a
nontrivial 4-periodic solution.

Example 2. We again consider (4.2) and we consider h(x) = f(x5). Set J = 5−1/4 and assume that f is
differentiable and increasing on [−J, J ]. Further, assume there exists 0 < α < 1 such that α ≤ f ′(u) ≤ 1 for
u ∈ [−J, J ]. In [18], Raffoul first showed that for x, y ∈ [−J, J ],

|(x− x5)− (y − y5)| = |(x− y)− (x− y)(x4 + x3y + x2y2 + xy3 + y4)|

≤ |x− y|[1− (x4 + y4)

2
], (4.4)

and then showed that x−x5 is a large contraction on MJ . Now for H(x) = f(x5)−x , let x, y ∈ [−J, J ]. Then
there exists c between x5 and y5 such that

|(x− y)− (f(x5)− f(y5))| = |(x− y)− f ′(c)((x5)− (y5))|

= |(x− y)− f ′(c)(x− y)(x4 + x3y + x2y2 + xy3 + y4)|

= |x− y||(1− f ′(c)(x4 + x3y + x2y2 + xy3 + y4))|

≤ |x− y|[1− α
(x4 + y4)

2
].

Thus, it follows that H(x) = x − f(x5) is a large contraction on [−J, J ]; the estimates in Example 1 remain
valid and so the following result is obtained.

Theorem 4.3 Let h(x) = f(x5). Set J = 5
−1
4 and assume f is differentiable and increasing on [−J, J ].

Further, assume there exists 0 < α < 1 such that α ≤ f ′(u) ≤ 1 for u ∈ [−J, J ]. Set c0 = J
2+4J+16J2 . Then for

each c ∈ (0, c0], (4.2) has a nontrivial 4-periodic solution.

Remark 4.4 Note that f(u) = sin(u) satisfies the hypotheses of Theorem 4.3.

Example 3. In this example, we consider H(x) = x − x2n+1 where 1 ≤ n ≤ 70 is an integer. In [5], Burton
showed that x− x3 is a large contraction on [−J, J ] for J = 1√

3
. Therefore, the following theorem is valid.

Theorem 4.5 Let h(x) = x3 and J = 3
−1
2 , and set c0 = J

2+4J+16J2 . Then for each c ∈ (0, c0], (4.2) has a
nontrivial 4-periodic solution.
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For his results, Burton [5] derived the calculation, for x, y ∈ [−J, J ],

|x− x3 − y + y3| ≤ |x− y|
(
1− x2 + y2

2

)
.

In [18], Raffoul derived the analogous (4.4). At this time, it is not clear to us how to generalize these derivations.
Instead, we produce an alternate argument to show that if 1 ≤ n ≤ 70 is an integer, then x− x2n+1 is a large
contraction on [−Jn, Jn] for Jn = ( 1

2n+1 )
1
2n . Note that for H(x) = x − x2n+1 , |H ′(x)| ≤ 1 for x ∈ [−Jn, Jn].

Thus, for each ε > 0, we only need to exhibit 0 ≤ δ < 1 such that if x, y ∈ [−Jn, Jn] and |x− y| ≥ ε , then

|(x− x2n+1)− (y − y2n+1)| ≤ δ|x− y|.

Let 0 < ε < 1. First, assume 0 ≤ x < y ≤ Jn and y − x ≥ ε. In particular, 0 ≤ x and y ≥ ε. Moreover,
0 < y ≤ J = ( 1

2n+1 )
1
2n . Then

ε2n ≤ y2n ≤
2n∑
l=0

x2n−lyl < (2n+ 1)y2n ≤ (2n+ 1)J2n = 1. (4.5)

In particular,

0 < 1−
2n∑
l=0

x2n−lyl ≤ 1− ε2n

and

|(x− y)− (x(2n+1) − y(2n+1))| = |x− y|(1−
2n∑
l=0

(x2n−lyl)) ≤ |x− y|(1− ε2n).

Thus, δ = 1− ε2n is a candidate in the definition of large contraction.
By the oddness of H(x) = x− x2n+1 , if 0 ≥ x > y ≥ −Jn, and x− y ≥ ε, then

|(x− y)− (x(2n+1) − y(2n+1))| ≤ |x− y|(1− ε2n).

Now consider the case x ≤ 0 ≤ y and y − x ≥ ε. Note that max{|x|, |y|} ≥ ε
2 and by the oddness of H

we can assume without loss of generality that y = max{|x|, |y|} and y ≥ ε
2 . We seek an inequality analogous

to (4.5). The upper bound is straightforward since

2n∑
l=0

x2n−lyl ≤
2n∑
l=0

|x|2n−lyl ≤ (2n+ 1)y2n ≤ (2n+ 1)J2n = 1.

To obtain a lower bound, write

2n∑
l=0

x2n−lyl =

n−1∑
l=0

(x2n−2ly2l + x2n−2l−1y2l+1) + y2n.

Each term (x2n−2ly2l + x2n−2l−1y2l+1) satisfies

−(
2n− 2l − 1

2n− 2l
)2n−2l−1 1

2n− 2l
y2n ≤ (x2n−2ly2l + x2n−2l−1y2l+1) ≤ 0
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for −y ≤ x ≤ 0 as shown by usual optimization techniques of calculus. Thus,

(
(

n−1∑
l=0

−(
2n− 2l − 1

2n− 2l
)2n−2l−1(

1

2n− 2l
)) + 1

)
y2n ≤

2n∑
l=0

x2n−lyl.

Now,
∞∑
l=0

−(
2n− 2l − 1

2n− 2l
)2n−2l−1(

1

2n− 2l
)

diverges. However, numerical calculations verify that

0 <
( n−1∑

l=0

(
2n− 2l − 1

2n− 2l
)2n−2l−1(

1

2n− 2l
)
)
< 1

for n = 1, . . . , 70. For n ∈ {1, . . . , 70}, set

δn = (

n−1∑
l=0

(
2n− 2l − 1

2n− 2l
)2n−2l−1(

1

2n− 2l
)).

Then, in analogue to (4.5),

0 <
(1− δn)

22n
ε2n ≤ (1− δn)y

2n ≤
2n∑
l=0

x2n−lyl ≤ (2n+ 1)y2n ≤ (2n+ 1)J2n = 1, (4.6)

if x ≤ 0 < y , y − x ≥ ε, y ≥ ε
2 . Thus, for each n ∈ {1, . . . , 70} , H(x) = x − x2n+1 is a large contraction on

[−Jn, Jn] since for x, y ∈ [−Jn, Jn], |y − x| ≥ ε,

|(x− y)− (x(2n+1) − y(2n+1))| ≤ |x− y|(1− (1− δn)

22n
ε2n).

We now state analogues to Theorems 4.2 and 4.3. Note that the only estimate H impacts in the
calculations of Example 1 is in the calculation of (4.3). Now (4.3) reads as

n−1∑
l=n−4

[
|p(l)|+ |b(l)||H(ψ(l))|

]
≤ c(2 + 4Jn|1− J2n

n |) ≤ c(2 + 4Jn),

and so
f(c) = Jn − c[2 + 4Jn + 2(4(2Jn)Jn)],

as in Example 1.

Theorem 4.6 Let 1 ≤ n ≤ 70 denote an integer and set h(x) = x2n+1, Jn = ( 1
2n+1 )

1
2n , and c0 = Jn

2+4Jn+16J2
n
.

Then for each c ∈ (0, c0], (4.2) has a nontrivial 4-periodic solution.
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