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ABSTRACT 

Breast cancer is the most common cancer in the world. According to the U.S. Breast Cancer 

Statistics, about 281,000 new cases of invasive breast cancer are expected to be diagnosed in 2021 

(Smith et al., 2019). The death rate of breast cancer is higher than any other cancer type. Early 

detection and treatment of breast cancer have been challenging over the last few decades. 

Meanwhile, deep learning algorithms using Convolutional Neural Networks to segment images have 

achieved considerable success in recent years. These algorithms have continued to assist in exploring 

the quantitative measurement of cancer cells in the tumor microenvironment. However, detecting 

cancerous regions in whole-slide images has been challenging as it requires substantial annotation 

and training efforts from clinicians and biologists. In this thesis, a notable instructing process named 

U-Net-based Active Learning is proposed to improve the annotation and training procedure in a 

feedback learning process by utilizing a Deep Convolutional Neural Networks model. The proposed 

approach reduces the amount of time and effort required to analyze the whole slide images. During 

the Active Learning process, highly uncertain samples are iteratively selected to strategically supply 

characteristics of the whole slide images to the training process using a low-confidence sample 

selection algorithm. The performance results of the proposed approach indicated that the U-Net-

based Active Learning framework has promising outcomes in the feedback learning process as it 

reaches 88.71% AUC-ROC when only using 64 image patches, while random lymphocyte prediction 

reaches 84.12% AUC-ROC at maximum. 

 

Keywords: Active Learning; Deep Learning; Convolutional Neural Network; Image Processing; 

Whole-Slide Image 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Breast cancer is a rapidly growing tumor characterized by uncontrolled proliferation of the 

breast and often includes ductal and lobular cells of the breast (Joseph et al., 2019). Among all 

breast cancer types, invasive ductal carcinoma is the most common cancer comprising 50% to 

75% of all breast cancer treatments (Khan et al., 2019). This is followed by the prevalence of 

invasive lobular carcinoma which accounts for 5% to 15% of all diagnoses, and the rarest type of 

breast cancers are either mixed ductal or lobular carcinoma, or other rare histologies (Luveta et 

al., 2020). 

With the advances in medical devices such as whole slide scanners, cancer diagnosis and 

treatment have successfully simplified pathology workflow. Whole slide scanners can digitize a 

glass slide so that doctors can investigate the digitized slides using a computer machine 

conveniently (Senaras et al., 2018). However, the size of the digitized slides often exceeds 1GB 

and requires doctors to consume many efforts on diagnosing cancer, interfering with efficient 

patient care (Kumar et al., 2020). 

The recent development of machine learning and deep learning to enhance medical 

diagnostics has received considerable attention due to their improvement of the speed of 

computational performance (Serag et al., 2019). In particular, computational image analysis 

helps doctors to diagnose cancer disease at an early stage, thereby improving the survival of 

patients. 
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1.2 Motivation 

According to the U.S. Breast Cancer statistics, about 281,000 new cases of invasive breast 

cancer are expected to be diagnosed in 2021 and about 43,000 women are expected to die from 

breast cancer in the United States (Smith et al., 2019). Currently, breast cancer is the most 

common cancer in the world (Altoé et al., 2021). The average risk of a woman in the United 

States developing breast cancer is about 13% and the death rates resulting from breast cancer is 

about 2.6% (DeSantis et al., 2017). The death rate of breast cancer is higher than any other 

cancer type, and early detection and treatment of breast cancer has been an absolute necessity 

and has been a highly important issue over the last few decades (Siegel et al., 2020). Identifying 

cancerous regions from whole slide images requires considerable effort from clinicians and 

biologists (Yao et al., 2020). The purpose of this thesis is to make this process fast and efficient 

in the hopes of automating the diagnosis of cancer. This aims to help the patient receive 

treatment on time and increase the survival rate.  

1.3 Active Learning for Enhancing Immunotherapy  

Precise analysis of whole-slide imaging has significantly advanced understanding of the 

tumor microenvironment by promoting new strategies for cancer detection. Deep learning 

algorithms using Convolutional Neural Networks to segment images have achieved considerable 

success in recent years and have continued to explore the quantitative measurement of cancer 

cells in the tumor microenvironment (Wang et al., 2019). However, detecting cancerous regions 

in whole-slide images has been challenging as it requires substantial annotation and training 

efforts from pathologists.  
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This challenge can be overcome by implementing Active Learning, a notable instruction 

process that requires students’ feedback to effectively partake in the learning cycle (Carse & 

McKenna, 2019). This thesis adopted the Active Learning concept by utilizing the semantic 

segmentation deep Convolutional Neural Networks model called U-Net which would be further 

integrated with Active Learning framework to improve the annotation and training procedure in 

a feedback learning process. This reduced the amount of time and effort required to analyze the 

whole slide images. As an Active Learning strategy, a low-confidence sample selection 

algorithm was used to improve the learning process. This method selected highly uncertain 

samples iteratively to supply whole slide images to the training process strategically. The 

performance results of the proposed approach indicated that the U-Net-based Active Learning 

method has promising outcomes in the feedback learning process. Moreover, the research 

demonstrated that prognostic values using the proposed framework presented meaningful 

survival analysis results. 

1.4 Contributions 

The contributions of this thesis are as mentioned below: 

i. Presenting a new approach that combines an Active Learning strategy with a machine 

learning model to analyze whole slide images. 

ii. Predicting cancerous regions using the combination of Active Learning and machine 

learning model. 

iii. Demonstrating the effectiveness of the presented approach. 
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1.5 Organization of the Thesis 

The following chapters starting from Chapter 2 describe the literature review and the 

research on various components used during the thesis, such as Semantic Segmentation, 

Convolutional Neural Networks, Deep Convolutional Neural Networks, and U-Net. In the next 

chapter, Chapter 3, whole slide image, and their processing is described. In Chapter 4, Active 

Learning and U-Net workings are explained in detail. Chapter 5 includes the performance 

analysis with the dataset used, how the method predicts cancer from whole slide images, and the 

results and findings of the system. Lastly, the thesis is concluded in Chapter 6 with the 

conclusion and future works.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Semantic Segmentation 

Semantic segmentation is an image analysis technique that labels an image region at the 

pixel level (Garcia-Garcia et al., 2017). Semantic segmentation has been successfully studied in 

the field of computer vision and machine learning. Assigning a particular or an interest class 

label corresponding to each pixel of an image is an important step in the understanding context 

of the image, such as building blocks, animals, landscapes, and human cells (Arnab & Torr, 

2017). Thus, developing a methodology of semantic segmentation has been a prevalent issue in 

artificial intelligence communities. 

An example of semantic segmentation performed by Zhang et al. (2018) is shown in Figure 

1. The first row and the third row represent the original images and the second and the last row 

represent segmentation regions by human annotator labeling a scene such as bed, horse, and 

landscape. Recent semantic segmentation methods have made significant enhancement in 

identifying objects in an image by using Convolutional Neural Networks because of their 

advantages that is, scene semantics can be learned by pixel-wise training (Sharma et al., 2018). 
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Figure 1: Labeling a Scene by Human Annotator (Zhang et al., 2018). 

2.2 Convolutional Neural Network 

Convolutional Neural Networks (CNN) to segment images have achieved considerable 

success in recent years and have helped explore the quantitative measurement of cancer cells in 

the tumor microenvironment (Tai & Lo, 2018). CNN often uses Deep Neural Networks named 

after linear mathematical operation between matrices made of complex interconnected layers 

which help classify the data into various labels (Albawi et al., 2017; LeCun et al., 2004). This 

method implements convolution procedures on unprocessed data and has had extensive 
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application utilization in image classification (Guo et al., 2016; Karpathy et al., 2015; Ronao & 

Cho, 2016). The CNN model consists of a convolutional layer, a pooling layer, and a fully 

connected layer. These layers are further organized in layers to form a profound structure to 

facilitate automated pattern or feature derivation in raw data (Ordóñez & Roggen, 2016; Wang et 

al., 2015). With the aid of various kernel sizes and strides, mapping of features has been done by 

the convolutional layer and these would then be pooled together to lessen the abundance of links 

within the convolutional and pooling layers. 

CNNs have been widely used with semantic image segmentation, which classifies each pixel 

into a specific class while separating instances of the same class (Liu et al., 2019). The results of 

fine-tuned CNNs are transferred to semantic segmentation to get accurate and detailed division 

(Long et al., 2015). The use of segmentation has been critical in analyzing WSIs and 

distinguishing different cellular information or diseases (Caicedo et al., 2019). However, the 

performance of CNN on WSIs poses a drawback due to their size and quantity (Xu et al., 2014). 

An example of CNN-based tumor classification is shown in Figure 2 which classifies tumors into 

binary classes such as benign tumors and malignant tumors. 

 

Figure 2: CNN Based Classification on WSIs (Dabeer et al., 2019) 
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2.3 Deep Convolutional Neural Network 

On the other hand, Deep Convolutional Neural Networks (DCNNs) work to improve the 

performance and computing capabilities of CNNs (Howard, 2013). DCNNs have received much 

attention in histopathology image analysis (Bejnordi et al., 2016; Yu et al., 2016). Deep-learned 

features from raw data are now trainable in DCNNs, passing through convolution and pooling 

layers followed by fully connected layers, and eventually create an optimal model for the 

histopathological classification task (Hou et al., 2016; Murthy et al., 2017; Sun et al., 2017; Xu et 

al., 2017). However, DCNNs require a large number of labeled training samples (Ronneberger et 

al., 2015). Due to the large size of WSIs, labeling becomes a challenging task (Çiçek et al., 

2016). Lee et al. (2021) have used DCNNs for processing WSIs, as shown in Figure 3.  

 

Figure 3: Semantic Segmentation Using a Deep Convolutional Neural Network (Lee et al., 

2021) 
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2.4 U-Net 

This is where U-Net, a type of DCNN model specifically developed for biomedical image 

processing, plays a vital role (Ronneberger et al., 2015). It can not only be fully trained with very 

few WSIs but can also localize a class label to each pixel (Ronneberger et al., 2015). Some 

related studies have enabled experts in a collaborating paradigm to provide a feedback learning 

process (Marée et al., 2016; Xu et al., 2017). However, these studies seem to have overlooked 

large-scale image analysis. Furthermore, recent studies have predominantly investigated patch-

based image analysis rather than pixel-wise image analysis (Amgad et al., 2019; Lee et al., 2019; 

Lee et al., 2020; Nalisnik et al., 2017). This large-scale image analysis can still require a 

significant amount of labeling by a pathologist to achieve better results from pixel-wise image 

analysis. The detailed architecture is shown in Figure 4. 

Figure 4: U-Net Architecture (Ronneberger et al., 2015) 
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CHAPTER 3: WHOLE SLIDE IMAGES 

3.1 Whole Slide Imaging 

With the help of automated high-resolution whole-slide imaging, analyzing Whole Slide 

Images (WSIs) has significantly advanced understanding of the tumor microenvironment by 

promoting new strategies for cancer detection (Hannig et al., 2020). Various types of equipment 

such as a WSI scanner, WSI viewer, and WSI display have been developed for illuminating 

precise histopathological image analysis (Dorsa et al., 2020). An example of a WSI scanner is 

shown in Figure 5 and the pixel-wise slide viewer is shown in Figure 6. Figure 6 represents a 

slide viewer facilitating pathologist workflow. 

 

Figure 5: A WSI Scanner (Farahani et al., 2015) 
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Figure 6: A WSI Virtual Slide Viewer (Farahani et al., 2015) 

3.2 Whole Slide Image Processing 

A digitized WSI has been widely used for clinical purposes with accurate diagnosis and 

treatment and is often remotely used for interpreting tissue sections before determining any 

clinical decision (Coccia, 2020). The tissues on the glass slides to be examined have a short span 

and could dry out. The glass slides also have to be stored in a secure place where the pathologists 

can access them efficiently. On the other hand, digitized WSIs can be accessed easily without 
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any concerns of physical damage (Brust et al., 2018). Although it takes time for a glass slide to 

be digitized, it is important to be aware of the advantages of digitized slide images. 

 

Figure 7: Whole Slide Image Processing 

 The overall process of the whole slide image processing used in this thesis is shown in 

Figure 7. A tissue sample of the resection and biopsy obtained from the patient can be stored in a 

glass slide. By following the formal instructions of the hospital, these glass slides can be scanned 

by a whole slide scanner generating 5x to 40x magnifications in a large-scale file. In this thesis, 

we have used these digitized slides to be analyzed in our proposed work. Each whole slide is 

segmented into several tiles, and the tiles are further segmented into 128x128 sized image 

patches. We used these image patches for the input of the U-Net model.  
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CHAPTER 4: ACTIVE LEARNING AND U-NET 

4.1 Active Learning 

Traditionally, Active Learning has been a well-known teaching method that encourages 

students to engage in the learning process. In recent years, Active Learning has been a part of 

machine learning (Wen et al., 2018). The idea of the Active Learning strategy is that an active 

learner asks a query in the form of unlabeled instances, and then the labeled instances are trained 

by a machine learning model to generate uncertain instances to be queried by the active learner 

again (Brust et al., 2018). An example of an Active Learning process is shown in Figure 8. 

 

Figure 8: An Example of an Active Learning Process (Settles, 2009) 

The number of training samples and manual labeling can be further reduced by applying 

Active Learning strategies (Settles, 2009). Traditionally, Active Learning is a notable instruction 
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process that involves students to partake in the learning cycle effectively. Translating the 

traditional Active Learning strategy to the machine learning concepts would mean actively 

balancing the training and testing data sets and controlling which set of data would be utilized 

next for the optimal results (Ertekin et al., 2007; Settles, 2009; Settles, 2011). 

4.2 U-Net-based Active Learning 

We adopted the fundamental concept of Active Learning in a semantic segmentation deep 

Convolutional Neural Networks model called U-Net. We propose a U-Net-based Active 

Learning method for improving the annotating and training procedure in a feedback learning 

process for reducing the amount of time and effort in the analysis of the whole slide images. We 

used the square tessellation regions annotated by the expert for training purposes on the U-Net. 

Prediction probabilities generated by the U-Net model are finally used for the following 

algorithm 1, low-confidence sample selection. The overall process of the proposed approach is 

shown in Figure 9. 

ALGORITHM 1: Low-confidence Sample Selection 

Function selection k, Prob 

 for all mij in Prob do 

  compute (|2 ∗ σ(mij) − 1|); 

 end 

 sort; 

 select top k samples; 

end 
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Figure 9: Active Learning Framework on U-Net (Right Image From (Ronneberger et al., 

2015)). 

In Algorithm 1, Prob represents the prediction probabilities for square tessellation regions 

generated by U-Net.  mij ∈ ℝn×n is each prediction probability in the square tessellation region, 

where i and j are indices for the row and column, and σ is the mean of mij. Top k samples are 

selected by sorting the prediction probabilities in ascending order. Algorithm 1 iterates until the 

prediction meets the user’s satisfaction.  

Since mij is a value of probability, the range of this value is between 0 and 1. When it is 

certain that the WSI contains the cancerous region or the lymphocyte region, the value of  

σ (mij)  will be close to 1 as the probability of finding the region will be high. Then the 

computation result of |2 ∗ σ(mij) − 1| will be |2*1-1| = 1. Similarly, when it is certain that the 

WSI does not contain the cancerous region, the value of  σ (mij)  will be 0 as the probability of 

not finding the region would be high. The computation result of |2 ∗ σ(mij) − 1| in that case, 

would be |2*0-1| = 1. In both these cases, the value of k is 1, and since they are sorted in 

ascending order, these types of values will likely be stored at the end.  
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On the other hand, when it is uncertain that whether the tissue sample has tumor or non-

tumor, the value of σ (mij) would be close to 0.5. In that case the computation result of |2 ∗

σ(mij) − 1| would be |2*0.5-1| = 0. Since the k values are sorted in ascending order, these types 

of values will be stored towards the top.  

The WSIs of the uncertain samples with the k value between 0 to 0.5 are re-evaluated by 

the clinicians and fed to the system again, making the process quicker.  

  



25 

CHAPTER 5: PERFORMANCE ANALYSIS 

5.1 Dataset 

In order to measure the performance of the proposed work, we compared the proposed 

method with the current most used semantic segmentation model, U-Net. In this thesis, the Cancer 

Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset (Amgad et al., 2019; Lee et al., 

2019; Lee et al., 2020; Nalisnik et al., 2017) was collected for evaluating the proposed method. 

The dataset was created by using structured crowdsourcing following systematic assignment of 

tasks with a variety of participants who expertise on breast cancer, and it is freely available. The 

dataset consists of 151 large regions of interest (ROIs) and a total of 115 TCGA-BRCA images 

were selected for the validation of the proposed work. The reason why we selected these images is 

that annotated images have suffered from some problems related to an inter-intra observation 

problem and these obstacles have made the annotation more difficult. The inter-intra observation 

problem is a result of conflicting opinions of a label by one or more doctors or pathologists. Inter 

observation problem would mean two or more individual doctors disagree on the annotated label 

by another doctor. Intra observation problem would mean an individual doctor disagrees on their 

annotation later in time. In order to avoid these problems, we have selected these images in which 

a collaborative annotation was applied on ROIs which would avoid the inter-intra-observation 

problem.  

5.2 Results of Active Learning using U-Net 

The performance results on the comparison between the proposed method and the 

traditional semantic segmentation method: U-Net are described in this section. 
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We used the annotated TCGA-BRCA images are split into two parts: 73 images for 

training and 42 images for testing. For each image, 128x128 sized image patches were captured 

because the input size of the U-Net model is not appropriate for our experiment that detects 

Tumor-Infiltrating Lymphocytes (TILs) in 40x magnification images. The U-Net model has been 

initially used on 572x572 sized image patches for the input size, but we modified the input size 

of the model to 128x128. The modified U-Net summary is shown in Table 1. The first column 

shows the types of layers used in the U-Net. The second column represents the output shape of 

the layers. The third column shows the number of parameters and the last column represents the 

previous layers. The initial input has been 128x128x3 sized such that the height of the image is 

128, the width of the image is 128, and the three channels indicate the red, green, and blue color. 

Our input is (input height) x (input width) x (input channels). When moving from the input 

convolution layer, the number of images generated by the filters is from 1 to 7 or 8. That is the 

reason why the U-Net output shape transforms from 128x128x3 to 128x128x16 in Convolutional 

Layer 1, for example.  

Table 1: Modified U-Net Model Summary (Ronneberger et al., 2015) 

Layer (type)  Output Shape Param # Connected to 

input_1 (InputLayer) [(None, 128, 128, 3)  0 
 

lambda (Lambda) (None, 128, 128, 3) 0 input_1[0][0] 

conv2d (Conv2D) (None, 128, 128, 16) 448 lambda[0][0] 

dropout (Dropout) (None, 128 ,128, 16) 0 conv2d[0][0] 

conv2d_1 (Conv2D) (None, 128, 128, 16) 2320 dropout[0][0] 

max_pooling2d 

(MaxPooling2D) 

(None, 64, 64, 16) 0 conv2d_1[0][0] 

conv2d_2 (Conv2D) (None, 64, 64, 32) 4640 max_pooling2d[0][0] 

dropout_1 (Dropout) (None, 64, 64, 32) 0 conv2d_2[0][0] 
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conv2d_3 (Conv2D) (None, 64, 64, 32) 9248 dropout_1[0][0] 

max_pooling2d_1 

(MaxPooling2D) 

(None, 32, 32, 32) 0 conv2d_3[0][0] 

conv2d_4 (Conv2D) (None, 32, 32, 64) 18496 max_pooling2d_1[0][0] 

dropout_2 (Dropout) (None, 32, 32, 64) 0 conv2d_4[0][0] 

conv2d_5 (Conv2D) (None, 32, 32, 64) 36928 dropout_2[0][0] 

max_pooling2d_2 

(MaxPooling2D) 

(None, 16, 16, 64) 0 conv2d_5[0][0] 

conv2d_6 (Conv2D) (None, 16, 16, 128) 73856 max_pooling2d_2[0][0] 

dropout_3 (Dropout) (None, 16, 16, 128) 0 conv2d_6[0][0] 

conv2d_7 (Conv2D) (None, 16, 16, 128) 147584 dropout_3[0][0] 

max_pooling2d_3 

(MaxPooling2D) 

(None, 8, 8, 128) 0 conv2d_7[0][0] 

conv2d_8 (Conv2D) (None, 8, 8, 256) 295168 max_pooling2d_3[0][0] 

dropout_4 (Dropout) (None, 8, 8, 256) 0 conv2d_8[0][0] 

conv2d_9 (Conv2D) (None, 8, 8, 256) 590080 dropout_4[0][0] 

conv2d_transpose 

(Conv2DTranspo 

(None, 16, 16, 128) 131200 conv2d_9[0][0] 

concatenate (Concatenate) (None, 16, 16, 256) 0 conv2d_transpose[0][0] 

conv2d_7[0][0] 

conv2d_10 (Conv2D) (None, 16, 16, 128) 295040 concatenate[0][0] 

dropout_5 (Dropout) (None, 16, 16, 128) 0 conv2d_10[0][0] 

conv2d_11 (Conv2D) (None, 16, 16, 128) 147584 dropout_5[0][0] 

conv2d_transpose_1 

(Conv2DTrans 

(None, 32, 32, 64) 32832 conv2d_11[0][0] 

concatenate_1 (Concatenate) (None, 32, 32, 128) 0 conv2d_transpose_1[0][0] 

conv2d_5[0][0] 

conv2d_12 (Conv2D) (None, 32, 32, 64) 73792 concatenate_1[0][0] 

dropout_6 (Dropout) (None, 32, 32, 64) 0 conv2d_12[0][0] 

conv2d_13 (Conv2D) (None, 32, 32, 64) 36928 dropout_6[0][0] 
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conv2d_transpose_2 

(Conv2DTrans 

(None, 64, 64, 32) 8224 conv2d_13[0][0] 

concatenate_2 (Concatenate) (None, 64, 64, 64) 0 conv2d_transpose_2[0][0] 

conv2d_3[0][0] 

conv2d_14 (Conv2D) (None, 64, 64, 32) 18464 concatenate_2[0][0] 

dropout_7 (Dropout) (None, 64, 64, 32) 0 conv2d_14[0][0] 

conv2d_15 (Conv2D) (None, 64, 64, 32) 9248 dropout_7[0][0] 

conv2d_transpose_3 

(Conv2DTrans 

(None, 128, 128, 16) 2064 conv2d_15[0][0] 

concatenate_3 (Concatenate) (None, 128, 128, 32) 0 conv2d_transpose_3[0][0] 

conv2d_1[0][0] 

conv2d_16 (Conv2D) (None, 128, 128, 16) 4624 concatenate_3[0][0] 

dropout_8 (Dropout) (None, 128, 128, 16) 0 conv2d_16[0][0] 

conv2d_17 (Conv2D) (None, 128, 128, 16) 2320 dropout_8[0][0] 

conv2d_18 (Conv2D) (None, 128, 128, 1) 17 conv2d_17[0][0] 

Total params: 1,941,105 

Trainable params: 1,941,105 

Non-trainable params: 0 

 

Python packages of Tensorflow 1.14 and Keras 1.0 were used for training 73 images and 

then testing 42 images to determine whether the image patch in each image is Tumor/TILs or 

not. The performance evaluation results of the proposed Active Learning framework are shown 

in the following Figure 10. The x-axis represents the number of image patches to be trained in 

the images and the y-axis represents AUC-ROC curve values. The Receiver Operator 

Characteristic (ROC) curve is a popular measurement generated by plotting the True Positive 

Rate (TPR) and the False Positive Rate (FPR). The TPR and the FPR are computed as below: 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Here, the TPR indicates that the proportion of the image patches with TILs correctly 

classified, and the FPR indicates that the proportion of the image patches with non-TILs not 

correctly classified. The area under the curve (AUC) is a well-known metric that shows the rate 

of correct classification. The AUC is defined as below: 

𝐴𝑈𝐶 = ∫ 𝑓(𝑥)𝑑𝑥
1

0

 

, where 𝑓(𝑥) is the ROC curve above the x-axis. By using the AUC-ROC, we can compare the 

proposed method with the traditional semantic segmentation method, U-Net.   

  We performed two experiments for predicting the tumor versus non-tumor and the TILs 

versus non-TILs, respectively. In order to compare the original U-Net with our approach (U-Net-

based Active Learning model), we initially selected 16 random samples from the training dataset 

consisting of 73 images. Here, the 16 random samples represent the 128x128x3 sized image 

patches in 73 images. We selected 16 random samples since Active Learning requires a set of 

initial samples to be selected. Since we are not experts on breast cancer, the initial samples were 

selected randomly. These samples can be adjusted for further experimentation, but we leave this 

issue for future research. The number of samples is increased by 16 so a total of 32 samples are 

used for training. Consequently, by incrementally increasing the sample size, we reached a total 

of 80 samples to compare the prediction results of the original U-Net model with the prediction 

results of the U-Net model with Active Learning. This comparison was repeated 10 times and the 

resultant prediction probabilities of the comparison are shown in Figure 10. The box plot 
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represents the U-Net random sampling for the tumor in A and lymphocyte in B. The blue line 

represents U-Net model with Active Learning for the tumor in A and lymphocyte in B. 

 

Figure 10: AUC-ROC on Random and Active Learning Prediction.  

A. Comparison of Random Tumor Prediction (Boxplot) and Active Learning Tumor 

Prediction (Blue Line). B. Comparison of Random Lymphocytes Prediction (Boxplot) and 

Active Learning Lymphocytes Prediction (Blue Line) 

 

 As shown in Figure 10, from the two experiments, we found that the proposed Active 

Learning based on U-Net reaches 88.71% AUC-ROC when only using 64 ROI image patches, 

while random lymphocyte prediction reaches 84.12% AUC-ROC at maximum. These results 

show that the proposed method is very effective in predicting tumors and TILs. 

5.3 Predicting Cancerous Region on Whole Slide Image 

In addition to the performance evaluation, we used the trained model created by the 

proposed U-Net-based Active Learning for predicting WSIs. The prediction results of the WSIs 

are shown in Figure 11. A represents the original whole-slide image, and B and C represent the 

pixel probabilities for lymphocytes and tumors, respectively. D represents a combined B and C 
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version, where lymphocytes are stained red, and tumors are stained blue. The brighter light in 

sections B, C, and D, the higher the pixel probabilities are in the images.  

Prediction results are shown in Figure 10. A represents the original whole-slide image, 

and B and C represent the pixel probabilities for lymphocytes and tumors, respectively. The 

brighter light you see, the higher the pixel probabilities are in the images. D represents a 

combined B and C version, where lymphocytes are stained red, and tumors are stained blue. 

 

Figure 11: Lymphocyte and Tumor Predictions 

Lymphocyte and Tumor Predictions on a Whole Slide Image Using the Proposed Active 

Learning Framework. A. Original Whole Slide Image. B. Lymphocyte Prediction. C. 

Tumor Prediction. D. Combined Prediction. 
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5.4 Survival Analysis 

With further development and incorporation of these methods and strategies, significant 

information can be retrieved such as survival analysis based on WSIs. This is a technique that 

statistically analyzes the time it takes for an event of interest to occur (Sullivan, 2016; Zhu et al., 

2017). This event of interest can be the re-emergence of the disease or death (Sullivan, 2016). 

Precise Survival Analysis can further advance WSI technologies to enhanced immunotherapy 

research on cancer with a large amount of medical image data to promote effective therapy for 

patients with minimum annotating, training data, and computational resources. 

The prognostic value of the lymphocyte percentages over the tumor accessed by the 

proposed Active Learning framework on 100 whole-slide images is presented in Figure 12. We 

have used the Kaplan-Meier approach for predicting survival probabilities since it avoids change 

due to the organization of the intervals by re-estimating the survival probability at each instance 

an event, such as recurrence of the disease or death, is encountered. It is a more accurate 

measurement of survival probabilities than other methods such as a Life Table approach.  

The percentages of the subtypes, lymphocytes-high, and lymphocytes-low were 

significantly predicted disease progression risk in the cohort (log-rank p=4.97e-3). It shows that 

the survival rate higher where the percentage of lymphocytes is higher, and the survival rate is 

lower where the percentage of lymphocytes is lower. The log-rank test is used to test the validity 

of the null hypotheses to compare the frequencies of an event at any point in time among two 

independent groups using chi-square distribution.   
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Figure 12: Kaplan-Meier Overall Survival Analysis Over Time (Days).  

Stratifications of the Subtypes are Lymphocytes-High (Blue) and Lymphocytes-Low 

(Orange), Respectively. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this thesis, we presented a U-Net-based Active Learning method for improving the 

annotating and training procedure in a feedback learning process, and thereby reducing the 

amount of time and effort in analyzing the whole slide images. Our experimental results 

demonstrate that the proposed framework enhances cancerous region detection performance in a 

limited number of image patches. Moreover, we found that the prognostic value of the cancerous 

region’s percentages derived from the proposed framework provides insights on survival 

analysis. 

6.2 Future Works 

 Although the proposed method is efficient and effective in predicting cancer regions, the 

experiments were limited to specific types of cancers. We plan to extend our Active Learning-

based method to other types of cancers such as brain tumors, lung cancer, and pancreatic cancer. 

Furthermore, our methodology can be expanded to unsupervised methods (Kallenberg et al., 

2016; Lee, Farley, et al., 2020). 
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APPENDIX A: APPROVAL LETTER 

  



45 

APPENDIX B: ACRONYMS 

AUC Area Under the Curve 

CNN Convolutional Neural Network 

DCNN Deep Convolutional Neural Network 

FPR False Positive Rate 

ROC Receiver Operator Characteristic  

TCGA-BRCA Cancer Genome Atlas Breast Invasive Carcinoma  

TIL Tumor-Infiltrating Lymphocytes 

TPR True Positive Rate 

WSI Whole Slide Image 
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