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ABSTRACT 

 

The ability for species to evolve new features in response to changing circumstances in order to 

survive and propagate is a ubiquitous observation on both the macroscopic and microscopic 

levels of living systems.  It should be no surprise, then, that diseases such as cancer utilize their 

own forms of adaptation to perpetuate themselves when exposed to external threats. Indeed, 

concepts drawn from Darwinian evolution are now widely accepted to help explain certain 

aspects of carcinogenesis and malignant progression, the sum of which have come to be known 

as the theory of tumor evolution. Since metastasis and drug resistance are features that manifest 

toward the late stages in the disease after withstanding numerous selective pressures, cancer cells 

harboring these features can be viewed as the most evolutionarily fit. Just as many forms of life 

rely on common adaptive mechanisms to promote their survival during dramatic shifts in their 

environment, metastatic and drug resistant cancers may rely upon common cellular mechanisms 

to promote their survival when faced with untenable circumstances.  We hypothesize that one of 

the oldest genes in the human genome, HSP90, functions as a link between metastatic and drug 

resistant behavior of cancer. We believe this occurs through HSP90’s relationship in supporting 

the function of gene products that define the cancer hallmarks and  clinical evidence suggesting 

HSP90 is important in progressing cancer into advanced stages. In the following chapters we 

discuss HSP90 and its role in orchestrating evolution of metastatic and drug resistant phenotypes. 

We use the clinically relevant HSP90 inhibitor, AUY922, to explore our assertions in vitro in the 

context of non-small cell lung cancer (NSCLC), which is prone to evolving metastatic and drug 

resistant phenotypes. We examine the implications for our findings, future directions, and new 

possibilities for utilizing HSP90 inhibitors to treat cancer. 
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CHAPTER 1: INTRODUCTION 

 

Heat shock protein 90 (HSP90) is among some of the most primordial and well conserved 

genes in the human genome (Schlesinger, 1990). It has retained its function in all of eukarya, 

from yeast to humans, with homologs in numerous prokarya as well. Despite its age in the 

genomes of almost every organism on earth, it has only been in the last 60 years that we have 

been able to study it in any sort of detail. Early studies taught us that HSP90 is necessary in order 

to maintain viability in eukaryotic cells (Picard, 2002), indicating that evolution has placed a 

high priority in preserving its function over the millennia. However, the dependence eukaryotic 

cells have on HSP90 to maintain function has made it difficult to study, as genetic manipulation 

of HSP90 usually results in cells and organisms that are hypersensitive to heat stress (Picard, 

2002). This has been a significant barrier to understanding what, if any, relevance HSP90 has to 

medicine. At the very minimum, these observations delineated HSP90’s role in managing 

stressful stimuli, with further research describing HSP90 as essential in managing various forms 

of cellular stress other than heat stress (Courgeon, Maisonhaute, & Best-Belpomme, 1984; 

Heikkila, Schultz, Iatrou, & Gedamu, 1982; Michel & Starka, 1986; Yura, Tobe, Ito, & Osawa, 

1984). 

Since the 1970’s, it has been possible to target HSP90 pharmacologically (DeBoer, 

Meulman, Wnuk, & Peterson, 1970), making it easier to interrogate its function without severely 

compromising biological systems. Decades of research manipulating HSP90 pharmacologically 

have produced some surprising revelations. One of the most interesting patterns of discovery has 

been that drugging HSP90 can generate unexpected, novel phenotypes at the single cell and 

whole organism levels (Lawag et al., 2017; Queitsch, Sangster, & Lindquist, 2002; Rohner et al., 

2013; Sollars et al., 2003). Some of these phenotypes are somewhat disjointed and would have 
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little chance in helping the organism achieve success in a natural setting subject to the forces of 

Darwinian evolution. This suggests that HSP90 may be important in reinforcing phenotypes that 

will promote the fitness of organisms in their environment, especially under stressful conditions.  

It is now widely accepted that the genetic, epigenetic, and phenotypic changes that 

cancers accrue can be explained by concepts pulled from Darwinian evolution, a theory known 

as tumor evolution (Casas-Selves & Degregori, 2011; Greaves, 2015; Lacina et al., 2019). The 

phenotypes malignant tumors evolve in the advanced stages of the disease can be viewed as the 

most fit since these cells survived late into the disease process. In the late stages of cancer, these 

phenotypes almost always result in metastatic and drug resistant behavior. If HSP90 is important 

in reinforcing fitness in species, then it is possible that HSP90 may be reinforcing fitness of 

cancers, in particular, fitness coupled to metastasis and drug resistance. Interestingly, HSP90 

inhibitors have also demonstrated potent and specific anticancer effects in a variety of tumors. 

In the following chapters, we discuss HSP90’s role in the heat shock response, and posit 

in what way HSP90 is essential in perpetuating the evolution of metastatic and drug resistant 

phenotypes in cancer. We will support our claims with scientific evidence demonstrating 

pharmacological inhibition of HSP90 attenuates metastatic and drug resistant phenotypes in 

vitro. We will close by examining the implications of this evidence, future directions, and 

considering novel ways to use HSP90 inhibitors to improve cancer treatment outcomes. 

The Heat Shock Response 

Organisms are exposed to a plethora of environmental insults that threaten cellular 

homeostasis and rely on cellular programs that respond promptly to these stressors to maintain 

normal cell functions. One of the most ancient and evolutionarily conserved responses to stress 

found in all of eukarya on earth is the heat shock response (Ritossa, 1996; Schlesinger, 1990). 
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An increase in just a few degrees can cause proteins to denature, become entangled, and 

aggregate within a cell. This disruption of proteostasis signals a dramatic increase in the 

production of a class of proteins known as heat shock proteins (HSPs) (Lindquist, 1986). 

Members of this class include HSP100, HSP90, HSP70, HSP60, and HSP40. They function as 

molecular chaperones, physically interacting with and manipulating misfolded, unstable and 

damaged proteins in order to aid them in reaching a mature conformation, ultimately maintaining 

appropriate trafficking, signaling integrity, and degradation of proteins in the face of heat stress. 

Proteins that rely on HSPs to maintain their native conformation are referred to as clients, with 

some HSPs having very specific clientele while others, such as HSP90, chaperone hundreds of 

clients stretching across multiple, indispensable cellular processes. Further research revealed that 

other forms of stress, such as hypoxia, acidosis, and chemical damage also result in disruption of 

proteostasis and up regulation of HSPs (Courgeon et al., 1984; Heikkila et al., 1982; Michel & 

Starka, 1986; Yura et al., 1984). Since other forms of stress can up regulate HSPs, the heat shock 

response has also come to be known as the “stress” response. When the source of stress is 

removed, HSPs return to their basal state, but remain primed to increase when faced with stress 

in the future.  

 The wide range of gene products in essential cell processes engaged by HSPs during 

stressful stimuli codifies the heat shock response as an adaptive mechanism, functioning 

primarily to maintain smooth cellular function in the face of stress. This has obvious benefits in 

that all biological tissues are likely to experience stress at some point in time, so having access to 

mechanisms permitting the cell to adapt to stress is critical to maintaining tissue integrity. 

Unfortunately, the heat shock response can enable certain diseases such as cancer. Indeed, 

numerous studies have demonstrated elevated HSP expression in a variety of human cancers 
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(Calderwood, Khaleque, Sawyer, & Ciocca, 2006; Sherman & Multhoff, 2007). This should not 

be surprising as one of the overarching themes in cancer is the acquisition of mutations resulting 

in unstable gene products that require additional processing by HSPs in order to function. 

Furthermore, many of the stressful stimuli associated with induction of HSPs also occur in 

cancer. For example, the accelerated growth and proliferation of neoplastic tissue can promote 

the formation of lactic acidosis in the tumor microenvironment. Additionally, application of high 

dose chemotherapy to treat cancer can be expected to supply the chemical stress necessary to 

induce HSP expression (Tiligada, 2006). Of the HSPs implicated in driving oncogenic processes, 

HSP90 is considered unique as it has distinct characteristics that separate it from other HSPs. 

Additionally, HSP90 may function differently in neoplastic tissue relative to normal tissue.  

HSP90 

Vertebrates retain two isoforms of HSP90, HSP90α and HSP90β. HSP90α is considered 

the inducible isoform, and its expression increases when a cell is exposed to stressful stimuli. 

HSP90β operates in a constitutive fashion, and is widely expressed at basal conditions (Millson 

et al., 2007). HSP90α and HSP90β share 86% sequence homology (Langer & Fasold, 2001) and 

are thought to be derived from a gene duplication event 500 million years ago (Krone & Sass, 

1994). HSP90 is almost exclusively found in the cytoplasm, although evidence is accumulating 

that it functions in the nucleus as well (Calderwood & Neckers, 2016), leaving open the 

possibility HSP90 directly influences transcriptional changes and epigenetic mechanisms, in 

addition to its classical chaperone function (Lawag et al., 2017; Sollars et al., 2003). It forms a  
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Figure 1. HSP90 Chaperone Function  

(A) Illustration of the three functional domains of HSP90, N=N terminal domain, M=middle 

domain, C=C terminal domain. The N terminal domain containing the nucleotide binding pocket 

in latent HSP90 has low affinity for ATP or small molecule HSP90 inhibitors (blunt ends). The 

C terminal domain is necessary for dimerization. (B) Upon binding to co-chaperones that aid in 

presentation of the unstable protein client to the active site, HSP90 achieves an activated 

conformation with high affinity for small molecule HSP90 inhibitors (top) (indicated by notch in 

N-terminal domain) and for ATP (bottom). (C)(Top) In the presence of small molecule 

inhibitors, HSP90 cannot complete chaperone function and client protein cannot achieve mature 

conformation, leading to proteosomal degradation and breakdown of essential cell functions 

during stress. (Bottom) ATP hydrolysis drives “pincer” mechanism, which assists client proteins 

in successfully reaching a mature conformation under stress. 

dimer at physiological temperatures and contains an N-terminal domain, a middle-domain and a 

C-terminal domain (Figure 1A). HSP90 is ATP dependent and contains a nucleotide-binding   
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pocket belonging to the GHKL family in its N-terminal domain (Prodromou et al., 1997). This 

ATP binding pocket is distinct from other chaperones and kinases and is the target of small 

molecule HSP90 inhibitors (Figure 1B). The middle domain contains the binding site for clients 

and for co-chaperones that assist HSP90 in its chaperone function (Hawle et al., 2006). The C-

terminal domain is necessary for HSP90 dimerization (Harris, Shiau, & Agard, 2004; Minami, 

Kimura, Kawasaki, Suzuki, & Yahara, 1994; Nemoto, Ohara-Nemoto, Ota, Takagi, & 

Yokoyama, 1995) and also binds certain clients. These three domains work in concert with co-

chaperones to manipulate unstable proteins into a functional, active conformation (Figure 1). 

When HSP90 is bound to co-chaperones containing an unstable protein in need of achieving a 

mature conformation, it is referred to as “activated” HSP90 (Kamal & Burrows, 2004). This state 

is found in stressed tissues and cancer cells, and is the state in which HSP90 is most receptive to 

pharmacological inhibition. HSP90 not bound to clients and co-chaperones is known as “latent” 

HSP90 (Kamal & Burrows, 2004). The latent form of HSP90 is commonly found in normal, 

unstressed tissues.  

Unlike other HSPs, HSP90 is essential in all eukaryotes and is present in large excess, 

representing 1-2% of a cell’s total proteome in unstressed conditions (Borkovich, Farrelly, 

Finkelstein, Taulien, & Lindquist, 1989; Taipale et al., 2012; Taipale et al., 2014). Excess HSP90 

expression in unstressed tissues is thought to provide a buffer for cells to quickly manage 

transient levels of incoming proteotoxic stress. HSP90 also engages its clients differently than its 

HSP cousins. Other HSPs interact with their clients transiently while many clients associated 

with HSP90, such as steroid hormone receptors, require continuous interaction in order to 

maintain a functional conformation (Pratt & Toft, 1997). Additionally, while HSP90 has 

hundreds of clients, they tend to focus around kinases, signal transducers, and transcription 
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factors that are key nodes to an assortment of cell signaling and developmental pathways 

(Taipale, Jarosz, & Lindquist, 2010; Taipale et al., 2014). Therefore, mechanisms that limit 

HSP90 function may have substantial effects on a cell’s behavior and ability to manage exposure 

to stressful stimuli. 

Perhaps the most profound aspect of HSP90 is its influence on rapid acquisition of novel 

traits through its role as both a potentiator and capacitor of phenotypic variation, at both the 

single cell and whole organism levels. As a potentiator of phenotypic variation, HSP90 can use 

its chaperone function to properly fold and support the function of unstable signal transducers, 

influencing phenotypic switches that can occur from selective pressures downstream of these 

signal transducers. For example, calcineurin relies on HSP90 to function (Imai & Yahara, 2000; 

Kumar, Musiyenko, & Barik, 2005), and studies involving yeast showed calcineurin requires 

HSP90 in order to promote rapid acquisition of resistance to antifungal drugs (Cowen & 

Lindquist, 2005). As a capacitor of phenotypic variation, HSP90 chaperone activity can mask 

phenotypic variation associated with cryptic genetic alterations in a cell or organism until 

extreme stresses or small molecule inhibition of HSP90 overwhelm its chaperone function and 

reveals them (Lawag et al., 2017; Queitsch et al., 2002; Rohner et al., 2013; Sangster et al., 2007; 

Sollars et al., 2003). This is the setting in which phenotypes with apparent decreases in 

evolutionary fitness have been observed (Queitsch et al., 2002; Sangster et al., 2007; Sollars et 

al., 2003). In fact, reductions in fitness were directly observed through reduced number of seeds 

produced by A. thaliana plants with attenuated HSP90 function (Sangster et al., 2007). Taken 

together, one would expect HSP90’s dual role as a potentiator and capacitor of novel phenotypes 

to have a measurable effect on the emergence of new phenotypes in a setting subject to the rules 

of Darwinian evolution, such as cancer.  
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Tumor Evolution, Intratumoral Heterogeneity, and HSP90 

Applying the concept of Darwinian evolution to cancer is not a cutting edge idea 

(Nowell, 1976), but it was not until the last few decades that technological advances have 

permitted researchers to study cancer at the level of detail necessary to build a strong case that 

concepts pulled from Darwinian evolution can explain certain aspects of carcinogenesis (Casas-

Selves & Degregori, 2011; Greaves, 2015; Lacina et al., 2019).  On a fundamental level, cancers 

evolve over time because they fulfill the three conditions of Darwinian evolution: propagation of 

genetic material to the next generation; heterogeneous phenotypes existing in one biological 

system; and the existence of selective pressures that act on that heterogeneity so that the fittest 

survive.     

 Fulfillment of all three conditions is exemplified by some of the most basic observations 

of neoplastic behavior. Propagation of genetic material is derived from the understanding that 

cancer is a clonal disease. As each cancer cell divides, it passes on its genetic material to 

daughter cells, thus promulgating the neoplastic phenotype. Metastasis is an example of 

heterogeneity developing in a cancer. If a cancer started in one place, and then transplanted to a 

distant site, there was a point where the primary tumor became a heterogeneous population of 

cancer cells: some willing to migrate to a new tissue landscape, others content on their primary 

place of residence. Lastly, decades of clinical observations of remission followed by relapse of 

drug resistant cancers is evidence of tumors experiencing, adapting to, and overcoming selective 

pressures of therapy over time. The development of chemotherapeutic resistance actually 

encapsulates all three Darwinian conditions. After selective pressure of therapy is overcome, 

either through intrinsic or acquired resistance mechanisms, surviving cancer cells will again 

continue to proliferate, passing on to their progeny the genetic code that permitted resistance to 
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occur, which eventually manifests as multidrug resistant relapse (Gatenby & Brown, 2018). 

There are other examples of neoplastic behavior that fulfill Darwinian conditions, but metastasis 

and drug resistance are highlighted here because they are two consequences of tumor evolution 

and two major sources of treatment failure in cancer.  

In order to maintain perpetual evolution, the most vital of the Darwinian conditions is the 

existence of heterogeneous populations. Without heterogeneity, the potential to change is 

substantially constrained, regardless of the ability to propagate genetic material or the presence 

of selective pressures. In terms of cancer, this is known as intratumoral heterogeneity (ITH), 

which for this discussion refers to the diversity of malignant phenotypes that exist within a tumor 

as a product of their various genetic and epigenetic alterations. Numerous sequencing studies of 

a range of temporal and spatially distinct tumor types reveal an astounding spectrum of cellular 

diversity in any individual patient’s tumor (Bolli et al., 2014; de Bruin et al., 2014; Eckert et al., 

2016; Uchi et al., 2016; Yates et al., 2015; Zhang et al., 2014). This pool of diversity provides 

the substrate for Darwinian processes to test and select the most advantageous malignant 

phenotypes to withstand the stresses of genetic alterations, microenvironmental pressures, energy 

demands, and cytotoxic therapy that cancer cells eventually experience. ITH has also been linked 

to development of metastasis and drug resistance (Bhang et al., 2015; Hallou, Jennings, & Kabla, 

2017; Piotrowska et al., 2015; Wei et al., 2017), making the formation of heterogeneous tumor 

populations a central component of treatment failure. 

The source of ITH in cancer is predominantly derived from cell intrinsic processes that 

define the disease. Cancer is typically described in terms of accumulating mutations in the 

genetic code that results in protein products that are nonfunctional, severely compromised, or  
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Figure 2. Illustration of the Consequences of Genetic Instability or Epigenetic 

Modifications on the Formation of Heterogeneous Populations in a Tumor. 

The four-pointed star represents the silencing of tumor suppressor genes that sets forth the 

cascade of genomic instability and accumulation of oncogenic mutations. As the tumor grows 

and clonal progeny accumulate mutations, they may acquire driver mutations (thick lines) that 

provide a fitness advantage and changes in their identity (change in color). Tumor cells may also 

acquire passenger mutations (thin lines) that change their identity, but offers no additional fitness 

advantage. Over time, tumor cells evolve metastatic and drug resistant features. 

inappropriately activated. A necessary mutational event that initiates malignant transformation is 

the silencing of tumor suppressor genes.  These genes function to guard the genome against 

accumulation of oncogenic mutations that promote abnormal cellular behavior. If a mutation 

occurs in a tumor suppressor gene that renders it nonfunctional, mutations can accumulate 

unchecked, ultimately permitting the formation of a neoplastic clone that grows, divides, and 

invades surrounding tissue beyond its normal capacity. As the newly transformed clone 
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proliferates into a small group of progeny that also lack tumor suppressor functions as acquired 

from their parent, new mutations are permitted to accumulate unrestricted with each cell 

division. This process is known as genomic instability and is a major source of genetic ITH in 

cancer (Burrell, McGranahan, Bartek, & Swanton, 2013).  As incidental mutations amass with 

each round of the cell cycle, genotypes begin to diverge from one another, over time forming 

trunks and branches that resemble a phylogenetic tree (Figure 2). 

Many mutations will be deleterious to neoplastic sub clones, resulting in their rapid 

removal from the tumor population. If a mutation occurs in a gene that imparts a fitness 

advantage to a cancer cell, this mutation will persist and be passed on to future cellular progeny. 

These mutations are known as driver mutations (Vogelstein et al., 2013), and in the context of 

branching evolution, represent the trunks and large branches of a cancer’s phylogenetic tree 

(Figure 2). They may also acquire passenger mutations, which are supplementary mutations that 

occur alongside driver mutations that do not impart any particular selective advantage relative to 

surrounding cancer cells. Some evidence suggests passenger mutations may actually become 

detrimental if too many accumulate (McFarland, Korolev, Kryukov, Sunyaev, & Mirny, 2013; 

Vogelstein et al., 2013). Passenger mutations make up the smallest branches of the phylogenetic 

tree. Over time, many trunks and branches may form, generating an array of genotypes that result 

in distinct cellular identities and behaviors (Figure 2). Computer models utilizing patient biopsy 

data and known driver mutation frequencies support the notion that a wide variety of distinct 

genotypes can be derived from a single malignant common ancestor over time (Waclaw et al., 

2015), propelled primarily by genomic instability (Greaves & Maley, 2012).  

Diversity in a tumor is not strictly limited to genetic variation. Epigenetic variation is also 

abundant in a tumor (Easwaran, Tsai, & Baylin, 2014). Epigenetics refers to changes in gene 
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expression without a change in the DNA sequence itself that can be propagated through mitosis 

or meiosis. This usually refers to mechanisms regulating chromatin structure such as DNA 

methylation or histone modifications. Changes in DNA methylation can operate similar to 

mutations in terms of how they influence gene expression, with hypermethylation of CpG islands 

leading to gene silencing, and hypomethylation of CpG islands leading to gene activation. For 

example, hypermethylation of tumor suppressor genes, such as pRB, can silence its expression 

and initiate the formation of a retinoblastoma tumor (Greger, Passarge, Hopping, Messmer, & 

Horsthemke, 1989). There are fewer examples of specific oncogene activation through 

hypomethylation, however global hypomethylation is a well-documented phenomena in cancer 

and may promote an even greater increase in genomic instability since looser chromatin is more 

prone to breakage and translocation events (Javadekar & Raghavan, 2015).   

If an epigenetic modification commonly results in gene expression changes that confer a 

selective advantage, it is referred to as an epi-driver gene (Vogelstein et al., 2013). Epi-driver 

genes are analogous to driver mutations, forming the trunk and large branches of a cancer’s 

phylogenetic tree. There are two important implications for epigenetic variation in a tumor. The 

first is that two genetically identical cancer cells may have different epigenetic signatures, which 

may lead them to behave differently. This adds a notable layer of depth to the notion of ITH. 

Second, epigenetic modifications are sensitive to the environment and may occur rapidly, much 

faster than it could take for driver mutations to become apparent. Rapid epigenetic changes are 

thought to be a major cause of acquired drug resistance in cancer (Flinders et al., 2016).  
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Figure 3. The Relationship Between Intratumoral Heterogeneity (ITH) and Tumor 

Evolution According to the Cancer Hallmarks. 

Over time the tumor evolves into three basic phenotypes, each represented by different colors 

(orange, purple, pink). The size of the colored boxes represents the relative dependence the clone 

has on the corresponding cancer hallmark to maintain its phenotype.  Founder mutations begin 

the first neoplastic clone (orange). As it divides over time, the progeny may accumulate 

mutations or epigenetic changes, and sub clones may form with new abilities. A sub clone may 

gain the ability to induce angiogenesis (pink) through secretion of pro-angiogenic factors like 

VEGF to establish a blood supply and provide the tumor with additional nutrients. As time 

progresses, further changes in gene expression may generate a metastatic sub clone through 

activation of cellular programs like EMT (purple) that permit invasion and metastatic spread to 

distant sites in the body. Adapted from Hanahan and Weinberg 2000. 

Epigenetic modifications also drive transdifferentiation of cancer cells undergoing epithelial to 

mesenchymal transition (EMT), eventually resulting in induction of the metastatic cascade 

during cancer progression (Tam & Weinberg, 2013).  

The concept of ITH makes it appear that cancers evolve new phenotypes in stochastic and 

unpredictable ways.  However, after decades of research a pattern has taken shape. In 2000, 

Hanahan and Weinberg published their seminal work, “Hallmarks of Cancer”(Hanahan & 

Weinberg, 2000), in order to sum up and stratify the dizzying array of cellular behaviors that 

manifest in tumors. They would later update their analysis of the cancer hallmarks by adding 

four emerging hallmarks (Hanahan & Weinberg, 2011), but we will only refer to the original six  
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hallmarks as they have withstood the test of time. The hallmarks of cancer represent a pattern of 

discernible neoplastic behaviors driven by mutated gene products (Hanahan & Weinberg, 2000) 

and aberrant epigenetic modifications (Easwaran et al., 2014; Flavahan, Gaskell, & Bernstein, 

2017). With this said, the cancer hallmarks can be referred to as a cooperative set of phenotypes 

selected for according to the theory of tumor evolution. Given what we also know about the 

assortment of phenotypes that can exist within a tumor, there are certainly distinct populations 

that depend on cancer hallmarks to varying degrees to maintain their survival during the course 

of disease progression (Figure 3). 

Where does HSP90 fit into this discussion? One of the most interesting aspects of HSP90 

is many of its clients are also gene products that define the cancer hallmarks. In fact, if one were 

to compare the list of verified HSP90 clients (Picard, 2019) to gene products that drive the 

cancer hallmarks (Moser, Lang, & Stoeltzing, 2009), they would discover considerable overlap. 

(Figure 4) This relationship has undergone intense investigation and numerous studies report 

that HSP90 is essential in promoting the cancer hallmarks, from the acquisition of immortal 

characters to the development of metastasis and drug resistance (Kim et al., 2008; Nolan, Franco, 

Hance, Hayward, & Isaacs, 2015; Whitesell et al., 2014). Since the hallmarks of cancer represent 

a heterogeneous group of features malignant neoplasms are bound to achieve over time, and 

HSP90 appears necessary to maintain them, then HSP90 may be promoting ITH by stabilizing 

mutated and unstable gene products that delineate the cancer hallmarks through its potentiator 

function as a chaperone. Moreover, the large pool of excess HSP90 also serves to steady  



15 

Figure 4. HSP90 and the Cancer Hallmarks 

Depiction of the overlap of HSP90 clients with gene products within the hallmarks of cancer. 

Adapted from Hanahan and Weinberg 2000. 

rapid and widespread changes in gene expression that can occur under the direction of epi-driver 

genes. Stated another way, HSP90 may play a fundamental role in supporting the emergence of 

various cancer hallmarks and thus, provides the medium by which ITH can manifest, ultimately 

setting the table for Darwinian processes to advance tumor evolution and subsequent disease 

progression (Figure 5). 

The association between HSP90 in supporting ITH and propelling tumor evolution is 

further strengthened when one considers the clinical impact HSP90 expression has on a patient’s 

cancer. Clinical evidence indicates that increased HSP90 expression is associated with various 

cancers and has been linked to a poor clinical prognosis (Flandrin et al., 2008; Pick et al., 2007; 

Thomas et al., 2005; Wu, Huang, Liu, & Liu, 2015; Zagouri et al., 2010). High HSP90 

expression was associated with increased Her-2/neu and estrogen receptor expression, large 

tumors, high nuclear grade, and lymph node involvement in breast cancers (Pick et al., 2007), all  
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Figure 5. Unification of HSP90, ITH, and Tumor Evolution According to the Cancer 

Hallmarks 

Illustration of HSP90 promoting ITH, through simultaneous support of neoplastic sub clones that 

depend on cancer hallmarks to varying degrees (orange, pink, and purple circles). The size of the 

colored boxes represents the relative dependence the clone has on the corresponding cancer 

hallmark to maintain its phenotype, with HSP90 encircling all six original cancer hallmarks 

indicating it is supporting the current state of each sub clones cancer hallmarks, but is also poised 

to support other cancer hallmarks when a cancer cell may require more dependence. Adapted 

from Hanahan and Weinberg 2000. 

heterogeneous features that require significant changes in the primary tumor in order to occur. It 

is also important to note that both the estrogen and Her2/neu receptors are HSP90 clients. HSP90 

over expression in gastric cancer patients correlated with increased depth of invasion, lymph 

node involvement, and a higher stage of disease progression (J. Wang, Cui, Zhang, Wu, & Tang, 

2013), again a mix of features that necessitate changes within the primary tumor in order to 

manifest.  

Interestingly, while HSP90 overexpression is strongly linked to poor prognoses in 

cancers, HSP90 itself is not mutated in cancer (Workman, Burrows, Neckers, & Rosen, 2007), 

suggesting that the native conformation of HSP90 provides a significant fitness advantage to 

evolving cancer cells. This fitness advantage may be inherent to HSP90’s ability to support the 
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cancer hallmarks, which eventually generates the level of ITH necessary for cancers to evolve to 

advanced stages (Bhang et al., 2015; Gainor et al., 2016; Wei et al., 2017). Since HSP90 is not 

mutated in most cancers, this also makes it a lucrative target for sustained small molecule 

inhibition to potentially limit ITH and restrict tumor evolution. 

However, there is one small problem with this assertion.  As previously stated, research 

suggests that HSP90 can influence phenotypic diversity in two ways. It acts as a potentiator of 

phenotypic diversity by using its chaperone activity to support the function of unstable proteins 

that rely on HSP90 in order to transfer signals for phenotypic change. HSP90 can also act like a 

capacitor for phenotypic diversity by masking the effect of small changes in the genetic code on 

proteins through reinforcement of the wild type phenotype, also known as canalization 

(Waddington, 1959). As a capacitor, HSP90 stores cryptic phenotypic diversity and only reveals 

them when its chaperone function becomes overwhelmed, either through small molecule 

inhibition or various forms of extreme stress (Lawag et al., 2017; Rohner et al., 2013; Sollars et 

al., 2003). If inhibition of HSP90 can reveal additional phenotypic diversity, and thus contribute 

to ITH, how do we reconcile using HSP90 inhibitors to limit tumor heterogeneity and stall a 

cancer’s evolution?   

The answer may lie in studying some of the effects HSP90 inhibition has on whole 

organisms. When HSP90 is inhibited in the small flowering plant, Arapidopsis thaliana, multiple 

changes occurred in the plant including organ number defects, deformed leaves, and smaller 

quantities of seeds (Queitsch et al., 2002; Sangster et al., 2007). HSP90 inhibition or inactivation 

in Drosophila melanogaster produced a population of flies with limb like structures growing out 

of the eye that normally was not there (Sollars et al., 2003). In each of these cases, inhibition of 

HSP90 during the organisms’ development generated new phenotypes that would not likely 
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promote the long-term success of that organism in its natural environment. In other words, they 

are less fit than their wild type counterparts. This decrease in fitness was directly postulated in 

the study of A. Thaliana (Sangster et al., 2007). The disordered eye phenotype in D. 

melanogaster is not likely to result in reproductive success of that fly in an uncontrolled, natural 

setting, since finding a mate and avoiding predators is certainly easier with vision completely 

intact. Indeed, it would be very rare to naturally find a fruit fly with an appendage growing out of 

its eye raiding that decomposing banana peel in your trash!  

In sum, HSP90 inhibition may reveal phenotypic diversity, but this diversity generates 

evolutionary “dead ends” in an uncontrolled setting. Something similar may be happening in the 

case of cancers that undergo HSP90 inhibition. Therefore, targeting HSP90 may limit the 

evolution of cancers in two ways. First, by abrogating potentiation of the cancer hallmarks that 

ultimately manifests in ITH. Second, by discharging cryptic variation stored in HSP90’s 

capacitor function, effectively revealing evolutionary “dead ends” that are incompatible with 

long-term tumor maintenance. 

HSP90 Inhibitors 

Targeting HSP90 with small molecule inhibitors to treat cancer has been the center of 

considerable debate for almost 50 years. The first HSP90 inhibitors discovered were 

geldanamycin and radicicol, two naturally occurring compounds that demonstrated anti-cancer 

activity in vitro. It was soon observed that they destroyed cancer by destabilizing the interaction 

between HSP90 and its clients that are also major oncogenes (Blagosklonny, Toretsky, Bohen, & 

Neckers, 1996; Grenert et al., 1997; Whitesell, Mimnaugh, De Costa, Myers, & Neckers, 1994). 

For example, oncogenes like v-SRC and the dominant negative form of p53, major drivers of 

carcinogenesis, rely on HSP90 to maintain oncogenic stability (Walerych et al., 2004; C. Wang 
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& Chen, 2003; Xu & Lindquist, 1993). If oncogenes lose interaction with HSP90, they are 

targeted for degradation by the proteasome, thus limiting their role in orchestrating neoplastic 

behavior. Moreover, the unusual conformation ATP adopts in the nucleotide-binding pocket of 

HSP90 is also achieved by geldanamycin and radicicol, making these compounds very selective 

in targeting HSP90 function. This is unlike other cancer drugs that target the ATP binding pocket 

of kinases, which share significant homology in the ATP binding pocket with other kinases, 

leading to off target effects.  

These observations generated a flurry of research interest in HSP90 inhibitors to treat 

cancer. It also garnered a fair amount of skepticism, and for good reason. Since HSP90 is 

important in maintaining viability in normal cells, many believed that HSP90 inhibition would 

lead to overwhelming adverse effects, rendering them inappropriate for clinical application. At 

first, skeptics appeared to be correct as both geldanamycin and radicicol failed in clinical trials 

due to toxic effects and poor solubility. This propelled research to improve the solubility profile 

and pharmacodynamics of HSP90 inhibitors. Further research would reveal that HSP90 

inhibitors have the highest affinity for tissues that have HSP90 in its “activated” form compared 

to tissues with HSP90 in a latent state (Kamal et al., 2003). It appears that cancer cells have 

much of its HSP90 in an active complex (Kamal et al., 2003), likely because it is busy 

maintaining mutated gene products of the cancer hallmarks. This makes HSP90 inhibitors both 

specific to their target through the unique GHKL binding site and specific to neoplastic tissue, a 

highly coveted property of any cancer therapy. Further studies have shown that certain HSP90 

inhibitors can accumulate in neoplastic tissue relative to normal tissues (Eccles et al., 2008; 

Jensen et al., 2008), suggesting that HSP90 inhibitors could still be effective against cancers if 

given at low doses in the right frequency.  
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Research efforts and advances in medicinal chemistry have led to the development of 

over a dozen different HSP90 inhibitors to date. Improvements in the solubility profiles of these 

drugs have permitted many of them to progress through various phases of the clinical trial 

process. HSP90 inhibitors like 17-AAG, 17-DMAG, and AUY922 have all progressed past 

phase I trials; another HSP90 inhibitor, ganetespib (STA-9090), made it as far as phase III.  

None have been approved, but clinical trials are still active or recruiting for multiple cancers. 

What we have learned from clinical trials is that HSP90 inhibitors can deliver a specific 

cytotoxic effect to cancer cells, and that the best responses are achieved when HSP90 inhibitors 

are used in combination with other therapies (Bendell et al., 2015; Johnson et al., 2015; Kong et 

al., 2016) (Johnson et al., 2015; Modi et al., 2011). 

Despite improvements in the pharmacology of HSP90 inhibitors and some measurable 

success in clinical trials, adverse effects and inconsistent tumor responses continue to hamstring 

their progression to an approved therapy for cancer. Concerns regarding parallel induction of the 

cancer’s survival response, impairment of antitumor immune mechanisms, cardiac arrhythmias, 

and hepatotoxicity have emerged from clinical trials (Whitesell & Lindquist, 2005).  

These trepidations may be due to the nature of the clinical trial process for cancer 

chemotherapies. When a chemotherapy enters phase I clinical trials, a small group of patients are 

enrolled, and the drug’s efficacy is evaluated by titrating to the maximum tolerated dose (MTD) 

a patient can physiologically withstand and weighing the costs of adverse effects to the benefits 

of tumor response to therapy. If a proper balance can be achieved, the chemotherapy under 

investigation moves on to the next phase of the clinical trial. In the subsequent phases, the 

chemotherapy will be compared to current gold standard treatments and the cohort sizes will 

grow considerably, but the dose administered will continue to be given proximal to the MTD. 
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What is interesting in terms of HSP90 inhibitors is that a fair number of them pass through phase 

I, indicating a tolerable level can be achieved; but, they never get approved as a single agent for 

cancer therapy due to inconsistent tumor responses relative to the gold standard treatments. The 

source of inconsistency may be derived from the high doses demanded by the clinical trial 

process, causing global cellular stress and inadvertent induction of the heat shock response. As 

previously mentioned, the heat shock response is an adaptive mechanism, and its unintended 

activation hands the cancer a tool to promote evolution and survival, rather than limit it. Also, 

administering high doses of HSP90 inhibitors does not maximize the increased affinity HSP90 

inhibitors have for neoplastic tissue.  

If HSP90 inhibitors are specific to their target (Kamal et al., 2003) and can accumulate 

within neoplastic tissue in vivo (Eccles et al., 2008; Jensen et al., 2008), low dose administration 

at strategic frequencies could be a clinically viable approach to remove issues associated with 

inadvertent induction of the heat shock response. Furthermore, the ability for HSP90 inhibitors to 

shut down multiple cancer hallmarks simultaneously may dampen the formation of excessive 

ITH, which in turn slows the clock on tumor evolution and disease progression. This may place 

HSP90 inhibitors as a unique chemotherapy that can be used specifically to confront drug 

resistance and metastasis in cancer. This is already starting to be revealed in studies showing 

HSP90 inhibition to be useful in abrogating development of resistance to certain chemotherapies 

(Jacobson et al., 2016; Nagaraju et al., 2019; Whitesell et al., 2014) and deconstructing 

molecular pathways involved in epithelial to mesenchymal transition (EMT), migration and 

metastasis in vitro, and, in animal xenografts of different human cancer cell lines (Chong et al., 

2019; Nagaraju et al., 2015).  

 Furthermore, evidence from clinical trials indicates that HSP90 inhibitors can be safely 
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paired with conventional therapies (Bendell et al., 2015; Eroglu et al., 2018; Johnson et al., 

2015). Since HSP90 inhibitors can attenuate metastasis and drug resistance, it suggests that they 

may be especially useful to pair with anti-cancer agents that are very potent early in the treatment 

process, but are known to promote evolution of drug resistance and metastasis later, like 

paclitaxel (Datta et al., 2017) (Karagiannis et al., 2017; Volk-Draper et al., 2014).  

In the following chapters, we examine the clinically relevant HSP90 inhibitor, AUY922, 

in its ability to curtail both metastatic and drug resistant phenotypes in cancer. We investigate 

these processes in the context of non-small cell lung cancer (NSCLC), which is often drug 

resistant and metastatic at the time of diagnosis or during the treatment process (Gabor et al., 

2004; Popper, 2016; Shanker, Willcutts, Roth, & Ramesh, 2010; Sosa Iglesias, Giuranno, 

Dubois, Theys, & Vooijs, 2018). Our results indicate that equivalent doses of AUY922 below 

those that are currently recommended in clinical trials can restrict the acquisition of drug 

resistant and metastatic phenotypes in vitro. We then discuss repurposing small molecule HSP90 

inhibitors as the first form of therapy designed to curb tumor evolution and disease progression, 

which may be used alongside conventional therapies to generate sustained tumor remission.  
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Chapter 2: Low Dose HSP90 Inhibition with AUY922 Blunts Rapid Evolution of 

Metastatic and Drug Resistant Phenotypes Induced by TGF-β and Paclitaxel in A549 cells 

   

Abstract 

Despite advances in cancer treatment, metastasis and drug resistance continue to contribute to 

treatment failure. Since these are features that often occur toward the late stages in the disease 

after withstanding numerous selective pressures, they may rely on a shared adaptive mechanism 

in order to persist. The heat shock response is one of the most well conserved adaptive responses 

to cellular stress found in nature. A major player in the heat shock response is HSP90, and some 

studies suggest it can facilitate the evolution of drug resistance and metastasis in cancer. Non-

small cell lung cancers (NSCLCs) are strongly associated with metastasis and drug resistance 

either at the time of diagnosis or early in the treatment process. We explored the role of HSP90 

in the evolution of metastatic and drug resistant features in NSCLC by treating A549 cells with 

AUY922, a clinically relevant HSP90 inhibitor, and inducing metastatic and drug resistant 

phenotypes via TGF-β and paclitaxel, respectively. We used flow cytometry to measure changes 

in E-Cadherin, a marker for epithelial to mesenchymal transition (EMT) and two ABC 

transporters associated with drug resistant lung cancers. We found that metastatic and efflux 

dependent drug resistant features negatively correlated with AUY922 treatment. We followed 

our results with functional assays relevant to metastasis and ABC transporters to confirm our 

results. Together our data indicates that HSP90 inhibition with AUY922 can limit the acquisition 

of metastatic and drug resistant phenotypes in A549 cells at equivalent, clinically appropriate 

doses. 

 



24 

Background 

Lung cancer is the most commonly diagnosed cancer and leading cause of cancer 

mortality worldwide regardless of sex (Bray et al., 2018). 85% of lung cancers are non-small cell 

lung cancers (NSCLC) (Herbst, Morgensztern, & Boshoff, 2018), with metastasis and 

chemotherapeutic resistance common features of these cancers either at the time of diagnosis or 

manifesting during the treatment process (Gabor et al., 2004; Popper, 2016; Shanker et al., 2010; 

Sosa Iglesias et al., 2018). Therefore, discovering ways to mitigate metastasis and 

chemotherapeutic resistance in NSCLCs will be beneficial to a substantial number of cancer 

patients.  

Metastasis is the spread of cancer cells from the primary tumor site to distant organs in 

the body where they grow and disrupt normal organ function (Fidler & Kripke, 2015). The step-

wise process by which carcinomas undergo the complex changes in cell signaling and gene 

expression required to complete metastasis is referred to as epithelial-mesenchymal transition 

(EMT) (Kalluri & Weinberg, 2009). The initial stages of EMT in carcinomas begin with loss of 

cell-cell junctions. A major protein involved in maintaining cell-cell junctions that is lost during 

EMT is E-cadherin (Onder et al., 2008). Loss of E-cadherin facilitates dissolution of cell-cell 

junctions, permitting cancer cells to migrate from their primary site as they undergo further 

changes to invade local vasculature to travel to distant organs in the body. Numerous studies in 

human tumor samples have demonstrated that reduced E-cadherin expression is associated with 

dedifferentiation and lymphogeneous spread (Cheng, Nagabhushan, Pretlow, Amini, & Pretlow, 

1996; Dorudi, Sheffield, Poulsom, Northover, & Hart, 1993; Oka et al., 1992; Schipper et al., 

1991; Siitonen et al., 1996), including NSCLCs (Lee, Wu, Chen, & Chang, 2000; Lim, Jang, 

Kim, & Park, 2000; Sulzer, Leers, van Noord, Bollen, & Theunissen, 1998). This makes E-
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cadherin a reliable and clinically relevant marker for in vitro study of metastasis in NSCLC cell 

lines.   

Chemotherapeutic resistance can manifest as a result of cell cycle alterations, 

insensitivity to apoptosis, altered drug metabolism, increased DNA damage repair, and increased 

drug efflux (Szakacs, Paterson, Ludwig, Booth-Genthe, & Gottesman, 2006). Increased drug 

efflux is a common mechanism cancer cells use to protect themselves from chemotherapeutic 

damage and is mediated by a family of transmembrane transporters known as ATP-binding 

cassette (ABC) transporters (Fletcher, Williams, Henderson, Norris, & Haber, 2016). There are 

48 known ABC transporters, and three, ABCB1, ABCC1, and ABCG2, are most commonly 

found to drive efflux dependent drug resistance in human cancers (Sharom, 2008). This is 

presumably because these three transporters have considerable chemotherapeutic substrate 

overlap (Sharom, 2008). Two of these ABC transporters, ABCB1 and ABCC1, are commonly 

overexpressed in human NSCLC tumors (Nooter et al., 1996; Sugawara et al., 1995; Wright et 

al., 1998), and can play major roles in conferring multidrug resistance in NSCLCs (Berger et al., 

2005; Oshika et al., 1998; Ota et al., 1995; Volm, Mattern, & Samsel, 1991). Despite these 

studies, there is some controversy as to whether ABC transporters play a significant role in drug 

resistant cancers, as studies employing ABC transporter inhibitors during cancer treatment failed 

to show clinical benefit (Binkhathlan & Lavasanifar, 2013). Recently, however, some experts in 

the field of ABC transporters are calling for a reevaluation of ABC transporters in cancer by 

pointing out inconsistencies and pitfalls in previous studies that dismissed the role of ABC 

transporters in multi drug resistant cancers (Robey et al., 2018). In any case, since these 

molecular pumps physically interact with common chemotherapies and can alter the 

pharmacokinetics and bioavailability of other drugs, their study should not be totally ignored. 



26 

It is understood that metastatic and drug resistant cancer cells within a tumor emerge as a 

consequence of the complex dynamics of tumor evolution (Foo & Michor, 2014; Gatenby & 

Brown, 2018; Turajlic & Swanton, 2016). Given the selective pressures of chemotherapy and the 

harsh tumor microenvironment to overcome, there may be a common adaptive mechanism that 

metastatic and drug resistant cancer cells share in order to persist in these stressful conditions 

and contribute to disease progression. An adaptive response to stress that is fundamental to all 

organisms is the heat shock response (Schlesinger, 1990).  HSP90 is a major player in the heat 

shock response known to influence numerous essential cell processes. Previous studies have 

shown HSP90 to facilitate evolution of novel phenotypes (Jarosz & Lindquist, 2010; Queitsch et 

al., 2002; Rohner et al., 2013; Sollars et al., 2003), including drug resistant phenotypes (Cowen 

& Lindquist, 2005; Vincent, Lancaster, Scherz-Shouval, Whitesell, & Lindquist, 2013; Whitesell 

et al., 2014). HSP90 also enables the metastatic cascade, as pointed out in an exhaustive review 

(Tsutsumi, Beebe, & Neckers, 2009). Clinical evidence supports this hypothesis, as HSP90 

overexpression in gastric and breast cancers correlates with high tumor grade, depth of invasion, 

and lymph node involvement (Pick et al., 2007; J. Wang et al., 2013), all indicators of strong 

induction of the metastatic cascade. Furthermore, increased HSP90 expression in various human 

cancers correlates with a poor prognosis (Flandrin et al., 2008; Pick et al., 2007; Thomas et al., 

2005; J. Wang et al., 2013; Zagouri, Bournakis, Koutsoukos, & Papadimitriou, 2012).  

Several lines of recent evidence indicate that pharmacological HSP90 inhibition can limit 

molecular pathways involved in EMT, migration and metastasis in vitro and in animal xenografts 

of different cancer cell lines (Chong et al., 2019; Nagaraju et al., 2015). Whether other clinically 

relevant HSP90 inhibitors can limit these processes in NSCLC cell lines has not been 

documented. Furthermore, certain HSP90 inhibitors have demonstrated synergistic anticancer 
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effects with conventional cytotoxic chemotherapies such as paclitaxel (Munster, Basso, Solit, 

Norton, & Rosen, 2001; Solit, Basso, Olshen, Scher, & Rosen, 2003) and doxorubicin (Munster 

et al., 2001). While the results of these studies attributed the synergistic effect to mechanisms 

related to cell signaling, paclitaxel is a known substrate for ABCB1 and doxorubicin is a known 

substrate for both ABCB1 and ABCC1 (Cole et al., 1992; Sharom, 2008). This leaves open the 

possibility that perhaps some of the synergistic effects of HSP90 inhibition may be due to 

intracellular accumulation of paclitaxel and doxorubicin as a result of altered ABC transporter 

expression. The theoretical basis for this partly exists due to the fact that ABCC1 is a verified 

HSP90 client (Picard, 2019), and HSP90 inhibition classically results in degradation of client 

proteins. However, no relationship between HSP90 inhibition and reduced expression of ABC 

transporters has been demonstrated in the context of multidrug resistant cancer to date.  

In the present study we ask whether treatment with the clinically relevant HSP90 

inhibitor, AUY922, given at the same dose and exposure time, could limit rapid acquisition of 

metastatic traits and ABC transporter driven drug resistance in A549 cells, a common NSCLC 

cell line. AUY922 is unique among HSP90 inhibitors as it is readily soluble in ethanol and can 

inhibit both the inducible (HSP90α) and constitutive (HSP90β) isoforms of HSP90 at low 

nanomolar concentrations (Eccles et al., 2008; Garon et al., 2013). We were guided by the work 

of others who used relatively low doses of HSP90 inhibition to abrogate emergence of drug 

resistant phenotypes in MCF-7 breast cancer cells (Whitesell et al., 2014). If successful, our 

work would further strengthen the case for other clinically relevant HSP90 inhibitors, and 

AUY922 in particular, to be deployed in the clinic at low doses as an adjunct to prevent 

acquisition of drug resistance and metastasis that can be associated with some cytotoxic 

chemotherapies (Karagiannis et al., 2017; Volk-Draper et al., 2014). Furthermore, successfully 
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utilizing smaller doses of chemotherapy can be expected to improve the quality of life for cancer 

patients undergoing chemotherapy. 

Materials and Methods 

CELL CULTURE 

A549 cells were purchased from the European Collection of Authenticated Cell Cultures 

(ECACC)(Account #: 86012804; Lot: 165012) and cultured in RPMI-1640 media supplemented 

with 10% FBS and 25mM HEPES buffer. All experiments were performed between passages 5 

and 20 from the original purchased vial. 

CELL VIABILITY ASSAY (XTT) 

The viability of A549 cells under AUY922 and paclitaxel treatment was assessed in 

parallel using the XTT assay (Biotinium; catalog #: 30007) per manufacturer recommended 

protocol. Plates were read on Spectramaxi3x® microplate reader at wavelength 450nM. Each 

experiment was performed three times.  

WESTERN BLOT 

A549 cells were seeded in six-well plates at 4.0x105 cells/well and allowed to attach 

overnight. The next day, medium was aspirated and replaced with 1.0mL fresh growth medium 

and treated with indicated drug. After 6 hours, medium was aspirated and the cells were 

harvested, quantified, and transferred to nitrocellulose membranes as described(Mahmood & 

Yang, 2012). Primary antibodies were used at a dilution of 1:1500 mouse anti-HSP70 

(Enzo,ADI-SPA-810-D, clone: C92F-3A-5) and 1:10000 mouse anti-GAPDH (cat#:12345). 

Species-specific europium-conjugated secondary antibody (ScanLater goat anti mouse; part#: 

R7562; Molecular Devices®) was used. Afterward, membranes were washed with TBS-T and 
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analyzed via Spectramaxi3x® western blot cartridge (Molecular Devices®). Two independent 

experiments were performed in triplicate (n=6).  

FOUR DAY EMT INDUCTION IMMUNOPHENOTYPING  

A549 cells were seeded into six-well plates (50,000 cells/well) and allowed to attach 

overnight. Medium was aspirated and replaced with 2.0mL fresh growth medium and treated 

with drug for 48 hours. After, medium was aspirated from each well and replaced with 2.0mL of 

fresh growth medium. One plate from each treatment group was treated with 10ng/mL TGF-β 

(Peproptech, Cat#:100-21), while the others remained in untreated medium for an additional 48 

hours. Afterward, cells were detached with trypsin for 15 minutes, placed into flow tubes, 

washed, stained for viability (Zombie-NIR, 77184, Biolegend), counted via typan blue, 

normalized to cell numbers, and blocked as previously described (Lawag et al., 2017). Samples 

were stained with the following fluorescently conjugated antibodies: Alexafluor®647 anti-

human E-Cadherin (BD Biosciences, 56371, clone: 67A4), Alexafluor®488 anti-human ABCC1 

(BioLegend, 370306, clone: QCRL-3), and Brilliant Violet ®421 ABCB1 (BD Biosciences, 

566015, clone: UIC2) per sample for 30 minutes on ice protected from light. Samples were 

washed twice with 2.0mL cold FACS buffer, centrifuging at 300g for 5 minutes between washes. 

After second wash, samples were decanted and gently resuspended in residual buffer with a pipet 

tip to generate a homogenous single cell suspension and analyzed via flow cytometry. Three 

independent experiments were performed in triplicate for each treatment group (n=9). 

WOUND HEALING ASSAY 

A549 cells were seeded into six well plates (50,000 cells/well) and allowed to attach 

overnight. Cultures were treated with drug for 48 hours. After, cells were detached with trypsin, 

collected in separate 50mL tubes and spun at 300g for 5 minutes. Supernatant was decanted, and 
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pellets were resuspended in 1.0mL fresh growth medium. 3.0x105 cells were collected from each 

tube and resuspended in 400μL of fresh growth medium. We empirically determined that this 

cell concentration would yield a confluent monolayer when seeded into 20μL drops and allowed 

to attach overnight (15,000 cells/drop). Three 20μL drops were seeded into the top row of three 

six well plates, one plate per treatment group (9 drops per treatment group in total) and allowed 

to attach overnight. Cells were then scratched with a 200μL pipet tip and 1.0mL of fresh growth 

medium was added to each well. Pictures and measurements were taken at time 0 hours and time 

18 hours over the middle of the colonies by drawing a single straight line through the nuclei of 

cells on the left side of the migration front and dropping three perpendicular lines across the 

viewing field (one at the top, one through the middle and one at the bottom) to the migration 

front on the right.  Migration index was calculated by dividing average starting gap width by the 

average gap width at 18 hours. Two independent experiments were performed (n=18 for each 

treatment group). 

TRANS-EPITHELIAL ELECTRIC RESISTANCE (TER) ASSAY 

A549 cells were seeded into 6 transwells (10,000 cells/well) and allowed to grow for 72 

hours. At this time point, fresh medium was given, and three wells were treated with 20 nM of 

AUY922. TER measurements were taken at 24 hours within 5 minutes of removing from the 

incubator so as to eliminate the influence of temperature on our measurements. Final values were 

obtained by subtracting the resistance of the bathing solution and an empty support. Results are 

expressed as ohms per square centimeter (Ω·cm2). To compare effects obtained in different 

monolayers on different days, we normalized data as described (Larre et al., 2010). Two 

independent experiments were performed in triplicate (n=6).  
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EIGHT DAY MDR INDUCTION IMMUNOPHENOTYPING 

In these experiments we utilized what we learned from the up regulation of ABC 

transporters under paclitaxel treatment during the four day EMT induction experiments. We 

treated with AUY922 during the first 48 hours of the experiment as before, but instead of 

inducing changes in E-cadherin with TGF-β, we induced changes in ABC transporters with 

paclitaxel. We extended the experimental timeline from four days to eight days to provide cells 

pretreated with AUY922 an additional 2 days to expand in untreated media after their initial 

treatment during the first 48 hours of the experiment (expansion in untreated medium during 

days 2-4) and after induction of ABC transporters with paclitaxel during days 4-6 (expansion in 

untreated medium during days 6-8).  A549 cells were collected from stock flask and thirty 20μL 

drops (8,000 cells/drop, 2.4x105 cells/petri dish) were seeded into 100mm petri dishes and 

allowed to attach overnight. This method of seeding provided reproducible circular colonies over 

the course of the experiment that captures some of the three dimensional dynamics that exists 

within a tumor, with cells at the periphery having fewer cell neighbors and more access to space 

and nutrients compared to cells in the middle of the colony (a “pseudo-slice” of the tumor). The 

following day, 7.0 mL of fresh growth medium was added to each petri dish and cells were 

treated with AUY922. After 48 hours, treated medium was aspirated and replaced with 8.0mL of 

fresh untreated growth medium. After an additional 2 days, medium was aspirated and replaced 

with 10.0mL of fresh growth medium. At this time point some petri dishes were treated with 

10nM of paclitaxel (MDR induction), while the others remained untreated (no MDR induction). 

Petri dishes were allowed to grow for an additional 2 days. On day 6, medium was aspirated 

from each petri dish and replaced with 10.0mL of fresh untreated growth medium and allowed to 

grow for an additional 2 days. On day 8, cells were harvested. The entire growth medium from 
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each petri dish was placed into separate 50mL tubes and petri dishes were washed once with 

5.0mL PBS, which was subsequently aspirated. Cells were detached with trypsin/4mM EDTA 

for 20 minutes at 37oC, and placed into corresponding 50mL tubes with previously collected 

growth medium. Cells were washed, stained for viability, counted, normalized to cell numbers, 

and blocked as previously described (Lawag et al., 2017). Each sample was stained with 

fluorescently conjugated antibodies: Alexafluor®488 anti-human ABCC1 (BioLegend, 370306, 

clone:QCRL-3), and Brilliant Violet ®421 ABCB1 (BD Biosciences, 566015, clone:UIC2) per 

sample for 30 minutes on ice protected from light. Samples were washed twice with 2.0mL cold 

FACS buffer, decanted and centrifuged at 300g for 5 minutes between washes. After second 

wash, samples were decanted and pellets gently resuspended in residual cold FACS buffer with a 

pipet tip to generate a homogenous single cell suspension and analyzed via flow cytometry. At 

least two independent experiments were performed with at least two biological replicates per 

treatment (no MDR induction n=5, MDR induction n=8). 

DOXORUBICIN EFFLUX ASSAY 

A549 cells were seeded in thirty 20μL drops in 100mm petri dishes, and cultured as 

described in the eight-day experiment for MDR induction. On day eight, cells were harvested 

and 2.5x105 cells were placed into flow tubes, washed with growth medium and centrifuged at 

300g for 5 minutes. Supernatant was decanted, and pellets were gently resuspended in 500μL of 

warm growth medium treated with 10μM of doxorubicin. Cells were incubated at 37oC for 30 

minutes to load with doxorubicin. Samples were washed in growth medium and centrifuged at 

300g for 5 minutes. Supernatant was decanted, and pellets resuspended in 1.0mL of growth 

medium. Samples were incubated at 37oC with agitation for 2 hours. Afterward, samples were 

washed with 2.0mL of room temperature PBS followed by centrifugation at 300g for 5 minutes. 
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Supernatant was decanted, and pellets were resuspended in 200μL of Zombie-NIR viability 

reagent, which was applied per manufacturer’s instructions. After the final wash and decant, cells 

were gently resuspended in residual cold FACS buffer with a pipet tip to generate a homogenous 

single cells suspension and analyzed via flow cytometry. Three independent experiments were 

performed in at least duplicate (n=8). 

FOUR, SIX AND EIGHT DAY CULTURE GROWTH 

A549 cells were collected from stock flask, seeded in 20μL drops in 100mm petri dishes, 

and cultured as described in the eight-day experiment for both non-MDR induction and MDR 

induction groups. On day four and six, cells were washed and detached as described in the eight-

day experiment. Instead of resuspending in 1.0mL of zombie reagent, cells were resuspended in 

1.0mL of fresh growth medium, and a 10μL aliquot was taken from each sample to count via 

hemacytomter and 0.4% typan blue staining. For samples without MDR induction with 

paclitaxel, a single experiment was performed in triplicate for day four and day six (n=3 for each 

day). For samples with MDR induction with paclitaxel, two independent experiments in triplicate 

were performed on days four and six (n=6 for each day). Day eight counts were a combination of 

counts gathered on day eight from MDR induction immunophenotyping and doxorubicin efflux 

studies.  

FLOW CYTOMETRIC ANALYSIS 

All flow cytometric analysis were performed via Novocyte ® 3000 flow cytometer 

(ACEA Biosciences, Inc., San Diego, California). 50,000 single cell events were analyzed. All 

data analysis was performed using NovoExpress Software version 1.3.0 (ACEA Biosciences, 

Inc., San Diego, California). For all antibodies, we used fluorescence minus one (FMO) and 

corresponding isotype controls to determine positive staining background. All data analysis was 
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performed using NovoExpress Software version 1.3.0 (ACEA Biosciences, Inc., San Diego, 

California). 

STATISTICAL ANALYSIS 

All statistical analysis was performed using Prism8.0a software (GraphPad Software Inc., 

San Diego, California). Appropriate statistical tests were performed with corresponding 

significance values indicate in figure legends. For the E-cadherin flow cytometry studies and 

wound-healing assay, analysis was performed using one-way ANOVA with Tukey’s test for 

multiple comparisons. For trans-epithelial resistance, eight-day flow cytometry studies without 

MDR induction, eight-day growth curves, and doxorubicin efflux studies, analysis was 

performed using Student’s t test for unpaired data. For ABC transporter flow cytometry studies 

with/without EMT and with MDR induction, analysis was performed using one-way ANOVA 

with Dunnet’s test for multiple comparisons.  

  

Results 

AUY922 AND PACLITAXEL HAVE SIMILAR EFFECTS ON A549 CELL VIABILITY AFTER 48 

HOURS EXPOSURE 

Before investigating metastatic and drug resistant properties of A549 cells, we had to 

evaluate their sensitivity to AUY922 and paclitaxel. Paclitaxel was used in many of our studies 

as it is currently used in combination with other chemotherapies in NSCLC and has been 

associated with development of metastasis (Karagiannis et al., 2017; Volk-Draper et al., 2014) 

and ABC transporter driven drug resistance (Datta et al., 2017). Intriguingly, A549 cells 

displayed almost identical viability curves to increasing doses of either drug at 48 hours of 

exposure (Figure 6A). Since we were most interested in evaluating how A549 cells change in  
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 Figure 6. Chemosensitivy of A549 Cells to Paclitaxel and AUY922 and HSP70 Induction  

(A): Chemosensitivity of A549 cells to 48 hour exposure to increasing concentrations of 

Paclitaxel (blue) and AUY922 (green) ranging from 0.001-2,000nM. Viability was determined 

using the XTT assay. Each dose was performed in sextet per individual experiment. Data 

represents the mean ±95% CI of three independent experiments. EC50 A549 v PTX: 30.2 (95% 

CI 25.0-36.8nM); EC50 A549v AUY922: 25.4 (95% CI 22.3-28.5nM) (B) Growth curves of 

A549 cells after 48 hours of indicated drug followed by 48 hours of untreated medium. (C) 

Induction of HSP70 expression by HSP90 inhibition with AUY922 after only six hours of 

exposure. A representative blot of two independent experiments performed in triplicate is shown. 

response to these drugs, not necessarily how they are killed, we wanted to refrain from using 

high doses of either drug in our experiments to avoid selecting for a particular metastatic or drug 

resistant phenotype in the A549 cell population. We decided we could achieve this by focusing 

on doses below the EC50, which in this case would be doses less than 25nM for AUY922 and 

less than 30nM for Paclitaxel (Figure 6A).  

Since paclitaxel can exhibit additional growth inhibition beyond 48 hours (Figure 6B), 

we decided that 10nM treatment with paclitaxel would be appropriate to further ensure we do  

not select for any particular phenotype, as our planned experimental endpoints were to extend 

well beyond 48 hours. We chose 20nM of AUY922 as this dose was enough to demonstrate up 
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regulation of HSP70 (Figure 6C) and is below the EC50. Up regulation of HSP70 is considered 

a reliable indicator of successful pharmacological HSP90 inhibition (Whitesell et al., 2014). We 

used Cmax values gathered from clinical trials (Doi et al., 2014; Kong et al., 2016; Seggewiss-

Bernhardt et al., 2015; Sessa et al., 2013) to confirm that 20nM of AUY922 is well within a 

clinically relevant treatment range.  

AUY922 PROMOTES E-CADHERIN SURFACE EXPRESSION IN A549 CELLS, WHICH REMAINS 

DURABLE AFTER EMT INDUCTION WITH TGF-Β 

Induction of EMT is a well-known method to study metastasis in vitro and is thought to 

drive metastatic changes in vivo (Tsai & Yang, 2013; Zhao et al., 2016). A hallmark of EMT is 

loss of E-cadherin and studies have demonstrated reduced E-cadherin expression in NSCLC  

tumors derived from clinical samples correlates with poor tumor differentiation and invasion of 

local structures including vasculature (Lee et al., 2000). Therefore, we reasoned that E-cadherin 

would be a suitable marker to evaluate changes related to metastatic progression that would 

translate to the clinic.  

We exposed A549 cells to 20nM of AUY922 or 10nM of paclitaxel for 48 hours, 

followed with 48 hours in untreated media, and captured phenotypic changes via flow cytometry. 

Treatment with AUY922 promoted the E-cadherin positive fraction while paclitaxel reduced E-

cadherin positive fraction, relative to the control (Figure 7 A, B). Additionally, there was a 

significant increase in median fluorescence intensity (MFI) in AUY922 treated group cultures 

relative to either paclitaxel treated cultures or control cultures, an indication that the positive 

fraction had an overall increase in E-cadherin expression per cell in the positive fraction (Figure 

7C).  
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 Figure 7. E-cadherin Immunophenotyping without EMT Induction  

(A) Flow cytometric analysis of E-Cadherin expression after 48 hours of treatment followed by 

48 hours in untreated medium (w/o EMT induction). (B) Quantification of the percentage of cells 

positive for E-Cadherin w/o EMT induction. Data is representative of the mean ±SEM of three 

independent experiments performed in triplicate (n=9). (C) Quantification of the median 

fluorescence intensity of the E-cadherin positive fraction. Data is representative of the mean 

±SEM of three independent experiments performed in triplicate (n=9). ****P<0.0001.  

To evaluate the durability of the increase in E-cadherin expression triggered by AUY922, we 

decided to follow the initial 48-hour treatment period with 48 hours in TGF-β treated media. 

TGF-β is a well-known and potent inducer of EMT in A549 cells (Kasai, Allen, Mason, 

Kamimura, & Zhang, 2005). While 20nM of AUY922 did not completely desensitize A549 cells 

to TGF-β driven EMT in these cultures, both the percent positive fraction and the median 

fluorescence were significantly higher than either the paclitaxel treated or control cultures 

(Figure 8A-C). Together, this data suggests that AUY922 generates changes in A549 cells that 

promote E-cadherin expression that remains durable even in the presence of strong drivers of the 

metastatic cascade such as TGF-β, relative to paclitaxel treatments or control cultures. 
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Figure 8. E-cadherin Immunophenotyping with EMT Induction  

(A) Flow cytometric analysis of E-Cadherin expression after 48 hours of treatment followed by 

48 hours EMT induction in medium supplemented with 10ng/mL of TGF-β. (B) Quantification 

of the percentage of cells positive for E-Cadherin with EMT induction. Data is representative of 

the mean ±SEM of three independent experiments performed in triplicate (n=9).                       

(C) Quantification of the median fluorescence intensity of the E-cadherin positive fraction with 

EMT induction. Data is representative of the mean ±SEM of three independent experiments 

performed in triplicate (n=9).  **P<0.01; ****P<0.0001. 

AUY922 LIMITS MOTILITY OF A549 CELLS 

If E-cadherin loss is associated with increased invasion and metastasis, then it is 

reasonable that the increase in E-cadherin we observed with AUY922 treatment could influence 

the migratory capacity of A549 cells. To investigate this, we exposed A549 cells to 20nM of 

AUY922 and 10nM of paclitaxel for 48 hours and performed a wound-healing assay as 

described. As expected, AUY922 treated cells had drastically limited migration capacity 

compared to paclitaxel treated or control cultures (Figure 9A, B).  
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Figure 9: Effect of AUY922 Treatment on Migratory Capacity and Tight Junction 

Formation in A549 Cells.  

(A) After 48 hours of drug exposure, cell numbers were normalized by reseeding in 20uL drops 

(15,000 cells/drop) and allowed to attach overnight. The circular colonies that formed were then 

scratched with 200uL pipette tip and pictures were taken at time 0 hours (top) and 18 hours 

(bottom). Two individual experiments were performed. Images are representative scratches from 

an individual colony. There were 9 total colonies per experiment per treatment group (n=18). (B) 

Quantification of mean migration index calculated by dividing starting gap width by the gap 

width at 18 hours. (C) Change in trans-epithelial electric resistance (TER) across confluent 

monolayers of A549 cells after 24 hours of 20nM AUY922 treatment. Two independent 

experiments were performed in triplicate (n=6); All data is representative of the mean ±SEM of 

two independent experiments performed as described**P<0.01, ****P<0.0001  

AUY922 PROMOTES TIGHT JUNCTION FORMATION IN A549 CELLS 

The increase in E cadherin expression under AUY922 treatment prompted us to find 

additional details to identify a more definitive cause for the lack of migration in the scratch 

assay. Increased E-cadherin expression may indicate the promotion of tight junctions between 

cells (Mendonsa, Na, & Gumbiner, 2018). To investigate this, we plated A549 cells in transwell 
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plates and measured tight junction formation via trans-epithelia resistance (TER) in each of our 

previous treatment conditions. At 24 hours, there was a substantial TER increase in AUY922 

treated cultures relative to control cultures (Figure 9C).  

This observation helps explain the lack of migration of AUY922 treated A549 cells in the 

wound healing assays. By promoting tight junction formation, the increased intensity in cell-cell 

adhesion makes it less likely for the cells at the edge of the scratch to migrate into the gap. This 

places AUY922 as a potential cell-cell adhesion enhancer, which has benefits in the context of 

cancer metastasis as increases in cell-cell adhesion discourages cancer cells from migrating 

outside the primary tumor. 

AUY922 TREATMENT DOES NOT INDUCE SURFACE EXPRESSION OF ABCB1 OR ABCC1 

COMPARED TO PACLITAXEL TREATMENT  

During the EMT induction experiments where we exposed A549 cells to 48 hours of 

AUY922 or paclitaxel and followed with 48 hours of untreated medium or TGF-β treated  

medium to measure E-cadherin expression, we also probed expression of ABCB1 and ABCC1. 

These two ABC transporters are also commonly known as P-glycoprotein (P-gp) and multidrug 

resistance protein 1 (MRP1), respectively. In agreement with others (Synold, Dussault, & 

Forman, 2001; Vesel et al., 2017), paclitaxel treatment in A549 cells promoted a slight increase 

in ABCB1 positive fraction relative to the control cultures at the end of the four day period, with 

enhanced ABCB1 positive fraction under induction of EMT with TGF-β in the final 48-hour 

time period (Figure 10A-C). Paclitaxel treated cultures also had a similar increase in ABCC1  
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Figure 10: Drug Transporter Expression in EMT Induction Experiments.  

(A) ABCB1 expression without EMT induction (Top) and with EMT induction with TGF-β 

(Bottom) of indicated drug treatments. (B) Quantification of the percentage of cells positive for 

ABCB1 without EMT induction. Data is representative of the mean ±SEM of three independent 

experiments performed in triplicate (n=9). (C) Quantification of the percentage of cells positive 

for ABCB1 and EMT induction. Data is representative of the mean ±SEM of three independent 

experiments performed in triplicate (n=9). (D) ABCC1 expression without EMT induction (Top) 

and with EMT induction with TGF-β (Bottom) of indicated treatments. (E) Quantification of 

three independent experiments performed in triplicate (n=9). (F) Quantification of percentage of 

cells positive for ABCC1 with EMT induction. Data is representative of the mean ±SEM of three 

independent experiments performed in triplicate (n=9). *P<0.05, ***P<0.001, ****P<0.0001.  
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positive fraction relative to the control with or without TGF-β in the final 48 hours before 

capture (Figure 10D-F). 

In contrast, there was no increase in ABCB1 or ABCC1 relative to the control in 

AUY922 treated cultures regardless of TGF-β treatment (Figure 10). While the changes in 

AUY922 cultures were of little statistical significance compared to control cultures, considered 

as a whole there was a general downward trend, especially in AUY922 treated cultures exposed 

to TGF-β in the final 48 hours before capture (Figure 10C, F). This was interesting to us since 

A549 cultures treated with AUY922 received a chemical stimulus at twice the molar dose of 

paclitaxel cultures, yet remained insensitive to induction to part of the xenobiotic defense 

response for which ABC transporters evolved to carry out (Dean & Annilo, 2005). With this 

information, we formed a new strategy to maximize the resolution of our putative observations 

of the reduced positive fraction of ABCB1 and ABCC1 under AUY922 treatment. From here 

forward, loss or gain of ABCB1 and ABCC1 will be referred to as the MDR phenotype. 

SINGLE TREATMENT WITH AUY922 REDUCES MDR PHENOTYPE AND DESENSITIZES A549 

CELLS TO INDUCTION OF MDR PHENOTYPE VIA PACLITAXEL TREATMENT 

In order to maximize the resolution of our observations of putative reduction in ABC 

transporter expression with AUY922 treatment, we altered the protocol as described in the 

methods. This experimental timeline mimics a scenario in which a cancer patient may receive 

multiple chemotherapies in cycles on alternating days, adding a level of clinical relevance to this 

experimental strategy. 

Our adjustments to the experimental protocol proved to be successful.  A549 cells treated 

with 20nM AUY922 for 48 hours followed by fresh media for the remaining 6 days  
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Figure 11: Flow Cytometric Analysis of ABC Transporters Captured at Day 8 after 

Indicated Drug Treatment.  

(A) (Top) ABCB1 (Bottom) ABCC1 expression in A549 cells after a single treatment with 20nM 

AUY922. (B) Quantification of the percentage of cells positive for ABCB1 captured at day 8 (C) 

Quantification of the percentage of cells positive for ABCC1 captured at day 8. All data is 

representative of the mean ±SEM of two independent experiments performed at least in duplicate 

(n=5). *P<0.05, **P<0.01. 

demonstrated reduced positive fraction of the MDR phenotype (Figure 11A-C) relative to 

control cultures that received fresh untreated media every 48 hours for 8 days (Figure 11A-C). 

Additionally, cells pretreated with 20nM AUY922 for the first 48 hours appeared to be 

insensitive to induction of the MDR phenotype with 10nM paclitaxel on days 4-6 compared to 

control cultures that only received 10nM of paclitaxel on days 4-6 and showed dramatic 

induction of the MDR phenotype (Figure 12A-D). The observation of reduced induction of the 

MDR phenotype under AUY922 treatment appeared to be dose dependent, as pretreatment with 

10nM of AUY922 also demonstrated a proportional decrease in the MDR phenotype (Figure 

12A-D). It appears that just as AUY922 treatment desensitized A549 cells to acquisition of a 

metastatic phenotype through TGF-β driven EMT, they also appear insensitive in attaining the  
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Figure 12: Flow Cytometric Analysis of ABC Transporter Expression Captured at day 8 

for Cultures Treated with 10nM Paclitaxel to Induce MDR.  

(A) ABCB1 expression in A549 cells after a single treatment of AUY922 followed by MDR 

induction with 10nM Paclitaxel (PTX) as described. (B) Quantification of the percentage of cells 

positive for ABCB1 captured at 192 hours. (C)ABCC1 expression in A549 cells after a single 

treatment of AUY922 followed by MDR induction with 10nM Paclitaxel (PTX) as described. 

(D) Quantification of the percentage of cells positive for ABCC1 captured at 192 hours.  

PTX=10nM Paclitaxel. Text before the slash indicates treatment conditions during the first 48 

hours of the experiment. Text after the slash indicates treatment conditions from days 4 to 6. All 

data is representative of the mean ±SEM of three independent experiments performed at least in 

duplicate (n=8). *P<0.05, **P<0.01, ****P<0.0001 

MDR phenotype. Furthermore, MDR induction with paclitaxel generated a robust double 

positive ABCB1 and ABCC1 population, which was not present in cultures that did not receive  

MDR induction with paclitaxel (data not shown). This was also where the greatest reduction in 

the MDR phenotype as a result of AUY922 treatment appeared to occur (Figure 13). This is a 

significant finding because ABCB1 and ABCC1 have considerable substrate overlap in  
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Figure 13.  Flow Cytometric Analysis Captured at Day 8 of All Four Populations of A549 

Cells after MDR Onduction on Day 4 with 10nM Paclitaxel (PTX)  

(A) (Top) Representative flow plots demonstrating strong induction of ABCB1+ABCC1+ 

(double positive) population that decreases under AUY922 treatment in a dose dependent 

manner. Text before the slash indicates conditions from hours 0-48, text after the slash indicates 

conditions from hours 96-144. (A)(Bottom) Same view, but with colors designating the four 

populations to give a sense of the heterogeneity within the cultures. (B) Quantification of the 

percentage of cells in all four populations captured on day 8 according to the colors in (A). Data 

is representative of the mean ±SEM of three independent experiments performed at least in 

duplicate (n=8). *P<0.05, **P<0.01, ****P<0.0001 
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chemotherapies commonly used to treat lung cancer (Sharom, 2008), and experimental evidence 

suggests expression of multiple ABC transporters are required for cancers to achieve multidrug 

resistance (Bartholomae et al., 2016; Marzac et al., 2011) (Robey et al., 2018).  This means that 

HSP90 inhibition with AUY922 has the potential to limit the formation of lung cancer cells that 

can generate the greatest efflux of chemotherapies across their cell membrane. 

LOSS OF MDR PHENOTYPE FROM AUY922 TREATMENT HAS A FUNCTIONAL CONSEQUENCE 

THAT IMPACTS A549 CELL SURVIVAL 

Our results indicating that treatment with AUY922 desensitizes A549 cells to induction 

of the MDR phenotype with paclitaxel suggest that these cells are more sensitive to cell death via 

paclitaxel treatment than controls treated with paclitaxel alone on day 4. However, given that 

ABC transporters are only one of several methods in which cancer cells can generate multi drug 

resistance, and the wide range of signaling pathways that may be altered by HSP90 inhibition, it 

is possible that we could be reducing one mechanism of multidrug resistance with AUY922 

while reinforcing another. To investigate if AUY922 altered the viability of A549 cells over the 

8-day period, we began tracking the culture growth at important time points in the experiment, in  

particular days 4, 6 and 8. A549 cells that received fresh medium every 2 days for 8 days showed 

classical unimpeded exponential growth, while A549 cells that received 20nM of AUY922 for  

the first two days followed by fresh medium every two days for the next 6 days showed a 

significant slowing of culture growth at each time point throughout the experiment, but an 

overall positive slope to the growth curve (Figure 14A).  

In the treatment groups that received 10nM of paclitaxel on day 4 followed by fresh 

medium on day 6, more complex changes in culture growth were observed. A549 cells that  
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Figure 14: Growth Curve during 8 Day ABC Transporter Experiments and Doxorubicin 

Efflux Assay  

(A) Growth curve of A549 cultures during the 8 day experiment after a single 48 hour 20nM 

treatment of AUY922. (B) Growth curve of A549 cultures exposed to 10nM of paclitaxel to 

induce MDR as described after 48 hour pretreatment with indicated doses of AUY922 (n=6). (C) 

Comparison of viable cells at hours 144 and hours 192 in cultures pretreated with 20nM 

AUY922 followed by MDR induction, indicating significant difference in viability. (D) 

Doxorubicin efflux assay representative flow cytometry histogram median fluorescence intensity 

of the total population of A549 cultures treated with 10nM of paclitaxel on day 4 (blue) and 

A549 cells pretreated with 20nM of AUY922 before receiving 10nM of paclitaxel on day 4 

(green). Black curve represents negative control. (E) Doxorubicin efflux assay quantification of 

the median fluorescence intensity of doxorubicin accumulation of the total cell population treated 

as indicated (n=8). In (B) and (C), text before the slash indicates conditions from hours 0-48, text 

after the slash indicates conditions from hours 96-144. All data is representative of the mean 

±SEM of three independent experiments performed at least in duplicate. *P<0.05, **P<0.01, 

***P<0.001, ***P<0.001, ****P<0.0001 



48 

 

remained untreated until they received 10nM of paclitaxel on day 4 showed a slowing of growth 

from days 4 to 6, but on days 6 to 8 demonstrated accelerated growth (Figure 14B black line). 

In contrast, A549 cells treated with 10nM and 20nM AUY922 showed a similar slowing of 

culture growth from days 4 to 6, but a dose dependent decrease in the slope of the growth curve 

from days 6 to 8 (Figure 14B orange and green lines). In the case of 20nM of AUY922 

treatment during the first two days, there was a negative slope to the growth curve from days 6-8.  

These results may be explained by our previous findings of reduced MDR phenotype in 

A549 cells pretreated with AUY922 captured on day 8 via flow cytometry (Figures 5 and 6). 

When A549 cells treated with AUY922 throughout the first 2 days of the experiment are unable 

to access the MDR phenotype during paclitaxel treatment during days 4-6, they cannot efflux 

paclitaxel when they receive fresh medium on days 6-8, thus promoting A549 cell death and a 

decrease in the slope of the growth curve during this time (Figure 14B, C).  

 This analysis only explains the role of ABCB1 in paclitaxel efflux, since ABCC1 

effluxes paclitaxel poorly (Borst, Evers, Kool, & Wijnholds, 2000). To account for both ABCB1 

and ABCC1 in the MDR phenotype and the results of the growth curve in cultures that received 

paclitaxel on day four, we decided to perform an efflux assay using doxorubicin as a fluorescent 

substrate. Doxorubicin is a substrate for both ABCB1 and ABCC1 (Sharom, 2008) and has 

intrinsic fluorescent properties that make it ideal to study drug efflux via flow cytometry. This 

method in using doxorubicin to study efflux activity of ABC transporters has been used by other 

investigators (Chen et al., 2015; Punia, Raina, Agarwal, & Singh, 2017) and we developed our 

assay in accordance with these studies. We performed the eight-day experiment just as before, 

but instead of immunophenotyping for ABCB1and ABCC1, we loaded the cells with 
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doxorubicin and provided a washout period to allow doxorubicin efflux, before analysis via flow 

cytometry. If our observation of the reduced MDR phenotype in AUY922 treated A549 cells is 

valid, these cultures should accumulate doxorubicin to a greater extent than A549 cells that 

received paclitaxel alone. Indeed, this was our result (Figure 14D), with significant change 

occurring in A549 cells that received 20nM of AUY922 (Figure 14E). Our efflux assay did not 

indicate a significant change between cultures that only received MDR induction with paclitaxel 

on day four compared to cultures treated with 10nM AUY922 before MDR induction with 

paclitaxel, even though there was a significant decrease in the MDR phenotype in these cells. 

This may be due to a threshold effect, where accumulation of drug in the A549 cell population 

does not occur unless transporter activity is reduced to a threshold level. 

Together, the growth curve analysis and the efflux assay serves to support the results of 

the decreased MDR phenotype in AUY922 treated cells captured via flow cytometry during the 

eight-day experiment. The growth curve analysis also shows that we are not engaging other drug 

resistance mechanisms that are sufficient to restore cell survival as a product of AUY922 

treatment. Furthermore, the resultant reduction in ABCB1 and ABCC1 positive fraction in the 

culture is sufficient to generate a functional consequence that leads to intracellular accumulation 

of chemotherapy, promoting cell death.    

Discussion 

Previous studies have implicated HSP90 in facilitating cellular mechanisms that drive 

metastasis and drug resistance in several cancer types, and that pharmacological HSP90 

inhibition can deconstruct these mechanisms (Chong et al., 2019; Nagaraju et al., 2015; 

Whitesell et al., 2014).  However, these studies only evaluated drug resistance and metastasis 

separately. Here we demonstrate that HSP90 inhibition with AUY922 can limit both metastatic 
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and drug resistant features in A549 NSCLC cells at the same clinically relevant dose. Moreover, 

these changes can be maintained even in the presence of strong inducers for metastatic and drug 

resistant phenotypes over a relatively prolonged time frame.  

Our findings support the work of others demonstrating HSP90 inhibition abrogates EMT 

in other cancers (Chong et al., 2019; Nagaraju et al., 2015). However, this is the first 

documentation of these observations in A549 NSCLC cells with AUY922. The increased E-

cadherin expression in our flow cytometry studies combined with our wound healing assays and 

TER measurements indicates that AUY922 treatment enhances cell-cell adhesion. This is 

pertinent to NSCLC, which is often locally advanced at the time of diagnosis (Gabor et al., 2004; 

Popper, 2016). Immediate intervention with low dose AUY922 may be a useful treatment 

strategy in preventing further progression of the metastatic cascade in these cancers.  

By carefully studying the flow cytometry plots during the four day EMT induction 

experiments, we also have evidence that HS90 inhibition with AUY922 simplifies the 

heterogeneity in the cultures relative to untreated or paclitaxel treated cultures in terms of E-

cadherin positive and E-cadherin negative cells.  In cultures that did not receive EMT induction, 

after a single treatment with AUY922, the culture shifts to mostly E-cadherin positive, whereas 

the paclitaxel cultures and the control have more balanced percentages of E-cadherin positive 

and E-cadherin negative populations. Under paclitaxel treatment, the heterogeneity is even more 

dramatic as the flow plots reveal what appear to be two distinct populations beginning to diverge 

from one another in the culture, whereas the control culture maintains a robust positive and 

negative population that is grouped close together. During EMT induction with TGF- β, 

AUY922 cultures do not transition as far as the two cultures that retained balanced positive and 

negative E-cadherin populations. Even on this relatively short time scale, these findings support 
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the hypothesis that HSP90 inhibition can reduce ITH such that it is less prone to acquiring 

metastatic properties.  

To the best of our knowledge, we are the first to document the relationship between 

HSP90 inhibition with AUY922 in A549 cells and reduced cell surface expression of ABCB1 

and ABCC1 with any HSP90 inhibitor in any cancer cell line. A single treatment with AUY922 

is enough to maintain a significant reduction in both ABCB1 and ABCC1 for up to 8 days. 

Moreover, pretreatment with AUY922 suppressed cell surface expression of ABCB1 and 

ABCC1, even when stimulated to induce ABC transporter expression with paclitaxel. We were 

able to demonstrate a functional consequence of these findings by tracking cell growth over the 

eight-day experimental timeline and through efflux studies using doxorubicin, which is a 

substrate for both ABCB1 and ABCC1, as a fluorescent drug accumulation marker. Our findings 

and experimental design are clinically relevant since both ABCB1 and ABCC1 are thought to 

play a significant role in drug resistant NSCLCs (Berger et al., 2005; Oshika et al., 1998; Ota et 

al., 1995; Volm et al., 1991), and paclitaxel is still used to treat NSCLC. Additionally, ABC 

transporters, in particular ABCB1, can contribute to drug resistance in other cancers (Goldstein 

et al., 1989; Sharom, 2008), potentially making our findings applicable to a wide variety of 

cancers.  

Here too, we see how AUY922 treatment simplifies the heterogeneity in the A549 culture 

populations when the MDR phenotype is induced. In control cultures that received MDR 

induction with paclitaxel, four populations of cells emerged in terms of ABCB1 and ABCC1 

surface expression. On the other hand, AUY922 treatment reduced heterogeneity in the cultures 

in a dose dependent manner, such that the cultures became increasingly double negative for 

ABCB1 and ABCC1 expression. This is further support for the hypothesis that HSP90 inhibition 
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can reduce heterogeneity in cancer cell populations such that they are less likely to become drug 

resistant.  

When it was discovered that ABC transporters drive multidrug resistance in cancer, 

numerous pharmacological inhibitors were developed to limit ABC transporter driven multidrug 

resistance (Robey et al., 2018). However, clinical evaluations of these inhibitors failed to 

demonstrate any benefit. This was later determined to be because most of these inhibitors only 

targeted a single ABC transporter at a time, and it is now suspected that expression of multiple 

ABC transporters is necessary to confer multidrug resistance in cancer (Robey et al., 2018). 

Furthermore, these drugs were not well tolerated in combination with chemotherapy (Robey et 

al., 2018). Our flow cytometry experiments suggest that it is possible to get around some of these 

problems by using AUY922 to remove cell surface expression of two major ABC transporters 

thought to confer multidrug resistance in a variety of cancers, including NSCLC. If ABCB1 and 

ABCC1 are not expressed on the cell surface, they cannot be expected to play a role in efflux 

dependent multi drug resistance. 

The down regulation of ABCB1 and ABCC1 on the surface of A549 cells treated with 

AUY922 may also explain a relatively common side effect of this drug observed in clinical trials. 

A frequently reported adverse effect of AUY922 is various visual disturbances, and these occur 

most often in treatment cohorts receiving the highest dose of AUY922 (Bendell et al., 2015; Doi 

et al., 2014; Felip et al., 2018; Johnson et al., 2015; Kong et al., 2016; Seggewiss-Bernhardt et 

al., 2015; Sessa et al., 2013). Others have postulated that this might be related to a certain 

sensitivity of the retina to AUY922 (Kong et al., 2016; Zhou et al., 2013), however these 

investigators did not provide any direct cellular mechanism relevant to retinal physiology to 

explain this sensitivity. The blood retinal barrier (BRB) is a privileged site in the body. As such 
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it contains high expression of ABC transporters including ABCB1 and ABCC1 (Chapy et al., 

2016) that not only protect the retina from xenobiotic insult, but also govern multiple biological 

gradients important for normal function. Application of high doses of AUY922 in clinical trials 

may be down regulating ABC transporter expression in the retina and altering its ability to 

properly maintain certain gradients, leading to changes in vision (Bendell et al., 2015; 

Piotrowska et al., 2018; Sessa et al., 2013). Even though our work is in a different tissue type, 

our results support this hypothesis when considering that almost all tissues in the human body 

utilize ABC transporters to some degree. Changes in vision are not likely due to apoptosis, as 

clinical trials report visual changes are reversible once AUY922 treatment is removed. However, 

this can only be definitively confirmed by studies evaluating ABC transporters in retinal tissue 

treated with AUY922.  

Overall, the recent evidence that some treatment approaches may incidentally enable the 

metastatic cascade (Kajiyama et al., 2007; Karagiannis et al., 2017; Volk-Draper et al., 2014) and 

the persistence of drug resistant relapse after current treatment methods(Garraway & Janne, 

2012) demands new, rational, treatment strategies that can curtail the emergence of metastatic 

and drug resistant cancer phenotypes simultaneously. The work presented in this chapter points 

to AUY922 as a possible drug candidate to accomplish this in NSCLC. We demonstrate that a 

single treatment with AUY922 at a relatively low, clinically appropriate dose can reduce 

phenotypic changes associated with both metastasis and efflux dependent drug resistance in 

A549 cells. These changes can be maintained even when potent inducers of metastatic and drug 

resistant phenotypes is applied. Additionally, we used AUY922 treatments in combination with 

drugs that are currently used to treat NSCLC, making a case that low dose pretreatment with 

AUY922 may prevent undesirable changes related to metastasis and drug resistance that has 
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been associated with conventional cytotoxic therapy like paclitaxel (Datta et al., 2017; Kajiyama 

et al., 2007; Karagiannis et al., 2017; Volk-Draper et al., 2014). This is reasonable for a clinical 

setting since other clinical trials using AUY922 at much higher doses have shown it to be well 

tolerated. Though some studies have shown AUY922 to be less well tolerated when paired with 

some conventional therapies (Seggewiss-Bernhardt et al., 2015), since we are arguing that lower 

doses should be used, tolerability can be expected to improve. Finally, we show circumstantial 

evidence that HSP90 inhibition can simplify phenotypes in culture such that they are less prone 

to providing heterogeneity for Darwinian processes to act on and drive tumor progression. 
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CHAPTER 3: CONCLUSIONS 

 

Reflection  

The exact role HSP90 plays in nature has been the center of considerable debate ever 

since drugs were first developed to target HSP90’s activity decades ago. Targeting HSP90 in 

cancer came with heavy skepticism considering it is necessary for proper function of normal 

cells. These concerns have largely been put to rest as advances in the field have demonstrated 

that HSP90 inhibitors are specific to their target and accumulate in neoplastic tissue. These two 

highly desirable traits that are not easily found in other cancer drugs certainly suggests that 

HSP90 inhibitors should find their way into the cancer treatment process one way or another.   

Our objective was to unite HSP90 inhibition in reducing the evolution of both metastatic 

and drug resistant features at a single relatively low dose. This is in contrast to other studies that 

investigated HSP90 inhibitors in deconstructing either drug resistance or metastasis, but not both 

simultaneously (Whitesell et al., 2014) (Chong et al., 2019; Nagaraju et al., 2015). We also 

wanted to study a drug resistance mechanism that could be widely applied to many cancers, such 

as ABC transporter driven drug resistance, which is distinct from previous studies (Whitesell et 

al., 2014). 

Overall, we were successful in achieving our objective. We found that HSP90 inhibition 

with AUY922 at a single low dose could pointedly restrict metastatic and ABC transporter 

driven drug resistance features in A549 cells. This has strong implications for treatment of 

NSCLCs since these cancers are known to rapidly develop metastasis and efflux dependent drug 

resistance (Berger et al., 2005; Gabor et al., 2004; Oshika et al., 1998; Ota et al., 1995; Shanker 

et al., 2010; Sosa Iglesias et al., 2018; Volm et al., 1991). Furthermore, the ability to use one 

drug at low doses to curtail both of these features may increase the durability of treatment while 
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also improving the quality of life for cancer patients during treatment.  

Study Weaknesses 

While we were effective at demonstrating HSP90 inhibition with AUY922 restricted 

development of metastatic and drug resistant phenotypes, our work has some weaknesses. First, 

we only demonstrated our findings in a single lung cancer cell line. We did some preliminary 

studies in H596 cells, another lung cancer cell line, but we could not get the same results. This 

may be because H596 cells were relatively insensitive to HSP90 inhibition with AUY922, with 

an EC50>100nM according to our measurements. This suggests these cells are not as dependent 

on HSP90 as A549 cells are for viability. This may make the changes we document here in terms 

of cell adhesion and ABC transporters with AUY922 treatment exclusive to cancers that have a 

greater dependence on HSP90 to maintain cellular functions. In terms of cancer treatment, this 

may mean that in order to maximize the success of AUY922 in the clinic, patients should be 

stratified according to the dependence their cancers have on HSP90 in maintaining cancer 

hallmarks. Taking biopsies at different tumor regions and assessing the level of oncogene 

interaction with HSP90 via a co-immunoprecipitation assay optimized for the clinic could 

accomplish this. The more oncogenes that are associated with HSP90, the more likely a patient 

may benefit from HSP90 inhibitor therapy.  

Another putative weakness is that this work lacks reproduction in an in vivo setting. We 

say putative here because as pointed out by others (Robey et al., 2018), one major confounding 

factor in delineating the relationship between multi drug resistant cancers and ABC transporters 

was that normal tissues and infiltrating immune cells that make up the tumor stroma also express 

ABC transporters, making it difficult to accurately assess changes in ABC transporter expression 

specifically occurring in neoplastic tissue. Therefore, it was reasonable to begin studying how 
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HSP90 inhibitors like AUY922 alter ABC transporters in vitro since this had never been studied 

before. However, the assertions made in this piece are significantly weaker without reproducing 

our results in vivo. 

Contributions to the Field and Future Directions 

Despite its weaknesses, this work has made some significant contributions to the field of 

medicine and cancer biology. Since our approach was relatively straightforward using very basic 

cell culture techniques, numerous future studies can be developed from these findings. 

Moreover, A549 cells are well studied and accessible to most research universities across the 

country, adding to the utility of the work presented here.  

As previously stated, manipulating ABC transporters in multidrug resistant cancers has 

been attempted in the past with small molecule inhibition, but has come up short in delivering 

clinical efficacy (Robey et al., 2018). Here we show that it is possible to simply remove ABC 

transporters from the cell surface with AUY922, neutralizing their ability to efflux drugs from 

A549 NSCLC cells. Other cancer types prone to ABC transporter driven drug resistance should 

be studied for down regulation in ABC transporters when exposed to low doses of AUY922. 

These would include colorectal, pancreatic, liver, and breast cancers to name a few (Begicevic & 

Falasca, 2017). Additionally, other HSP90 inhibitors should be explored for this effect as well.  

HSP90 inhibitors like AUY922 that do not require dissolution in DMSO should be the primary 

focus since DMSO can induce ABC transporter expression (Nishimura, Ueda, & Naito, 2003).  

The influence AUY922 has on ABC transporters in A549 cells shown in this work should 

be investigated in more detail to develop strategies to apply this effect in normal tissues. The 

ability to manipulate ABC transporter expression in normal tissues is relevant to medicine since 

it may improve bioavailability and tissue penetration of pharmacological therapies. For example, 
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a reason some drugs are not orally bioavailable is due to ABC transporter expression in the gut 

lining that pumps drugs back into the lumen before they can reach the basolateral membrane and 

cross into the bloodstream, significantly reducing the therapeutic effect of some drugs (Dietrich, 

Geier, & Oude Elferink, 2003). Furthermore, the blood brain barrier of the central nervous 

system is covered in ABC transporters that serve to protect it from xenobiotic insult, but 

becomes a significant obstacle for physicians attempting to apply pharmacological therapy to the 

central nervous system (Begley, 2004). It is unlikely that normal tissue will behave in the same 

way as neoplastic tissue when exposed to AUY922 because neoplastic tissue contains more 

activated HSP90. But if a mechanism can be identified in A549 cells that drives the reduced 

MDR phenotype when exposed to AUY922, that mechanism can be explored in detail in normal 

tissue and potentially exploited to down regulate ABC transporters to aid therapies in reaching 

their target tissue.  

Finally, this work is distinct from other cancer research in that it successfully 

demonstrates the possibility of diminishing metastasis and drug resistance together, at the same 

dose, with a single drug. This is a significant discovery since the cellular mechanisms driving 

metastasis and drug resistance we show here are not known to operate through shared cellular 

mechanisms. Here we show evidence they are linked by HSP90. A549 cell xenograft studies in 

mice should be carried out immediately to evaluate whether the changes in metastatic and drug 

resistant features we observed with AUY922 in vitro are carried over in vivo. AUY922 should be 

administered to mice in low doses paired with paclitaxel or other chemotherapies in a clinically 

achievable treatment schedule. Mice should be followed for several months to evaluate 

progression of their tumors. Other HSP90 inhibitors that have shown success in low doses, such 

as ganetespib, should also be evaluated in parallel. If successful, this makes a strong case for 
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designing human clinical trials using HSP90 inhibitors in low doses to simultaneously restrict 

metastasis and drug resistance from developing in a patient’s tumor.  

Final Remarks 

Clinical trials have demonstrated that AUY922 and other HSP90 inhibitors are more 

potent in combination with other conventional chemotherapies (Bendell et al., 2015; Johnson et 

al., 2015; Kong et al., 2016; Modi et al., 2011) than by themselves (Doi et al., 2014; Piotrowska 

et al., 2018; Seggewiss-Bernhardt et al., 2015). This is uncannily similar to the the antibiotic, 

clavulanic acid. Clavulanic acid is a weak antibiotic on its own (Brumfitt & Hamilton-Miller, 

1984), but when combined with beta-lactam antibiotics, significantly potentiates their action 

through inhibition of microbial derived lactamases. Lactamase activity is an adaptive mechanism 

microbes developed to fight beta lactam producing fungi and is the main source of treatment 

failure of beta lactam antibiotics (Sykes, 2010). This was a significant problem until clavulanic 

acid was discovered, and it essentially revived a whole class of antibiotics that were rapidly 

becoming obsolete. Now, clavulanic acid is routinely used in combination with beta lactam 

antibiotics to successfully treat microbial infections resistant to beta lactam monotherapy.  

The heat shock response, which is considered an adaptive response to cellular stress 

(Schlesinger, 1990), is known to play a significant role in cancer progression (Calderwood & 

Gong, 2016). Furthermore, a major chaperone protein integral to the heat shock response, 

HSP90, appears to support the evolution of metastatic and drug resistant cancers, which are 

responsible for the bulk of treatment failure. This is further strengthened when considering that 

HSP90 has multiple protein clients in each of the original six hallmarks of cancer (Hanahan & 

Weinberg, 2000) (Figure 4) including the hallmarks of “resistance to apoptosis” and “activation 

of invasion and metastasis”. The results presented here demonstrate that AUY922, a potent 
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HSP90 inhibitor, can limit some of the phenotypic changes associated with metastatic and drug 

resistant cancers simultaneously. To date, there is not a class of drugs specifically used to 

suppress the evolution of metastatic and drug resistant phenotypes in cancer like there have been 

for the evolution of drug resistant microbial infections in the case of clavulanic acid. Could 

AUY922, and other HSP90 inhibitors, be operating like clavulanic acid by targeting an adaptive 

mechanism that many cancers appear to rely on to evolve metastatic and drug resistant 

phenotypes, both of which are responsible for treatment failure? Our results in addition to others 

certainly support that notion. Perhaps it is time to begin taking a closer look at using HSP90 

inhibitors to shape the cancer, rather than kill it, to improve cancer treatment outcomes. 

It is also possible that HSP90 inhibition in cancer has less to do with directly 

hamstringing HSP90’s adaptive function and more to do with reducing ITH and revealing 

evolutionary “dead ends” stored in HSP90’s capacitor function. Since HSP90 chaperones clients 

in every core cancer hallmark, limiting its function significantly reduces a cancer’s ability to lean 

on any individual cancer hallmark to maintain survival since their gene products would all be 

simultaneously compromised (Figure 15). This may force the emergence of phenotypes that are 

far less aggressive and may actually represent evolutionary “dead ends”. In terms of the natural 

course of cancer, this refers to phenotypes that are less metastatic and drug resistant. We have 

some evidence for that here in this work. Another possible evolutionary “dead end” could be  
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Figure 15: Hypothetical Illustration of HSP90 Inhibition Crippling Tumor Evolution 

As in previous illustrations, HSP90 is shown orchestrating the cancer hallmarks in order to 

promote evolution of three tumor phenotypes (orange, pink purple), with enlarged colored boxes 

to denote the collective level of dependence the tumor has on the cancer hallmarks (LEFT). 

HSP90 inhibition shuts down the cancer hallmarks simultaneously, denoted by the shrunken 

colored boxes, bringing the tumor to a new state that is less able to evolve new neoplastic 

characteristics (sea green crosshatches). This may reveal evolutionary “dead ends” hidden in the 

cancer’s genome, making the neoplasm more vulnerable to selective pressures it previously 

evolved to thwart, such as the immune system and chemotherapy. 

resensitization of cancer cells to the immune system.  There is already some evidence for this 

forming in studies demonstrating that ganetespib can sensitize cancer cells to T-cell mediated 

anti-tumor responses (Mbofung et al., 2017), though they do not discuss their findings in terms 

of tumor evolution. Revealing these evolutionary “dead ends” could fundamentally alter the 

trajectory of tumor evolution, perhaps even resulting in sustained tumor remission.  

Given the complex nature of the mechanisms that drive metastasis and drug resistance in 

cancer, HSP90 inhibitors are unlikely to be a silver bullet. If we reframe cancer as a moving 

target that strives to evolve metastatic and drug resistant features over time according to the 
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theory of tumor evolution, we may discover alternative ways to prevent these features from 

manifesting in the first place. Therefore, more work should be dedicated to identifying cellular 

mechanisms and microenvironmental factors that drive both metastasis and drug resistance from 

the earliest stages of carcinogenesis to the final stages of advanced disease. If possible, we 

should develop drugs against single targets that are essential in driving both metastasis and drug 

resistance so as to leave room for combination therapy with cytotoxic agents to control tumor 

growth. Some investigators have already started working on this idea (Cao et al., 2018). This 

may not turn out to be the most effective way to kill the cancer outright, but if we can prevent 

drug resistance and metastasis from developing, there is a good chance we can control the 

disease and extend the lives of cancer patients. Even more, we may learn that approaching cancer 

treatment in this way may not require the levels of cytotoxic therapy currently recommended for 

cancer treatment, thus significantly improving the quality of life for patients during the treatment 

process. 
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