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Preface

This book gives an introduction to the finite element method as a general computa-
tional method for solving partial differential equations approximately. Our approach
is mathematical in nature with a strong focus on the underlying mathematical
principles, such as approximation properties of piecewise polynomial spaces, and
variational formulations of partial differential equations, but with a minimum level
of advanced mathematical machinery from functional analysis and partial differen-
tial equations.

In principle, the material should be accessible to students with only knowledge of
calculus of several variables, basic partial differential equations, and linear algebra,
as the necessary concepts from more advanced analysis are introduced when needed.

Throughout the text we emphasize implementation of the involved algorithms,
and have therefore mixed mathematical theory with concrete computer code using
the numerical software MATLAB1 and its PDE-Toolbox. A basic knowledge of the
MATLAB language is therefore necessary. The PDE-Toolbox is used for pre and
post processing (i.e., meshing and plotting).

We have also had the ambition to cover some of the most important applications
of finite elements and the basic finite element methods developed for those applica-
tions, including diffusion and transport phenomena, solid and fluid mechanics, and
also electromagnetics.

The book is loosely divided into two parts Chaps. 1–6 which provides basic
material and Chaps. 7–14 which covers more advanced material and applications.
In the first part Chaps. 1–4 gives an introduction to the finite element method for
stationary second order elliptic problems. Here we consider the one dimensional
case in Chaps. 1 and 2 and then extend to two dimensions in Chaps. 3 and 4.
In Chap. 5 we consider time dependent problems and in Chap. 6 we give an
introduction to numerical linear algebra for sparse linear systems of equations.
In the second more advanced part we present the abstract theory in Chap. 7,
various finite elements in Chap. 8, and a short introduction to nonlinear problems

1MATLAB is a registered trademark of The MathWorks Inc. (www.mathworks.com)
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vi Preface

in Chap. 9. In Chaps. 10–13 we consider applications to transport problems, solid
mechanics, fluid mechanics, and electromagnetics. Finally, in Chap. 14 we give a
short introduction to discontinuous Galerkin methods.

The book is based on lecture notes used in various courses given by the
authors and their coworkers during the last eight years at Chalmers University of
Technology, Umeå University, Uppsala University, and at the University of Oslo.
Several different courses in engineering and mathematics programs can be based on
the material in the book. The following are some examples of possible courses that
we have had in mind while developing the material:

• Short introduction to finite elements as part of a calculus or numerical analysis
course. Chapters 1 and 2.

• Introduction to finite elements as part of a calculus or numerical analysis
course, with focus on one dimensional stationary and time dependent problems.
Chapters 1 and 2 and parts of Chapter 5.

• Introduction to finite elements as part of a calculus or numerical analysis course,
with focus on stationary problems in one and two dimensions. Chapters 1–4.

• First course on finite elements. Chapters 1–6.
• Second course on finite elements and its applications. Chapters 7–14.

Umeå, Sweden Mats G. Larson
Fredrik Bengzon
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Chapter 1
Piecewise Polynomial Approximation in 1D

Abstract In this chapter we introduce a type of functions called piecewise poly-
nomials that can be used to approximate other more general functions, and which
are easy to implement in computer software. For computing piecewise polynomial
approximations we present two techniques, interpolation andL2-projection. We also
prove estimates for the error in these approximations.

1.1 Piecewise Polynomial Spaces

1.1.1 The Space of Linear Polynomials

Let I D Œx0; x1� be an interval on the real axis and let P1.I / denote the vector space
of linear functions on I , defined by

P1.I / D fv W v.x/ D c0 C c1x; x 2 I; c0; c1 2 Rg (1.1)

In other words P1.I / contains all functions of the form v.x/ D c0 C c1x on I .
Perhaps the most natural basis for P1.I / is the monomial basis f1; xg, since

any function v in P1.I / can be written as a linear combination of 1 and x. That
is, a constant c0 times 1 plus another constant c1 times x. In doing so, v is
clearly determined by specifying c0 and c1, the so-called coefficients of the linear
combination. Indeed, we say that v has two degrees of freedom.

However, c0 and c1 are not the only degrees of freedom possible for v. To see
this, recall that a line, or linear function, is uniquely determined by requiring it to
pass through any two given points. Now, obviously, there are many pairs of points
that can specify the same line. For example, .0; 1/ and .2; 3/ can be used to specify
v D xC1, but so can .�1; 0/ and .4; 5/. In fact, any pair of points within the interval
I will do as degrees of freedom for v. In particular, v can be uniquely determined
by its values ˛0 D v.x0/ and ˛1 D v.x1/ at the end-points x0 and x1 of I .

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__1, © Springer-Verlag Berlin Heidelberg 2013
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2 1 Piecewise Polynomial Approximation in 1D

To prove this, let us assume that the values ˛0 D v.x0/ and ˛1 D v.x1/ are given.
Inserting x D x0 and x D x1 into v.x/ D c0 C c1x we obtain the linear system

�
1 x0
1 x1

� �
c0
c1

�
D
�
˛0
˛1

�
(1.2)

for ci , i D 1; 2.
Computing the determinant of the system matrix we find that it equals x1 � x0,

which also happens to be the length of the interval I . Hence, the determinant is
positive, and therefore there exist a unique solution to (1.2) for any right hand side
vector. Moreover, as a consequence, there is exactly one function v in P1.I /, which
has the values ˛0 and ˛1 at x0 and x1, respectively. In the following we shall refer
to the points x0 and x1 as the nodes.

We remark that the system matrix above is called a Vandermonde matrix.
Knowing that we can completely specify any function inP1.I / by its node values

˛0 and ˛1 we now introduce a new basis f�0; �1g for P1.I /. This new basis is called
a nodal basis, and is defined by

�j .xi / D
(
1; if i D j

0; if i ¤ j
; i; j D 0; 1 (1.3)

From this definition we see that each basis function�j , j D 0; 1, is a linear function,
which takes on the value 1 at node xj , and 0 at the other node.

The reason for introducing the nodal basis is that it allows us to express any
function v in P1.I / as a linear combination of �0 and �1 with ˛0 and ˛1 as
coefficients. Indeed, we have

v.x/ D ˛0�0.x/C ˛1�1.x/ (1.4)

This is in contrast to the monomial basis, which given the node values requires
inversion of the Vandermonde matrix to determine the corresponding coefficients c0
and c1.

The nodal basis functions take the following explicit form on I

�0.x/ D x1 � x
x1 � x0

; �1.x/ D x � x0
x1 � x0

(1.5)

This follows directly from the definition (1.3), or by solving the linear system (1.2)
with Œ1; 0�T and Œ0; 1�T as right hand sides.

1.1.2 The Space of Continuous Piecewise Linear Polynomials

A natural extension of linear functions is piecewise linear functions. In constructing
a piecewise linear function, v, the basic idea is to first subdivide the domain of v
into smaller subintervals. On each subinterval v is simply given by a linear function.
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x0 x1 x2 x3 x4 x5

v(x)

x

Fig. 1.1 A continuous
piecewise linear function v

Continuity of v between adjacent subintervals is enforced by placing the degrees of
freedom at the start- and end-points of the subintervals. We shall now formalize this
more mathematically stringent.

Let I D Œ0; L� be an interval and let the n C 1 node points fxi gniD0 define a
partition

I W 0 D x0 < x1 < x2 < : : : < xn�1 < xn D L (1.6)

of I into n subintervals Ii D Œxi�1; xi �, i D 1; 2 : : : ; n, of length hi D xi � xi�1.
We refer to the partition I as to a mesh.

On the mesh I we define the space Vh of continuous piecewise linear functions
by

Vh D fv W v 2 C0.I /; vjIi 2 P1.Ii /g (1.7)

where C0.I / denotes the space of continuous functions on I , and P1.Ii / denotes
the space of linear functions on Ii . Thus, by construction, the functions in Vh are
linear on each subinterval Ii , and continuous on the whole interval I . An example
of such a function is shown in Fig. 1.1

It should be intuitively clear that any function v in Vh is uniquely determined by
its nodal values

fv.xi /gniD0 (1.8)

and, conversely, that for any set of given nodal values f˛i gniD0 there exist a function v
in Vh with these nodal values. Motivated by this observation we let the nodal values
define our degrees of freedom and introduce a basis f'j gnjD0 for Vh associated with
the nodes and such that

'j .xi / D
(
1; if i D j

0; if i ¤ j
; i; j D 0; 1; : : : ; n (1.9)

The resulting basis functions are depicted in Fig. 1.2.
Because of their shape the basis functions 'i are often called hat functions. Each

hat function is continuous, piecewise linear, and takes a unit value at its own node xi ,
while being zero at all other nodes. Consequently, 'i is only non-zero on the two
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1
'0 'i

x0 x1 xi−1 xi+1xi xn
x

Fig. 1.2 A typical hat
function 'i on a mesh. Also
shown is the “half hat” '0

intervals Ii and IiC1 containing node xi . Indeed, we say that the support of 'i is
Ii[IiC1. The exception is the two “half hats” '0 and 'n at the leftmost and rightmost
nodes a D x0 and xn D b with support only on one interval.

By construction, any function v in Vh can be written as a linear combination
of hat functions f'igniD0 and corresponding coefficients f˛igniD0 with ˛i D v.xi /,
i D 0; 1; : : : ; n, the nodal values of v. That is,

v.x/ D
nX
iD0

˛i'i .x/ (1.10)

The explicit expressions for the hat functions are given by

'i D

8̂̂
<
ˆ̂:
.x � xi�1/=hi ; if x 2 Ii
.xiC1 � x/=hiC1; if x 2 IiC1
0; otherwise

(1.11)

1.2 Interpolation

We shall now use the function spaces P1.I / and Vh to construct approximations,
one from each space, to a given function f . The method we are going to use is
very simple and only requires the evaluation of f at the node points. It is called
interpolation.

1.2.1 Linear Interpolation

As before, we start on a single interval I D Œx0; x1�. Given a continuous function f
on I , we define the linear interpolant �f 2 P1.I / to f by

�f .x/ D f .x0/'0 C f .x1/'1 (1.12)

We observe that interpolant approximates f in the sense that the values of �f and
f are the same at the nodes x0 and x1 (i.e., �f .x0/ D f .x0/ and �f .x1/ D f .x1/).
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x0 x1

f(x)

p f(x)

x

Fig. 1.3 A function f and its
linear interpolant �f

In Fig. 1.3 we show a function f and its linear interpolant �f .
Unless f is linear, �f will only approximate f , and it is therefore of interest to

measure the difference f � �f , which is called the interpolation error. To this end,
we need a norm. Now, there are many norms and it is not easy to know which is the
best. For instance, should we measure the interpolation error in the infinity norm,
defined by

kvk1 D max
x2I jv.x/j (1.13)

or the L2.I /-norm defined, for any square integrable function v on I , by

kvkL2.I / D
�Z

I

v2 dx

�1=2
(1.14)

We shall use the latter norm, since it captures the average size of a function,
whereas the former only captures the pointwise maximum.

In this context we recall that the L2.I /-norm, or any norm for that matter, obeys
the Triangle inequality

kv C wkL2.I / � kvkL2.I / C kwkL2.I / (1.15)

as well as the Cauchy-Schwarz inequality
Z
I

vwdx � kvkL2.I /kwkL2.I / (1.16)

for any two functions v and w in L2.I /.
Then, using the L2-norm to measure the interpolation error, we have the

following results.

Proposition 1.1. The interpolant �f satisfies the estimates

kf � �f kL2.I / � Ch2kf 00kL2.I / (1.17)

k.f � �f /0kL2.I / � Chkf 00kL2.I / (1.18)

where C is a constant, and h D x1 � x0.
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Proof. Let e D f � �f denote the interpolation error.
From the fundamental theorem of calculus we have, for any point y in I ,

e.y/ D e.x0/C
Z y

x0

e0 dx (1.19)

where e.x0/ D f .x0/ � �f .x0/ D 0 due to the definition of �f .
Now, using the Cauchy-Schwarz inequality we have

e.y/ D
Z y

x0

e0 dx (1.20)

�
Z y

x0

je0j dx (1.21)

�
Z
I

1 � je0j dx (1.22)

�
�Z

I

12 dx

�1=2 �Z
I

e02 dx
�1=2

(1.23)

D h1=2
�Z

I

e02 dx
�1=2

(1.24)

or, upon squaring both sides,

e.y/2 � h

Z
I

e02 dx D hke0k2
L2.I /

(1.25)

Integrating this inequality over I we further have

kek2
L2.I /

D
Z
I

e.y/2 dy �
Z
I

hke0k2
L2.I /

dy D h2ke0k2
L2.I /

(1.26)

since the integrand to the right of the inequality is independent of y. Thus, we have

kekL2.I / � hke0kL2.I / (1.27)

With a similar, but slightly different argument, we also have

ke0kL2.I / � hke00kL2.I / (1.28)

Hence, we conclude that

kekL2.I / � hke0kL2.I / � h2ke00kL2.I / (1.29)
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0 = x0 x1 x2 x3 x4 x5 = 1

3

2

f(x)

p f(x)

x

Fig. 1.4 The function
f .x/ D 2x sin.2�x/C 3 and
its continuous piecewise
linear interpolant �f .x/ on a
uniform mesh of I D Œ0; 1�

with six nodes xi ,
i D 0; 1; : : : ; 5

from which the first inequality of the proposition follows by noting that since �f
is linear e00 D f 00. The second inequality of the proposition follows similarly
from (1.26)

The difference in argument between deriving (1.27) and (1.28) has to do with the
fact that we can not simply replace e with e0 in (1.19), since e0.x0/ ¤ 0. However,
noting that e.x0/ D e.x1/ D 0, there exist by Rolle’s theorem a point Nx in I such
that e0. Nx/ D 0, which means that

e0.y/ D e0. Nx/C
Z y

Nx
e00 dx D

Z y

Nx
e00 dx (1.30)

Starting instead from this and proceeding as shown above (1.28) follows. ut
Examining the proof of Proposition 1.1 we note that the constant C equals unity

and could equally well be left out. We have, however, chosen to retain this constant,
since the estimates generalize to higher spatial dimensions, where C is not unity.
The important thing to understand is how the interpolation error depends on the
interpolated function f , and the size of the interval h.

1.2.2 Continuous Piecewise Linear Interpolation

It is straight forward to extend the concept of linear interpolation on a single interval
to continuous piecewise linear interpolation on a mesh. Indeed, given a continuous
function f on the interval I D Œ0; L�, we define its continuous piecewise linear
interpolant �f 2 Vh on a mesh I of I by

�f .x/ D
nX
iD1

f .xi /'i .x/ (1.31)

Figure 1.4 shows the continuous piecewise linear interpolant �f .x/ to f .x/ D
2x sin.2�x/C 3 on a uniform mesh of I D Œ0; 1� with 6 nodes.

Regarding the interpolation error f � �f we have the following results.

mbaccouch
Callout
i=0
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Proposition 1.2. The interpolant �f satisfies the estimates

kf � �f k2
L2.I /

� C

nX
iD1

h4i kf 00k2
L2.Ii /

(1.32)

k.f � �f /0k2
L2.I /

� C

nX
iD1

h2i kf 00k2
L2.Ii /

(1.33)

Proof. Using the Triangle inequality and Proposition 1.1, we have

kf � �f k2
L2.I /

D
nX
iD1

kf � �f k2
L2.Ii /

(1.34)

�
nX
iD1

Ch4i kf 00k2
L2.Ii /

(1.35)

which proves the first estimate. The second follows similarly. ut
Proposition 1.2 says that the interpolation error vanish as the mesh size hi tends to
zero. This is natural, since we expect the interpolant�f to be a better approximation
to f where ever the mesh is fine. The proposition also says that if the second
derivative f 00 of f is large then the interpolation error is also large. This is also
natural, since if the graph of f bends a lot (i.e., if f 00 is large) then f is hard to
approximate using a piecewise linear function.

1.3 L2-Projection

Interpolation is a simple way of approximating a continuous function, but there
are, of course, other ways. In this section we shall study so-called orthogonal-, or
L2-projection. L2-projection gives a so to speak good on average approximation,
as opposed to interpolation, which is exact at the nodes. Moreover, in contrast to
interpolation, L2-projection does not require the function we seek to approximate
to be continuous, or have well-defined node values.

1.3.1 Definition

Given a function f 2 L2.I / the L2-projection Phf 2 Vh of f is defined by

Z
I

.f � Phf /v dx D 0; 8v 2 Vh (1.36)
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f

Ph f

f − Ph f

v

Vh

Fig. 1.5 Illustration of the function f and its L2-projection Phf on the space Vh

0 = x0 x1 x2 x3 x4 x5 = 1

1

2

3

f(x)

Ph f(x)
x

Fig. 1.6 The function
f .x/ D 2x sin.2�x/C 3 and
its L2-projection Phf on a
uniform mesh of I D Œ0; 1�

with six nodes, xi ,
i D 1; 2; : : : ; 6

In analogy with projection onto subspaces of Rn, (1.34) defines a projection of f
onto Vh, since the difference f � Phf is required to be orthogonal to all functions
v in Vh. This is illustrated in Fig. 1.5.

As we shall see later on, Phf is the minimizer of minv2Vh kf � vkL2.I /, and
therefore we say that it approximates f in a least squares sense. In fact, Phf is the
best approximation to f when measuring the error f � Phf in the L2-norm.

In Fig. 1.6 we show the L2-projection of f .x/ D 2x sin.2�x/C 3 computed on
the same mesh as was used for showing the continuous piecewise linear interpolant
�f in Fig. 1.4. It is instructive to compare these two approximations because it
highlights their different characteristics. The interpolant�f approximatesf exactly
at the nodes, while the L2-projection Phf approximates f on average. In doing
so, it is common for Phf to over and under shoot local maxima and minima of
f , respectively. Also, both the interpolant and the L2-projection have difficulty
with approximating rapidly oscillating or discontinuous functions unless the node
positions are adjusted appropriately.
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1.3.2 Derivation of a Linear System of Equations

In order to actually compute the L2-projection Phf , we first note that the defini-
tion (1.36) is equivalent to

Z
I

.f � Phf /'i dx D 0; i D 0; 1; : : : ; n (1.37)

where 'i , i D 0; 1; : : : ; n, are the hat functions. This is a consequence of the fact
that if (1.36) is satisfied for v anyone of the hat functions, then it is also satisfied
for v a linear combination of hat functions. Conversely, since any function v in Vh is
precisely such a linear combination of hat functions, (1.37) implies (1.36).

Then, since Phf belongs to Vh it can be written as the linear combination

Phf D
nX

jD0
�j 'j (1.38)

where �j , j D 0; 1; : : : ; n, are nC 1 unknown coefficients to be determined.
Inserting the ansatz (1.38) into (1.37) we get

Z
I

f 'i dx D
Z
I

0
@ nX
jD0

�j 'j

1
A'i dx (1.39)

D
nX

jD0
�j

Z
I

'j 'i dx; i D 0; 1; : : : ; n (1.40)

Further, introducing the notation

Mij D
Z
I

'j 'i dx; i; j D 0; 1; : : : ; n (1.41)

bi D
Z
I

f 'i dx; i D 0; 1; : : : ; n (1.42)

we have

bi D
nX

jD0
Mij �j ; i D 0; 1; : : : ; n (1.43)

which is an .nC 1/ � .nC 1/ linear system for the nC 1 unknown coefficients �j ,
j D 0; 1; : : : ; n. In matrix form, we write this

M� D b (1.44)
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where the entries of the .n C 1/ � .nC 1/ matrix M and the .n C 1/ � 1 vector b
are defined by (1.41) and (1.42), respectively.

We, thus, conclude that the coefficients �j , j D 0; 1; : : : ; n in the ansatz (1.38)
satisfy a square linear system, which must be solved in order to obtain the L2-
projection Phf .

For historical reasons we refer to M as the mass matrix and to b as the load
vector.

1.3.3 Basic Algorithm to Compute the L2-Projection

The following algorithm summarizes the basic steps for computing the L2-
projection Phf :

Algorithm 1 Basic algorithm to compute the L2-projection
1: Create a mesh with n elements on the interval I and define the corresponding space of

continuous piecewise linear functions Vh.
2: Compute the .nC 1/ � .nC 1/ matrixM and the .nC 1/ � 1 vector b, with entries

Mij D
Z
I

'j 'i dx; bi D
Z
I

f 'i dx (1.45)

3: Solve the linear system
M� D b (1.46)

4: Set

Phf D
nX

jD0

�j 'j (1.47)

1.3.4 A Priori Error Estimate

Naturally, we are interested in knowing how good Phf is at approximating f . In
particular, we wish to derive bounds for the error f �Phf . The next theorem gives
a key result for deriving such error estimates. It is a so-called a best approximation
result.

Theorem 1.1. The L2-projection Phf , defined by (1.36), satisfies the best approx-
imation result

kf � Phf kL2.I / � kf � vkL2.I /; 8v 2 Vh (1.48)

Proof. Using the definition of theL2-norm and writing f �Phf D f �vCv�Phf ,
with v an arbitrary function in Vh, we have
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kf � Phf k2
L2.I /

D
Z
I

.f � Phf /.f � v C v � Phf / dx (1.49)

D
Z
I

.f � Phf /.f � v/ dx C
Z
I

.f � Phf /.v � Phf / dx
(1.50)

D
Z
I

.f � Phf /.f � v/ dx (1.51)

� kf � Phf kL2.I /kf � vkL2.I / (1.52)

where we used the definition of the L2-projection to conclude that
Z
I

.f � Phf /.v � Phf / dx D 0 (1.53)

since v � Phf 2 Vh. Dividing by kf � Phf kL2.I / concludes the proof. ut
This shows that Phf is the closest of all functions in Vh to f when measuring in
the L2-norm. Hence, the name best approximation result.

We can use best approximation result together with interpolation estimates to
study how the error f � Phf depends on the mesh size. In doing so, we have the
following basic so-called a priori error estimate.

Theorem 1.2. The L2-projection Phf satisfies the estimate

kf � Phf k2
L2.I /

� C

nX
iD1

h4i kf 00k2
L2.Ii /

(1.54)

Proof. Starting from the best approximation result, choosing v D �f the interpolant
of f , and using the interpolation error estimate of Proposition 1.1, we have

kf � Phf k2
L2.I /

� kf � �f k2
L2.I /

(1.55)

�
nX
iD1

kf � �f k2
L2.Ii /

(1.56)

�
nX
iD1

Ch4i kf 00k2
L2.Ii /

(1.57)

which proves the estimate. ut
Defining h D max1�i�n hi we conclude that

kf � Phf kL2.I / � Ch2kf 00kL2.I / (1.58)

Thus, theL2-error kf �Phf kL2.I / tends to zero as the maximum mesh size h tends
to zero.
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1.4 Quadrature

To compute theL2-projection we need to compute the mass matrixM whose entries
are integrals involving products of hat functions. One way of doing this is to use
quadrature, or, numerical integration. To this end, f be a continuous function on
the interval I D Œx0; x1�, and consider the problem of evaluating, approximately,
the integral

J D
Z
I

f .x/ dx (1.59)

A quadrature rule is a formula that is used to compute integrals approximately.
It it usually derived by first interpolating the integrand f by a polynomial and then
integrating the interpolant. Depending on the degree of the interpolating polynomial
one obtains quadrature rules of different computational complexity and accuracy.
Evaluating a quadrature rule generally involves summing values of the integrand f
at a set of carefully selected quadrature points within the interval I times the interval
length h D x1�x0. We shall next describe three classical quadrature rules called the
Mid-point rule, the Trapezoidal rule, and Simpson’s formula, which corresponds to
using polynomial interpolation of degree 0, 1, and 2 on f , respectively.

1.4.1 The Mid-Point Rule

Interpolating f with the constant f .m/, where m D .x0 C x1/=2 is the mid-point
of I , we get

J � f .m/h (1.60)

which is the Mid-point rule. Geometrically this means that we approximate the area
under the integrand f with the area of the square f .m/h, see Fig. 1.7. The Mid-
point rule integrates linear polynomials exactly.

1.4.2 The Trapezoidal Rule

Continuing, interpolating f with the line passing through the points .x0; f .x0// and
.x1; f .x1// we get

J � f .x0/C f .x1/

2
h (1.61)

which is the Trapezoidal rule. Geometrically this means that we approximate the
area under f with the area under the trapezoidal with the four corner points .x0; 0/,
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x0 m x1
x

f(x)

Fig. 1.7 The area of the
shaded square approximates
J D R

I f .x/ dx

x0 x1
x

f(x)

Fig. 1.8 The area of the
shaded trapezoidal
approximates
J D R

I f .x/ dx

.x0; f .x0//, .x1; 0/, and .x1; f .x1//, see Fig. 1.8. The Trapezoidal rule is also exact
for linear polynomials.

1.4.3 Simpson’s Formula

This rule corresponds to a quadratic interpolant using the end-points and the mid-
point of the interval I as nodes. To simplify things a bit let I D Œ0; l� be the interval
of integration and let g.x/ D c0Cc1xCc2x2 be the interpolant. Since g interpolates
f at the points .0; f .0//, . l

2
; f . l

2
//, and .l; f .l// (i.e., its graph passes trough these

points) their coordinates must satisfy the equation for g. This yields the following
linear system for c0, c1, and c2.

2
4 0 0 1
1
4
l2 1

2
l 1

l2 l 1

3
5
2
4c0c1
c2

3
5 D

2
4f .0/f . l

2
/

f .l/

3
5 (1.62)

Solving this one readily finds

c0 D 2.f .0/� 2f . l
2
/Cf .l//= l2; c1 D � .3f .0/� 4f . l

2
/Cf .l//= l; c2 Df .0/

(1.63)

Now, integrating g from 0 to l one eventually ends up with
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Z l

0

g.x/ dx D f .0/C 4f . 1
2
l/C f .l/

6
l (1.64)

which is Simpson’s formula.
On the interval I D Œx0; x1� Simpson’s formula takes the form

J � f .x0/C 4f .m/C f .x1/

6
h (1.65)

with m D 1
2
.x0 C x1/ and h D x1 � x0.

Simpson’s formula is exact for third order polynomials.

1.5 Computer Implementation

1.5.1 Assembly of the Mass Matrix

Having studied various quadrature rules, let us now go through the nitty gritty details
of how to assemble the mass matrix M and load vector b. We begin by calculating
the entries Mij D R

I
'i'j dx of the mass matrix. Because each hat 'i is a linear

polynomial the product of two hats is a quadratic polynomial. Thus, Simpson’s
formula can be used to integrate Mij exactly. In doing so, since the hats 'i and
'j lack common support for ji � j j > 1 only Mii , MiiC1, and MiC1i need to be
calculated. All other matrix entries are zero by default. This is clearly seen from
Fig. 1.9 showing two neighbouring hat functions and their support. This leads to the
observation that the mass matrix M is tridiagonal.

Starting with the diagonal entriesMii and using Simpson’s formula we have

Mii D
Z
I

'2i dx (1.66)

D
Z xi

xi�1

'2i dx C
Z xiC1

xi

'2i dx (1.67)

D 0C 4 � . 1
2
/2 C 1

6
hi C 1C 4 � . 1

2
/2 C 0

6
hiC1 (1.68)

D hi

3
C hiC1

3
; i D 1; 2; : : : ; n � 1 (1.69)

where xi � xi�1 D hi and xiC1 � xi D hiC1. The first and last diagonal entry are
M00 D h1=3 and Mnn D hn=3, respectively, since the hat functions '0 and 'n are
only half.

Continuing with the subdiagonal entries MiC1 i , still using Simpson’s formula,
we have
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1

'i−1 'i

xi−2 xi−1 xi+1xi
x

Fig. 1.9 Illustration of the
hat functions 'i�1 and 'i and
their support

MiC1 i D
Z
I

'i'iC1 dx (1.70)

D
Z xiC1

xi

'i'iC1 dx (1.71)

D 1 � 0C 4 � . 1
2
/2 C 0 � 1

6
hiC1 (1.72)

D hiC1
6
; i D 0; 1; : : : ; n (1.73)

A similar calculation shows that the superdiagonal entries are Mi iC1 D hiC1=6.
Hence, the mass matrix takes the form

M D

2
666666664

h1
3

h1
6

h1
6

h1
3

C h2
3

h2
6

h2
6

h2
3

C h3
3

h3
6

: : :
: : :

: : :
hn�1

6
hn�1

3
C hn

3
hn
6

hn
6

hn
3

3
777777775

(1.74)

From (1.74) it is evident that the global mass matrix M can be written as a sum
of n simple matrices, viz.,

M D

2
66666664

h1
3

h1
6

h1
6

h1
3

3
77777775

C

2
66666664

h2
3

h2
6

h2
6

h2
3

3
77777775

C : : :C

2
66666664 hn

3
hn
6

hn
6

hn
3

3
77777775

(1.75)

D MI1 CMI2 C : : :CMIn (1.76)

Each matrix MIi , i D 1; 2 : : : ; n, is obtained by restricting integration to one
subinterval, or element, Ii and is therefore called a global element mass matrix.
In practice, however, these matrices are never formed, since it suffice to compute
their 2 � 2 blocks of non-zero entries. From the sum (1.75) we see that on each
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element I this small block takes the form

MI D 1

6

�
2 1

1 2

�
h (1.77)

where h is the length of I . We refer to MI as the local element mass matrix.
The summation of the element mass matrices into the global mass matrix is

called assembling. The assembly process lies at the very heart of finite element
programming because it allows the forming of the mass matrix through the use of a
single loop over the elements. It also generalizes to higher dimensions.

The following algorithm summarizes how to assemble the mass matrixM :

Algorithm 2 Assembly of the mass matrix
1: Allocate memory for the .nC 1/� .nC 1/ matrix M and initialize all matrix entries to zero.
2: for i D 1; 2; : : : ; n do
3: Compute the 2� 2 local element mass matrix MI given by

MI D 1

6

�
2 1

1 2

�
h (1.78)

where h is the length of element Ii .
4: Add MI

11 toMii

5: Add MI
12 toMiiC1

6: Add MI
21 toMiC1i

7: Add MI
22 toMiC1iC1

8: end for

The following MATLAB routine assembles the mass matrix.

function M = MassAssembler1D(x)
n = length(x)-1; % number of subintervals
M = zeros(n+1,n+1); % allocate mass matrix
for i = 1:n % loop over subintervals

h = x(i+1) - x(i); % interval length
M(i,i) = M(i,i) + h/3; % add h/3 to M(i,i)
M(i,i+1) = M(i,i+1) + h/6;
M(i+1,i) = M(i+1,i) + h/6;
M(i+1,i+1) = M(i+1,i+1) + h/3;

end

Input to this routine is a vector x holding the node coordinates. Output is the global
mass matrix.
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1.5.2 Assembly of the Load Vector

We next calculate the load vector b. Because the entries bi D R
i
f 'i dx depend on

the function f , we can not generally expect to calculate them exactly. However, we
can approximate entry bi using a quadrature rule. Using the Trapezoidal rule, for
instance, we have

bi D
Z
I

f 'i dx (1.79)

D
Z xiC1

xi�1

f 'i dx (1.80)

D
Z xi

xi�1

f 'i dx C
Z xiC1

xi

f 'i dx (1.81)

� .f .xi�1/'i .xi�1/C f .xi /'i .xi //hi=2 (1.82)

C .f .xi /'i .xi /C f .xiC1/'i .xiC1//hiC1=2 (1.83)

D .0C f .xi //hi=2C .f .xi /C 0/hiC1=2 (1.84)

D f .xi /.hi C hiC1/=2 (1.85)

The approximate load vector then takes the form

b D

2
666666664

f .x0/h1=2

f .x1/.h1 C h2/=2

f .x2/.h2 C h3/=2
:::

f .xn�1/.hn�1 C hn/=2

f .xn/hn=2

3
777777775

(1.86)

Splitting b into a sum over the elements yields the n global element load vectors
bIi

b D

2
666664

f .x0/

f .x1/

3
777775
h1=2C

2
666664
f .x1/

f .x2/

3
777775
h2=2C : : :C

2
666664f .xn�1/
f .xn/

3
777775
hn=2 (1.87)

D bI1 C bI2 C : : :C bIn : (1.88)
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Each vector bIi , i D 1; 2; : : : ; n, is obtained by restricting integration to element Ii .
The assembly of the load vector b is very similar to that of the mass matrix as the
following algorithm shows:

Algorithm 3 Assembly of the load vector
1: Allocate memory for the .nC 1/ � 1 vector b and initialize all vector entries to zero.
2: for i D 1; 2; : : : ; n do
3: Compute the 2� 1 local element load vector bI given by

bI D 1

2

�
f .xi�1/

f .xi /

�
h (1.89)

where h is the length of element Ii .
4: Add bI1 to bi�1

5: Add bI2 to bi
6: end for

A MATLAB routine for assembling the load vector is listed below.

function b = LoadAssembler1D(x,f)
n = length(x)-1;
b = zeros(n+1,1);
for i = 1:n
h = x(i+1) - x(i);
b(i) = b(i) + f(x(i))*h/2;
b(i+1) = b(i+1) + f(x(i+1))*h/2;

end

Here, f is assumed to be a separate routine specifying the function f . This needs
perhaps a little bit of explanation. MATLAB has a something called function
handles, which provide a way of passing a routine as argument to another routine.
For example, suppose we have written a routine called Foo1 to specify the function
f .x/ D x sin.x/

function y = Foo1(x)
y=x.*sin(x)

To assemble the corresponding load vector, we type

b = LoadAssembler1D(x,@Foo1)

This passes the routine Foo1 as argument to LoadAssembler1D and allows it to be
evaluated inside the assembler. The at sign @ creates the function handle. Indeed,
function handles provide means for writing flexible and reusable code.

In this context we mention that if Foo1 is a small routine, then it can be inlined
and called, viz.,

Foo1 = inline(’x.*sin(x)’,’x’)
b = LoadAssembler1D(x,Foo1)



20 1 Piecewise Polynomial Approximation in 1D

Note that there is no at sign in the call to the load vector assembler.
Putting it all together we get the following main routine for computing L2-

projections.

function L2Projector1D()
n = 5; % number of subintervals
h = 1/n; % mesh size
x = 0:h:1; % mesh
M = MassAssembler1D(x); % assemble mass
b = LoadAssembler1D(x,@Foo1); % assemble load
Pf = M\b; % solve linear system
plot(x,Pf) % plot L^2 projection

1.6 Problems

Exercise 1.1. Let I D Œx0; x1�. Verify by direct calculation that the basis functions

�0.x/ D x1 � x
x1 � x0

; �1.x/ D x � x0
x1 � x0

for P1.I / satisfies �0.x/ C �1.x/ D 1 and x0�0.x/ C x1�1.x/ D x. Give
a geometrical interpretation by drawing �0.x/, �1.x/, �0.x/ C �1.x/, x0�0.x/,
x1�1.x/ and x0�0.x/C x1�1.x/.

Exercise 1.2. Let 0 D x0 < x1 < x2 < x3 D 1, where x1 D 1=6 and x2 D 1=2, be
a partition of the interval I D Œ0; 1� into three subintervals, and let Vh be the space
of continuous piecewise linear functions on this partition.

(a) Determine analytical expressions for the hat function '1.x/ and draw it.
(b) Draw the function v.x/ D �'0.x/C '2.x/C 2'3.x/ and its derivative v0.x/.
(c) Draw the piecewise constant mesh function h.x/ D hi on each subinterval Ii .
(d) What is the dimension of Vh?

Exercise 1.3. Determine the linear interpolant �f 2 P1.I / on the single interval
I D Œ0; 1� to the following functions f .

(a) f .x/ D x2.
(b) f .x/ D 3 sin.2�x/.

Make plots of f and �f in the same figure.

Exercise 1.4. Let Vh be the space of all continuous piecewise linears on a uniform
mesh with four nodes of I D Œ0; 1�. Draw the interpolant �f 2 Vh to the following
functions f .

(a) f .x/ D x2 C 1.
(b) f .x/ D cos.�x/.
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Can you think of a better partition of I assuming we are restricted to three
subintervals?

Exercise 1.5. Calculate kf k1 with f D x.x � 1=2/.x � 1=3/ on the interval
I D Œ0; 1�.

Exercise 1.6. Let I D Œ0; 1� and f .x/ D x2 for x 2 I .

(a) Calculate
R
I
f dx analytically.

(b) Compute
R
I
f dx using the Mid-point rule.

(c) Compute
R
I
f dx using the Trapezoidal rule.

(d) Compute the quadrature errors in (b) and (c).

Exercise 1.7. Let I D Œ0; 1� and f .x/ D x4 for x 2 I .

(a) Calculate
R
I
f dx analytically.

(b) Compute
R
I
f dx using Simpson’s formula on the single interval I .

(c) Divide I into two equal subintervals and compute
R
I
f dx using Simpson’s

formula on each subinterval.
(d) Compute the quadrature errors in (b) and (c). By what factor has the error

decreased?

Exercise 1.8. Let I D Œ0; 1� and let f .x/ D x2 for x 2 I .

(a) Let Vh be the space P1.I / of linear functions on I . Compute the L2-projection
Phf 2 Vh of f .

(b) Divide I into two subintervals of equal length and let Vh be the corresponding
space Vh of continuous piecewise linear functions. Compute the L2-projection
Phf 2 Vh of f .

(c) Plot your results and compare with the nodal interpolant �f .

Exercise 1.9. Show that
R
˝.f � Phf /v dx D 0 for all v 2 Vh, if and only ifR

˝.f �Phf /'i dx D 0, for i D 0; 1; : : : ; n, where f'igniD0 � Vh is the usual basis
of hat functions.

Exercise 1.10. Let .f; g/ D R
I
fg dx and kf k2

L2.I /
D .f; f / denote the L2-scalar

product and norm, respectively. Also, let I D Œ0; ��, f D x, g D cos.x/, and
h D 2 cos.3x/ for x 2 I .

(a) Calculate .f; g/.
(b) Calculate .g; h/. Are g and h orthogonal?
(c) Calculate kf kL2.I / and kgkL2.I /.
Exercise 1.11. Let V be a linear subspace of R

n with basis fv1; : : : ; vmg with
m<n. Let Px 2 V be the orthogonal projection of x 2 R

n onto the subspace V .
Derive a linear system of equations that determines Px. Note that your results are
analogous to the L2-projection when the usual scalar product in R

n is replaced by
the scalar product in L2.I /. Compare this method of computing the projection Px
to the method used for computing the projection of a three dimensional vector onto a
two dimensional subspace. What happens if the basis fv1; : : : ; vmg isL2-orthogonal?
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Exercise 1.12. Show that f1; x; .3x2�1/=2g form a basis for the space of quadratic
polynomials P2.I /, on I D Œ�1; 1�. Then compute and draw the L2-projections
Phf 2 P2.I / on I for the following two functions f .

(a) f .x/ D 1C 2x.
(b) f .x/ D x3.

Exercise 1.13. Show that the hat function basis f'j gnjD0 of Vh is almost orthogonal.
How can we see that it is almost orthogonal by looking at the non-zero elements
of the mass matrix? What can we say about the mass matrix if we had a fully
orthogonal basis?

Exercise 1.14. Modify L2Projector1D and compute the L2-projection Phf of
the following functions f .

(a) f .x/ D 1.
(b) f .x/ D x3.x � 1/.1� 2x/.
(c) f .x/ D arctan..x � 0:5/=�/, with � D 0:1 and 0:01.

Use a uniform mesh I of the interval I D Œ0; 1�with nD 5, 25, and 100 subintervals.



Chapter 2
The Finite Element Method in 1D

Abstract In this chapter we shall introduce the finite element method as a general
tool for the numerical solution of two-point boundary value problems. In doing
so, the basic idea is to first rewrite the boundary value problem as a variational
equation, and then seek a solution approximation to this equation from the space
of continuous piecewise linears. We prove basic error estimates and show how to
use these to formulate adaptive algorithms that can be used to automatically improve
the accuracy of the computed solution. The derivation and areas of application of
the studied boundary value problems are also discussed.

2.1 The Finite Element Method for a Model Problem

2.1.1 A Two-point Boundary Value Problem

Let us consider the following two-point boundary value problem: find u such that

�u00 D f; x 2 I D Œ0; L� (2.1a)

u.0/ D u.L/ D 0 (2.1b)

where f is a given function. Sometimes this problem is easy to solve analytically.
For example, if f D 1, then we readily find u D x.L�x/=2 by integrating f twice
and using the boundary conditions u.0/ D u.L/ D 0. However, for a general f it
may be difficult or even impossible to find u with analytical techniques. Thus, we see
that even a very simple differential equation like this one may be difficult to solve
analytically. We take this as a good motivation for introducing the finite element
method, which is a general numerical technique for solving differential equations.

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__2, © Springer-Verlag Berlin Heidelberg 2013
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2.1.2 Variational Formulation

The derivation of a finite element method always starts by rewriting the differential
equation under consideration as a variational equation. This so-called variational
formulation is in our case obtained by multiplying f D �u00 by a test function v,
which is assumed to vanish at the end-points of the interval I , and integrating by
parts.

Z L

0

f v dx D �
Z L

0

u00v dx (2.2)

D
Z L

0

u0v0 dx � u0.L/v.L/C u0.0/v.0/ (2.3)

D
Z L

0

u0v0 dx (2.4)

The last line follows from the assumption v.0/ D v.L/ D 0. For this calculation to
make sense we must assert that the test function v is not too badly behaved so that
the involved integrals do indeed exist. More specific, we require that both v and v0 be
square integrable on I . Of course, v must also vanish at x D 0 and x D L. Now, the
largest collection of functions with these properties is given by the function space

V0 D fv W kvkL2.I / < 1; kv0kL2.I / < 1; v.0/ D v.L/ D 0g (2.5)

Obviously, this space contains many functions, and any of them can be used as test
function v. In fact, there are infinitely many functions in V0, and we therefore say
that V0 has infinite dimension.

Not just v, but also u, is a member of V0. To see this, note that u is twice
differentiable, which implies that u0 is smooth, and satisfies the boundary conditions
u.0/D u.L/D 0. This allows us to write down the following variational formulation
of (2.2): find u 2 V0 such thatZ

I

u0v0 dx D
Z
I

fvdx; 8v 2 V0 (2.6)

By analogy with the name test function for v, the solution u is sometimes called
trial function.

2.1.3 Finite Element Approximation

We next try to approximate u by a continuous piecewise linear function. To this
end, we introduce a mesh on the interval I consisting of n subintervals, and the
corresponding space Vh of all continuous piecewise linears. Since we are dealing
with functions vanishing at the end-points of I , we also introduce the following
subspace Vh;0 of Vh that satisfies the boundary conditions
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Vh;0 D fv 2 Vh W v.0/ D v.L/ D 0g (2.7)

In other words, Vh;0 contains all piecewise linears which are zero at xD 0 and xDL.
In terms of hat functions this means that a basis for Vh;0 is obtained by deleting the
half hats '0 and 'n from the usual set f'j gnjD0 of hat functions spanning Vh.

Replacing the large space V0 with the much smaller subspace Vh;0 � V0 in the
variational formulation (2.6), we obtain the following finite element method: find
uh 2 Vh;0 such that

Z
I

u0
hv

0 dx D
Z
I

f v dx; 8v 2 Vh;0 (2.8)

We mention that this type of finite element method, with similar trial and test
space, is sometimes called a Galerkin method, named after a famous Russian
mathematician and engineer.

2.1.4 Derivation of a Linear System of Equations

In order to actually compute the finite element approximation uh we first note
that (2.8) is equivalent to

Z
I

u0
h'

0
i dx D

Z
I

f 'i dx; i D 1; 2; : : : ; n � 1 (2.9)

where, as said before, 'i , i D 1; 2; : : : ; n � 1 are the hat functions spanning Vh;0.
This is a consequence of the fact that if (2.9) is satisfied for all hat functions f'j gn�1

jD1,
then it is also satisfied for a linear combination of hats.

Then, since uh belongs to Vh;0 we can write it as the linear combination

uh D
n�1X
jD1

�j 'j (2.10)

where �j ; j D 1; 2 : : : ; n � 1, are n � 1 unknown coefficients to be determined.
Inserting the ansatz (2.10) into (2.9) we get

Z
I

f 'i dx D
Z
I

0
@n�1X
jD1

�j '
0
j

1
A' 0

i dx (2.11)

D
n�1X
jD1

�j

Z
I

' 0
j '

0
i dx; i D 1; 2; : : : ; n � 1 (2.12)

Further, introducing the notation
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Aij D
Z
I

' 0
j '

0
i dx; i; j D 1; 2; : : : ; n � 1 (2.13)

bi D
Z
I

f 'i dx; i D 1; 2; : : : ; n � 1 (2.14)

we have

bi D
n�1X
jD1

Aij �j ; i D 1; 2; : : : ; n � 1 (2.15)

which is an .n � 1/ � .n � 1/ linear system for the n � 1 unknown coefficients �j ,
j D 1; 2; : : : ; n � 1. In matrix form, we write this

A� D b (2.16)

where the entries of the .n� 1/� .n� 1/ matrix A and the .n� 1/� 1 vector b are
defined by (2.13) and (2.14), respectively.

We, thus, conclude that the coefficients �j , j D 1; 2; : : : ; n�1 in the ansatz (2.10)
satisfy a square linear system, which must be solved in order to obtain the finite
element solution uh.

We refer to A as the stiffness matrix and to b as the load vector.

2.1.5 Basic Algorithm to Compute the Finite Element Solution

The following algorithm summarizes the basic steps for computing the finite
element solution uh:

Algorithm 4 Basic finite element algorithm
1: Create a mesh with n elements on the interval I and define the corresponding space of

continuous piecewise linear functions Vh;0.
2: Compute the .n� 1/ � .n� 1/ matrix A and the .n� 1/� 1 vector b, with entries

Aij D
Z
I

'0

j '
0

i dx; bi D
Z
I

f 'i dx (2.17)

3: Solve the linear system
A� D b (2.18)

4: Set

uh D
n�1X
jD1

�j 'j (2.19)
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2.1.6 A Priori Error Estimate

Because uh generally only approximates u, estimates of the error e D u � uh are
necessary to judge the quality and usability of uh. To this end, we make the following
key observation.

Theorem 2.1 (Galerkin orthogonality). The finite element approximation uh,
defined by (2.9), satisfies the orthogonality

Z
I

.u � uh/
0v0 dx D 0; 8v 2 Vh;0 (2.20)

Proof. From the variational formulation we have

Z
I

u0v0 dx D
Z
I

f v dx; 8v 2 V0 (2.21)

and from the finite element method we further have

Z
I

u0
hv

0 dx D
Z
I

f v dx; 8v 2 Vh;0 (2.22)

Subtracting these and using the fact that Vh;0 � V0 immediately proves the claim.
ut

The next theorem is a best approximation result.

Theorem 2.2. The finite element solution uh, defined by (2.9), satisfies the best
approximation result

k.u � uh/
0kL2.I / � k.u � v/0kL2.i/; 8v 2 Vh;0 (2.23)

Proof. Writing u � uh D u � v C v � uh for any v 2 Vh;0, we have

k.u � uh/
0k2
L2.i/

D
Z
I

.u � uh/
0.u � v C v � uh/

0 dx (2.24)

D
Z
I

.u � uh/
0.u � v/0 dx C

Z
I

.u � uh/
0.v � uh/

0 dx (2.25)

D
Z
I

.u � uh/
0.u � v/0 dx (2.26)

� k.u � uh/
0kL2.I /k.u � v/0kL2.I / (2.27)
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where we used the Galerkin orthogonality to conclude that

Z
I

.u � uh/
0.v � uh/

0 dx D 0 (2.28)

since v � uh 2 Vh. Dividing by k.v � uh/0kL2.I / concludes the proof. ut
There are two types of error estimates, namely, a priori and a posteriori error

estimates. The difference between the two types is that a priori error estimates
express the error in terms of the exact, unknown, solution u, while a posteriori
error estimates express the error in terms of the computable finite element approx-
imation uh. The mesh size hi is usually present in both types of estimates. This is
important to be able to show convergence of the numeric methods.

We have the following basic a priori error estimate.

Theorem 2.3. The finite element solution uh, defined by (2.9), satisfies the estimate

k.u � uh/
0k2
L2.I /

� C

nX
iD1

h2i ku00k2
L2.Ii /

(2.29)

where C is a constant.

Proof. Starting from the best approximation result, choosing v D �u the interpolant
of u, and using the interpolation error estimate of Proposition 1.1, the a priori
estimate immediately follows. ut
Recalling the definition h D max1�i�n hi we conclude that

k.u � uh/
0kL2.I / � Chku00kL2.I / (2.30)

Thus, the derivative of the error tends to zero as the maximum mesh size h tends to
zero.

2.2 Mathematical Modeling

A fundamental tool for deriving the equations of applied mathematics and physics
is the idea that some quantities can be tracked within a physical system. This idea is
used to first create some balance laws for the system, and then to express these with
equations. Common examples include conservation of mass, energy, and balance of
momentum (i.e., force). To familiar ourselves with this way of thinking we shall
now derive two differential equations, one governing heat transfer in a rod, and one
governing the elastic deformation of a bar. As we shall see, the modeling of both
these physical systems leads to the two-point boundary value problem (2.1). This
might seem a little surprising, but it is generally so that many different physical
phenomena are described by the same type of equations. As a consequence, the
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numerical methods and mathematical theory can often be developed for a few model
problems, but still be applicable to a wide range of real-world problems.

2.2.1 Derivation of the Stationary Heat Equation

Consider a thin metal rod of length L occupying the interval I D Œ0; L�. The rod
is heated by a heat source (e.g., an electric current) of intensity f [J/(sm)], which
has been acting for a long time so that the transfer of heat within the rod is at steady
state. We wish to find the temperature T [K] of the rod. To this end, we first use the
first law of thermodynamics, which expresses conservation of energy, and says that
the amount of heat produced by the heat source equals the flow of heat out of the
rod. In the language of mathematics, this is equivalent to

A.L/q.L/ �A.0/q.0/ D
Z
I

f dx (2.31)

where A [m2] is the cross section area of the rod, and q [J/(sm2)] is the heat flux in
the direction of increasing x. Dividing (2.31) by L and letting L ! 0 we obtain the
differential equation

.Aq/0 D f (2.32)

Then, since heat flows from hot to cold regions, it is reasonable to assume that
the heat flux is proportional to the negative temperature gradient. This empirical
observation is expressed by Fourier’s law

q D �kT 0 (2.33)

where k [J/(Kms)] is the thermal conductivity of the rod, and T the sought
temperature.

Combining (2.32) and (2.33) we finally obtain

�.AkT 0/0 D f (2.34)

which is the stationary so-called Heat equation.
We note that this is a problem with variable coefficients, since A, k, and f might

vary.

2.2.2 Boundary Conditions for the Heat Equation

Generally, there are many functions T , which satisfies the Heat equation (2.34) for
a given right hand side. For example, if A D k D 1 and f D 0, then any linear
function T satisfies T 00 D 0. Thus, to obtain a unique solution T it is necessary
to impose some auxiliary constraints on the equation. As we know, these are the
boundary conditions, which specify T at the end-points 0 and L of the rod.
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There are three types of boundary that occur frequently, namely:

• Dirichlet,
• Neumann, and
• Robin

boundary conditions. We shall describe these next.

2.2.2.1 Dirichlet Boundary Conditions

Dirichlet, or strong, boundary conditions prescribe the value of the solution at the
boundary. For example, T .L/ D 0. From a physical point of view this corresponds
to cooling the right end-point x D L of the rod so that it is always kept at constant
zero temperature.

2.2.2.2 Neumann Boundary Conditions

Neumann, or natural, boundary conditions prescribe the value of the solution
derivative at the boundary. Because T 0 D �q=k, this corresponds to prescribing
the heat flux q at the boundary. Indeed, T 0.0/ D 0 means that the left end-point of
the rod is thermally isolated.

2.2.2.3 Robin Conditions

Robin boundary conditions is a mixture of Dirichlet and Neumann ditto. For the rod
they typically take the form

AkT 0 D �.T � T1/C q1 (2.35)

where � > 0, T1, and q1 are given boundary data.
In real-world applications this is perhaps the most realistic boundary condition.
A nice and useful thing with Robin boundary conditions is that they can be used

to approximate boundary conditions of either Dirichlet or Neumann type. Indeed,
choosing � D 0 immediately yields the Neumann boundary conditionAkT 0 D q1.
Choosing, on the other hand, � very large yields the approximate Dirichlet boundary
condition T � T1.

2.2.3 Derivation of a Differential Equation
for the Deformation of a Bar

A bar is a mechanical structure that is only subjected to axial loads.
Consider a bar occupying the interval I D Œ0; L�, and subjected to a line load

f [N/m]. We wish to find the vertical displacement u [m] of the bar. To this end, we
first assume equilibrium of forces in the bar, which implies
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A.L/�.L/ �A.0/�.0/C
Z
I

f dx D 0 (2.36)

where A [m2] is the cross section area of the bar, and � [N/m2] is the stress in the
bar. By definition, A.x/�.x/ D F.x/ [N] is the vertical force F.x/ acting on the
bar at any given point 0 � x � L. Dividing (2.36) by L and letting L ! 0 we
obtain the differential equation

� .A�/0 D f (2.37)

Then, assuming that the bar is made of a linear elastic material, a relation between
the stress and the deformation is given by Hooke’s law

� D E" (2.38)

where E is the elastic modulus (i.e., stiffness), and " D u0 is the strain, with u the
sought displacement.

Combining (2.37) and (2.38) we finally obtain

�.AEu0/0 D f (2.39)

We note that this is, also, a problem with variable coefficients, since A, E , and
f might vary.

2.2.4 Boundary Conditions for the Bar

2.2.4.1 Dirichlet Boundary Conditions

Dirichlet boundary conditions take the form u D gD . They are used to model a
given displacement gD of the bar. For example, u.0/ D 0 means that the bar is
rigidly clamped to the surrounding at its left end-point x D 0.

2.2.4.2 Neumann Boundary Conditions

Neumann boundary conditions take the form AEu0 D gN , and model a situation
when a given force of strength gN acts on the boundary.

2.2.4.3 Robin Boundary Conditions

Robin boundary conditions is a mixture of Dirichlet and Neumann boundary ditto.
They typically take the form AEu0 D �.u � gD/. This models a situation where the
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bar is connected to a spring with spring constant � > 0 such that �.u � gD/ is the
force from the spring acting on the bar.

2.3 A Model Problem with Variable Coefficients

Considering two real-world applications just presented it is clear that we must be
able to treat differential equations with variable coefficients and different types of
boundary conditions. Therefore, let us consider the model problem: find u such that

�.au0/0 D f; x 2 I D Œ0; L� (2.40a)

au0.0/ D �0.u.0/� g0/ (2.40b)

�au0.L/ D �L.u.L/ � gL/ (2.40c)

where a > 0 and f are given functions, and �0 	 0, �L 	 0, g0, and gL are given
parameters.

We remark that positiveness assumptions on a, �0, and �L are necessary to assert
existence and uniqueness of the solution u.

2.3.1 Variational Formulation

Multiplying f D �.au0/0 by a test function v and integrating by parts, we have

Z L

0

f v dx D
Z L

0

�.au0/0v dx (2.41)

D
Z L

0

au0v0 dx C a.L/u0.L/v.L/C a.0/u0.0/v.0/ (2.42)

D
Z L

0

au0v0 dx C �L.u.L/ � gL/v.L/C �0.u.0/� g0/v.0/ (2.43)

where we used the boundary conditions to rewrite the boundary terms. As we do not
make any assumptions about the specific values of v and u at x D 0 and x D L, the
appropriate test and trial space is given by

V D fv W kvkL2.I / < 1; kv0kL2.I / < 1g (2.44)

Collecting terms involving the unknown solution u on the left hand side, and
terms involving given data on the right hand side, we obtain the following variational
formulation of (2.40): find u 2 V such that

mbaccouch
Oval

mbaccouch
Callout
 -
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Z
I

au0v0 dx C �Lu.L/v.L/C �0u.0/v.0/

D
Z
I

f v dx C �LgLv.L/C �0g0v.0/; 8v 2 V (2.45)

2.3.2 Finite Element Approximation

Replacing the continuous space V with the discrete space of continuous piecewise
linears Vh in the variational formulation (2.45) we obtain the following finite
element method: find uh 2 Vh such that

Z
I

au0
hv

0 dx C �Luh.L/v.L/C �0uh.0/v.0/

D
Z
I

f v dx C �LgLv.L/C �0g0v.0/; 8v 2 Vh (2.46)

We next show how to implement this finite element method.

2.4 Computer Implementation

2.4.1 Assembly of the Stiffness Matrix and Load Vector

A basis for Vh is given by the set of n C 1 hat functions f'igniD0. Note that all hats
are present, including the half hats '0 and 'n at the interval end-points x D 0 and
x D L.

Inserting the ansatz

uh D
nX

jD0
�j 'j (2.47)

into the finite element method (2.46), and choosing v D 'i , i D 0; 1; : : : ; n, we end
up with the linear system

.ACR/� D b C r (2.48)

where the entries of the .nC 1/� .nC 1/ matrices A and R, and the nC 1 vectors
b and r are given by
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Aij D
Z
I

a' 0
j '

0
i dx (2.49)

Rij D �L'j .L/'i.L/C �0'j .0/'i .0/ (2.50)

bi D
Z
I

f 'i dx (2.51)

ri D �LgL'i .L/C �0g0'i .0/ (2.52)

To assemble A and b we recall that the explicit expression for a hat function 'i
is given by

'i D

8̂
<̂
ˆ̂:
.x � xi�1/=hi ; if x 2 Ii
.xiC1 � x/=hiC1; if x 2 IiC1
0; otherwise

(2.53)

Hence, the derivative ' 0
i is either one of the constants 1=hi , �1=hiC1, or 0 depend-

ing on the subinterval.
Using (2.53) it is straight forward to calculate the entries of A. For ji � j j > 1,

we have Aij D 0, since 'i and 'j lack common support. Thus, only Aii , AiiC1, and
AiC1i need to be calculated. Let us use mid-point quadrature to do so. To simplify
the notation, let ai denote the value of the function a at the mid-point of element Ii .
Then, when i D j we have the diagonal entries

Aii D
Z
I

a' 02
i dx (2.54)

D
Z xi

xi�1

a' 02
i dx C

Z xiC1

xi

a' 02
i dx (2.55)

� ai
1

h2i
hi C aiC1

.�1/2
h2iC1

hiC1 (2.56)

D ai

hi
C aiC1
hiC1

; i D 1; 2; : : : ; n � 1 (2.57)

The integrals of the first and last diagonal entries are a1=h1 and an=hn since '0 and
'n are only half.

Further, when j D i C 1 we have the subdiagonal entries

Ai iC1 D
Z
I

a' 0
iC1' 0

i dx (2.58)

D
Z xiC1

xi

a' 0
iC1' 0

i dx (2.59)
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� aiC1
.�1/
hiC1

� 1

hiC1
hiC1 (2.60)

D �aiC1
hiC1

; i D 0; 1; : : : ; n (2.61)

The superdiagonal entries are obviously the same as the subdiagonal entries.
The entries Rij D �0'j .0/'i .0/ C �L'j .L/'i .L/ are all zero, except when

i D j D 0 or i D j D n, in which case we have R00 D �0 and Rnn D �L.
Hence, the stiffness matrix ACR takes the form

ACR D

2
666666664

a1
h1

� a1
h1

� a1
h1

a1
h1

C a2
h2

� a2
h2

� a2
h2

a2
h2

C a3
h3

� a3
h3

: : :
: : :

: : :

� an�1

hn�1

an�1

hn�1
C an

hn
� an
hn

� an
hn

an
hn

3
777777775

C

2
66666664

�0

�L

3
77777775

(2.62)

The computation of the load vector b C r is done exactly as shown for
the L2-projection, apart from the addition of the terms r1 D �0g0'i .0/ and
rn D �LgL'i .L/ to the first and last vector entry. Hence, we have

b C r D

2
666666664

f .x0/h1=2

f .x1/.h1 C h2/=2

f .x2/.h2 C h3/=2
:::

f .xn�1/.hn�1 C hn/=2

f .xn/hn=2

3
777777775

C

2
666666664

�0g0

:::

�LgL

3
777777775

(2.63)

The global stiffness matrix A C R can be split into a sum of global element
stiffness matrices

ACR D a1

h1

2
66666664

1 �1
�1 1

3
77777775

C a2

h2

2
66666664

1 �1
�1 1

3
77777775

C : : :C an

hn

2
66666664 1 �1

�1 1

3
77777775

(2.64)
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C

2
66666664

�0

�L

3
77777775

D AI1 C AI2 C : : :C AIn CR (2.65)

Each global element stiffness matrix AIi , i D 1; 2; : : : ; n is found by restricting
integration to a single element Ii . The following algorithm summarizes the assembly
process of ACR:

Algorithm 5 Assembly of the stiffness matrix
1: Allocate memory for the .nC 1/ � .nC 1/ matrix A and initialize all matrix entries to zero.
2: for i D 1; 2; : : : ; n do
3: Compute the 2� 2 local element stiffness matrix AI given by

AI D ai

h

�
1 �1

�1 1

�
(2.66)

where h is the length of element Ii D Œxi�1; xi �, and ai D a..xi�1 C xi /=2/.
4: Add AI11 to Aii .
5: Add AI12 to AiiC1.
6: Add AI21 to AiC1i .
7: Add AI22 to AiC1iC1.
8: end for
9: Add �0 to a00.

10: Add �L to anC1nC1.

A MATLAB routine for assembling this stiffness matrix is listed below.

function A = StiffnessAssembler1D(x,a,kappa)
n = length(x)-1;
A = zeros(n+1,n+1);
for i = 1:n
h = x(i+1) - x(i);
xmid = (x(i+1) + x(i))/2; % interval mid-point
amid = a(xmid); % value of a(x) at mid-point
A(i,i) = A(i,i) + amid/h; % add amid/h to A(i,i)
A(i,i+1) = A(i,i+1) - amid/h;
A(i+1,i) = A(i+1,i) - amid/h;
A(i+1,i+1) = A(i+1,i+1) + amid/h;

end
A(1,1) = A(1,1) + kappa(1);
A(n+1,n+1) = A(n+1,n+1) + kappa(2);
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Input to this routine is a vector x holding node coordinates, a function handle a to
a routine specifying the function a, and a vector kappa for the boundary condition
parameters �0 and �L. Output is the assembled stiffness matrix ACR.

The load, or source, vector b C r is computed in a similar manner. In fact, b
can be assembled by reusing the routine LoadAssembler1D. Thus, we only have to
write code to assemble r . This is almost trivial, since only the first and last entry of
r are non-zero.

function b = SourceAssembler1D(x,f,kappa,g)
b = LoadAssembler1D(x,f);
b(1) = b(1) + kappa(1)*g(1);
b(end) = b(end) + kappa(2)*g(2);

The inputs x, f, and kappa are as before. The vector g, holds the boundary
parameters g0 and gL. Output is the assembled source vector b C r .

2.4.2 A Finite Element Solver for a General Two-Point
Boundary Value Problem

With the above pieces of code it is easy to write a finite element solver for our
general two-point boundary value problem. For fun sake let us use it to compute
the temperature T in a rod of length L D 6 m, cross section A D 0:1m2, thermal
conductivity k D 5�0:6x [J/(Ksm)], internal heat source f D 0:03.x�6/4 [J/sm],
held at constant temperature T D �1 [K] at x D 2, and thermally insulated at
x D 8. Thus, we want to solve

�.0:5C 0:7x/T 00 D 0:3x2; 2 < x < 8; T .2/ D �1; T 0.8/ D 0 (2.67)

To approximate the Dirichlet condition T .2/D 7we use the Robin condition (2.40b)
with parameters �0 D 106 and g0 D �1. Similarly, to impose the Neumann condition
T 0.8/ D 0 we let �L D 0 in (2.40c). The value of gL does not matter.

The main solver routine takes the following form.

function PoissonSolver1D()
h = 0.1; % mesh size
x = 2:h:8; % mesh
kappa = [1.e+6 0];
g = [-1 0];
A = StiffnessAssembler1D(x, @Conductivity, kappa);
b = SourceAssembler1D(x, @Source, kappa, g);
u = A\b;
plot(x,u)

Here, the heat conductivity and source are specified by the following two routines.
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function y = Conductivity(x)
y = 0.1*(5 - 0.6*x); % heat conductivity times area

function y = Source(x)
y = 0.03*(x-6)^4; % heat source

Running this code we get the temperature distribution shown in Fig. 2.1.

2.5 Adaptive Finite Element Methods

Smart, so-called adaptive, finite element methods uses information extracted from
earlier computations to locally refine or modify the mesh in order to obtain a better
solution approximation uh. The necessary information is obtained using a posteriori
error estimates. The aim is to get uh to be optimal in the sense that maximal accuracy
is achieved at minimal computational cost.

2.5.1 A Posteriori Error Estimate

Let us return to the simple model problem (2.1) (i.e., �u00 D f , x 2 I , u.0/ D
u.L/ D 0). We have the following a posteriori error estimate for its finite element
solution uh.

Proposition 2.1. The finite element solution uh, defined by (2.9), satisfies the
estimate

k.u � uh/
0k2
L2.I /

� C

nX
iD1

	2i .uh/ (2.68)
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where the so-called element residual 	i .uh/ is defined by

	i .uh/ D hikf C u00
hkL2.Ii / (2.69)

We observe that, since uh is linear on element Ii , u00
hjIiD 0, the element residual can

be simplified to just

	i .uh/ D hikf kL2.Ii / (2.70)

Proof. Let e D u � uh be the error. We then have

ke0k2
L2.I /

D
Z
I

e02 dx (2.71)

D
Z
I

e0.e � �e/0 dx (2.72)

D
nX
iD1

Z xi

xi�1

e0.e � �e/0 dx (2.73)

D
nX
iD1

Z xi

xi�1

.�e00/.e � �e/ dx C �
e0.e � �e/

�xi
xi�1

(2.74)

D
nX
iD1

Z xi

xi�1

.�e00/.e � �e/ dx (2.75)

where we have used the Galerkin orthogonality (2.20) to subtract the interpolant
�e 2 Vh;0 to e, integration by parts on each element Ii , and that e and �e coincide
at the nodes to get rid of all boundary terms.

Now, examining �e00 on Ii we find

� e00 D �.u � uh/
00 D �u00 C u00

h D f C u00
h (2.76)

Using this, the Cauchy-Schwarz inequality, and a standard interpolation error
estimate we finally have

ke0k2
L2.I /

D
nX
iD1

Z xi

xi�1

.f C u00
h/.e � �e/ dx (2.77)

�
nX
iD1

kf C u00
hkL2.Ii /ke � �ekL2.Ii / (2.78)

�
nX
iD1

kf C u00
hkL2.Ii /Chike0kL2.Ii / (2.79)
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D C

nX
iD1

hikf C u00
hkL2.Ii /ke0kL2.Ii / (2.80)

� C

 
nX
iD1

h2i kf C u00
hk2L2.Ii /

!1=2  nX
iD1

ke0k2
L2.Ii /

!1=2
(2.81)

D C

 
nX
iD1

h2i kf C u00
hk2L2.Ii /

!1=2
ke0kL2.I / (2.82)

Dividing both sides by ke0kL2.I / concludes the proof. ut
Perhaps needless to say, there are two variants of the Cauchy-Schwarz inequality,

namely, the continuous one
R
I

uv dx � kukL2.I /kvkL2.I / for any functions u; v 2
L2.I /, and the discrete one a � b D a1b1 C � � � C anbn � .a21 C � � � C a2n/

1=2

.b21 C � � � C b2n/
1=2 D kak kbk for any n � 1 vectors a and b. The former is used in

estimating (2.77) and the latter in estimating (2.80), for example.

2.5.2 Adaptive Mesh Refinement

The result of Proposition 2.1 is perhaps not so surprising, since we expect the
error to be small if either the mesh is fine, or if our differential equation is well
satisfied by uh. Indeed, if the discrete solution uh was the exact solution u, then
f C u00

h D 0. Hence, the element residual 	i .uh/ is in a sense proportional to the
error e on element Ii . To increase the accuracy of uh it is therefore tempting to
selectively split the elements with the largest residuals into smaller ones, since this
decreases hi and, thus, also 	i .uh/. Moreover, in doing so, it is natural to strive for
a uniform distribution of the error among the elements. This line of reasoning leads
us to adaptive finite element methods, which automatically controls the error using
a posteriori estimates in combination with local mesh refinement. The following
algorithm summarizes a prototype adaptive finite element method:

Algorithm 6 Prototype adaptive finite element method
1: Given a (coarse) mesh with n elements.
2: while n is not too large do
3: Compute the finite element approximation uh.
4: Evaluate the element residuals 	i .uh/, i D 1; 2; : : : ; n.
5: Select and refine the the most error prone elements.
6: end while

The adaptive algorithm above consists of four main components:

1. Computation of the element residuals 	i .
2. Selection of elements to be refined.
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3. A refinement procedure.
4. A stopping criterion.

Let us discuss the computer implementation of these four steps.
In practice, we calculate the element residuals 	i using quadrature. Let us store

them in a vector, say, eta.

eta = zeros(n,1); % allocate element residuals
for i = 1:n % loop over elements
h = x(i+1) - x(i); % element length
a = f(x(i)); % temporary variables
b = f(x(i+1));
t = (a^2+b^2)*h/2; % integrate f^2. Trapezoidal rule
eta(i) = h*sqrt(t); % element residual

end

As usual x is a vector of node coordinates and n is the number of elements.
There are different possibilities for selecting the elements to be refined given the

element residuals 	i . The popular so-called fixed-rate strategy is to refine element
Ii if

	i > ˛ max
iD1;2;:::;n 	i ; (2.83)

where 0 � ˛ � 1 is a parameter to be chosen. The choice ˛ D 0 gives a uniform
refinement, while ˛ D 1 gives no refinement at all.

The refinement procedure consists of inserting a new node at the mid-point of
each element chosen for refinement. In other words, if we are refining element Ii D
Œxi ; xiC1�, then we replace it by Œxi ; .xi C xiC1/=2� [ Œ.xi C xiC1/=2; xiC1�. This
is easily implemented by looping over the elements and inserting the mid-point
coordinate of any element chosen for refinement at the end of the vector x, and then
sort this vector.

alpha = 0.9 % refinement parameter
for i = 1:length(eta)
if eta(i) > alpha*max(eta) % if large residual
x = [x (x(i+1)+x(i))/2]; % insert new node point

end
end
x = sort(x); % sort node points accendingly

The stopping criterion determines when the adaptive algorithm should stop. It
can, for instance, take the form of a maximum bound on the number of nodes
or elements, the memory usage, the time of the computation, the total size of the
residual, or a combination of these.

Adaptive mesh refinement is particularly useful for problems with solutions
containing high localized gradients, such as shocks or kinks, for instance. One such
problem is �u00 D ı, 0 < x < 1, u.0/ D u.1/ D 0, where ı is the narrow pulse
ı D exp.�cjx � 0:5j2/, with c D 100. The solution to this problem looks like a
single triangle wave with its peak at x D 0:5. In Fig. 2.2 we show the computed
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solution uh to this problem after 25 mesh refinement loops, starting from a coarse
mesh with five nodes distributed randomly over the computational domain. Clearly,
the adaptive algorithm has identified and resolved the difficult region with high
gradients near the peak of the triangle wave. This allows for high accuracy while
at the same time saving computational resources.

2.6 Further Reading

There are many introductory texts on finite element methods for two-point boundary
value problems, and it is virtually impossible to give a just overview of all these.
For a very nice and accessible text explaining both theory and implementation we
recommend Gockenbach [36]. Also, [35] by the same author is recommended, since
it has broad scope and shows the important link between finite element and spectral
methods (i.e., Fourier analysis). For a more theoretically advanced text, including a
deeper discussion on the function spaces underlying the variational formulation, we
refer to Axelsson and Barker [3].

2.7 Problems

Exercise 2.1. Solve the model problem (2.1) analytically with

(a) f .x/ D 1.
(b) f .x/ D x � u.

Exercise 2.2. Let 0 D x0 < x1 < x2 < x3 D 1, where x1 D 1=6 and x2 D 1=2

be a partition of the interval I D Œ0; 1� into three subintervals. Furthermore, let Vh;0
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be the space of continuous piecewise linear functions on this partition that vanish at
the end-points x D 0 and x D 1.

(a) Compute the stiffness matrix A defined by (2.13).
(b) Compute the load vector b, with f D 1, defined by (2.14).
(c) Solve the linear system A� D b and compute the finite element solution uh.

Plot uh.

Exercise 2.3. Consider the problem

�u00 D 7; x 2 I D Œ0; 1�

u.0/ D 2; u.1/ D 3

(a) What is a suitable finite element space Vh?
(b) Formulate a finite element method for this problem.
(c) Derive the discrete system of equations using a uniform mesh with 4 nodes.

Exercise 2.4. Consider the problem

�..1C x/u0/0 D 0; x 2 I D Œ0; 1�

u.0/ D 0; u0.1/ D 1

Divide the interval I into three subintervals of equal length h D 1=3 and let Vh
be the corresponding space of continuous piecewise linear functions vanishing at
x D 0.

(a) Determine the analytical solution u.
(b) Use Vh to formulate a finite element method.
(c) Verify that the stiffness matrix A and load vector b are given by

A D 1

2

2
416 �9 0

�9 20 �11
0 �11 11

3
5 ; b D

2
400
2

3
5

(d) Verify that A is symmetric and positive definite.

Exercise 2.5. Compute the stiffness matrix to the problem

�u00 D f; x 2 I D Œ0; 1�

u0.0/ D u0.1/ D 0

on a uniform mesh of I with two elements. Why is this matrix singular?
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Exercise 2.6. Consider the problem

�u00 C u D f; x 2 I D Œ0; 1�

u.0/ D u.1/ D 0

(a) Choose a suitable finite element space Vh.
(b) Formulate a finite element method.
(c) Derive the discrete system of equations.

Exercise 2.7. Let u be defined on I D Œ0; 1� and such that u.0/ D 0. Prove the
so-called Poincaré inequality

kukL2.I / � Cku0kL2.I /

Exercise 2.8. Derive an a posteriori error estimate for the problem

�u00 C u D f; x 2 I D Œ0; L�

u.0/ D u.L/ D 0

Exercise 2.9. Consider the problem

��u00 C xu0 C u D f; x 2 I D Œ0; L�

u.0/ D u0.L/ D 0

where � > 0 is a constant. Prove that the solution satisfies

k�u00kL2.I / � kf kL2.I /

Exercise 2.10. Consider the model problem

�u00 D f; x 2 I D Œ0; L�

u.0/ D u.L/ D 0

Its variational formulation reads: find u 2 V0 such thatZ
I

u0v0 dx D
Z
I

f v dx; 8v 2 V0

Show that the solution u 2V0 to the variational formulation minimizes the functional

F.w/ D 1

2

Z
I

w02 dx �
Z
I

f wdx

over the space V0. Hint: Write w D uCv and show thatF.w/ D F.u/C: : : 	 F.u/.



Chapter 3
Piecewise Polynomial Approximation in 2D

Abstract In this chapter we extend the concept of piecewise polynomial approx-
imation to two dimensions. As before, the basic idea is to construct spaces of
piecewise polynomial functions that are easy to represent in a computer and to
show that they can be used to approximate more general functions. A difficulty
with the construction of piecewise polynomials in higher dimension is that first the
underlying domain must be partitioned into elements, such as triangles, which may
be a nontrivial task if the domain has complex shape. We present a methodology for
building representations of piecewise polynomials on triangulations that is efficient
and suitable for computer implementation and study the approximation properties
of these spaces.

3.1 Meshes

3.1.1 Triangulations

Let ˝ � R
2 be a bounded two-dimensional domain with smooth or polygonal

boundary @˝ . A triangulation, or mesh, K of ˝ is a set fKg of triangles K , such
that˝ D [K2KK , and such that the intersection of two triangles is either an edge, a
corner, or empty. No triangle corner is allowed to be hanging, that is, lie on an edge
of another triangle. The corners of the triangles are called the nodes. Figure 3.1
shows a triangle mesh of the Greek letter � .

The set of triangle edges E is denoted by E D fEg. We distinguish between
edges lying within the domain ˝ and edges lying on the boundary @˝ . The former
belongs to the set of interior edges EI , and the latter to the set of boundary edges
EB , respectively.

To measure the size of a triangleK we introduce the local mesh size hK , defined
as the length of the longest edge inK . See Fig. 3.5. Moreover, to measure the quality

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__3, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 3.1 A mesh of �

of K , let dK be the diameter of the inscribed circle and introduce the so-called
chunkiness parameter cK , defined by

cK D hK=dK (3.1)

We say that a triangulationK is shape regular if there is a constant c0 > 0 such that

cK 	 c0; 8K 2 K (3.2)

This condition means that the shape of the triangles can not be too extreme in the
sense that the angles of any triangle can neither be very wide nor very narrow. We
always assume that the meshes we work with are shape regular. As we shall see,
this has implications for the approximation properties of the piecewise polynomial
spaces to be defined on these meshes.

A global mesh size is given by h D maxK2K hK .
Also, occasionally we will refer to a quasi-uniform mesh, which means that the

mesh size hK is roughly the same for all elements. In particular, there exist a constant

 > 0 such that 
 < hK=hK0 < 
�1 for any two elementsK and K 0.

3.1.2 Data Structures for a Triangulation

The standard way of representing a triangle mesh with np nodes and nt elements in
a computer is to store it as two matrices, P and T , called the point matrix, and the
connectivity matrix, respectively. The point matrix P is of size 2�np and column j

contains the coordinates x.j /1 and x.j /2 of node Nj . The connectivity matrix T is of
size 3� nt and column j contains the numbers of the three nodes in triangleKj . In
the following we shall adopt the common convention of ordering these three nodes
in a counter clockwise sense. It does not, however, matter on which of the nodes the
ordering starts.
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yFig. 3.2 A triangle mesh of
the L-shaped domain

Figure 3.2 shows a small triangulation of a domain shaped like the letter L.
The mesh has eight nodes and six triangles. The point matrix and connectivity
matrix for this mesh are given by

P D
�
0:0 1:0 2:0 0:0 1:0 2:0 0:0 1:0

0:0 0:0 0:0 1:0 1:0 1:0 2:0 2:0

�
; T D

2
41 2 5 3 4 52 5 2 6 5 8

4 4 8 5 7 7

3
5 (3.3)

Thus, for example, the coordinates .x.3/1 ; x
.3/
2 / D .2; 0/ of node N3 are given by

the matrix entries P13 and P23, respectively. In the connectivity matrix T column
2 contains the numbers 2, 5, and 4 of the three nodes N2, N5, and N4 making up
triangleK2. Note that the nodes are ordered in a counter clockwise sense.

We remark that the representation of a mesh via a point and connectivity matrix
is very common and generalizes to almost any element type and space dimension.
In particular, tetrahedral meshes used to partition domains in three dimensions can
be stored in this way. In this case, P has 3 rows for the three node coordinates, and
T has 4 rows containing the four nodes of a tetrahedron.

3.1.3 Mesh Generation

Over the past decades advanced computer algorithms for the automatic construction
of meshes have been developed. However, depending on the complexity of the
domain it is still more or less difficult to generate a mesh. In particular, difficulties

mbaccouch
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mbaccouch
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3

mbaccouch
Callout
3

mbaccouch
Oval
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may arise for three-dimensional geometries, since in practice these often have
complicated shape. By contrast, in two dimensions there are efficient algorithms for
creating a mesh on quite general domains. One of these is the Delaunay algorithm,
which given a set of points can determine a triangulation with the given points as
triangle nodes. Theoretically, Delaunay triangulations are optimal in the sense that
the angles of all triangles are maximal. In practice, however, this is not always so
due to the necessity for the triangulation to respect the domain boundaries, which
may lead to triangles with poor quality.

MATLAB has a non-standard set of routines called the PDE-Toolbox which
includes a Delaunay mesh generator for creating high quality triangulations of two
dimensional geometries. Let us illustrate its use by creating a mesh of the L-shaped
domain.

In MATLAB the geometry of the L-shaped domain is defined by a geometry
matrix g, given by

g=[2 0 2 0 0 1 0
2 2 2 0 1 1 0
2 2 1 1 1 1 0
2 1 1 1 2 1 0
2 1 0 2 2 1 0
2 0 0 2 0 1 0

];

Each column of g describes one of the six line segments making up the boundary of
the L-shaped domain. In each such column rows two and three contain the starting
and ending x1-coordinate, and rows four and five the corresponding x2-coordinate.
Rows six and seven indicate if the geometry is on the left or right side of the line
segment when traversing it in the direction induced by the start- and end-points.
The fact that we are defining a line segment is indicated by the number 2 in the first
column.

To generate a mesh of the domain g we type

[p,e,t] = initmesh(g,‘hmax’,0.1)

The call to the initmesh routine invokes the mesh generator, which triangulates the
domain in g. The final two arguments ‘hmax’,0.1 specifies that the maximum edge
length of the triangles to be generated may not exceed one tenth. Output is the point
matrix p, the connectivity matrix t, and the so-called edge matrix e containing the
node numbers of the triangle edges making up the boundary of the mesh. We will
return to discuss the e matrix later on.

We remark that t has four rows with the last row containing subdomain numbers
for each triangle in case the domain g has subdomains.

In the PDE-Toolbox there are a few built-in geometries, including:

• cicrcleg, the unit radius circle centered at origo.
• squareg, the square Œ�1; 1�2.
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For future use we extend this list of geometries with a rectangle, defined by

function r = Rectg(xmin,ymin,xmax,ymax)
r=[2 xmin xmax ymin ymin 1 0;
2 xmax xmax ymin ymax 1 0;
2 xmax xmin ymax ymax 1 0;
2 xmin xmin ymax ymin 1 0]’;

Note the transpose on g.
To view the generated mesh one can type

pdemesh(p,e,t)

More general geometries can be drawn in the PDE-Toolbox GUI. It is initialized
by typing

pdetool

at the MATLAB prompt.
In this context we remind about the extensive help available in MATLAB. Help

about any command can be obtained by typing

help command

where command is the name of the command (e.g., jigglemesh).

3.2 Piecewise Polynomial Spaces

The reason for meshing a domain is that it allows for a simple construction of
piecewise polynomial function spaces, which is otherwise a very difficult task. We
shall now discuss how this is done in the special case of linear polynomials on
triangles. The concepts to be introduced generalizes to higher dimensions and other
types of elements.

3.2.1 The Space of Linear Polynomials

Let K be a triangle and let P1.K/ be the space of linear functions on K , defined by

P1.K/ D fv W v D c0 C c1x1 C c2x2; .x1; x2/ 2 K; c0; c1; c2 2 Rg (3.4)

In other wordsP1.K/ contains all functions of the form v D c0Cc1x1Cc2x2 onK .
We observe that any v in P1.K/ is uniquely determined by its nodal values ˛i D

v.Ni/, i D 1; 2; 3. This follows by assuming ˛i to be given and evaluating v at the
three nodesNi D .x

.i/
1 ; x

.i/
2 /. In doing so, we end up with the linear system
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2
64
1 x

.1/
1 x

.1/
2

1 x
.2/
1 x

.2/
2

1 x
.3/
1 x

.3/
2

3
75
2
4c0c1
c2

3
5 D

2
4˛1˛2
˛3

3
5 (3.5)

Here, computing the determinant of the system matrix we find that its absolute
value equals 2jKj, where jKj is the area of K , which means that (3.5) has a unique
solution as long as K is not degenerate in any way.

The natural basis f1; x1; x2g for P1.K/ is not suitable for us, since we wish to
use the nodal values as degrees of freedom. Therefore, we introduce a nodal basis
f�1; �2; �3g, defined by

�j .Ni/ D
(
1; i D j

0; i ¤ j
; i; j D 1; 2; 3 (3.6)

Using the new basis we can express any function v in P1.K/ as

v D ˛1�1 C ˛2�2 C ˛3�3 (3.7)

where ˛i D v.Ni/.
On the reference triangle NK with nodes at origo, .1; 0/, and .0; 1/, the nodal basis

functions for P1. NK/ are given by

�1 D 1 � x1 � x2; �2 D x1; �3 D x2 (3.8)

3.2.2 The Space of Continuous Piecewise Linear Polynomials

The construction of piecewise linear functions on a mesh K D fKg is straight
forward. On each triangle K any such function v is simply required to belong to
P1.K/. Requiring also continuity of v between neighbouring triangles, we obtain
the space of all continuous piecewise linear polynomials Vh, defined by

Vh D fv W v 2 C0.˝/; vjK 2 P1.K/; 8K 2 Kg (3.9)

Here, C0.˝/ denotes the space of all continuous functions on ˝ .
An example of a continuous piecewise linear function is shown in Fig. 3.3.
To construct a basis for Vh we first show that a function v in Vh is uniquely

determined by its nodal values
fv.Nj /gnpjD1 (3.10)

and, conversely, that for each set of nodal values there is a unique function v in
Vh with these nodal values. To prove this claim we first note that the nodal values
determines a function in P1.K/ uniquely for each K 2 K , and, thus, a function in
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Fig. 3.4 A two-dimensional hat function 'j on a general triangle mesh

Vh is uniquely determined by its values in the nodes. Then, consider two triangles
K1 and K2 sharing edge EDK1 \ K2. Let v1 and v2 be the two unique linear
polynomials in P1.K1/ and P1.K2/, respectively, determined by the nodal values
on K1 and K2. Because v1 and v2 are linear polynomials on K1 and K2, they are
also linear polynomials on E , and because they coincide at the end-points of E
we conclude that v1 D v2 on E . Therefore, for any set of nodal values there is a
continuous piecewise linear polynomial with these nodal values.

Motivated by this result we let the nodal values be our degrees of freedom and
define a corresponding basis f'j gnpjD1 � Vh such that

'j .Ni/ D
(
1; i D j

0; i ¤ j
; i; j D 1; 2; : : : ; np (3.11)

Figure 3.4 illustrates a typical basis function 'j .
From the figure it is clear that each basis function 'j is continuous, piecewise

linear, and with support only on the small set of triangles sharing nodeNj . Similar to
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the one-dimensional case, these two dimensional basis functions are also called hat
functions.

We remark that hat functions can also be defined analogously in three dimensions
on tetrahedra.

Now, using the hat function basis we note that any function v in Vh can be written

v D
npX
iD1

˛i'i (3.12)

where ˛i D v.Ni/, i D 1; 2; : : : ; np , are the nodal values of v.

3.2.3 The Space of Piecewise Constants

Differentiating a continuous piecewise linear function with respect to either of the
space coordinates x1 or x2 gives a discontinuous piecewise constant function. This
is clearly seen in Fig. 3.3, which shows the x1-derivative of the function in Fig. 3.5.

The collection of functions that are constant on each element forms the space of
piecewise constantsWh, defined by

Wh D fw W wjK 2 P0.K/; 8K 2 Kg (3.13)

where P0.K/ is the space of constant functions on elementK .
To measure the size of w 2 Wh on the edges it is customary to use the so-called

average and jump operators h�i and Œ��, respectively. To define these consider the two
adjacent elements KC and K� that share the edge E in Fig. 3.6. The average of w
on E is defined by

hwi D wC C w�

2
; x 2 E (3.14)
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E

K+

K− n−

n+

Fig. 3.6 Two adjacent
elements KC and K�

sharing edge E , with normal
nE D nC D �n�

where w˙ D wjK˙
. By analogy, n˙ is the outward unit normals on the ele-

ment boundaries @K˙. Note that nC D �n� on E , since nC and n� point in
opposite directions. To E we assign a fixed normal nE DnC D �n�, so that
w˙ D lim�!0 w.x 
 �nE/ for any point x on E . The jump of w on E is defined by

Œw� D wC � w�; x 2 E (3.15)

If w happens to be a vector with components wi in Wh, then

Œn � w� D nC � wC C n� � w� D nE � .wC � w�/ D nE � Œw�; x 2 E (3.16)

When E lies on the boundary of the domain˝ , its normal nE is chosen to coincide
with the outward unit normal on @˝ , and we define hwi D wC and Œu� D wC.

The average and jump easily generalize to matrices W with components Wij

in Wh.

3.3 Interpolation

3.3.1 Linear Interpolation

Now, let us return to the problem of approximating functions. Given a continuous
function f on a triangle K with nodes Ni , i D 1; 2; 3, the linear interpolant �f 2
P1.K/ to f is defined by

�f D
3X
iD1

f .Ni /'i (3.17)

The interpolant �f 2 P1.K/ is a plane, which coincides with f at the three node
points. Thus, by definition we have Ni �f .Ni / D f .Ni /. See Fig. 3.7.

To estimate the interpolation error f � �f we need to introduce some measure
of the size of the first and second order derivatives of f . To this end, let D and D2

be the differential operators
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N1

N2

N3

f

p f

K
hK

dK

Fig. 3.7 The linear
interpolant �f of a function
f on a triangle K with nodes
N1, N2, and N3. Also shown
is the longest edge length hK ,
and the diameter dK of the
inscribed circle

Df D
 ˇ̌̌
ˇ @f@x1

ˇ̌̌
ˇ
2

C
ˇ̌̌
ˇ @f@x2

ˇ̌̌
ˇ
2
!1=2

; D2f D
 ˇ̌̌
ˇ@
2f

@x21

ˇ̌̌
ˇ
2

C 2

ˇ̌̌
ˇ @

2f

@x1@x2

ˇ̌̌
ˇ
2

C
ˇ̌̌
ˇ@
2f

@x22

ˇ̌̌
ˇ
2
!1=2

(3.18)

Because D and D2 include all first and second partial derivatives, we say that Df
andD2f are the total first and second derivatives of f , respectively.

In this context we recall that theL2.˝/-norm of a function f D f .x1; x2/ of two
variables x1 and x2 on a domain˝ is given by

kf kL2.˝/ D
�Z

˝

f 2 dx

�1=2
(3.19)

Using these notations we have the following estimate of the interpolation error.

Proposition 3.1. The interpolant �f satisfies the estimates

kf � �f kL2.K/ � Ch2KkD2f kL2.K/ (3.20)

kD.f � �f /kL2.K/ � ChKkD2f kL2.K/ (3.21)

We refer to Brenner and Scott [60], or Elman and co-authors [26] for proofs of this
proposition.

In Proposition 3.1, it is possible to show that the occurring constants C are
proportional to the inverse of sin.�K/, where �K is the smallest angle in triangle
K . From this it follows that C blows up if �K becomes very small, which renders
the interpolation error estimates practically useless. This explains why it is critical
thatK has neither too narrow nor too wide angles. Indeed, we speak about the angles
as a measure of the triangle quality. Recall that the chunkiness parameter cK of (3.1)
is used as a measure of the quality of K .
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3.3.2 Continuous Piecewise Linear Interpolation

The concept of continuous piecewise linear interpolation easily extends from one
to two and even three dimensions. Indeed, given a continuous function f on the
domain ˝ , we define its continuous piecewise linear interpolant �f 2 Vh on a
mesh K of ˝ by

�f D
npX
iD1

f .Ni /'i (3.22)

Again, �f approximates f by taking on the values of f at the nodesNi .
In MATLAB it is easy to draw �f given f . For example, to plot the interpolant

to f D x1x2 on the square domain˝ D Œ�1; 1�2 it takes only four lines of code.

[p,e,t] = initmesh(’squareg’,’hmax’,0.1); % mesh
x = p(1,:); y = p(2,:); % node coordinates
pif = x.*y; % nodal values of interpolant
pdesurf(p,t,pif) % plot interpolant

Looking at the code let us make a remark about out programming style. The
conversion of mathematical symbols to computer code is not always obvious and
self explanatory. In this book we have tried to keep a close correlation between the
notation introduced in the formulas, and the names of the variables used in the code.
However, attempting to write as short, yet clear, code as as possible has unavoidable
lead to a few inconsistencies in this respect. For example, we have throughout used
the variables x and y to denote the space coordinates x1 and x2. We hope that the
code comments and the context shall make it clear what is meant.

The size of the interpolation error f � �f can be estimated with the help of the
following proposition.

Proposition 3.2. The interpolant �f satisfies the estimates

kf � �f k2
L2.˝/

� C
X
K2K

h4KkD2f k2
L2.K/

(3.23)

kD.f � �f /k2
L2.˝/

� C
X
K2K

h2KkD2f k2
L2.K/

(3.24)

Proof. Using the Triangle inequality and Proposition 3.1, we have

kf � �f k2
L2.˝/

D
X
K2K

kf � �f k2
L2.K/

(3.25)

�
X
K2K

Ch4KkD2f k2
L2.K/

(3.26)

which proves the first estimate. The second follows similarly.
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3.4 L2-Projection

3.4.1 Definition

Given a function f 2 L2.˝/ the L2-projection Phf 2 Vh of f is defined by

Z
˝

.f � Phf /v dx D 0; 8v 2 Vh (3.27)

3.4.2 Derivation of a Linear System of Equations

In order to actually compute the L2-projection Phf , we first note that the defini-
tion (3.27) is equivalent to

Z
˝

.f � Phf /'i dx D 0; i D 1; 2; : : : ; np (3.28)

where 'i are the hat basis functions spanning Vh.
Then, since Phf belongs to Vh it can be written as the linear combination

Phf D
npX
jD1

�j 'j (3.29)

where �j , j D 1; 2; : : : ; np , are np unknown coefficients to be determined.
Inserting the ansatz (3.29) into (3.28) we get

Z
˝

f 'i dx D
Z
˝

0
@ npX
jD1

�j 'j

1
A'i dx (3.30)

D
npX
jD1

�j

Z
˝

'j'i dx (3.31)

Further, using the notation

Mij D
Z
˝

'j'i dx; i; j D 1; 2; : : : ; np (3.32)

bi D
Z
˝

f 'i dx; i D 1; 2 : : : ; np (3.33)

we have
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bi D
npX
jD1

Mij �j ; i D 1; 2 : : : ; np (3.34)

which is an np �np linear system for the unknowns �j . In matrix form, we write this

M� D b (3.35)

where the entries of the np � np mass matrix M and the np � 1 load vector b are
defined by (3.32) and (3.33), respectively. Solving the linear system (3.35) we obtain
the unknowns �j , and, thus, Phf .

3.4.3 Basic Algorithm to Compute the L2-Projection

The following algorithm summarizes the basic steps in computing theL2-projection
Phf :

Algorithm 7 Basic Algorithm to Compute the L2-Projection.
1: Create a mesh K of ˝ and define the corresponding space of continuous piecewise linear

functions Vh with hat function basis f'i gnpiD1.
2: Assemble the np � np mass matrix M and the np � 1 load vector b, with entries

Mij D
Z
˝

'j'i dx; bi D
Z
˝

f 'i dx (3.36)

3: Solve the linear system
M� D b (3.37)

4: Set

Phf D
npX
jD1

�j 'j (3.38)

3.4.4 Existence and Uniqueness of the L2-Projection

Theorem 3.1. The L2-projection Phf , defined by (3.27), exists and is unique.

Proof. We first show the uniqueness claim. The argument is by contradiction.
Assume that there are two L2-projections Phf and ePhf satisfying (3.27). Then,
we have
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Z
˝

Phf v dx D
Z
˝

f v dx; 8v 2 Vh (3.39)

Z
˝

ePhf v dx D
Z
˝

f v dx; 8v 2 Vh (3.40)

Subtracting these equations we get

Z
˝

.Phf � ePhf /v dx D 0; 8v 2 Vh (3.41)

Now, choosing v D Phf � ePhf 2 Vh we further get

Z
˝

jPhf � ePhf j2 dx D 0 (3.42)

From this identity we conclude that Phf � ePhf must be zero.
To prove existence we recall that Phf is determined by a square linear system.

The existence of a solution to a linear system follows from the uniqueness of the
solution. ut

3.4.5 A Priori Error Estimate

The next theorem is a best approximation result.

Theorem 3.2. The L2-projection Phf , defined by (3.27), satisfies the best approx-
imation result

kf � Phf kL2.˝/ � kf � vkL2.˝/; 8v 2 Vh (3.43)

Proof. Using the definition of theL2-norm and writing f �Phf D f �vCv�Phf
for any v 2 Vh, we have

kf � Phf k2
L2.˝/

D
Z
˝

.f � Phf /.f � v C v � Phf / dx (3.44)

D
Z
˝

.f � Phf /.f � v/ dx C
Z
˝

.f � Phf /.v � Phf / dx

(3.45)

D
Z
˝

.f � Phf /.f � v/ dx (3.46)

� kf � Phf kL2.˝/kf � vkL2.˝/ (3.47)
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where we used the definition of the L2-projection to conclude that

Z
˝

.f � Phf /.v � Phf / dx D 0 (3.48)

since v � Phf 2 Vh. Dividing by kf � Phf kL2.˝/ concludes the proof. ut
Theorem 3.3. The L2-projection Phf satisfies the estimate

kf � Phf k2
L2.˝/

� C
X
K2K

h4KkD2f k2
L2.K/

(3.49)

Proof. Starting from the best approximation result, choosing v D �f the interpolant
of f , and using the interpolation error estimate of Proposition 3.1, we have

kf � Phf k2
L2.˝/

� kf � �f k2
L2.˝/

(3.50)

�
X
K2K

kf � �f k2
L2.K/

(3.51)

�
X
K2K

Ch4KkD2f k2
L2.K/

(3.52)

which proves the estimate. ut
Hence, we conclude that

kf � Phf kL2.˝/ � Ch2kD2f kL2.˝/ (3.53)

In other words, the L2-error tends to zero as the mesh size h tends to zero.

3.5 Quadrature and Numerical Integration

Quadrature in two and three dimensions works in principle the same as in one. The
integral under consideration is approximated with a sum of weights times the values
of the integrand at a set of carefully selected quadrature points. Indeed, a general
quadrature rule on a triangleK takes the form

Z
K

f dx �
X
j

wj f .qj / (3.54)

where fqj g is the set of quadrature points in K , and fwj g the corresponding
quadrature weights. Below we list a few quadrature formulas for integrating a
continuous function f over a general triangleK with nodesN1, N2, and N3.
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The simplest quadrature formula is the center of gravity rule

Z
K

f dx � f

�
N1 CN2 CN3

3

�
jKj (3.55)

where jKj denotes the area ofK . The center of gravity formula is a two-dimensional
variant of the Mid-point rule.

There is also a two-dimensional analog to the Trapezoidal rule, namely, the
so-called corner quadrature formula

Z
K

f dx �
3X
iD1

f .Ni /
jKj
3

(3.56)

A better quadrature formula is the two-dimensional Mid-point rule

Z
K

f dx �
3X

1�i<j�3
f

�
Ni CNj

2

� jKj
3

(3.57)

where .NiCNj /=2 denotes the mid-point of the edge between node number i and j .
We remark that there are numerous other quadrature rules with different kinds of

precision and computational cost. Indeed, each element type and space dimension
generally requires its set of quadrature points and weights. However, for many
computations primitive rules, such as the center of gravity rule, for instance, suffice.
We refer the interested reader to the book by Evans [28] for a more thorough
description of this subject.

3.6 Computer Implementation

3.6.1 Assembly of the Mass Matrix

We next show how to compute the mass matrix M in two dimensions. This is quite
a bit more complicated than in one dimension and we therefore do this by example.
To this end, consider the small mesh of the rectangle˝ shown in Fig. 3.8.

On this mesh we wish to compute the mass matrixM , given by

M D
Z
˝

2
666664

'1'1 '2'1 '3'1 '4'1 '5'1
'1'2 '2'2 '3'2 '4'2 '5'2
'1'3 '2'3 '3'3 '4'3 '5'3

'1'4 '2'4 '3'4 '4'4 '5'4
'1'5 '2'5 '3'5 '4'5 '5'5

3
777775
dx (3.58)
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K1

K2 K3

x

y

N1 = (0,0) N3 = (2,0)

N4 = (2,1)

N2 = (1,0)

N5 = (0,1)

Fig. 3.8 A small mesh of the
rectangle ˝ D Œ0; 2� � Œ0; 1�

To do so, we first break the integral over the whole domain˝ into a sum of integrals
over the trianglesKi , i D 1; 2; 3. We then have

M D
3X
iD1

Z
Ki

2
666664

'1'1 '2'1 '3'1 '4'1 '5'1
'1'2 '2'2 '3'2 '4'2 '5'2
'1'3 '2'3 '3'3 '4'3 '5'3

'1'4 '2'4 '3'4 '4'4 '5'4
'1'5 '2'5 '3'5 '4'5 '5'5

3
777775
dx D

3X
iD1

MKi (3.59)

As we know there are only three non-zero hat functions on each triangle. For
example, the only non-zero hats on K1 are '1, '4, and '5. Integrating the product
of these we see that K1, or any triangle for that matter, gives rise to a total of 3 �
3 D 9 integral contributions to M . Moreover, for a given triangle, the index on the
non-zero hat functions are the same as the node numbers for that triangle. Thus,
inspecting which hats are non-zero on which triangle, we can therefore beforehand
say which rows and columns are non-zero in each global element matrix MKi . For
example, the only non-zero entries ofMK1 areMK1

11 ,MK1
14 ,MK1

15 ,MK1
41 ,MK1

44 ,MK1
45 ,

M
K1
51 , MK1

54 , andMK1
55 . Proceeding similarly, we find

M D
Z
K1

2
666664

'1'1 0 0 '4'1 '5'1

0 0 0 0 0

0 0 0 0 0

'1'4 0 0 '4'4 '5'4
'1'5 0 0 '4'5 '5'5

3
777775
dx (3.60)

C
Z
K1

2
666664

'1'1 '2'1 0 '4'1 0

'1'2 '2'2 0 '4'2 0

0 0 0 0 0

'1'4 '2'4 0 '4'4 0

0 0 0 0 0

3
777775
dx (3.61)
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C
Z
K1

2
666664

0 0 0 0 0

0 '2'2 '3'2 '4'2 0

0 '2'3 '3'3 '4'3 0

0 '2'4 '3'4 '4'4 0

0 0 0 0 0

3
777775
dx (3.62)

D MK1 CMK2 CMK3 (3.63)

In practice the global element matrices MKi are never formed, but only their small
3 � 3 local element matrices necessary for storing the non-zero entries.

Having reduced the computation of the mass matrix M to a series of operations
on the triangles, we next consider a single triangle K with its three nodes N1, N2,
and N3, and corresponding hat functions '1, '2, and '3. These nodes will almost
certainly have a different node numbering, say Nr , Ns , and Nt , in the mesh as a
whole, but let us label them 1, 2, and 3 for now.

The computation of the element masses could of course be done using quadra-
ture. However, there is a much easier way. Using induction it is possible to show the
integration formula

Z
K

'm1 '
n
2'

p
3 dx D 2mŠnŠpŠ

.mC nC p C 2/Š
jKj (3.64)

where jKj is the area of K and m, n, and p are positive integers. From this we
immediately have

MK
ij D

Z
K

'i'j dx D 1

12
.1C ıij /jKj i; j D 1; 2; 3 (3.65)

where ıij is the Kronecker symbol, that is, 1 if i D j , and 0 if i ¤ j . Writing out
the entriesMK

ij explicitly, we, thus, have the local element mass matrix

MK D 1

12

2
42 1 11 2 1

1 1 2

3
5 jKj (3.66)

The mapping f1; 2; 3g 7! fr; s; tg between the global node numbers r , s, and
t and the local node numbers 1, 2, and 3 is called the local-to-global mapping.
It is used when adding the entries of the local element mass matrix MK to
their appropriate positions in the global mass matrix M . This is done by cycling
the index i and j over 1, 2, and 3, while adding MK

ij to Mloc2glbi loc2glbj , where
loc2glb D Œr; s; t �. This gives a simple, yet flexible, way of organizing the assembly.
We summarize this assembly in the following algorithm:



3.6 Computer Implementation 63

Algorithm 8 Assembly of the Mass Matrix.
1: Let np be the number of nodes and nt the number of elements in a mesh described by its point

matrix P and connectivity matrix T .
2: Allocate memory for the np � np matrix M and initialize all matrix entries to zero.
3: for K D 1; 2; : : : ; nt do
4: Compute the 3� 3 local element mass matrix MK given by

MK D 1

12

2
42 1 11 2 1

1 1 2

3
5 jKj (3.67)

5: Set up the local to global mapping, loc2glb D Œr; s; t �.
6: for i D 1; 2; 3 do
7: for j D 1; 2; 3 do
8:

Mloc2glbi loc2glbj D Mloc2glbi loc2glbj CMK
ij (3.68)

9: end for
10: end for
11: end for

The conversion of this algorithm into MATLAB code is straight forward.

function M = MassAssembler2D(p,t)
np = size(p,2); % number of nodes
nt = size(t,2); % number of elements
M = sparse(np,np); % allocate mass matrix
for K = 1:nt % loop over elements

loc2glb = t(1:3,K); % local-to-global map
x = p(1,loc2glb); % node x-coordinates
y = p(2,loc2glb); % y
area = polyarea(x,y); % triangle area
MK = [2 1 1;

1 2 1;
1 1 2]/12*area; % element mass matrix

M(loc2glb,loc2glb) = M(loc2glb,loc2glb) ...
+ MK; % add element masses to M

end

Input to this routine is the point matrix p and connectivity matrix t given by
initmesh. Output is the assembled global mass matrixM . Note that the allocation
of the mass matrix is done using the sparse command, which tells MATLAB to
store only non-zero matrix entries. This is important in order to save memory, since
the number of nodes and consequently the matrix size might be large.

Running this routine on our mesh of the rectangle, which has the point and
connectivity matrix
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p=[0 1 2 2 0;
0 0 0 1 1]

t=[1 1 2;
4 2 3;
5 4 4];

we get the 5 � 5 global mass matrix

M =

0.2500 0.0417 0 0.1250 0.0833
0.0417 0.1667 0.0417 0.0833 0

0 0.0417 0.0833 0.0417 0
0.1250 0.0833 0.0417 0.3333 0.0833
0.0833 0 0 0.0833 0.1667

We remark that the assembly procedure is similar for other types of elements and
higher space dimension. In particular, on a tetrahedral mesh the local element mass
matrixMK is of size 4 � 4, and can be computed using the integration formula

Z
K

'm1 '
n
2'

p
3 '

q
4 dx D 6mŠnŠpŠqŠ

.mC nC p C q C 6/Š
jKj (3.69)

where jKj is the volume of tetrahedronK . This gives us

Z
K

'i'j dx D 1

20
.1C ıij /jKj i; j D 1; 2; 3; 4 (3.70)

Hence, we have

MK D 1

20

2
664
2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

3
775 jKj (3.71)

3.6.2 Assembly of the Load Vector

The load vector b is assembled using the same technique as the mass matrixM , that
is, by summing element load vectors bK over the mesh. On each elementK we get
a local 3 � 1 element load vector bK with entries

bKi D
Z
K

f 'i dx; i D 1; 2; 3 (3.72)
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Using node quadrature, for instance, to compute these integrals we end up with

bKi � 1

3
f .Ni /jKj; i D 1; 2; 3 (3.73)

We summarize the computation of the load vector in the following algorithm:

Algorithm 9 Assembly of the Load Vector.
1: Let np be the number of nodes and nt the number of elements in a mesh described by its point

matrix P and connectivity matrix T .
2: Allocate memory for the np � 1 vector b and initialize all vector entries to zero.
3: for K D 1; 2; : : : ; nt do
4: Compute the 3� 1 local element load vector bK given by

bK D 1

3

2
4f .N1/f .N2/

f .N3/

3
5 jKj (3.74)

5: Set up the local-to-global mapping, loc2glb D Œr; s; t �.
6: for i D 1; 2; 3 do
7:

bloc2glbi D bloc2glbi C bKi (3.75)

8: end for
9: end for

Translated into MATLAB code the algorithm takes the following form.

function b = LoadAssembler2D(p,t,f)
np = size(p,2);
nt = size(t,2);
b = zeros(np,1);
for K = 1:nt
loc2glb = t(1:3,K);
x = p(1,loc2glb);
y = p(2,loc2glb);
area = polyarea(x,y);
bK = [f(x(1),y(1));

f(x(2),y(2));
f(x(3),y(3))]/3*area; % element load vector

b(loc2glb) = b(loc2glb) ...
+ bK; % add element loads to b

end

Here, we assume that f is a function handle to a routine specifying f , for example,

function f = Foo2(x, y)
f = x.*y;
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A main routine for computing the L2-projection �f of f D x1x2 on the unit
square˝ D Œ0; 1�2 is given below.

function L2Projector2D()
g = Rectg(0,0,1,1); % unit square
[p,e,t] = initmesh(g,’hmax’,0.1); % create mesh
M = MassAssembler2D(p,t); % assemble mass matrix
b = LoadAssembler2D(p,t,@Foo2); % assemble load vector
Pf = M\b; % solve linear system
pdesurf(p,t,Pf) % plot projection

3.6.3 Properties of the Mass Matrix

Theorem 3.4. The mass matrix M is symmetric and positive definite.

Proof. M is obviously symmetric, since Mij D Mji .
To prove that M is positive definite we must show that

�TM� > 0 (3.76)

for all non-zero np � 1 vectors �.
Now, a straight forward calculation reveals that

�TM� D
npX
ijD1

�iMij �j (3.77)

D
npX
ijD1

�i

�Z
˝

'j'i dx

�
�j (3.78)

D
Z
˝

 npX
iD1

�i 'i

!0
@ npX
jD1

�j 'j

1
A dx (3.79)

D
�����
npX
iD1

�i'i

�����
2

L2.˝/

(3.80)

The last norm is equal to zero if and only if the sum s D Pnp
iD1 �i 'i D 0. However,

this sum can be viewed as a function in Vh, and if s is zero then all coefficients �i
must also be zero. ut

The condition number �.M/ of a matrix M is a measure of how sensitive the
solution � to the linear system M� D b is to perturbations of the right hand side b,
and is defined by
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�.M/ D kM k kM�1k (3.81)

where we define the matrix norm k � k by

kM k D max
�¤0

�TM�

�T �
(3.82)

Now, if M is symmetric and positive definite, then � can be expressed in terms
of the largest and smallest eigenvalue ofM . Indeed, if � is an eigenvalue ofM such
that M� D �� for some eigenvector �, then � D �TM�=�T �, which is positive by
virtue of Theorem 3.4. Taking the maximum over all eigenvalues and corresponding
eigenvectors it follows that kM k D �max.M/. Further, since the eigenvalues of
M�1 is the inverse of those of M , it also follows that kM�1k D 1=�min.M/. Thus,
the condition number is the quotient

�.M/ D �max.M/

�min.M/
(3.83)

Theorem 3.5. The condition number of the mass matrix M satisfies the estimate

�.M/ � C (3.84)

where C is a constant.

Proof. Let us assume that the mesh K is quasi-uniform and write �TM� as the
sum

P
K2K �T jKMK�jK . On each element K , the element mass matrix MK is

given by (3.66), and, thus, proportional to the area jKj of K . Now, jKj is in
turn proportional to the local mesh size h2K , so defining the global mesh size
h D maxK hK , we have C1h2I � MK � C2h

2I with I the identity element matrix.
These bounds on MK imply

C3h
2 � �TM�

�T �
� C4h

2 (3.85)

which shows that the extremal eigenvalues of M are bounded by C3h2 � �min.M/

and �max.M/ � C4h
2. Hence, �.M/ D C4=C3. ut

3.7 Further Reading

Partitioning a domain into geometric simplices is generally a difficult task, and we
refer the interested reader to the book by George and Frey [33] for a comprehensive
survey of the different algorithms and data structures used for mesh generation.
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0 1

1

x2

x10
N1 N2 N3

N4 N5 N6

N7 N8 N9

Fig. 3.9 Triangulation of the
unit square

Also, the papers by Shewchuk [64, 65] thoroughly explains the ideas behind
Delaunay triangulation and tetrahedralization.

3.8 Problems

Exercise 3.1. Read the help for the PDE-Toolbox commands initmesh, pdemesh,
and pdesurf.

Exercise 3.2. Write down the geometry matrix g for the unit square ˝ D Œ0; 1�2.

Exercise 3.3. Express the area of an arbitrary triangle in terms of its corner
coordinates .x.1/1 ; x

.1/
2 /, .x

.2/
1 ; x

.2/
2 /, and .x.3/1 ; x

.3/
2 /.

Exercise 3.4. Derive explicit expressions for the hat functions on the triangle with
corners at .�1;�1/, .1; 0/, and .�1; 1/.
Exercise 3.5. Determine the basis functions for piecewise linear functions on an
arbitrary triangle with corner coordinates .x1; y1/, .x2; y2/ and .x3; y3/.

Exercise 3.6. Determine a linear coordinate transform which maps an arbitrary
triangle onto the reference triangle NK with corners at origo, .1; 0/, and .0; 1/.

Exercise 3.7. Given the triangulation of Fig. 3.9.

(a) Write down the point matrix P and the connectivity matrix T .
(b) Determine the mesh function h.x/, (i.e., the piecewise constant function giving

the mesh size on each element).

Exercise 3.8. Draw the hat functions '1 and '5 associated with nodes N1 and N5
in Fig. 3.9.

Exercise 3.9. Consider again the mesh of the unit square ˝ shown in Fig. 3.9.

(a) Determine the sparsity pattern of the mass matrix on this mesh.
(b) Compute the integrals

R
˝
�1�2 dx,

R
˝
�7�4 dx,

R
˝
�7�8 dx, and

R
˝
x1�1 dx.
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Exercise 3.10. Let f D x1x2 and let ˝ D Œ0; 1�2 be the unitsquare.

(a) Calculate
R
˝
f dx analytically.

(b) Compute
R
˝
f dx by using the center of gravity rule on each triangle of the

mesh in Fig. 3.9.
(c) Compute

R
˝
f dx by using the corner quadrature rule on each triangle of the

mesh in Fig. 3.9.

Exercise 3.11. Compute the L2-projection Phf 2 Vh to f D x21 on the mesh
shown in Fig. 3.9. Use the corner quadrature rule to evaluate the integrals of the
mass matrix and the load vector.



Chapter 4
The Finite Element Method in 2D

Abstract In this chapter we develop finite element methods for numerical solution
of partial differential equations in two dimensions. The approach taken is the same
as before, that is, we first rewrite the equation in variational form, and then seek
an approximate solution in the space of continuous piecewise linear functions.
Although the numerical methods presented are general, we focus on linear second
order elliptic equations with the Poisson equation as our main model problem. We
prove basic error estimates, discuss the implementation of the involved algorithms,
and study some examples of application.

4.1 Green’s Formula

At the outset let us recall a few mathematical preliminaries that will be of frequent
use.

Let ˝ be a domain in R
2, with boundary @˝ and exterior unit normal n. We

recall the following form of the divergence theorem.

Z
˝

@f

@xi
dx D

Z
@˝

f ni ds; i D 1; 2 (4.1)

where ni is component i of n.
Setting f D fg we get the partial integration formula

Z
˝

@f

@xi
gdx D �

Z
˝

f
@g

@xi
dx C

Z
@˝

fgni ds; i D 1; 2 (4.2)

Applying (4.2) with f D wi , the components of a vector field w on˝ , and g D v,
and taking the sum over i D 1; 2 we obtain

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__4, © Springer-Verlag Berlin Heidelberg 2013
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Z
˝

.r � w/v dx D �
Z
˝

w � rv dx C
Z
@˝

.w � n/vds (4.3)

Finally, choosing w D �ru in (4.3) we obtain the so-called Green’s formula

Z
˝

�uv dx D
Z
˝

ru � rv dx �
Z
@˝

n � ruvds (4.4)

We remark that Green’s formula also holds in higher space dimensions.

4.2 The Finite Element Method for Poisson’s Equation

4.2.1 Poisson’s Equation

Let us consider Poisson’s equation: find u such that

�u D f; in ˝ (4.5a)

u D 0; on @˝ (4.5b)

where  D @2=@x21 C @2=@x22 is the Laplace operator, and f is a given function in,
say, L2.˝/.

4.2.2 Variational Formulation

To derive a variational formulation of Poisson’s equation (4.5) we multiply f D
�u by a function v, which is assumed to vanish on the boundary, and integrate
using Green’s formula.

Z
˝

f vdx D �
Z
˝

uv dx (4.6)

D
Z
˝

ru � rv dx �
Z
@˝

n � ruvds (4.7)

D
Z
˝

ru � rv dx (4.8)

The last line follows due to the assumption v D 0 on @˝ . Introducing the spaces

V D fv W kvkL2.˝/ C krvkL2.˝/ < 1g (4.9)

V0 D fv 2 V W vj@˝D 0g (4.10)
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we have the following variational formulation of (4.5): find u 2 V0 such that

Z
˝

ru � rv dx D
Z
˝

f v dx; 8v 2 V0 (4.11)

With this choice of test and trial space V0 the integrals
R
˝

ru � rv dx andR
˝
f v dx make sense. To see this, note that due to the Cauchy-Schwarz inequality,

we have
R
˝
f v dx� kf kL2.˝/kvkL2.˝/, which is less than infinity by the assump-

tions on v and f . A similar line of reasoning applies to
R
˝

ru � rv dx.
In this context we would like to a point out a subtlety that we have not yet touched

upon. Even though the solution to Poisson’s equation (4.5) is also a solution to
the variational formulation (4.11), the converse is generally not true. To see this, it
suffice to note that the solution to the variational formulation does not need to be two
times differentiable. For this reason the variational formulation is sometimes called
the weak form, as opposed to the original, or strong, form. Proving that a weak
solution is also a strong solution generally depends on the shape of the domain ˝
and the regularity (i.e., smoothness) of the coefficients (i.e., f ).

4.2.3 Finite Element Approximation

Let K be a triangulation of ˝ , and let Vh be the space of continuous piecewise
linears onK . To satisfy the boundary conditions, let also Vh;0 � Vh be the subspace

Vh;0 D fv 2 Vh W vj@˝ D 0g (4.12)

Replacing V0 with Vh;0 in the variational formulation (4.11) we obtain the
following finite element method: find uh 2 Vh;0 such that

Z
˝

ruh � rv dx D
Z
˝

f v dx; 8v 2 Vh;0 (4.13)

4.2.4 Derivation of a Linear System of Equations

In order to actually compute the finite element approximation uh, let f'igniiD1 be the
basis for Vh;0 consisting of the hat functions associated with the ni interior nodes
within the mesh. We do not allow any hat functions on the mesh boundary, since
the functions in Vh;0 must vanish there. Now, using this basis, we first note that the
finite element method (4.13) is equivalent to

Z
˝

ruh � r'i dx D
Z
˝

f 'i dx; i D 1; 2; : : : ; ni (4.14)
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Then, since uh belongs to Vh;0 it can be written as the linear combination

uh D
niX
jD1

�j 'j (4.15)

with ni unknowns �j , j D 1; 2; : : : ; ni , to be determined.
Inserting the ansatz (4.15) into (4.14) we get

Z
˝

f 'i dx D
Z
˝

ruh � r'i dx (4.16)

D
Z
˝

r
0
@ niX
jD1

�j 'j

1
A � r'i dx (4.17)

D
niX
jD1

�j

Z
˝

r'j � r'i dx; i D 1; 2; : : : ; ni (4.18)

Further, using the notation

Aij D
Z
˝

r'j � r'i dx; i; j D 1; 2; : : : ; ni (4.19)

bi D
Z
˝

f 'i dx; i D 1; 2; : : : ; ni (4.20)

we have

bi D
niX
jD1

Aij �j ; i D 1; 2; : : : ; ni (4.21)

which is an ni �ni linear system for the unknowns �j . In matrix form, we write this

A� D b (4.22)

where the entries of the ni � ni stiffness matrix A, and the ni � 1 load vector b
are defined by (4.19) and (4.20), respectively. Solving the linear system (4.22) we
obtain the unknowns �j , and, thus, uh.

4.2.5 Basic Algorithm to Compute the Finite Element Solution

The following algorithm summarizes the basic steps in computing the finite element
solution uh:
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Algorithm 10 Basic Finite Element Algorithm.
1: Create a triangulation K of ˝ and define the corresponding space of continuous piecewise

linear functions Vh;0 hat function basis f'igniiD1 .
2: Assemble the ni � ni stiffness matrix A and the ni � 1 load vector b, with entries

Aij D
Z
˝

r'j � r'i dx; bi D
Z
˝

f 'i dx (4.23)

3: Solve the linear system
A� D b (4.24)

4: Set

uh D
niX
jD1

�j 'j (4.25)

4.3 Some Useful Inequalities

In this section we cover some standard inequalities that are very useful and of
frequent use.

Theorem 4.1 (Poincaré Inequality). Let ˝�R
2 be a bounded domain. Then,

there is constant C D C.˝/, such that for any v 2 V0,

kvkL2.˝/ � CkrvkL2.˝/ (4.26)

Proof. Let � be a function satisfying �� D 1 in ˝ with supx2˝ jr�.x/j < C .
Such a function exist if the boundary of ˝ is sufficiently smooth.

Multiplying 1 D �� with v2, and integrating by parts using Green’s formula,
we have

Z
˝

v2 dx D �
Z
˝

v2� dx (4.27)

D �
Z
@˝

v2n � r� ds C
Z
˝

2vrv � r� dx (4.28)

D
Z
˝

2vrv � r� dx (4.29)

since v D 0 on @˝ . Using the Cauchy-Schwarz inequality we further have

kvk2
L2.˝/

D
Z
˝

v2 dx D
Z
˝

2vrv � r� dx � 2max jr�j kvkL2.˝/krvkL2.˝/
(4.30)

Finally, we set C D 2max jr�j, and divide by kvkL2.˝/. ut
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The above result also holds if v is zero on part of the boundary or if the average
j˝j�1 R

˝
v dx of v is zero.

The restriction vj@˝ of v to the boundary @˝ of ˝ is called the trace of v. The
following so-called Trace inequality estimates the L2-norm of the trace in terms of
the L2-norm of v and rv on ˝ .

Theorem 4.2 (Trace Inequality). Let ˝�R
2 be a bounded domain with smooth

or convex polygonal boundary @˝ . Then, there is constant C D C.˝/, such that
for any v 2 V ,

kvkL2.@˝/ � C
	
kvk2

L2.˝/
C krvk2

L2.˝/


1=2
(4.31)

Proof. Let � be a function satisfying �� D �j@˝j=j˝j in˝ with n � r� D 1 on
@˝ .

Multiplying �j@˝j=j˝j D �� with v2, and integrating by parts using Green’s
formula, we have

�j@˝j
j˝j

Z
˝

v2 dx D �
Z
˝

v2� dx (4.32)

D �
Z
@˝

v2n � r� ds C
Z
˝

2vrv � r� dx (4.33)

D �
Z
@˝

v2 ds C
Z
˝

2vrv � r� dx (4.34)

Using the Cauchy-Schwarz inequality, we get

kvk2
L2.@˝/

D
Z
@˝

v2 ds (4.35)

D j@˝j
j˝j

Z
˝

v2 dx C 2

Z
˝

vrv � r� dx (4.36)

� C1kvk2
L2.˝/

C 2C2kvkL2.˝/krvkL2.˝/ (4.37)

� max.C1; C2/
	
kvk2

L2.˝/
C krvk2

L2.˝/



(4.38)

where we have set C1 D j@˝j=j˝j, and C2 D supx2˝ jr�j. Finally, we have used
the arithmetic-geometric inequality 2ab � a2 C b2, with a D kvkL2.˝/ and b D
krvkL2.˝/. ut

For the Trace inequality to hold it is necessary that the boundary of the domain
is not too rough. In fact, the shape of the domain often plays a crucial role
in establishing results concerning the regularity of functions. Irregularly shaped
domains tend to give rise to irregular functions, and vice versa. For example, if
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the domain is convex, then the total derivativeD2 can be estimated in terms of only
the Laplacian. This result is called elliptic regularity.

Theorem 4.3 (Elliptic Regularity). Let˝ �R
2 be a bounded convex domain with

polygonal boundary or a general domain with smooth boundary. Then, there is a
constant C D C.˝/, such that for any sufficiently smooth function v with v D 0 or
n � rv D 0 on @˝ ,

kD2vkL2.˝/ � CkvkL2.˝/ (4.39)

If ˝ is convex, then 0 < C � 1. Otherwise C > 1.

We refer to Eriksson and co-authors [27] for a proof of this theorem.
In a polynomial space such as Vh with finite dimension, all norms are equivalent.

That is, for any two norms k � k˛ and k � kˇ there are constants C1 and C2, such that
C1k � k˛ � k � kˇ � C2k � k˛ . As a consequence, we can invent more or less any
inequality we want on Vh. However, the constant depends in general on the mesh
size parameter h, that is, we have kvk˛ � C.h/kvkˇ . Therefore, the dependence
of C on h must be established. This can be done using scaling arguments where
we basically make sure that we have the same units on both sides of the estimates.
Since @=@xi , 1; 2, has the unit of inverse length it corresponds to a factor h�1. For
example, for a linear polynomial v 2 P1.K/ on a triangle K , we have

krvkL2.K/ � Ch�1
K kvkL2.K/ (4.40)

Summing over all triangles K 2 K , and assuming a quasi-uniform mesh K , we
obtain the following so-called inverse estimate.

Theorem 4.4 (Inverse Estimate). On a quasi-uniform mesh any v 2 Vh satisfies
the inverse estimate

krvkL2.˝/ � Ch�1kvkL2.˝/ (4.41)

4.4 Basic Analysis of the Finite Element Method

4.4.1 Existence and Uniqueness of the Finite Element Solution

Theorem 4.5. The finite element solution uh, defined by (4.13), exists and is unique.

Proof. We first show the uniqueness claim. The argument is by contradiction.
Assume that there are two finite element solutions uh and Quh satisfying (4.13). Then,
we have
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Z
˝

ruh � rv dx D
Z
˝

f v dx; 8v 2 Vh;0 (4.42)

Z
˝

r Quh � rv dx D
Z
˝

f v dx; 8v 2 Vh;0 (4.43)

Subtracting these equations we get

Z
˝

r.uh � Quh/ � rv dx D 0; 8v 2 Vh;0 (4.44)

Now, choosing v D uh � Quh 2 Vh;0 we further get

Z
˝

jr.uh � Quh/j2 dx D 0 (4.45)

From this identity we conclude that uh � Quh must be a constant function. However,
using the boundary conditions we see that this constant must be zero, since uh D
Quh D 0 on @˝ .

To prove existence we recall that uh is determined by a square linear system.
The existence of a solution to a linear system follows from the uniqueness of the
solution. ut

4.4.2 A Priori Error Estimates

Theorem 4.6 (Galerkin Orthogonality). The finite element approximation uh,
defined by (4.13), satisfies the orthogonality

Z
˝

r.u � uh/ � rv dx D 0; 8v 2 Vh;0 (4.46)

Proof. From the variational formulation we have

Z
˝

ru � rv dx D
Z
˝

f v dx; 8v 2 V0 (4.47)

and from the finite element method we further have
Z
˝

ruh � rv dx D
Z
˝

f v dx; 8v 2 Vh;0 (4.48)

Subtracting these and using the fact that Vh;0 � V0 immediately proves the claim.
ut
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To estimate the error we now introduce the following norm, called the energy
norm on V0,

jjjvjjj2 D
Z
˝

rv � rvdx (4.49)

Note that jjjvjjj D krvkL2.˝/.
The next theorem is a best approximation result.

Theorem 4.7. The finite element solution uh, defined by (4.13), satisfies the best
approximation result

jjju � uhjjj � jjju � vjjj; 8v 2 Vh;0 (4.50)

Proof. Writing u � uh D u � v C v � uh for any v 2 Vh;0, we have

jjju � uhjjj2 D
Z
˝

r.u � uh/ � r.u � uh/ dx (4.51)

D
Z
˝

r.u � uh/ � r.u � v/ dx C
Z
˝

r.u � uh/ � r.v � uh/ dx

(4.52)

D
Z
˝

r.u � uh/ � r.u � v/ dx (4.53)

� jjju � uhjjj jjju � vjjj (4.54)

where we used the Galerkin orthogonality (4.46) to conclude that

Z
˝

r.u � uh/ � r.v � uh/ dx D 0 (4.55)

since v � uh 2 Vh;0. Dividing by jjju � uhjjj concludes the proof. ut
Theorem 4.8. The finite element solution uh, defined by (4.13), satisfies the
estimate

jjju � uhjjj2 � C
X
K2K

h2KkD2uk2
L2.K/

(4.56)

Proof. Starting from the best approximation result, choosing v D �u, and using the
interpolation error estimate of Proposition 3.1, we have

jjju � uhjjj2 � jjju � �ujjj2 (4.57)

D
X
K2K

kD.u � �u/k2
L2.K/

(4.58)

�
X
K2K

Ch2KkD2uk2
L2.K/

(4.59)

which proves the estimate. ut
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Here, we tacitly assume that u is two times differentiable, so thatD2u makes sense.
Hence, we conclude that

jjju � uhjjj � ChkD2ukL2.˝/ (4.60)

In other words, the gradient of the error tends to zero as the mesh size h tends to
zero.

We remark that the a priori error estimate above also holds in three dimension on
tetrahedral meshes.

The energy norm jjj � jjj allows a simple derivation of the above a priori error
estimate since the energy norm is closely related to the variational formulation.
However, we may be interested in estimating the error also in other norms, for
instance the L2 norm. Combining (4.60) and (4.26) we immediately obtain

ku � uhkL2.˝/ � C jjju � uhjjj � ChkD2ukL2.˝/ (4.61)

which is a non-optimal L2 estimate since it only indicates first order convergence
instead of the expected optimal second order convergence.

It is however possible to improve on this result using the so called Nitsche’s trick
[50].

Theorem 4.9. The finite element solution uh, defined by (4.13), satisfies the
estimate

ku � uhkL2.˝/ � Ch2kD2ukL2.˝/ (4.62)

Proof. Let e D u � uh be the error, and let � be the solution of the so-called dual,
or adjoint, problem

�� D e; in ˝ (4.63a)

� D 0; on @˝ (4.63b)

Multiplying e D �� by e, and integrating using Green’s formula, we have

Z
˝

e2 dx D �
Z
˝

e� dx (4.64)

D
Z
˝

re � r� � dx �
Z
@˝

en � r� ds (4.65)

D
Z
˝

re � r� dx (4.66)

D
Z
˝

re � r.� � ��/ dx (4.67)
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where we have used Galerkin orthogonality (4.46) in the last line to subtract an
interpolant �� 2 Vh;0 to �. Further, using the Cauchy-Schwarz inequality, we have

kek2
L2.˝/

� krekL2.˝/kr.� � ��/kL2.˝/ (4.68)

Here, krekL2.˝/ can be estimated using Theorem 4.8. To estimate also kr.� �
��/kL2.˝/ we first use a standard interpolation estimate, and then the elliptic
regularity kD2�kL2.˝/ � Ck�kL2.˝/, which yields

kr.� � ��/kL2.˝/ � ChkD2�kL2.˝/ � Chk�kL2.˝/ D ChkekL2.˝/ (4.69)

since �� D e. Thus, we have

kek2
L2.˝/

� ChkD2ukL2.˝/ChkekL2.˝/ (4.70)

Dividing by kekL2.˝/ concludes the proof. ut

4.4.3 Properties of the Stiffness Matrix

Theorem 4.10. The stiffness matrix A is symmetric and positive definite.

Proof. A is obviously symmetric, since Aij D Aji .
To prove that A is positive definite we must show that

�T A� > 0 (4.71)

for all non-zero ni � 1 vectors �.
Now, a straight forward calculation reveals that

�T A� D
niX

i;jD1
�iAij �j (4.72)

D
niX

i;jD1
�i �j

Z
˝

r'j � r'i dx (4.73)

D
Z
˝

r
 

niX
iD1

�i'i

!
� r

0
@ niX
jD1

�j 'j

1
A dx (4.74)

D
�����r

 
niX
iD1

�i 'i

!�����
2

L2.˝/

(4.75)

The last norm is larger than zero as long as the sum s D Pni
iD1 �i 'i , which may

be viewed as a function in Vh;0, does not represent a constant function. However,
the only constant function in Vh;0 is the zero function s D 0 with all coefficients �i
equal to zero. ut
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In the above proof we used the fact that the only constant function s in Vh;0 is the
zero function. This is due to the Dirichlet boundary conditions sj@˝D 0.

However, for Neumann conditions the situation is different since the constant
function resides in Vh and thus A has a one dimensional null space. In this case A is
only positive semi-definite.

Finally, we consider the condition number of the stiffness matrix. Recall that the
condition number is defined by

�.A/ D kAk kA�1k (4.76)

and that �.A/ is the quotient of the largest and smallest eigenvalues

�.A/ D �max.A/

�min.A/
(4.77)

since A is symmetric and positive definite.

Theorem 4.11. The condition number of the stiffness matrixA satisfies the estimate

�.A/ � Ch�2 (4.78)

Proof. From the Poincaré inequality (4.26), we have

ksk2
L2.˝/

� C jjjsjjjj2 (4.79)

or, in matrix notation,

�TM� � C�TA� (4.80)

where M is the ni � ni mass matrix and � is the vector of nodal values of s. Also,
from the inverse estimate (4.41), we have

jjjsjjj2 � Ch�2ksk2
L2.˝/

(4.81)

or, in matrix notation,

�T A� � Ch�2�TM� (4.82)

Thus,

�TM�

�T �
� �T A�

�T �
� Ch�2 �TM�

�T �
(4.83)

Now, we recall from Theorem 3.5 that there are constants C1 and C2 such that

C1h
2 � �TM�

�T �
� C2h

2 (4.84)
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Combining this knowledge with (4.83) we conclude that C1h2 � �min.A/ and
�max.A/ � CC2. Hence, �.A/ D C3=h

2. ut

4.5 A Model Problem with Variable Coefficients

We next consider the following model problem, involving variable coefficients and
more general boundary conditions: find u such that

�r � .aru/ D f; in ˝ (4.85a)

�n � .aru/ D �.u � gD/� gN ; on @˝ (4.85b)

where a > 0, f , � > 0, gD , and gN are given functions.
We shall seek a solution to this problem in the space V D fv W kvkL2.˝/ C

krvkL2.˝/ < 1g.
Multiplying f D �r � .aru/ by a test function v 2 V , and integrating using

Green’s formula, we haveZ
˝

f v dx D
Z
˝

�r � .aru/v dx (4.86)

D
Z
˝

aru � rv dx �
Z
@˝

n � .aru/vds (4.87)

D
Z
˝

aru � rv dx C
Z
@˝

.�.u � gD/� gN /vds (4.88)

where we used the boundary condition to replace �n � aru by �.u � gD/� gN .
Collecting terms, we obtain the variational formulation: find u 2 V such that
Z
˝

aru�rv dxC
Z
@˝

�uvds D
Z
˝

f v dxC
Z
@˝

.�gDCgN /vds; 8v 2 V (4.89)

Replacing V with Vh, we obtain the finite element method: find uh 2 Vh � V

such thatZ
˝

aruh � rv dx C
Z
@˝

�uhvds D
Z
˝

f v dx C
Z
@˝

.�gD C gN /vds; 8v 2 Vh
(4.90)

4.6 Computer Implementation

We are now going to describe how to implement the finite element method (4.90).
The linear system resulting form this equation takes the form

.ACR/� D b C r (4.91)
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where the entries of the involved matrices and vectors are given by

Aij D
Z
˝

ar'i � r'j dx (4.92)

Rij D
Z
@˝

�'i'j ds (4.93)

bi D
Z
˝

f 'i dx (4.94)

ri D
Z
@˝

.�gD C gN /'i ds (4.95)

for i; j D 1; 2; : : : ; np with np the number of nodes.

4.6.1 Assembly of the Stiffness Matrix

The assembly of the stiffness matrix A is performed in the same manner as shown
previously for the mass matrix M . Of course, the matrix entries of A are different
than those ofM . The local element stiffness matrix is given by

AKij D
Z
K

ar'i � r'j dx; i; j D 1; 2; 3 (4.96)

We shall now compute these nine integrals.
Consider a triangleK with nodesNi D .x

.i/
1 ; x

.i/
2 /, i D 1; 2; 3. To each node Ni

there is a hat function 'i associated, which takes the value 1 at node Ni and 0 at the
other two nodes. Each hat function is a linear function on K so it has the form

'i D ai C bix1 C cix2 (4.97)

where the coefficients ai , bi , and ci , are determined by

'i .Nj / D
(
1; i D j

0; i ¤ j
(4.98)

The explicit expressions for the coefficients ai , bi , and ci are given by

ai D x
.j /
1 x

.k/
2 � x

.k/
1 x

.j /
2

2jKj ; bi D x
.j /
2 � x

.k/
2

2jKj ; ci D x
.k/
1 � x

.j /
1

2jKj (4.99)
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with cyclic permutation of the indices fi; j; kg over f1; 2; 3g. Note that the gradient
of 'i is just the constant vector r'i D Œbi ; ci �

T . As these gradients will occur
frequently, let us write a separate routine for computing them.

function [area,b,c] = HatGradients(x,y)
area=polyarea(x,y);
b=[y(2)-y(3); y(3)-y(1); y(1)-y(2)]/2/area;
c=[x(3)-x(2); x(1)-x(3); x(2)-x(1)]/2/area;

Input x and y are two vectors holding the node coordinates of the triangle. Output
are the vectors b and c holding the coefficients bi and ci of the gradients. As the
area is computed as a by product we also return it in the variable area.

Once we have r'i it is easy to compute the local element stiffness matrix AK .
Using the center of gravity quadrature formula we have

AKij D
Z
K

ar'i � r'j dx (4.100)

D .bibj C ci cj /

Z
K

a dx (4.101)

� Na .bibj C ci cj /jKj; i; j D 1; 2; 3 (4.102)

where Na D a.1
3
.N1 CN2 CN3// is the center of gravity value of A on K .

We summarize the assembly of the global stiffness matrix in the following
algorithm:

Algorithm 11 Assembly of the Stiffness Matrix.
1: Let n be the number of nodes and m the number of elements in a mesh, and let the mesh be

described by its point matrix P and connectivity matrix T .
2: Allocate memory for the n� n matrix A and initialize all matrix entries to zero.
3: for K D 1; 2; : : : ; m do
4: Compute the gradients r'i D Œbi ; ci �, i D 1; 2; 3 of the three hat functions 'i on K .
5: Compute the 3� 3 local element mass matrix AK given by

AK D Na
2
4 b21 C c21 b1b2 C c1c2 b1b3 C c1c3
b2b1 C c2c1 b22 C c22 b2b3 C c2c3
b3b1 C c3c1 b3b2 C c3c2 b23 C c23

3
5 jKj (4.103)

6: Set up the local-to-global mapping, loc2glb D Œr; s; t �.
7: for i D 1; 2; 3 do
8: for j D 1; 2; 3 do
9:

Aloc2glbi loc2glbj D Aloc2glbi loc2glbj CAKij (4.104)

10: end for
11: end for
12: end for
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It is straight forward to translate this algorithm into MATLAB code.

function A = StiffnessAssembler2D(p,t,a)
np = size(p,2);
nt = size(t,2);
A = sparse(np,np); % allocate stiffness matrix
for K = 1:nt
loc2glb = t(1:3,K); % local-to-global map
x = p(1,loc2glb); % node x-coordinates
y = p(2,loc2glb); % node y-
[area,b,c] = HatGradients(x,y);
xc = mean(x); yc = mean(y); % element centroid
abar = a(xc,yc); % value of a(x,y) at centroid
AK = abar*(b*b’...
+c*c’)*area; % element stiffness matrix

A(loc2glb,loc2glb) = A(loc2glb,loc2glb) ...
+ AK; % add element stiffnesses to A

end

A few comments about this routine are perhaps in order. For each element we
compute the area and the hat function gradient vectors using the HatGradients
routine. The local element stiffness matrix AK is then the sum of the outer
product of the vectors bi and ci times the element area jKj and Na (i.e., AK =
abar*(b*b’+c*c’)*area. The function a is assumed to be defined by a separate
subroutine. Finally, AK is added to the appropriate places in A using the command
A(loc2glb,loc2glb) = A(loc2glb,loc2glb) + AK. Input is the point and
connectivity matrix describing the mesh, and a function handle a to a subroutine
specifying a. Output is the assembled global stiffness matrix A.

The load vector b is exactly the same as for the L2-projection and assembled as
shown previously.

We remark that the stiffness and mass matrices and the load vector can also be
assembled with the built-in routine assema. In the simplest case the syntax for doing
so is

[A,M,b] = assema(p,t,1,1,1);

We also remark that on a tetrahedron the hat functions takes the form 'i D
ai C bix1 C cix2 C dix3, i D 1; : : : ; 4, where the coefficients, ai , bi , etc., can be
computed, as above, from the requirement 'i .Nj / D ıij .

4.6.2 Assembling the Boundary Conditions

We must also assemble the boundary matrixR and the boundary vector r containing
line integrals originating from the Robin boundary condition. To this end, let Ni
and Nj be two nodes on the boundary @˝ , and let be the edge E between them.
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Assuming, for simplicity, that �, gD , and gN are constant on E , we have the local
edge contributions

REij D
Z
E

�'i'j ds D 1

6
�.1C ıij /jEj; i; j D 1; 2 (4.105)

rEi D
Z
E

.�gD C gN /'i ds D 1

2
.�gD C gN /jEj; i D 1; 2 (4.106)

where jEj is the length of E .
We can think of R as a one-dimensional mass matrix on a mesh with nodes

located along @˝ instead of along the x-axis.
MATLAB stores starting and ending nodes for the edges on the mesh boundary

in the first two rows of the edge matrix e, which is output from initmesh.
Consequently, to assemble R we loop over these edges and for each edge we add
the entries of the local boundary matrix RE to the appropriate entries in the global
boundary matrix R.

function R = RobinMassMatrix2D(p,e,kappa)
np = size(p,2); % number of nodes
ne = size(e,2); % number of boundary edges
R = sparse(np,np); % allocate boundary matrix
for E = 1:ne
loc2glb = e(1:2,E); % boundary nodes
x = p(1,loc2glb); % node x-coordinates
y = p(2,loc2glb); % node y-
len = sqrt((x(1)-x(2))^2+(y(1)-y(2))^2); % edge length
xc = mean(x); yc = mean(y); % edge mid-point
k = kappa(xc,yc); % value of kappa at mid-point
RE = k/6*[2 1; 1 2]*len; % edge boundary matrix
R(loc2glb,loc2glb) = R(loc2glb,loc2glb) + RE;

end

Input is the point and edge matrix describing the mesh, and a function handle to
a subroutine specifying the function �. Output is the assembled global boundary
matrix R.

The boundary vector r is assembled similarly.

function r = RobinLoadVector2D(p,e,kappa,gD,gN)
np = size(p,2);
ne = size(e,2);
r = zeros(np,1);
for E = 1:ne
loc2glb = e(1:2,E);
x = p(1,loc2glb);
y = p(2,loc2glb);
len = sqrt((x(1)-x(2))^2+(y(1)-y(2))^2);
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xc = mean(x); yc = mean(y);
tmp = kappa(xc,yc)*gD(xc,yc)+gN(xc,yc);
rE = tmp*[1; 1]*len/2;
r(loc2glb) = r(loc2glb) + rE;

end

For convenience, let us write a routine for computing bothR and r at the same time.

function [R,r] = RobinAssembler2D(p,e,kappa,gD,gN)
R = RobinMassMatrix2D(p,e,kappa);
r = RobinLoadVector2D(p,e,kappa,gD,gN);

4.6.3 A Finite Element Solver for Poisson’s Equation

Next we present a physical application that can be simulated with the code written
so far.

4.6.3.1 Potential Flow Over a Wing

When designing aircrafts it is very important to know the aerodynamic properties of
the wings to assess various performance features, such as the lift force, for instance.
In the simplest case, the flow of air over a wing can be simulated by solving a
Poisson type equation. In doing so, by assuming that the wing is much longer than
its width, the problem can be reduced to two dimensions. Figure 4.1 shows the
computational domain, which consists of a cross section of a wing surrounded by a
rectangular channel.

A potential equation for the airflow around the wing follows from the somewhat
unphysical assumption that the velocity vector field u D Œu1; u2� of the air is
irrational, that is, r � u D 0. In this case, there exists a scalar function ˚ , such
that u D �r˚ . This is called the flow potential and is governed by the Laplace
equation

�˚ D 0; in ˝ (4.107)

We impose the boundary conditions

n � r˚ D 1; on �in (4.108)

˚ D 0; on �out (4.109)

n � r˚ D 0; elsewhere (4.110)

which corresponds to a constant flow of air from left to right.
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Fig. 4.1 Cross-section of a channel surrounding a wing

A slight complication with the boundary conditions is that the occurring Dirichlet
and Neumann conditions must be approximated with the Robin condition we have
written code for. To this end, we set � D 106 on �out, which penalizes any deviation
of the solution from zero on this boundary segment. On �in we set � D 0 and
gN D 1. The following subroutines specify �, gD and gN .

function z = Kappa1(x,y)
z=0;
if (x>29.99), z=1.e+6; end

function z = gD1(x,y)
z=0;

function z = gN1(x,y)
z=0;
if (x<-29.99), z=1; end

The velocity potential can now be computed with just a couple of lines of code.

function WingFlowSolver2D()
g = Airfoilg();
[p,e,t] = initmesh(g,’hmax’,0.5);
A = StiffnessAssembler2D(p,t,inline(’1’,’x’,’y’));
[R,r] = RobinAssembler2D(p,e,@Kappa1,@gD1,@gN1);
phi = (A+R)\r;
pdecont(p,t,phi)
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Fig. 4.2 Isocontours of the computed finite element velocity potential ˚h

Here, Airfoilg is a subroutine specifying the geometry matrix. It is listed in the
Appendix.

Figure 4.2 shows the computed finite element approximation ˚h to the velocity
potential.

The velocity field u is defined by u D �r˚ . Its computed counterpart uh can be
obtained and visualized by using the built-in routines pdegrad and pdesurf. To do
so, we type

[phix,phiy] = pdegrad(p,t,phi); % derivatives of ’phi’
u = -phix’;
v = -phiy’;
pdeplot(p,e,t,’flowdata’,[u v])

which gives the velocity glyphs of Fig. 4.3.
Finally, a pressure, the so-called Bernoulli pressure, around the wing can be

defined by p D �jr˚ j2. Indeed, typing -sqrt(u.*u+v.*v) we obtain the
computed pressure ph shown in Fig. 4.4. We remark that p stems from the Bernoulli
equation, which says that the quantity 1

2
juj2Cp is constant along the streamlines in

a flowing fluid.
In the next three sections we shall study three Poisson type problems that demand

special attention, namely, the so-called pure Dirichlet problem, the pure Neumann
problem, and the eigenvalue problem.
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Fig. 4.3 Glyphs of the computed velocity uh around the wing
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Fig. 4.4 Isocontours of the computed Bernoulli pressure ph around the wing

4.7 The Dirichlet Problem

We consider the following model problem with inhomogeneous boundary condi-
tions: find u such that

�u D f; in ˝ (4.111a)

u D gD; on @˝ (4.111b)

where f and gD are given functions.
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This problem has different trial and test space due to the boundary condition
u D gD . The trial space is given by

VgD D fv W kvkL2.˝/ C krvkL2.˝/ < 1; vj@˝ D gDg (4.112)

whereas the test space is given by V0.
Multiplying f D �u by a test function v 2 V0, and integrating using Green’s

formula, we have Z
˝

f v dx D �
Z
˝

uv dx (4.113)

D
Z
˝

ru � rv dx �
Z
@˝

n � ruvds (4.114)

D
Z
˝

ru � rv dx (4.115)

since v D 0 on @˝ . Thus, the variational formulation reads: find u 2 VgD such that
Z
˝

ru � rv dx D
Z
˝

f v dx; 8v 2 V0 (4.116)

Now, let us assume that gD is the restriction of a continuous piecewise linear
function to the boundary. In other words, there is a function uh;gD 2 Vh such that
uh;gD D gD on @˝ . If this is not so, we have to first approximate g by a function
in Vh, for instance using linear interpolation on the boundary.

Introducing the affine subspace

Vh;gD D fv 2 Vh W vj@˝ D gDg (4.117)

the finite element method reads: find uh 2 Vh;gD such that

Z
˝

ruh � rv dx D
Z
˝

f v dx; 8v 2 Vh;0 (4.118)

To derive an equation for uh we write it in the form

uh D uh;0 C uh;gD (4.119)

where uh;gD is a given function in Vh;gD , and uh;0 a sought function in Vh;0. This
construction of uh will satisfy the boundary conditions, since uh;gD D gD and uh;0 D
0 on the boundary. Because uh;gD is known it only remains to determine uh;0. In
doing so, we obtain the equation: find uh;0 2 Vh;0 such that

Z
˝

ruh;0 � rv dx D
Z
˝

f v dx �
Z
˝

ruh;gD � rv dx; 8v 2 Vh;0 (4.120)
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This is a problem of the same kind as the original, but with a modified right hand
side. Using Galerkin orthogonality is possible to show that uh;0 is independent of the
particular choice of uh;gD . Therefore, uh;gD is often chosen to be zero at all interior
nodes.

To solve Eq. (4.120), let np be the number of nodes, and assume that the first ni
of these are interior, while the remaining ng D np � ni are exterior, and lie on the
mesh boundary. Further, let A and b be the usual np �np stiffness matrix and np �1
load vector, output from assema. We have the np � np linear system

�
A00 A0g
0 I

� �
�0
�g

�
D
�
b0
bg

�
(4.121)

where A00 is the upper left ni � ni block of A, A0g is the ni � ng upper right block
ofA, I is the ng �ng identity matrix, b0 is the first ni �1 block of b, bg is the ng �1
vector with nodal values of gD , �0 the ni � 1 vector with nodal values of uh;0, and
�g the ng � 1 vector with nodal values of uh;gD . Rearranging the first ni equations
we obtain the ni � ni linear system

A00�0 D b0 � A0g�g D b0 � A0gg (4.122)

from which �0 can be obtained.
The translation of this into MATLAB code is straight forward. Suppose we have

a vector fixed holding the numbers of all boundary nodes, and another vector g
holding the corresponding nodal values. Then, we can set up and solve (4.122) with
the following piece of code.

[A,unused,b] = assema(p,t,...); % assemble A and b
np = size(p,2); % total number of nodes
fixed = unique([e(1,:) e(2,:)]); % boundary nodes
free = setdiff([1:np],fixed); % interior nodes
b = b(free)-A(free,fixed)*g; % modify A
A = A(free,free); % modify b
xi = zeros(np,1); % allocate solution
xi(fixed) = g; % insert fixed node values
xi(free) = A\b; % solve for free node values

4.8 The Neumann Problem

Next we consider the following model problem: find u such that

�u D f; in ˝ (4.123a)

n � ru D gN ; on @˝ (4.123b)

where f and gN are given functions.
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Let us try to seek a solution to this problem in the space V D fv W kvkL2.˝/ C
krvkL2.˝/ < 1g.

Multiplying f D �u by a test function v 2 V , and integrating using Green’s
formula, as usual, we have

Z
˝

f v dx D �
Z
˝

uv dx (4.124)

D
Z
˝

ru � rv dx �
Z
@˝

n � ruvds (4.125)

D
Z
˝

ru � rv dx �
Z
@˝

gN vds (4.126)

Thus, the variational formulation reads: find u 2 V such that

Z
˝

ru � rv dx D
Z
˝

f v dx C
Z
@˝

gN vds; 8v 2 V (4.127)

Here, by choosing the test function v as any constant, the gradient rv can be made
to vanish. As a consequence, (4.127) is solvable if and only if f and gN satisfy the
so-called conservation property

Z
˝

fdx C
Z
@˝

gN ds D 0 (4.128)

The solution u is, however, only determined up to a constant. To fix this constant
and obtain a unique solution a common trick is to impose the additional constraint

Z
˝

u dx D 0 (4.129)

In doing so, the appropriate place to look for the solution u to (4.127) is the space

NV D
�

v 2 V W
Z
˝

v dx D 0

�
(4.130)

which contains only functions with a zero mean value. This is a called a quotient
space.

Now, the finite element method takes the form: find uh 2 NVh � NV such that

Z
˝

ruh � rv dx D
Z
˝

f v dx C
Z
@˝

gN vds; 8v 2 NVh (4.131)

where NVh is the space of all continuous piecewise linears with a zero mean.
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The quotient space NVh is mostly of theoretical interest as the assembly of the
stiffness matrix and load vector is done on the unconstrained space Vh in practice.
Therefore, let A and b be the usual np � np stiffness matrix and np � 1 load
vector, respectively, with np the total number of nodes in the mesh. The zero mean
constraint

R
˝

uh dx D Pnp
jD1 �j

R
˝
'j dx D 0 can be enforced via the Lagrange

multiplier technique. The basic idea is simple, and relies on the fact that the solution
� (i.e., the np nodal values of uh) to A� D b is also the minimizer of the quadratic
form J.�/ D 1

2
�T A� � �T b. Indeed, if � happens to be subject to a set of nc < np

constraints C� D 0, with C a given nc � np matrix, then a fundamental result
from optimization says that the constrained optimum of J can be found by seeking
stationary points to the so-called Lagrangian

L.�; �/ D J.�/ � �T C� (4.132)

where the nc � 1 vector � is called the Lagrange multiplier. Differentiating L with
respect to � and � and using the first order optimality conditions @�L D @�L D 0

leads to the augmented linear system

�
A CT

C 0

� �
�

�

�
D
�
b

0

�
(4.133)

from which � can be obtained. To us, C is just the 1� np matrix with entries C1i DR
˝
'i dx. The Lagrangian multiplier�may be though of as a force acting to enforce

the constraints. Because the zero mean value on uh is a constraint, which do not alter
the solution to the underlying Neumann problem, the force � should vanish or, at
least, be very small.

4.9 The Eigenvalue Problem

The last of our model problems is the eigenvalue problem: find the function u and
the number � such that

�u D �u; in ˝ (4.134a)

n � ru D 0; on @˝ (4.134b)

Here, we have for simplicity assumed a Neumann condition on the boundary, but
Dirichlet conditions may also be applied. All the same, the boundary conditions
must be homogeneous though.

The significant feature of an eigenvalue problem is that we seek both the function
u and the number �. We call u an eigenfunction, or eigenmode, � an eigenvalue, and
the pair .u; �/ is called an eigenpair.
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It follows from spectral theory for operators that there are a countable number
of solutions .un; �n/, n D 1; 2; : : : with non-negative increasing eigenvalues. For
Neumann conditions the constant function is the only eigenvector with eigenvalue
zero, all other eigenvalues are positive and they also tends to infinity as n tends to
infinity. For Dirichlet conditions there is no zero eigenvalue. Eigenvectors un and
um associated with different eigenvalues �n and �m are orthogonal in the sense that

Z
˝

run � rum dx D
Z
˝

unum dx D 0 (4.135)

The set of all eigenvectors associated with one eigenvalue is a vector space called
an eigenspace and the dimension of the eigenspace is called the multiplicity of the
eigenvalue. We may choose a basis in the eigenspace that satisfies the orthogonality
conditions (4.135). Thus the orthogonality condition (4.135) holds for all n and m
with n ¤ m.

To construct a finite element method we proceed as usual. Multiplying �u D
�u by a test function v 2 V , and integrating using Green’s formula, we have

�

Z
˝

uv dx D �
Z
˝

uv dx (4.136)

D
Z
˝

ru � rv dx �
Z
@˝

n � ruvds (4.137)

D
Z
˝

ru � rv dx (4.138)

Thus, the variational formulation reads: find u 2 V and � 2 R such that

Z
˝

ru � rv dx D �

Z
˝

uv dx; 8v 2 V (4.139)

and the corresponding finite element method reads: find uh 2 Vh and �h 2 R such
that Z

˝

ruh � rv dx D �h

Z
˝

uhv dx; 8v 2 Vh (4.140)

The finite element method leads, not to a linear system, but to a so-called
generalized algebraic eigenvalue problem of the form

A� D �M� (4.141)

where A and M are the usual stiffness and mass matrices, and � is a vector with
the nodal values of uh. The existence of eigenpairs .�n; �n/, n D 1; : : : ; np with
np the dimension of the finite element space follows from spectral theory for
symmetric matrices. The corresponding eigenvectors �i are orthogonal with respect
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toA andM . Note that if � is an eigenvector so is t� for any real number t . In practice
one often normalizes the eigenvectors so that they have unit L2-norm.

In MATLAB, generalized sparse eigenvalue problems can be solved using the
eigs routine. Below we show how to compute the first five eigenmodes with
smallest magnitude on the unit disk. Assembly of the matrices A and M is done
using the assema routine.

g = ’circleg’; % built-in geometry of a cricle
[p,e,t] = initmesh(g,’hmax’,0.1); % mesh
[A,M] = assema(p,t,1,1,0); % assemble A and M
[Xi,La] = eigs(A,M,5,’SM’); % solve A*Xi=La*M*Xi
pdesurf(p,t,Xi(:,1)) % plot 1:st eigenmode

4.10 Adaptive Finite Element Methods

As we have seen a posteriori error estimates are computable error estimates, which
can be used to guide adaptive mesh refinement. This iteratively increases the
accuracy of the finite element solution, while saving computational resources at the
same time. We next formulate adaptive finite elements for Poisson’s equation. For
simplicity, we restrict attention to the simple model problem (4.5) (i.e., �u D f

in ˝ with u D 0 on @˝).

4.10.1 A Posteriori Error Estimate

As we know the gradient ruh of the continuous piecewise linear finite element
solution uh is generally a discontinuous piecewise constant vector. Thus, when
moving orthogonally across the boundary of one element to a neighbouring element,
there is a jump in the normal derivative n � ruh. This jump is denoted Œn � ruh� and
plays a key role in the a posteriori error analysis.

Theorem 4.12. The finite element solution uh, defined by (4.13), satisfies the
estimate

jjju � uhjjj2 � C
X
K2K

	2K.uh/ (4.142)

where the element residual 	K.uh/ is defined by

	K.uh/ D hKkf CuhkL2.K/ C 1
2
h
1=2
K kŒn � ruh�kL2.@Kn@˝/ (4.143)

Here, Œn � ruh� denotes the jump in the normal derivative of uh on the (interior)
edges of elementK . Also, since uh is linear on K , uh D 0.

Proof. Letting e D u � uh be the error we have
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jjjejjj2 D krek2
L2.˝/

D
Z
˝

re � redx D
Z
˝

re � r.e � �e/ dx (4.144)

where we have used the Galerkin orthogonality (4.46) to subtract an interpolant
�e 2 Vh;0 to e. Splitting this into a sum over the elements and using integration by
parts we further have

X
K2K

Z
K

re � r.e � �e/ dx D X
K2K

�
Z
K

e.e � �e/ dx C
Z
@K

n � re.e � �e/ ds

(4.145)

D X
K2K

Z
K

.f Cuh/.e � �e/ dx C
Z
@Kn@˝

n � re.e � �e/ ds

(4.146)

where we have used that �ejK D f C uhjK within the interior of K , and
that e and, thus, also �e, vanish on @˝ due to the zero boundary condition. As
a consequence we do not need to integrate n � re.e � �e/ on the exterior edges,
but only on the interior ones. In doing so, we note that there are two contributions
from each edge E , namely, one from each element K˙ sharing E . Summing these
contributions we obtain
Z
@KC\@K�

n �re.e��e/ ds D
Z
E

.nC �reC.eC ��eC/Cn� �re�.e� ��e�// ds
(4.147)

where we use the notation v˙ D vjK˙
. Now, the error e is continuous, which implies

.eC � �eC/jE D .e� � �e�/jE , and we can drop the superscripts for ease of
notation. Also, the gradient ru is continuous, implying .nC�ruCCn��ru�/jE D 0.
However, the gradient ruhjE is generally not continuous as it is only a piecewise
constant vector. Thus, taking into account that n �ruh might be different onKC and
K�, we have

Z
E

.nC � reC.e � �e/C n� � re�.e � �e// ds D �
Z
E

.nC � ruC

h C n� � ru�

h /.e � �e/ ds

(4.148)

D �
Z
E

Œn � ruh�.e � �e/ ds (4.149)

From this, we infer

X
K2K

Z
@Kn@˝

n � re.e � �e/ ds D �
X
E2EI

Z
E

Œn � ruh�.e � �e/ ds (4.150)
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Returning to a sum over the elements by simply distributing half of the jump Œn �
ruh�jE onKC and half onK�, we obtain the so-called error representation formula

jjjejjj2 D
X
K2K

Z
K

.f Cuh/.e � �e/ dx � 1

2

Z
@Kn@˝

Œn � ruh�.e � �e/ ds

(4.151)

Let us estimate the two terms in the right hand side separately.
The interior contribution can be estimated using the Cauchy-Schwarz inequality

followed by a standard interpolation error estimate. In doing so, we have

Z
K

.f Cuh/.e � �e/ dx � kf CuhkL2.K/ke � �ekL2.K/ (4.152)

� kf CuhkL2.K/ChKkDekL2.K/ (4.153)

For the the edge contributions we need the scaled Trace inequality

kvk2
L2.@K/

� C
	
h�1
K kvk2

L2.K/
C hKkrvk2

L2.K/



(4.154)

Using this and, again, the Cauchy-Schwarz inequality, we have

Z
@K

Œn � ruh�.e � �e/ ds � kŒn � ruh�kL2.@K/ke � �ekL2.@K/ (4.155)

� kŒn � ruh�kL2.@K/C
	
h�1
K ke��ek2

L2.K/
C hKkD.e ��e/k2

L2.K/


1=2
(4.156)

� kŒn � ruh�kL2.@K/Ch1=2K kDekL2.K/ (4.157)

The estimate now follows from (4.153) and (4.157) together. ut
We remark that the a posteriori estimate above also holds in three dimensions

on tetrahedral meshes, provided that all integrals over triangle edges are replaced
by integrals over tetrahedron faces. Of course, integrals over triangles must also be
replaced by integrals over tetrahedrons.

4.10.2 Adaptive Mesh Refinement

Mesh refinement in two and three dimensions is much more complicated than
in one dimension. In particular, there are two important issues to consider when
constructing a mesh refinement algorithm for a mesh in higher dimension. First,
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invalid elements (i.e., with hanging nodes) are not allowed, and we wish to refine
as few elements as possible, which are not in the list of elements to be refined.
Second, it is important that the minimal angle in the mesh is kept as large as
possible. Otherwise the quality of the finite element solution might deteriorate as we
make successive refinements. In addition, when refining elements on a curved outer
domain boundary the curvature should be taken into account, so that the refined
mesh represents the domain geometry better than the unrefined mesh. This involves
moving newly created nodes on the boundary, which is troublesome as it might lead
to elements with poor quality, or even inverted elements.

For triangle and tetrahedral meshes the most popular algorithms used for mesh
refinement are:

• Rivara refinement, or, longest edge bisection.
• Regular refinement, or, red-green refinement.

We shall describe these in some detail next.
We remark that the PDE-Toolbox has support for both regular and Rivara

refinement.

4.10.2.1 Rivara Refinement

In the Rivara method a triangle is always refined by inserting a new edge from the
mid-point of the longest side to the opposite corner. The unspoken hope is that
the quality of the mesh can be preserved by always splitting the longest edge within
the triangles to be refined. Rivara refinement relies on the concepts of terminal edges
and longest edge propagation paths. An edgeE is called terminal if E is the longest
edge of the triangles that shareE . The set of triangles sharingE is called a terminal
star. The longest edge propagation path of triangle K , abbreviated LEPP(K), is
the sequence of triangles you get if you start with K and successively move to
the adjacent triangle with longest edge until you reach a terminal edge. Using these
concepts, Rivara and co-workers [53] summarizes longest edge bisection refinement
in the following algorithm:

Algorithm 12 Rivara Refinement.
1: Given a mesh K and set S of elements to be refined.
2: for K 2 S do
3: whileK 2 M do
4: Find LEPP(K) and associated terminal edge.
5: Refine the terminal star.
6: end while
7: end for

The refinement of the terminal star is generally done by bisecting the terminal
edge and dividing the two triangles making up the star into four smaller subtriangles.
If the terminal edge lies on the boundary, then the terminal star only contain one
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Fig. 4.5 Rivara refinement of target triangle K . (a) Initial mesh, (b) first refinement step, (c)
second refinement step, and (d) final mesh withK refined

triangle to divide. Note that refinement of the terminal star does not cause additional
refinement outside the star. The computational bottleneck of the Rivara algorithm is
the repeated computation of LEPP s, which can become expensive for large meshes.
Figure 4.5 illustrates the Rivara refinement procedure of a target triangle K on a
small mesh.

4.10.2.2 Regular Refinement

Regular refinement consists of splitting each triangle selected for refinement into
four smaller ones by inserting a new node on the mid-point of each edge. This
gives four child triangles, which are congruent with the original (parent) triangle.
The children are therefore of the same quality as their parent. This is called red
refinement. See Fig. 4.6a. The insertion of new new nodes on the edges means that
triangles adjacent to refined triangles get hanging nodes and must also be refined.
This is done by inserting a new edge between the hanging node and the opposite
corner. This is called green refinement. See Fig. 4.6b. Green refinement is only
applied if there is one hanging node present. Otherwise, extra nodes are inserted so
that red refinement is can be applied. This process is iterated until no hanging nodes
remain. As a consequence, the refined mesh has regions of red refined triangles
surrounded by green refined ones. Naturally, green refined triangles do not have as
good quality as red ones. In subsequent refinement loops it is therefore customary
not to repeatedly refine previously green marked triangles using green refinement.



102 4 The Finite Element Method in 2D

a bFig. 4.6 The (a) red and
(b) green type of triangles
used for refinement

a b c

Fig. 4.7 Illustration of red green refinement of a square with two triangles into one red and one
green type of triangle. (a) Initial mesh, (b) hanging node (�), and (c) final mesh

Figure 4.7 illustrates a red green refinement of a square with two triangles into
one red and one green type of triangle. The lower triangle is first refined using red
refinement. This causes a hanging node, which must be taken care of using green
refinement of the upper triangle.

We refer the interested reader to the work by Bank and co-workers [6], and
Bey [11] for a more detailed account of red green mesh refinement on triangles
and quadrilaterals, and tetrahedra, respectively.

4.10.3 Adaptive Finite Elements Using MATLAB

It is relatively easy to write an adaptive finite element solver in MATLAB.
First we create a (coarse) initial mesh

g = ’cardg’; % predefined geometry of a cardioid
[p,e,t] = initmesh(g,’hmax’,0.25);

Then we compute the finite solution uh

[A,unused,b] = assema(p,t,...);
% .. application of B.C. etc ..
xi = A\b;

The next step is to evaluate the element residuals 	K , defined by (4.143). This
can be done with the built-in routine pdejmps, viz.,

eta = pdejmps(p,t,...);

The pdejmps routine was originally designed for computing the element residuals
to �r � .cru/C au D f and its syntax is therefore

eta = pdejmps(p,t,c,a,f,xi,1,1,1);
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where each of the three inputs c, a, and f can be either a constant or a row vector
specifying the values of the coefficients c, a, and f at the centroid of the triangles.

As our refinement criterion we select the 10 % most error prone elements to be
refined.

tol = 0.9*max(eta);
elements = find(eta > tol);

After these calls the vector elements contains the element numbers of the elements
to be refined.

The actual refinement is done with the built-in refinemesh routine.

[p,e,t] = refinemesh(g,p,e,t,elements,’regular’);

The mesh refinement algorithm used here is regular refinement. We use the simple
stopping criterion that the maximum number of elements in the mesh must not
exceed 10; 000.

Below we list a complete routine for adaptively solving Poisson’s equation
�u D 1 on a domain˝ shaped like a cardioid with u D 0 on the boundary @˝ .

function AdaptivePoissonSolver2D()
% set up geometry
g = ’cardg’;
% create initial mesh
[p,e,t] = initmesh(g,’hmax’,0.25);
% while not too many elements, do
while size(t,2) < 10000
% assemble stiffness matrix A, and load vector b
[A,unused,b] = assema(p,t,1,0,1);
% get the number of nodes
np = size(p,2);
% enforce zero Dirichlet BC
fixed = unique([e(1,:) e(2,:)]);
free = setdiff([1:np],fixed);
A = A(free,free);
b = b(free);
% solve for finite element solution
xi = zeros(np,1);
xi(free) = A\b;
figure(1), pdesurf(p,t,xi)
xlabel(’x’), ylabel(’y’), title(’u_h’)
% compute element residuals
eta = pdejmps(p,t,1,0,1,xi,1,1,1);
% choose a selection criteria
tol = 0.8*max(eta);
% select elements for refinement
elements = find(eta > tol)’;
% refine elements using regular refinement
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Fig. 4.8 Adaptive meshes for the problem with solution u D ae�ar2 . (a) Two refinements, (b)
four refinements, (c) six refinements, and (d) ten refinements

[p,e,t] = refinemesh(g,p,e,t,elements,’regular’);
figure(2), pdemesh(p,e,t)

end

To illustrate adaptive mesh refinement let us solve the problem

�u D 4a2.1 � ar2/e�ar2 ; in ˝ D Œ0; 1�2 (4.158a)

u D 0; on @˝ (4.158b)

where a is a parameter and r is the distance from the center of the unitsquare
˝ D Œ0; 1�2. If a is chosen sufficiently large, say a D 400, then the analytical
solution is given by u D ae�ar2 . This problem is computationally demanding,
since the solution is a very narrow pulse, with strong localized gradients, centered
at .0:5; 0:5/. Thus, to obtain a good finite element approximation we expect to have
to resolve the region around this point by placing many triangles there, but maybe
we do not need so many triangles in other regions. Figures 4.8 and 4.9 show the
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Fig. 4.9 Adaptively computed approximations to u D ae�ar2 . (a) Two refinements, (b) four
refinements, (c) six refinements, and (d) ten refinements

results of running the adaptive code outlined above for ten adaptive loops with a
25 % refinement rule. We see that the expected region is indeed much refined.

4.10.4 Duality Based a Posteriori Error Estimate

In many applications it is not the solution u to Poisson’s equation (4.5) itself that is
of prime interest, but rather some other quantity involving u. This quantity can often
be expressed as a linear functional

m.u/ D
Z
˝

 v dx (4.159)

where  is a weighting function to be chosen suitably. For example, choosing
 D j˝j�1 gives the average of u in ˝ . We say that m.�/ expresses the goal of
the computation.

To assert that we obtain an accurate value of our quantity of interest, we must
find a way of monitoring the error

m.e/ D m.u/�m.uh/ (4.160)
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Indeed, we want m.e/ to be as small as possible with a minimum of computational
effort. More precisely, m.e/ should be less than a predefined tolerance using as
small mesh as possible. To this end we re-introduce the dual problem: find � 2 V

such that

�� D  ; in ˝ (4.161a)

� D 0; on @˝ (4.161b)

Recall that this is reminiscent of Nitsche’s trick, where  D e.
Using the dual problem and integration by parts we have

m.e/ D
Z
˝

e dx (4.162)

D
Z
˝

�e� dx (4.163)

D
Z
˝

re � r� dx �
Z
@˝

en � r� ds (4.164)

D
Z
˝

re � r� dx (4.165)

where we have used that e D 0 on @˝ to get rid of the boundary term.
Now, from Galerkin orthogonality (4.46) with v chosen as the piecewise linear

interpolant �� 2 Vh;0 of �, it follows that

m.e/ D
Z
˝

re � r.� � ��/ dx (4.166)

D
Z
˝

f .� � ��/ dx �
Z
˝

ruh � r.� � ��/ dx (4.167)

Integrating by parts on each element K we obtain the error representation formula

m.e/ D
X
K2K

Z
K

.f Cuh/.� � ��/ dx � 1

2

Z
@Kn@˝

Œn � ruh�.� � ��/ ds

(4.168)

which provides the exact value of the error in the goal functional m.�/ in terms of
the finite element solution uh and the dual �. Of course, this requires knowledge
about �, which must generally be replaced by a computed finite element approxi-
mation �h � �. In such case, for the term �h � ��h to make sense, �h must be
computed using a higher order element than for uh. This is major concern as it
may become computationally costly. However, fortunately, the computation of �h
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can often be afforded. Now, provided that � (or �h) is sufficiently smooth, we can
estimate the terms in the error representation formula using standard interpolation
estimates, which yields the following a posteriori error estimate.

Theorem 4.13. The finite element solution uh, defined by (4.13), satisfies the
estimate

m.e/ � C
X
K2K

	K.uh; �/ (4.169)

where the so-called element indicator 	K.uh; �/ D 
K.uh/!K.�/ is the product of
the element residual 
K.uh/ and the element weight !K.�/, defined on each element
K , by


K.uh/ D kf CuhkL2.K/ C 1
2
h

�1=2
K kŒn � ruh�kL2.@Kn@˝/ (4.170)

!K.�/ D h2KkD2�kL2.K/ (4.171)

The element indicator can be used to identify error prone elements, and,
thus, drive adaptive mesh refinement. In doing so, only elements contributing
significantly to the error in the goal functional m.�/ are refined. This is a very
nice effect of the dual weight !K , which automatically identifies regions of the
domain˝ that are have large influence onm.�/. Indeed, the dual contains sensitivity
information about m.u/ with respect to perturbations of u. This is in contrast to
energy norm based mesh refinement, which does not take into account the location
of the refined elements. Note also that the formal order of convergence is h2 and,
thus, optimal for m.e/, but only h for jjjejjj. We say formally, since it may be
dubious to speak about a global mesh size in a refined mesh. However, the use of
this kind of dual based a posteriori mesh refinement usually leads to very efficient
and cheap adaptive finite element methods.

We mention that not all goal functionals m.u/ are computable (e.g., direct point
values of u). Indeed,m.u/ is usually some kind of average of u. Also, if the quantity
of interest is defined on the domain boundary @˝ , then it is possible to use a goal
functional of the form m.u/ D R

@˝
 u ds. In this case, the weight function  will

enter the error representation formula through the boundary conditions of the dual
problem.

By analogy with the dual problem for �, the problem for u is sometimes called
the primal problem.

To illustrate goal oriented mesh refinement we consider Poisson’s equation
�u D f with f chosen such that the primal is u D sin.2�x1=3/ sin.2�x2=3/
on the square ˝ D Œ0; 3�2. The weight  is chosen such that the dual is
� D x1x2.3 � x1/

8.3 � x2/
8. This gives the target value m.u/ D R

˝
 u dx D

1:849253113061110 � 106. As element indicator 	K we use the error representation
formula (4.168) as is (i.e., we do not estimate the terms). Thus, neglecting errors
stemming from insufficient quadrature and from replacing � with �h we ought to



108 4 The Finite Element Method in 2D

10−2 10−1 100 101102

103

104

105

106

h

m
(e

)

Fig. 4.10 Loglog plot of the mesh size h versus the error m.e/

Table 4.1 Convergence of
m.e/ for a sequence of
adaptive meshes

nt 10�5 �m.e/ 10�5 �PK 	K Ieff

32 6.3789 6.9477 0.9181
68 1.7959 1.7653 1.0173
150 0.6726 0.6673 1.0080
364 0.2034 0.2035 0.9996
920 0.0698 0.0698 1.0002
2,536 0.0263 0.0263 0.9997
7,110 0.0073 0.0073 1.0012
20,800 0.0024 0.0024 1.0006

have
P

K 	K D m.e/. The approximate dual �h is computed using continuous
piecewise quadratic finite elements. Making eight refinement loops we obtain the
convergence results of Fig. 4.10 and Table 4.1 for the error in the goal functional
m.e/. Looking at the figure we see that jm.e/j converges asymptotically more or
less like h2, where we choose the mesh size as h D p

2j˝j=nt with nt the number
of elements. Moreover, from the table we see that m.e/ is accurately predicted byP

K2K 	K . This is also reflected by the so-called efficiency index Ieff, defined by
Ieff D m.e/=

P
K2K 	K . Of course, we wish the efficiency index to be close to one.

Even though the global error e D u � uh is present throughout the whole
domain ˝ , the dual � is used to automatically identify the relevant region for
keeping the goal functional error m.e/ small, and, therefore, mesh refinement only
takes place in the lower left corner of ˝ . This is clearly seen in Fig. 4.11, which
shows the final mesh.
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Fig. 4.11 Final mesh for the problem with solution u D sin.2�x1=3/ sin.2�x2=3/

4.11 Further Reading

The theory for elliptic partial differential equations (i.e., Poisson’s equation) and
their numerical approximation is well understood, and there are very many good
books on these topics. We mention the books by Gockenbach [36] and Eriksson
et al. [27], which are perhaps best suited for studies at the undergraduate level.
Books suitable for the graduate level include those by Johnson [45], Braess [15], Ern
and Guermond [37], and Solin [66]. These are all mathematical in style. A book
in a more engineering style is the first volume [76] in the the five volumes series
overview of the finite element method by Zienkiewicz, Taylor, and Zhu.

Much more information on a posteriori based adaptive mesh refinement can be
found in the books by Bangerth and Rannacher [5] and Ainsworth and Oden [2].

4.12 Problems

Exercise 4.1. Prove the Cauchy-Schwarz inequality j R
˝

uv dxj � kukL2.˝/
kvkL2.˝/.
Exercise 4.2. Verify that krukL2 satisfies the requirements of a norm on the space
V0.

Exercise 4.3. Determine f so that u D x1.1 � x1/x2.1 � x2/ is a solution to
�u Df . Compute ru, D2u, kukL2.˝/, and krukL2.˝/, with ˝ D Œ0; 1�2.
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Exercise 4.4. Write down appropriate test and trial space for the problem

�u D 0; x 2 ˝; u D 0; x 2 �D; n � ru D gN ; x 2 �N

Exercise 4.5. Compute the element mass and stiffness matrices on the triangle NK
with corners at .0; 0/, .1; 0/, and .0; 1/.

Exercise 4.6. Write down the geometry matrix g for the domain ˝ D Œ�2; 3�2 n
Œ�1; 1�2 (i.e., a rectangle with a square hole). Use it to make a triangulation of this
domain with initmesh.

Exercise 4.7. Show, that the solution to

�u D f; x 2 ˝; u D 0; x 2 @˝

satisfies the stability estimate

krukL2.˝/ � Ckf kL2.˝/
Hint: First, multiply the equation with u and integrate by parts. Then, use the
Poincaré inequality.

Also, show that

kr.u � uh/k2L2.˝/ D kruk2
L2.˝/

� kruhk2L2.˝/
where uh is the finite element approximation of u.

Exercise 4.8. Write a MATLAB code to assemble the stiffness matrix A on a mesh
of a domain of your choice with assema. Use eigs to compute the eigenvalues of
A and verify that one eigenvalue is zero, while the others are positive. Why?

Exercise 4.9. Write a MATLAB code to solve �u D 0 in ˝ D Œ�2; 2� �
Œ�2�; 2��, with Dirichlet boundary conditions u D exp.x1/ arctan.x2/ on @˝ .
Use the routines StiffnessAssembler2D and RobinAssembler2D to assemble
the involved stiffness matrix and load vector.

Exercise 4.10. Consider the problem

�u C u D f; x 2 ˝; u D 0; x 2 @˝

(a) Make a variational formulation of this problem in a suitable space V .
(b) Choose a polynomial subspace Vh of V and write down a finite element method

based on the variational formulation.
(c) Deduce the Galerkin orthogonality



4.12 Problems 111

Z
˝

r.u � uh/ � rv C .u � uh/v dx D 0; 8v 2 Vh

(d) Derive the a priori error estimate

kr.u � uh/kL2.˝/ C ku � uhkL2.˝/ � ChkD2ukL2.˝/
where h is the maximum mesh size.

Exercise 4.11. Make a variational formulation of the problem

� @
2u

@x21
� 4 @

2u

@x22
C 2u D 1; x 2 ˝; u D 0; x 2 @˝

Exercise 4.12. Show, that the solution to

�u C u D 0; x 2 ˝; n � ru D gN ; x 2 @˝

satisfies the stability estimate

kuk2
L2.˝/

C kruk2
L2.˝/

� CkgN k2
L2.@˝/

Hint: Use the Trace inequality and the arithmetic-geometric mean inequality 2ab �
a2 C b2.

Exercise 4.13. Derive a posteriori error estimates in the energy norm for the
problem

�u D 0; x 2 ˝

with boundary conditions

(a) u D gD , x 2 @˝ .
(b) u D 0, x 2 �D, and n � ru D gN , x 2 �N .

where gD and gN is given boundary data in, say, L2.@˝/. For simplicity, assume
that gD can be represented as a continuous piecewise linear.



Chapter 5
Time-Dependent Problems

Abstract Most real-world problems depend on time and in this chapter we shall
construct numerical methods for solving time dependent differential equations.
We do this by first discretizing in space using finite elements, and then in time
using finite differences. Various time stepping methods are presented. As model
problems we use two classical equations from mathematical physics, namely, the
Heat equation, and the Wave equation. Illustrative numerical examples for both
equations are presented. To assert the accuracy of the computed solutions we derive
both stability estimates, and a priori error estimates. We also formulate space-time
finite elements and use them to derive duality based posteriori error estimates.

5.1 Finite Difference Methods for Systems of ODE

We begin this chapter by reviewing a couple of simple finite difference methods for
systems of ordinary differential equations (ODE).

Our basic problem is to find the n � 1 time-dependent solution vector � D �.t/

to the ODE system

M P�.t/CA�.t/ D b.t/; t 2 J D .0; T � (5.1a)

�.0/ D �0 (5.1b)

where M and A are given constant n � n matrices, b.t/ is a given time-dependent
n � 1 vector, and �0 is a given n � 1 vector with initial data. Further, P� means
differentiation of � with respect to time t on the time interval J , with final time T .

Assuming that M is invertible we can rewrite (5.1) as

P�.t/C NA�.t/ D Nb.t/ (5.2)

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__5, © Springer-Verlag Berlin Heidelberg 2013
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where NA D M�1A and Nb.t/ D M�1b.t/. The analytical solution to this equation
can be expressed using matrix exponentials using the so-called Duhamel’s formula

�.t/ D �.0/e� NAt C
Z t

0

e� NA.t�s/ Nb.s/ ds (5.3)

However, since we can not invertM if its dimension n is large, and since the matrix
exponential is complicated to use from the practical point of view, let us look at
ways to numerically approximate the solution �.

We let 0 D t0 < t1 < t2 < � � � < tm D T be a partition of the time interval J
into m subintervals Jl D .tl�1; tl � and time steps kl D tl � tl�1, l D 1; 2; : : : ; m.
For each time tl we wish to find an approximation �l to �.tl /. We replace the time
derivative P� with the backward difference quotient

P�.tl / � �l � �l�1
kl

(5.4)

which yields the so-called Euler backward method

M
�l � �l�1
kl

C A�l D bl (5.5)

or, equivalently,

.M C klA/�l D M�l�1 C klbl (5.6)

where we have introduced the notation bl D b.tl /. The initial condition �0 is used
to start the time stepping. Indeed, starting with �0 D �.t0/, we can successively
compute the unknowns �1; �2; : : : ; �m by repeatedly solving the linear system (5.6).
This yields the following algorithm for evolving our ODE system in time:

Algorithm 13 The backward Euler method
1: Create a partition 0 D t0 < t1 < � � � < tm D T of the time interval J with m time steps
kl D tl � tl�1.

2: Set �0 D �.0/.
3: for l D 1; 2; : : : ; m do
4: Solve

.M C klA/�l D M�l�1 C klbl (5.7)

5: end for

Roughly speaking, by making a Taylor expansion of �.t/ around tl it is easy to
show that the local truncation error on each subinterval Jl is proportional to k2l .
Thus, summing up over the the whole time interval J , the total error �.tm/ � �m
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is of size k, with k D max1�l�m kl the maximum time step. For this reason, the
backward Euler method is said to be first order accurate. Moreover, this method is
said to be unconditionally stable, since the size of the time step k can be chosen
arbitrary large. In particular, we can take large time steps and quickly advance the
solution from 0 to T . Of course, the prize we pay for this large time step k is a
potentially bad accuracy.

The choice of approximating the time derivative � with a backward quotient is
arbitrary. Using instead a forward quotient, yields

M
�l � �l�1
kl

C A�l�1 D bl�1 (5.8)

which is the so-called forward Euler method. Applying M�1 from the left and
rearranging terms we find

�l D �l�1 C klM
�1.bl�1 �A�l�1/ (5.9)

from which it follows that �l can be obtained at a low cost provided that M is easy
to invert (e.g., diagonal). As we shall see, this is, indeed, sometimes the case.

The Euler forward method is also first order accurate. However, it comes with a
restriction on the time step k. Indeed, a too large k causes unbounded growth of �l .
Therefore, we say that this method is conditionally stable.

Perhaps not so surprising, there is a large range of time stepping methods for
the ODE system (5.1). Each of these has its own characteristics regarding accuracy,
stability, and computational cost. Let us mention just a few.

The popular so-called Crank-Nicolson (CN) method is defined by

M
�l � �l�1
kl

C A
�l C �l�1

2
D bl C bl�1

2
(5.10)

This method is only conditionally stable, but second order accurate.
An alternative to the CN method is the BDF(2) method, defined by

M
3�l � 4�l�1 C �l�2

2k
CA�l D bl (5.11)

The advantages of this method is that it is second order accurate, and simple
to implement, in particular for solving time-dependent non-linear problems using
fixed-point iteration. The drawbacks are that it is difficult to derive for anything
other than a constant time step, and requires two vectors to get started. To construct
two starting vectors, �1 is usually found by taking a single Euler step. The acronym
BDF stands for backward difference formula. Actually, there is a whole family of
BDF methods with BDF(k) denoting a method of k-th order accuracy. BDF methods
of order k � 6 are available.
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Finally, we mention the Runge-Kutta (RK) family of methods, the most famous
being the RK(4) method, defined by

�l D �l�1 C 	1 C 2	2 C 2	3 C 	4

6
k (5.12)

	1 D 
.tl�1; �l�1/ (5.13)

	2 D 
.tl�1 C 1
2
k; �l�1 C 1

2
	1/ (5.14)

	3 D 
.tl�1 C 1
2
k; �l�1 C 1

2
	2/ (5.15)

	4 D 
.tl�1 C k; �l�1 C 1
2
	3/ (5.16)

tl D tl�1 C k (5.17)

where 
.�l / D M�1.b �A�l /. This method is conditionally stable and fourth order
accurate.

Time stepping methods are generally classified as either:

• Implicit, or
• Explicit

Implicit methods are characterized by the fact that the next solution approximation
�l must be solved for at time tl . These methods are therefore often expensive to use.
Implicit methods are used for stiff problems, that is, problems with a solution �,
which contains features with highly different time scales. By contrast, explicit
methods are cheap, and the next solution approximation ul is given by a closed
form formula. However, the time step must generally be small in order to guarantee
numerical stability. Thus, the low cost of obtaining a single approximation �l is
generally counteracted by the large number of levels m needed to reach the final
time T . Thus, explicit methods may or may not be more efficient than implicit
ones. The Euler forward method is the simplest explicit method, whereas the Euler
backward is the simplest implicit method. Also, the CN and BDF methods are
implicit, whereas the RK(4) method is explicit.

5.2 The Heat Equation

5.2.1 Derivation of the Transient Heat Equation

In Sect. 2.2.1 we have previously derived the Heat equation by considering heat
conduction in a thin rod under the assumption of steady state. We shall now revisit
this derivation taking also the dynamics of the heat transfer process into account.
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Thus, consider again the thin metal rod of length L, which occupies the interval
I D Œ0; L�. Let f be the heat source intensity, q the heat flux along the direction of
increasing x, and e the internal energy per unit length in the rod.

The principle of conservation of energy states that the rate of change of internal
energy equals the sum of net heat flux and produced heat. In the language of
mathematics, this is equivalent to,

Z
I

Pe dx D
Z
I

f dx C A.0/q.0/� A.L/q.L/ (5.18)

where A is the cross section area of the rod. Dividing by L and letting L ! 0 we
obtain the differential equation

Pe C .Aq/0 D f (5.19)

Now, under certain physical assumptions it is reasonable to assume that the
internal energy e depends linearly on temperature T , that is,

e D cT (5.20)

where c is the heat conductivity of the rod.
We also assume that Fourier’s law, q D �kT 0, is valid.
Combining (5.19) and (5.20) we infer the time-dependent Heat equation

c PT � .AkT 0/0 D f (5.21)

As usual, this differential equation needs to be supplemented by boundary
conditions at x D 0 and x D L of either Dirichlet, Neumann, or Robin type.
The boundary conditions should hold for all times. However, this is not enough
to uniquely determine the solution T . An initial condition of the form T .x; 0/ D
T0.x/, where T0.x/ is a given function at the initial time t D 0, is also required for
uniqueness of T .

5.2.2 Model Problem

Let us consider the model Heat equation

Pu � u00 D f; x 2 I D Œ0; L�; t 2 J D .0; T � (5.22a)

u.0; t/ D u.L; t/ D 0 (5.22b)

u.x; 0/ D u0.x/ (5.22c)

where u D u.x; t/ is the sought solution, f D f .x; t/ a given source function, and
u0.x/ a given initial condition.
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5.2.3 Variational Formulation

Multiplying f D Pu � u00 by a test function v D v.x; t/ and integrating by parts we
have

Z L

0

f v dx D
Z L

0

Puv dx �
Z L

0

u00v dx (5.23)

D
Z L

0

Puv dx � u0.L/v.L/C u0.0/v.0/C
Z L

0

u0v0 dx (5.24)

D
Z L

0

Puv dx C
Z L

0

u0v0 dx (5.25)

where we have assumed that v.0; t/ D v.L; t/ D 0.
Next, we introducing the space

V0 D fv W kv.�; t/k C kv0.�; t/k < 1; v.0; t/ D v.L; t/ D 0g (5.26)

where, k � k D k � kL2.I / denotes the usual L2-norm. Note that the norm kvk D
kv.�; t/k is a function of t , but not x.

Using the space V0 we obtain the following variational formulation of (5.22): find
u such that, for every fixed t 2 J , u 2 V0 and

Z
I

Puv dx C
Z
I

u0v0 dx D
Z
I

f v dx; 8v 2 V0; t 2 J (5.27)

5.2.4 Spatial Discretization

Let I W 0 D x0 < x1 < � � � < xn D L be a mesh of the interval I , and let Vh;0 � V0
be the space of continuous piecewise linears vanishing at x D 0 and x D 1 on this
mesh. The space discrete counterpart of (5.27) takes the form: find uh such that, for
every fixed t 2 J , uh 2 Vh;0 and

Z
I

Puhv dx C
Z
I

u0
hv

0 dx D
Z
I

f v dx; 8v 2 Vh;0; t 2 J (5.28)

We observe that (5.28) is equivalent to

Z
I

Puh'i dx C
Z
I

u0
h'

0
i dx D

Z
I

f 'i dx; i D 1; 2; : : : ; n � 1; t 2 J (5.29)

where 'i are the interior hat functions.
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Next, we seek a solution uh to (5.29), expressed for every fixed t , as a linear
combination of hat functions 'j .x/, j D 1; 2; : : : ; n � 1, and time-dependent
coefficients �j .t/. That is, we make the ansatz

uh.x; t/ D
n�1X
jD1

�j .t/'j .x/ (5.30)

and seek to determine the vector

�.t/ D

2
6664
�1.t/

�2.t/
:::

�n�1.t/

3
7775 D

2
6664

uh.x1; t/
uh.x2; t/

:::

uh.xn�1; t/

3
7775 (5.31)

so that (5.29) is satisfied.
Consider carefully the construction of uh. For every fixed time t , uh is a

continuous piecewise linear function with time-dependent nodal values �j .t/.
Now, substituting (5.30) into (5.29) we have

Z
I

f 'i dx D
n�1X
jD1

P�j .t/
Z
I

'j 'i dx (5.32)

C
n�1X
jD1

�j .t/

Z
I

' 0
j '

0
i dx; i D 1; 2; : : : ; n � 1; t 2 J

Introducing the notation

Mij D
Z
I

'j 'i dx (5.33)

Aij D
Z
I

' 0
j '

0
i dx (5.34)

bi.t/ D
Z
I

f .t/'i dx (5.35)

where i; j D 1; 2; : : : ; n � 1, we further have

bi.t/ D
n�1X
jD1

Mij
P�j .t/C

n�1X
jD1

Aij �j .t/; i D 1; 2; : : : ; n � 1; t 2 J (5.36)

which is nothing but a system of n � 1 ODE s for the n � 1 coefficients �j .t/. In
matrix form, we write this
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M P�.t/C A�.t/ D b.t/; t 2 J (5.37)

where the entries of the .n � 1/ � .n � 1/ matrices M and A, and the .n � 1/ � 1
vector b.t/ are defined by (5.33)–(5.35), respectively. We recognizeM , as the mass
matrix, A as the stiffness matrix, and b.t/ as a time-dependent load vector.

The ODE system (5.37) is sometimes called a spatial semi-discretization of the
Heat equation, since the dependence on the space coordinate x has been eliminated.

We, thus, conclude that the coefficients �j .t/, j D 1; 2; : : : ; n � 1, in the
ansatz (5.30) satisfy a system of ODE s, which must be solved in order to obtain
the space discrete solution uh.t/.

5.2.5 Time Discretization

Applying the backward Euler method to the ODE system (5.37) we immediately
obtain the following algorithm for the numerical solution of the Heat equation:

Algorithm 14 The backward Euler method for solving the Heat equation
1: Create a mesh with n elements on the interval I .
2: Create a partition 0 D t0 < t1 < � � � < tm D T of the time interval J with m time steps
kl D tl � tl�1.

3: Choose �0.
4: for l D 1; 2; : : : ; m do
5: Compute the .n� 1/ � .n� 1/ mass and stiffness matrices M and A, and the .n� 1/ � 1

load vector bl D b.tl / with entries

Mij D
Z
I

'j 'i dx; Aij D
Z
I

'0

j '
0

i dx; b.tl /i D
Z
I

f .tl /'i dx (5.38)

6: Solve

.M C klA/�l D M�l�1 C klbl (5.39)

7: end for

Regarding the starting vector �0 there are a few different choices. One choice,
and perhaps the simplest, is to let �0 be the nodal values of the interpolant �u0
of the initial data u0. Another choice is to let �0 be the nodal values of the L2-
projection Phu0 of u0, but this is, of course, more computationally expensive. Yet
another choice is to let �0 be the nodal values of the so-called Ritz projection Ruh
of u0, to be defined shortly.
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5.3 Stability Estimates

For time-dependent problems it is generally of interest to know something about the
long term behavior of the solution. In particular, one would like to know if it grows
with time and if it can be bounded by the coefficients (e.g., the initial condition and
the right hand side). To this end, stability estimates are used.

5.3.1 A Space Discrete Estimate

We first derive a stability estimate for the space discrete solution uh. Recall that
uh D uh.x; t/ is a continuous smooth function if viewed as a function of time t , but
only a continuous piecewise linear function if viewed as a function of space x.

Choosing v D uh in the variational formulation (5.27) we have

Z
I

Puhuh C .u0
h/
2 dx D

Z
I

f uh dx (5.40)

Noting that the first term can be written

Z
I

Puhuh dx D
Z
I

1
2
@t .u

2
h/ dx D 1

2
@tkuhk2 D kuhk@tkuhk (5.41)

and using the Cauchy Schwarz inequality we further have

kuhk@tkuhk C ku0
hk2 � kf kkuhk (5.42)

which implies

@tkuhk � kf k (5.43)

Integrating this result with respect to time from 0 to t we obtain the stability estimate

kuh.�; t/k D kuh.�; 0/k C
Z t

0

kf .�; s/kds (5.44)

This shows that the size of uh is bounded in time by the initial condition uh.�; 0/ and
the source function f .
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5.3.2 A Fully Discrete Estimate

Let uh;l denote the continuous piecewise linear function uh.tl /, that is, the sumPn�1
iD1.�l /i'i with .�l /i component i of the vector �l . We wish to derive a stability

estimate for uh;l . To do so, we multiply the backward Euler method with the vector
�l , which yields

�Tl .M C klA/�l D �Tl .M�l�1 C bl/ (5.45)

Clearly, this is the matrix form of the equation

kuh;lk2 C klku0
h;lk2 D

Z
I

uh;l�1uh;l dx C kl

Z
I

fluh;l dx (5.46)

Using the Cauchy-Schwarz inequality we have

kuh;lk2 C klku0
h;lk2 � kuh;l�1k kuh;lk C klkflk kuh;lk (5.47)

which implies

kuh;lk � kuh;l�1k C klkflk (5.48)

Iterated use of this result gives us

kuh;lk � kuh;0k C
lX

iD1
kikfik (5.49)

which is our stability estimate.
This shows that the size of uh;l is bounded for all times by the timestep kl , the

initial condition uh;0, and the source function f .

5.4 A Priori Error Estimates

Error estimates for time-dependent problems can be derived by combining error
estimates for the corresponding stationary problem with stability estimates. We use
this approach below to derive a priori error estimates for both the space discrete
solution uh and the fully discrete solution uh;l .
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5.4.1 Ritz Projection

Ritz projection is a technique for approximating a given function u, and is
very similar to L2-projection. Indeed, both L2- and Ritz projection compute the
orthogonal projection of u onto a finite dimensional subspace with respect to a
certain scalar product. For L2-projection the subspace is Vh and the scalar product
the usual L2-product

R
uv dx. However, for Ritz projection the subspace is Vh;0 and

the scalar product
R

u0v0 dx. More precisely, the Ritz projection Rhu 2 Vh;0 of a
given function u 2 V0 is defined by

Z
I

.u �Rhu/0v0 dx D 0; 8v 2 Vh;0 (5.50)

With this definition we have the following approximation result.

Proposition 5.1. The Ritz projection Rhu, defined by (5.50), satisfies the estimate

ku �Rhuk � Ch2ku00k (5.51)

Proof. The proof follows from Nitsche’s trick with dual problem ��00 D u � Rhu
with boundary conditions �.0/ D �.L/ D 0. ut

5.4.2 A Space Discrete Estimate

Theorem 5.1. The space discrete solution uh, defined by (5.28), satisfies the
estimate

ku.t/ � uh.t/k � Ch2
�

ku00
0k C

Z t

0

kPu00.�; s/kds
�

(5.52)

Proof. Following standard procedure (cf., Larsson and Thomeé [70]), let us write
the error u � uh as

u � uh D .u � Rhu/C .Rhu � uh/ D 
C � (5.53)

We can bound 
 at once using the approximation result of the Ritz projectorRhu.

k
.�; t/k � Ch2ku00.�; t/k (5.54)

� Ch2
����u00.�; 0/C

Z t

0

Pu00.�; s/ ds
���� (5.55)

� Ch2
�

ku00
0k C

Z t

0

kPu00.�; s/kds
�

(5.56)
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Continuing, to bound also � we subtract (5.28) from (5.27), which yields

Z
I

.Pu � Puh/v dx C
Z
I

.u � uh/
0v0 dx D 0; 8v 2 V0;h; t 2 J (5.57)

or
Z
I

P�v dx C
Z
I

� 0v0 dx D �
Z
I

P
v dx �
Z
I


0v0 dx (5.58)

D �
Z
I

P
v dx (5.59)

Here, we have used the definition of the Ritz projector to get rid of the last term.
From this we see that � satisfies the space discrete variational equation with � P
 as
source function. Consequently, we can apply the stability estimate (5.44) to obtain

k�.�; t/k � k�.�; 0/k C
Z t

0

k P
.�; s/kds (5.60)

Further, choosing uh.x; 0/ D Rhu.x; 0/ D Rhu0.x/, we have �.x; 0/ D 0 and the
first term drops out. For the second term, we obtain

k P
.�; t/k D k@t .u.�; t/� Rhu.�; t//k � Ch2k@tu00.�; t/k D Ch2kPu00.�; t/k (5.61)

Thus, we have

k�.�; t/k � Ch2
Z t

0

kPu00.�; s/kds (5.62)

Combining (5.56) and (5.62) concludes the proof. ut
From this we see that the error at any given time t in the space discrete solution uh.t/
is proportional to the mesh size squared h2, which is to be expected when using a
piecewise linear ansatz in space.

5.4.3 A Fully Discrete Estimate

Theorem 5.2. The fully discrete solution uh;l satisfies the estimate

ku.tl /� uh;lk � Ch2
�

ku00
0k C

Z tl

0

kPu00.�; s/kds
�

C Ck

Z tl

0

kRu00.�; s/kds (5.63)

Proof. For simplicity, let us assume that the time interval J has a uniform partition
with time step k. As before, we follow the standard procedure and write the error
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u.tl / � uh;l D .u.tl / � Rhu.tl // C .Rhu.tl / � uh;l / D 
l C �l . Also, as before, 
l
can be bounded by

k
lk � Ch2
�

ku00
0k C

Z tl

0

kPu00.�; s/kds
�

(5.64)

To bound also �l we use the fact that it satisfies the backward Euler method in the
sense that

Z
I

�l � �l�1
k

v dx C
Z
I

� 0
l v

0 dx D �
Z
I

�lv dx (5.65)

where

�l D Pu.tl /� Rhu.tl / �Rhu.tl�1/
k

(5.66)

Adding and subtracting k�1.u.tl /� u.tl�1// from �l yields

�l D
�

Pu.tl / � u.tl / � u.tl�1/
k

�
(5.67)

C
�

u.tl / �Rhu.tl /

k
� u.tl�1/� Rhu.tl�1/

k

�

D �1l C �2l (5.68)

Application of the stability estimate (5.49) further yields

k�lk � k�0k C k

lX
iD1

k�1i k C k

lX
iD1

k�2i k (5.69)

where, as before, �0 can be eliminated by choosing uh;0 D Rhu0. Now, from Taylor’s
formula, we have

Pu.tl / � u.tl / � u.tl�1/
k

D 1

k

Z tl

tl�1

.s � tl�1/Ru.�; s/ ds (5.70)

and it follows that

k

lX
iD1

k�1i k �
lX

iD1

����
Z tl

tn�1

.s � tl�1/Ru.�; s/ ds
���� � k

Z tl

0

kRu.�; s/kds (5.71)
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Further, since

u.tl /� Rhu.tl /

k
� u.tl�1/ �Rhu.tl�1/

k
D 1

k

Z tl

tl�1

.1 � Rh/Pu.x; s/ ds (5.72)

it also follows that

k

lX
iD1

k�2i k �
lX

iD1

Z tl

tl�1

Ch2kPu00.�; s/kds � Ch2
Z tl

0

kPu00.�; s/kds (5.73)

Combining (5.64), (5.71), and (5.73) concludes the proof. ut
From this we see that the error at a given time tl in the fully discrete solution uh;l
consists of two parts. First, there is one part that stems from the space discretization
and the piecewise linear finite elements. It is of size h2. Then, there is another
part that stems from the time discretization and the time stepping method. This
contribution to the error depends linearly on the time step k, which is to be expected
since it reflects the first order accuracy of the Euler backward method.

5.5 Computer Implementation

To implement our numerical method based on the Euler backward method we can
reuse the assembly routines MassAssembler1D, StiffnessAssembler1D, and
LoadAssembler1D to assemble the mass and stiffness matrices M , and A, and
the load vector b D b.t/. Let the load be given by f D 2x, and let the initial
condition be given by u0 D 0:5 � jx � 0:5j. u0 looks like a triangle with its peak at
x D 0:5. After roughly 0:5 time units the solution u assumes a steady state given by
u.x;1/ D 3

2
x.x2 � x/. The Dirichlet boundary condition u.0; t/ D u.L; t/ D 0 is

approximated by a Robin ditto. The code for this solver is listed below. Note that the
assembly of A, M , and b is done outside the time loop to save computer resources,
since neither of these are time-dependent.

function BackwardEulerHeatSolver1D()
h = 0.01; % mesh size
x = 0:h:1; % mesh
m = 100; % number of time levels
T = 0.5; % final time
t = linspace(0,T,m+1); % time grid
xi = 0.5-abs(0.5-x)’; % inital condition
kappa = [1.e+6 1.e+6]; % Robin BC parameters
g = [0 0];
one = inline(’1’,’x’); % dummy
twox = inline(’2*x’,’x’); % load f=2x
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A = StiffnessAssembler1D(x,one,kappa); % stiffness matrix
M = MassAssembler1D(x); % mass matrix
b = LoadAssembler1D(x,twox,kappa,g); % load vector
for l = 1:m % time loop
k = t(l+1) - t(l); % time step;
xi = (M + k*A)\(M*xi + k*b); % backward Euler method
plot(x,xi), axis([0 1 0 0.5]), pause(0.1) % plot

end

Figure 5.1 shows a series of snapshots of the computed solution uh;l , for l D
0; 2; 4; 8 etc., as it evolves towards steady state. From the figure we see that the
triangle peak in the initial condition u0 quickly diffuses and disappears. Indeed,
the smoothing of any sharp features in the solution is a characteristic feature of
the Heat equation, which is therefore said to have smoothing properties. This is a
characteristic feature of transient so-called parabolic type differential equations.

5.5.1 Mass Lumping

Had we used the forward, instead of backward, Euler method to time step the ODE
system (5.30), the involved time loop for doing so would have taken a form similar to

for l = 1:m % time loop
xi = xi + k*M\(b - A*xi); % forward Euler method

end

Here, we see that a linear system involving the mass matrix M must be solved at
each iteration. To speed up this computation a common trick is to replace M with
a diagonal matrix D with the row sums of M on the diagonal. This is called mass
lumping andD is called the lumped mass matrix. Thus, the diagonal entriesDii are
given by

Dii D
n�1X
jD1

Mij ; i D 1; 2; : : : ; n � 1 (5.74)

The lumped mass matrix can be viewed as a result of under integration, which
means to use a quadrature rule with too low precision. Indeed, D results if we use
the Trapezoidal rule, which has precision 1 instead of the necessary 2, to compute
the matrix entriesMij .

The use of mass lumping speeds up the Euler forward method considerably.
However, a careful analysis shows that the restriction on the maximal time step
is of the form k D Ch2 for the Heat equation, which may be prohibitively small if
h is small.

We remark that mass lumping can only be used for low order approximations,
such as, piecewise linear, for instance. Also, the use of lumping on any other matrix
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Fig. 5.1 Snapshots of transient solution uh;l evolving to steady state. (a) t D 0. (b) t D 0:01.
(c) t D 0:02. (d) t D 0:04. (e) t D 0:075. (f) t D 0:125. (g) t D 0:25. (h) t D 0:5
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Fig. 5.2 A function w in Wh on the space-time slab S

is generally not recommended, since the matrix entries may be both positive and
negative and cancel out on summation. The stiffness matrix, for example, can never
be lumped.

5.6 Space-Time Finite Element Approximation

It is also possible to use a more finite element oriented approach for discretizing
time-dependent partial differential equations than semi-discretization. The charac-
teristic feature of such discretizations is that no difference is made between the space
and time variables. Indeed, consider the so-called space-time slab S D I � J . By
partitioning this slab it is possible to define piecewise polynomials that are functions
of both space and time. In the simplest case, since S is a rectangular domain, we can
divide it into a regular grid. The space-time grid is the tensor product of the spatial
and temporal mesh 0 D x0 < x1 < � � � < xn D 1 and 0 D t0 < t1 < : : : < tm D T ,
respectively. A small space-time grid is shown in Fig. 5.2.

Let Sl D I �Jl be a strip of the slab S , and letWh be the space of functions that
are continuous piecewise linear in space, and constant in time on Sl , that is,

Whl D fv.x; t/ W v.�; t/jI2 Vh; t 2 Jl ; v.x; �/jJl2 P0.Jl /; x 2 I g (5.75)

where Vh is the usual space of continuous piecewise linears on I , and P0.Jl /
the space of constants on Jl . A space on the whole slab S can then trivially be
constructed by the direct sum Wh D ˚m

lD1Whl . In other words, Wh is the space of
functions w, such that wjSl in Whl , for l D 1; 2; : : : ; m.



130 5 Time-Dependent Problems

The functions in Wh are generally discontinuous in time across adjacent subin-
tervals Jl and JlC1. At time tl the jump of w 2 Wh is denoted Œw�l D wC

l � w�
l with

wl̇ D lim�!0 w.tl ˙ �/.
Now, by definition, the so-called cG(1)dG(0) method amounts to the time

stepping method: find uh 2 Wh, such that, for l D 1; 2; : : : ; m,

Z
Jl

Z
I

u0
hv

0 dxdt C
Z
I

Œuh�l�1vC
l�1 dx D

Z
Jl

Z
I

f v dxdt; 8v 2 Whl (5.76)

or, upon writing out the jump,

Z
Jl

Z
I

u0
hv

0 dxdt C
Z
I

.uC
h � u�

h /l�1v
C
l�1 dx D

Z
Jl

Z
I

f v dxdt; 8v 2 Whl

(5.77)

Setting uh;l D .uh/�l , we can rewrite this as

Z
Jl

Z
I

u0
h;lv

0 dxdt C
Z
I

.uh;l � uh;l�1/v dx D
Z
Jl

Z
I

f v dxdt; 8v 2 Whl (5.78)

Because both the trial and test function uh;l and v are constant in time on Jl , it is
easy to integrate (5.78) in time, yielding

kl

Z
I

u0
h;lv

0 dx C
Z
I

.uh;l � uh;l�1/v dx D kl

Z
I

f v dx; 8v 2 Vh (5.79)

We recognize this as the Euler backward method. Thus, the nodal values of uh;l at
time tl is obtained by a simple time stepping method.

The very close connection between the cG(1)dG(0) method and the Euler
backward method might raise questions why we should use finite elements, and
not just finite differences to discretize the Heat equation. The cG(1)dG(0) method
is after all more complicated to define and understand, compared to the Euler
backward method.

Although semi-discretization in combination with finite differences is both easy
to comprehend and implement, the finite element approach has certain advantages
since it provide a systematic framework for analysis compared to finite differences.
For example, in the finite element setting we know that the solution uh;l is constant
in time between time tl�1 and tl , whereas we know nothing about this behavior of
uh;l in the finite difference setting. This is due to the fact that uh;l lies in a function
space Wh in the former case, but is only defined by a set of point values in the
latter case. In the next section we shall use the finite element framework to derive
an posteriori error estimate.

In this context we remark that the acronym cG(1) stands for continuous Galerkin
of order 1, which is the space approximation. By analogy, dG(0) means discontinu-
ous Galerkin of order 0, which is the time approximation. The cG(1)dG(0) method
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can be generalized to a cG(1)dG(q) method, which implies using discontinuous
piecewise polynomials of order q 	 0 in time.

5.6.1 A Posteriori Error Estimate

The space Wh is a subspace of W D L2.J IV /, which contains all functions v D
v.x; t/ that are square integrable in time on J , and for any given time belongs to the
space V D fv W kv0kL2.I / C kvkL2.I / � 1; v.0/ D v.L/ D 0g. Thus, we can state
the following variational formulation of the Heat equation (5.22): find u 2 W such
that

Z
J

Z
I

Puv dxdt C
Z
J

Z
I

u0v0 dxdt D
Z
J

Z
I

f v dxdt; 8v 2 W (5.80)

Subtracting the cG(1)dG(0) method (5.76) from the variational formula-
tion (5.80) we obtain the Galerkin orthogonality

mX
lD1

Z
Jl

Z
I

. Pev C e0v0/ dxdt C
Z
I

Œe�l�1vC
l�1 dx D 0; 8v 2 Wh (5.81)

where e D u � uh, as usual, denotes the error.
To derive a goal oriented a posteriori error estimate we next introduce the dual

problem

� P� � �00 D  ; x 2 I; t 2 J (5.82a)

�.0; t/ D �.L; t/ D 0 (5.82b)

�.x; T / D 0 (5.82c)

This is an unusual problem since the it runs backwards in time, starting at t D T

and ending at t D 0. This is visible from the reversed sign on the time derivative,
and the initial condition, which is given at the final time T . The load for the dual
problem is a given weight function  D  .x; t/, which expresses the goal of the
computation. Indeed, we let m.�/ be the goal functional

m.v/ D
Z
J

Z
I

 v dxdt (5.83)

Now, integrating by parts in time and space over each interval Jl we have
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m.e/ D
Z
J

Z
I

e dxdt (5.84)

D
mX
lD1

Z
Jl

Z
I

e.� P� � �00/ dxdt (5.85)

D
mX
lD1

Z
Jl

Z
I

. Pe� C e0�0/ dxdt C
Z
I

Œe�l�1�C
l�1 dx (5.86)

where the jump Œe�l�1 is due to the partial integration in time. Because u is a
continuous function in time Œu�l�1 D 0, and the jump can therefore be simplified
to Œe�l�1 D Œu � uh�l�1 D �Œuh�l�1. Using the Galerkin orthogonality, we further
have

m.e/ D
mX
lD1

Z
Jl

Z
I

. Pe.� � ��/C e0.� � ��/0/ dxdt C
Z
I

Œe�l�1.� � ��/Cl�1 dx

(5.87)

where �� 2 Wh is the interpolant to �.
For any v 2 W it is natural to use the interpolant �v 2 Wh defined by

�v D Phv (5.88)

where Phv is the L2-projection onto Vh, and vjJl is the time average of v on Jl . This
interpolant satisfies the interpolation error estimates

kv � �vkL2.Jl / � CklkPvkL2.Jl /; k�v � vkL2.Ii / � Ch2i kv00kL2.Ii / (5.89)

and, in particular,

kv � �vkL2.Sil / D
�Z

Jl

Z
Ii

.v � �v/2 dxdt

�1=2
� C


klkPvkL2.Sil / C h2i kv00kL2.Sil /

�
(5.90)

where Sil is the space-time element Sil D Ii � Jl .
Now, breaking (5.87) into a sum over the n elements Ii , i D 1; 2; : : : ; n, and

integrating by parts on each of these, we obtain the error representation formula

m.e/ D
mX
lD1

nX
iD1

Z
Jl

Z
Ii

.f � Puh C u00
h/.� � ��/ dxdt �

Z
I

Œuh�l�1.� � ��/Cl�1 dx

(5.91)
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Note that the integration by parts does not give rise to additional jump terms, since
� � �� is vanish at the nodes xi .

Finally, using the Cauchy-Schwarz inequality on each term, and the interpolation
error estimates (5.89) and (5.90) we have

m.e/ � C

mX
lD1

nX
iD1

kf � Puh C u00
hkL2.Sil /k� � ��kL2.Sil / (5.92)

C kŒuh�l�1kL2.Ii /k.� � ��/Cl�1kL2.Ii /

� C

mX
lD1

nX
iD1

kf � Puh C u00
hkL2.Sil /


klk P�kL2.Sil / C h2i k�00kL2.Sil /

�
(5.93)

C kŒuh�l�1kL2.Ii /h2i k�C
l�1

00kL2.Ii /

Thus, we have the following a posteriori error estimate.

Theorem 5.3. The space-time finite element solution uh, defined by (5.76), satisfies
the estimate

m.e/ � C

mX
lD1

nX
iD1

	il .uh; �/ (5.94)

where the element indicator 	il .uh; �/ is the dot product of the element residual

i .uh/ and the element weight !l.�/, defined on each space-time element Sil , by


i .uh/ D
�kf � Puh C u00

hkL2.Sil /
kŒuh�l�1kL2.Ii /

�
(5.95)

!l.�/ D
"
klk P�kL2.Sil / C h2i k�00kL2.Sil /

h2i k�C
l�1

00kL2.Ii /

#
(5.96)

Note that Puh D u00
h D 0 on Sil due to the low order of uh.

Loosely speaking we may interpret kf kL2.Sil / and kŒuh�l�1kL2.Ii /as a spatial and
temporal residual, respectively. These can be used to adaptively adjust the mesh
size and time step, which gives rise to so-called space-time adaptive finite element
methods. In the simplest case, a basic such adaptive method first solves the primal
problem, then the dual, and finally the element indicators are computed and the
mesh refined. This is repeated a couple of times until satisfactory results have been
obtained.

The element indicator 	il depends on the dual solution �, which is generally
not available but has to be computed using finite elements. Indeed, both the primal
and the dual problem must be solved in order to be able to compute the element
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indicators. Moreover, the size of 	il depends on the size of � and its derivatives.
The dual is therefore said to contain sensitivity information about the error m.e/.
That is, how the error at a specific time affects the error at another, later, time. For
time dependent problems m.e/ depends on the integrated behavior of � during the
time interval J . Thus, the error is in a sense dependent on the history of �. Naturally,
� can either increase or decrease with time, which signifies that the error amplifies
or dampens the longer we run the simulation.

The fact that the error depends on its history is troublesome from the point of
view of adaptive mesh refinement. Indeed, if the error in one subdomain ! � ˝

depends on the error in many other subdomains, we may need to refine large portions
of ˝ to obtain good control over the error. Moreover, if the error spreads rapidly,
the mesh may have to be heavily adjusted from one time level to the next. This
is very complicated to implement on unstructured meshes as it generally involves
refinement and derefinement of already refined elements. Recall that the mesh qual-
ity must always be preserved under mesh refinement. A related trouble, which arises
when refining the mesh from time tl�1 to tl , is how to interpolate the nodal values of
the previous solution uh.tl�1/ onto the new mesh. This is often hard to do efficiently.

Obviously, there are much more to say about this topic. However, suffice perhaps
for now to say that space-time adaption is still very much an active area of research.

5.7 The Wave Equation

As we have seen the Heat equation quickly diffuses any high gradients in the initial
conditions to produce smooth solutions at steady state. This is a typical feature for
equations involving just one time derivative. We shall now study what happens if
the number of time derivatives in the equation is increased from one to two. It turns
out that this seemingly small change dramatically alters the behavior of the solution.
Indeed, this modified equation allows for oscillating solutions, and does not have a
steady state. It is called the Wave equation.

5.7.1 Derivation of the Acoustic Wave Equation

The Wave equation is a frequently occurring partial differential equation in science
and engineering and can be derived in many ways. We derive it from the point
of view of acoustics. In this context, the Wave equation describes sound waves
propagating in a medium, such as a liquid or a gas.

Let ˝ be a domain occupied by a liquid or gas with density 
, pressure p, and
velocity u. From the physical point of view sound is a perturbation of the pressure
caused by movement of the particles in the medium. In particular, it is assumed that
the force required to move a small volume of matter is balanced out by the build up
of a pressure gradient. Under this assumption, Newton’s second law (i.e., net force
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equals mass times acceleration) in differential form yields the equilibrium equation


 Pu D �rp (5.97)

Further, the principle of conservation of energy states that any expansion of the small
volume of matter due to the movement will cause a drop in pressure, whereas any
contraction will cause a pressure rise. Now, a local measure of volume expansion or
contraction is the divergence of the velocity, which suggests the constitutive relation

Pp D �kr � u (5.98)

where k is a material parameter. Differentiating (5.98) with respect to time t and
using (5.97) yields

Rp D �kr � Pu D kr � rp



(5.99)

which, assuming 
 and k are constant, simplifies to

Rp D c2p (5.100)

where c2 D k=
. This is the acoustic Wave equation.
The boundary conditions for the Wave equation (5.100) are the same as for any

equation involving the Laplacian p, and can be of either Dirichlet, Neumann,
or Robin type. However, since this equation also involves the second order time
derivative Rp, two initial conditions are required, namely, one for p and one for Pp.

Perhaps needless to say, the solution p to the Wave equation looks like a wave.
Hence, its name.

5.7.2 Model Problem

Let us consider the model Wave equation

Ru � c2u D f; in ˝ � J (5.101a)

u D 0; on @˝ � J (5.101b)

u D u0; in ˝ , for t D 0 (5.101c)

Pu D v0; in ˝ , for t D 0 (5.101d)

where J D .0; T � is the time interval, c2 is a parameter, f is a given source function,
and u0 and v0 given initial conditions.
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5.7.3 Variational Formulation

Multiplying f D Ru � c2u by a test function v 2 V0 D fv W kvk C krvk <

1; vj@˝D 0g, and integrating using Green’s formula we obtain the variational
formulation of (5.101): find u such that, for every fixed t 2 J , u 2 V0 and

Z
˝

Ruv dx C c2
Z
˝

ru � rv dx D
Z
˝

f v dx; 8v 2 V0; t 2 J (5.102)

5.7.4 Spatial Discretization

Let Vh;0 � V0 be the usual space of continuous piecewise linears on a mesh of ˝ .
The space discrete counterpart of (5.102) reads: find uh such that, for every fixed
t 2 J , uh 2 Vh;0 and

Z
˝

Ruhv dx C c2
Z
˝

ruh � rv dx D
Z
˝

f v dx; 8v 2 Vh;0; t 2 J (5.103)

We note that (5.103) is equivalent to

Z
˝

Ruh'i dx C c2
Z
˝

ruh � r'i dx D
Z
˝

f 'i dx; i D 1; 2; : : : ; ni ; t 2 J
(5.104)

where 'i , i D 1; 2; : : : ; ni are the usual hat basis functions for Vh;0 and ni the
number of interior nodes.

As before, we make the space discrete ansatz

uh D
niX
jD1

�j .t/'j (5.105)

where �j .t/ are ni time-dependent coefficients to be determined.
Substituting (5.105) into (5.104) we have

niX
jD1

R�j .t/
Z
˝

'j'i dx C c2
niX
jD1

�j .t/

Z
˝

r'j � r'i dx

D
Z
˝

f 'i dx; i D 1; 2; : : : ; ni ; t 2 J (5.106)

We recognize this as an ni � ni system of ODE s

M R�.t/C c2A�.t/ D b.t/; t 2 J (5.107)

where M , A, and b.t/ are the usual mass matrix, stiffness matrix, and load vector,
respectively.
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5.7.5 Time Discretization

Looking at the ODE system (5.107) we see that it is of second order, which poses
a new problem as all our finite difference time stepping methods are designed for
first order systems only. The solution for this problem is to introduce a new variable
	 D P� and rewrite the second order system as two first order systems. In doing so,
we end up with the new ODE system

M P�.t/ D M	.t/ (5.108)

M P	.t/C c2A�.t/ D b.t/ (5.109)

Application of, say, the Crank-Nicolson method to each of these two ODE s
gives us

M
�l � �l�1
kl

D M
	l C 	l�1

2
(5.110)

M
	l � 	l�1

kl
C c2A

�l C �l�1
2

D bl C bl�1
2

(5.111)

In block matrix form, we write this

"
M � kl

2
M

c2kl
2
A M

#�
�l

	l

�
D
"

M kl
2
M

� c2kl
2
A M

#�
�l�1
	l�1

�
C
�

0
kl
2
.bl C bl�1/

�
(5.112)

Here, �0 and 	0 can be chosen as the nodal interpolants of u0 and v0, for example.
The reason for choosing the Crank-Nicolson time stepping method is that it is

more accurate than the Euler methods, and that it has the property of conserving
energy, which loosely speaking means that the computed solution will not get
numerically smeared out. Thus, it is a suitable method for the Wave equation.

We summarize the Crank-Nicolson method for solving the Wave equation in the
following algorithm:

5.7.6 Conservation of Energy

In the absence of external forces, or damping, the solution u to the Wave equa-
tion (5.101) is a traveling wave, which move back and forth over the domain
eternally, and although the wave may disperse, the energy content (i.e., the sum
of kinetic and potential energy) of the initial condition is not diminished. This is the
content of the following stability estimate.
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Algorithm 15 The Crank-Nicolson method for solving the Wave equation
1: Create a mesh of ˝ with ni interior nodes, and use it to define the space of all continuous

piecewise linear functions Vh;0, with hat function basis f'igniiD1 .
2: Create a partition 0 D t0 < t1 < � � � < tm D T of the time interval J with m time steps
kl D tl � tl�1.

3: Choose �0 and 	0.
4: for l D 1; 2; : : : ; m do
5: Compute the ni � ni mass and stiffness matrices M and A, and the ni � 1 load vector

bl D bl .t /, with entries

Mij D
Z
˝

'j 'i dx; Aij D
Z
˝

r'j � r'i dx; bi D
Z
˝

f .tl /'i dx (5.113)

6: Solve the linear system

"
M � kl

2
M

c2kl
2
A M

#�
�l
	l

�
D
"

M kl
2
M

� c2kl
2
A M

#�
�l�1

	l�1

�
C
�

0
kl
2
.bl C bl�1/

�
(5.114)

7: end for

Theorem 5.4. With f D 0 the solution u to the Wave equation (5.101) satisfies the
estimate

kPu.�; t/k2 C kru.�; t/k2 D C (5.115)

with constant C independent of time t .

Proof. Choosing v D Pu in the variational formulation (5.102) we have

0 D
Z
˝

RuPu dx C
Z
˝

ru � r Pu dx (5.116)

D
Z
˝

1
2
@t .Pu/2 dx C

Z
˝

1
2
@t .ru/2 dx (5.117)

D 1
2
@t
kPuk2 C kruk2� (5.118)

Integrating this result with respect to to time t from 0 to T we further have

kPu.�; T /k2 C kru.�; T /k2 D kv0k2 C kru0k2 (5.119)

The proof ends by noting that the right hand side is independent of time t . ut
The fact that the solution is wave like is a characteristic feature of transient so-

called hyperbolic type differential equations.
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5.8 Computer Implementation

A MATLAB code for solving the Wave equation is given below. The problem under
consideration is Ru �u D 0 in a domain˝ composed of a square with two smaller
rectangular strips added on one side. This domain is shown in Fig. 5.3. The boundary
conditions are u D 0:1 sin.8�t/ on the line segments �D D fx W x1 D �0:25g, and
n � ru D 0 on the rest of the boundary �N . Thus, we have both Dirichlet and
Neumann boundary conditions. The initial condition u0 is zero.

This problem set up corresponds to a situation where coherent light in the form
of a sine wave impinges on a screen with two narrow slits. This creates so-called
interference on the other side of the screen. This is due to the fact that the distance
traveled by the wave from the two slits is different. Indeed, as the light passes the
screen the waves from the two sources are in phase. However, as we move away
from the screen, the path traveled by the light from one slit is larger than that
traveled by the light from the other slit. When this difference in path is equal to
half a wavelength, the waves extinguish each other and the amplitude of their sum
vanish. Similarly, when the difference in path length is equal to a wavelength, the
waves interact to enhance each other.

function CNWaveSolver2D()
g = Dslitg(); % double slit geometry
h = 0.025; % mesh size
k = 0.005; % time step
T = 2; % final time
[p,e,t] = initmesh(g,’hmax’,h);
np = size(p,2); % number of nodes
x = p(1,:)’; y = p(2,:)’; % node coordinates
fixed = find(x < -0.24999); % Dirichlet nodes
xi = zeros(np,1); % set zero IC
eta = zeros(np,1);
[A,M,b] = assema(p,t,1,1,0); % assemble A, M, and b
for l = 1:round(T/k) % time loop
time = l*k;
LHS = [M -0.5*k*M; 0.5*k*A M]; % Crank-Nicholson
rhs = [M 0.5*k*M; -0.5*k*A M]*[xi; eta] ...

+ [zeros(np,1); k*b];
sol = LHS\rhs;
xi = sol(1:np);
eta = sol(np+1:end);
xi(fixed) = 0.1*sin(8*pi*time); % set BC the ugly way
pdesurf(p,t,xi), axis([-1 1 -1 1 -0.25 0.5]) % plot
pause(0.1)

end
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Fig. 5.3 The domain ˝ for
the double slit experiment

Here, the enforcement of the Dirichlet boundary condition perhaps requires some
commenting. Because these are time-dependent they have to be enforced inside the
time loop at every time level. We choose to do this in a rather quick and dirty way.
Indeed, we first solve the linear system resulting from the CN method using Neu-
mann boundary conditions (i.e., no boundary conditions). Then we apply the Dirich-
let boundary conditions to the resulting solution. This is done for each time level.

The geometry matrix for the double slit domain is given by the routine Dslit
listed in the Appendix.

Figure 5.4 shows a few snapshots of the amplitude of the light wave. The
evolution of an interference pattern is clearly seen.

5.9 Further Reading

For more information on numerical methods for ODE s and their properties we refer
to the introductory book by Heath [41] or the advanced books by Hairer et al. [40]
Regarding time dependent partial differential equations a nice and mathematically
accessable text is Strikwerda [67], which uses finite differences in both space and
time. Mathematically more advanced books with emphasis on using finite elements
in space and finite differences in time include those of Larsson and Thomeé [70],
Valli and Quarteroni [72], and Knabner and Angermann [47].

Adaptive space-time finite elements are described and discussed by Bangerth and
Rannacher [5].
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Fig. 5.4 Amplitude of finite element solution uh at a various times. The interference pattern is
clearly visible. (a) t D 0:1. (b) t D 0:4. (c) t D 0:7. (d) t D 1:0. (e) t D 1:3. (f) t D 1:6

5.10 Problems

Exercise 5.1. Explain the difference between implicit and explicit time stepping.

Exercise 5.2. Make two iterations using backward Euler on the ODE system

P�.t/C A�.t/ D f; t > 0; �.0/ D �0;

where

A D
�
1 0

0 2

�
; f D

�
0

�1
�
; �0 D

�
1

1

�

Assume time step k D 1=2.

Exercise 5.3. Show that a space discretization of the problem

Pu �u C u D f; x 2 ˝; t > 0
u D 0; x 2 @˝; t > 0
u D u0; x 2 ˝; t D 0
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leads to a system of ODE s of the form

M P�.t/C A�.t/CM�.t/ D b.t/

Identify the entries of the involved matrices and vectors.

Exercise 5.4. Show that the homogeneous Heat equation Pu � u D 0, with
homogeneous Dirichlet boundary conditions, and initial condition u.x; 0/ D u0.x/
satisfies the stability estimate

ku.�; t/k � Cku0k

Interpret this result. Hint: Multiply by u and integrate.

Exercise 5.5. Modify BackwardEulerHeatSolver1D to solve the heat problem

Pu D 1
10

u00; 0 < x < 1; t > 0

u.0/ D u.1/ D 0

u.x; 0/ D x.1 � x/

Use a mesh with 100 elements, final time 0.1 and timestep 0.001. Plot the finite
element solution at each time step. Compare with the exact solution, given by the
infinite sum

u.x; t/ D 4

�3

1X
nD1

.�1/n � 1

n2
e�n2�2t=10 sin.n�x/

You can truncate the sum after, say, 25 terms.

Exercise 5.6. Show that the Ritz projector Rhu satisfies the estimate ke0k �
Chku00k, where e D u � Rhu. Hint: Start from ke0k2 D R

I
e02 dx and write

e D u � �u � �u � Rhu, where �u 2 Vh;0 is the usual node interpolant of
u. Then use the definition of the Ritz projector, the Cauchy-Schwarz inequalityR
I
e0.u � �u/0 dx � ke0kk.u � �u/0k, and a standard interpolation estimate.
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Chapter 6
Solving Large Sparse Linear Systems

Abstract In the previous chapters we have seen how finite element discretization
gives rise to linear systems, which must be solved in order to obtain the discrete
solution. The size of these linear systems is generally large, as it is direct propor-
tional to the number of nodes in the mesh. Indeed, it is not unusual to have millions
of nodes in large meshes. This puts high demands on the linear algebra algorithms
and software that is used to solve the linear systems in terms of computational
complexity (i.e., number of floating point operations), memory requirements, and
time consumption. To cope with these problems it is necessary and important to
exploit the fact that these linear systems are sparse, which means that they have
very few non-zero entries as compared to their size. This is due to the fact that the
finite element basis functions have very limited support and only interact with their
nearest neighbours. In this chapter we review some of the most common direct and
iterative methods for solving large sparse linear systems. We emphasize that the aim
is not to present and analyze these methods rigorously in any way, but only to give
an overview of them and their connection to finite elements.

6.1 Linear Systems

We consider the problem of solving the linear system

Ax D b (6.1)

where A is a given n � n matrix, b is a given n � 1 vector, and x the sought n � 1
solution vector. The assumption is that n is large, say, 106, and that A is sparse.
A sparse matrix is somewhat vaguely defined as one with very few non-zero entries
Aij . A prime example of such a matrix is the stiffness matrix resulting from finite
element discretization of the Laplace operator �. If A is invertible, which is the
case when the underlying differential equation is well posed, the solution x to (6.1)
can formally be found by first computing the inverseA�1 ofA, and then multiplying

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__6, © Springer-Verlag Berlin Heidelberg 2013
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it with b to yield x D A�1b. However, this requires the computation of the n � n

matrix A�1, which is usually impossible and wasteful, since our goal is to find the
vector x and not the inverse of A. Indeed, it is almost never necessary to compute
any matrix inverse to solve a linear system.

There are two main classes of solution methods for linear systems, namely:

• Direct methods.
• Iterative methods.

In addition to this, there are special methods, such as multigrid, for instance.
In the following we shall quickly describe these methods.

6.2 Direct Methods

6.2.1 Triangular Systems, Backward and Forward Substitution

Direct methods refers to Gaussian elimination, or, LU factorization, and variants
hereof. The common feature of direct methods is that the solution x is obtained
after a fixed number of floating point operations. The basic idea exploits the fact
that triangular linear systems are easy to solve and that almost any square matrix
can be written as the product of two triangular matrices. Indeed, given A the LU
factorization factors it into

A D LU (6.2)

where L and U are lower and upper triangular n � n matrices, respectively. If we
allow permutation of A, then it can be shown that the LU factorization exist for all
square invertible matrices.

For a symmetric and positive definite (SPD)A,U andL can be made to coincide,
which reduces (6.2) to

A D LLT (6.3)

This is the so-called Cholesky factorization.
Once the left hand side matrix A has been factorized the solution x can be

determined from the right hand side b by first solving

Ly D b (6.4)

for y, and then

Ux D y (6.5)

for x. This can be cheaply and efficiently done by forward and backward substitu-
tion, respectively.
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6.2.2 Fill-ins, Graphs, and Symbolic and Numeric
Factorization

The solution procedure described above is the same for both dense and sparse
matrices. However, the LU factorization for sparse matrices is much more com-
plicated than for dense matrices. The main complication is due to the fact that the
structure of the L and U factors, that is, the locations of any non-zero entries, is
different as compared to A. Matrix entries which are zero in A, but non-zero in L
or U are generally called fill-ins. Because there are usually many fill-ins, they are a
major concern from the computational point of view. Indeed, fill-in requires a larger
amount of memory and cause a more expensive factorization. In this context a key
observation is that the amount of fill-in depends on the structure ofA. By permuting
the rows and columns ofA, L and U can be made more or less sparse. It is therefore
important to find fill-in reducing permutations or reorderings. Row permutation
means reordering the equations, while column permutation means reordering the
unknowns xi , i D 1; 2; : : : ; n. As there are 2nŠ ways to permute a general n � n

matrix, finding the optimal reordering is practically hopeless for large n, and various
heuristic methods must be used. The universal tool for predicting and reducing the
amount of fill-in are graphs.

A graph G.A/ of a sparse symmetric matrix A consists of a set of vertices V
and a set of edges E connecting a pair of vertices. The vertex set corresponds to
the column or row indices, whereas the edge set corresponds to the non-zero matrix
entries in the sense that there is an edge between vertex i and j if Aij ¤ 0. For
example, the matrix

A D

2
6666666664

1 x x

2 x x

x x 3 x

x 4

x 5 x x

x 6 x

x x x 7

3
7777777775

(6.6)

has the graph shown in Fig. 6.1. A cross or a number indicate a non-zero matrix
entry.

Let us try to figure out how the graph of a sparse matrix can be of help during
Cholesky factorization. For simplicity, let us restrict attention to SPD matrices,
since this enables us to treat the structural properties of matrices separate from
their numerical ones. Indeed, LU factorization of indefinite matrices is complicated
by the fact that pivoting (i.e., reordering of equations and unknowns) is needed
for numerical stability. This mixes the structure of the matrix with the actual
numerical values of its entries. Besides, as we have seen, SPD matrices occur in
many important applications.
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1 3 2
4

5

7 6

Fig. 6.1 Graph of A, given
by (6.6), with vertices (�)
and edges (-). An edge
between vertex i and j means
that matrix entry Aij is
non-zero

Cholesky factorization is perhaps best described step by step. Let A be an n � n
SPD matrix, set A D A0 D C0, and write C0 as

C0 D
�
d1 c

T
1

c1 NC1
�

(6.7)

where the scalar d1 is the first diagonal entry of C0, the n � 1 vector c1 is the first
column of C0, except d1, and the .n � 1/ � .n� 1/ submatrix NC1 the rest of C0. By
direct multiplication it is straight forward to show that C0 affords the factorization

C0 D
� p

d1 0

c1=
p
d1 In�1

� �
1 0

0 NC1 � c1c
T
1 =d1

� �p
d1 c

T
1 =

p
d1

0 In�1

�
(6.8)

D L1

�
1 0

0 C1

�
LT1 (6.9)

D L1A1L
T
1 (6.10)

where Im is them �m identity matrix. Continuing the factorization with C1, which
is also SPD, we find

A1 D
�
1 0

0 C1

�
(6.11)

D
2
41 0 0

0 d2 c
T
2

0 c2 NC2

3
5 (6.12)

D
2
410 p

d2
0 c2=

p
d2 In�2

3
5
2
41 0 0

0 1 0

0 0 NC2 � c2c
T
2 =d2

3
5
2
41 0 0p

d2 c
T
2 =

p
d2

In�2

3
5 (6.13)

D L2A2L
T
2 (6.14)

:::

An�1 D LnInL
T
n (6.15)
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Hence, after n steps we obtain the Cholesky factorization

A D .L1L2 : : : Ln/In.L
T
n : : : L

T
2 L

T
1 / D LLT (6.16)

Here, it can be shown that column k D 1; 2; : : : ; n of L is precisely column k of
Lk .

From the point of view of fill-in the structure of Ak is important, since this is
the matrix we have to store at stage k of the Cholesky factorization process. (In
principle, the memory space for A is reused so that the vectors ck are stored in the
first k columns, and the matrixAk in the remaining n�k columns.) Because NCk is a
submatrix of Ak�1, it can not contribute with any new fill-ins. However, the update
ckc

T
k might do so. Structurally, the non-zeros of ck are the neighbours of vertex k in

the graph of Ak , which implies that the non-zeros of ckcTk is the combination of all
these neighbours. If any of these non-zeros do not already exist new fill-ins will be
created.

Computing Lk is equivalent to eliminating vertex k in the graph of A. This
amounts to first deleting vertex k and all its adjacent edges and then adding edges
to the graph between any two vertices that were adjacent to vertex k. Starting with
the first vertex and eliminating all subsequent vertices one-by-one gives rise to a
sequence of smaller and smaller graphs called elimination graphs. This is illustrated
in Fig. 6.2, which shows the elimination graphs G.Ak/, k D 0; 1; 2; 3, for our
example matrix A, defined by (6.6).

Clearly, the elimination graphs G.Ak/, k D 4; 5; 6; 7, can not give rise to any
fill-ins.

Collecting all fill-ins from the elimination graphs we obtain the location of the
non-zero entries Lij of the Cholesky factor L. For our example matrix, we have

L D

2
6666666664

L11
L22

L31 L32 L33
L42 L43 L44

L53 L54 L55

L61 L65 L66
L71 L73 L74 L75 L76 L77

3
7777777775

(6.17)

where the fill-ins are colored red.
The procedure performed above for finding fill-ins can be described more

theoretically using the concept of a fill-path. A fill-path is a path (i.e., a sequence
of consecutive edges) between two vertices i and j in the graph of A, such that all
vertices in the path, except i and j , are numbered less than i and j . The fill-path is
closely connected to the fill-in through the next theorem.
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Fig. 6.2 Elimination graphs forA given by (6.6). New edges and corresponding fill-ins are colored
red

Theorem 6.1 (Rose-Tarjan). There will be fill-in in entry Lij of the Cholesky
factor of the matrix A if and only if there is a fill-path between vertex i and j in
the graph of A.

Thus, for instance, inspecting Fig. 6.1 we see that there is a path p D f7; 1; 3; 2; 4g
in G.A/ from vertex 7 to 4 via vertices 1, 3, and 2. Because 1, 3, and 2 are less than
both 7 and 4, p is a fill-path. Consequently, there should be a fill-in at A74 or L74.
Indeed, this fill-in is created at stage 3 in the elimination process. By contrast, there
is no fill-path from vertices 6 to 4, say.

Finding the structure of the Cholesky factor L is commonly referred to as
symbolic factorization, since it only involves symbolic operations and no numerical
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computations. Once the symbolic factorization is complete the numerical factor-
ization (i.e., the actual computation of the non-zero entries Lij ) can begin. The
numerical factorization is done either by the right-looking, the left-looking, or
the multifrontal method. The left and right-looking methods compute one column
of L at a time using the other columns to either the left or right, whereas the
multifrontal method compute submatrices of L that have the same sparsity pattern.
Because it is more efficient to operate on matrices than on vectors, the multifrontal
method performs better than the left- and right-looking methods. However, it is
harder to implement. For simplicity, we shall focus on the right-looking method.
Actually, we have already defined this method when computing the Cholesky factor
L in the step by step way we did, which lead up to (6.16). However, the right-looking
method can also be recast as a nested triple loop. Indeed, for a dense n � n matrix
A we have the following algorithm.

Algorithm 16 Dense right-looking Cholesky factorization
1: for k D 1 to n do
2: Akk D p

Akk
3: for i D k C 1 to n do
4: Aik D Aik=Akk
5: for j D k C 1 to n do
6:

Aij D Aij �AikAkj (6.18)

7: end for
8: end for
9: end for

Here, upon completion L has overwritten the lower triangle of A.
Let us next introduce the two macros div(j ) and add(j ,k), meaning

• div(j ) – divide column j by the square root of its diagonal.
• Add(j ,k) – add into column j a multiple of column k, with k < j .

Using these, we have the sparse counterpart of Algorithm 16.

Algorithm 17 Sparse right-looking Cholesky factorization
1: for k D 1 to n do
2: div(k)
3: for j such that Ljk ¤ 0 do
4: add(j ,k)
5: end for
6: end for

Looking at Algorithm 17, it is clearly important to have access to the structure
of L to do the inner loop efficiently. However, as we know, this is precisely
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the information available from the elimination graphs G.Ak/. Indeed, it is the
justification for setting up these.

6.2.3 Matrix Reorderings

In order to save computer memory and execution time it is highly desirable to
minimize the amount of fill-in created during the Cholesky factorization. To this
end, the graph G.A/ is analyzed for obtaining a good permutation of the matrix A.
In the language of graphs this amounts to relabeling the vertices of G.A/. In doing
so, two of the most common algorithms are the so-called Minimum Degree, and
Nested Dissection orderings.

6.2.3.1 Minimum Degree

The degree of a vertex in a graph is the number of connecting edges (i.e.,
neighbouring vertices).

The minimum degree ordering originates from the observation that the largest
possible fill-in when eliminating vertex i is the product of the non-diagonal non-
zeros within row and column i . That is, the square of the degree of vertex i . This
naturally leads to the idea that by always eliminating the vertex, or one of the
vertices, with minimum degree in the elimination graph, we will get a small fill-
in.

In practice, it turns out that the performance of the minimum degree ordering is
often best for problems of moderate size. However, it is not guaranteed to minimize
fill-in. This has to do with the fact that the vertex to eliminate is chosen based only
on the information available at a specific step of the elimination process. Indeed, in
step k we search only elimination graph G.Ak/ for the this next vertex. Because of
this, we say that minimum degree is a local reordering strategy.

Also, minimum degree ordering is quite hard to implement efficiently in
software.

Application of the minimum degree reordering strategy to our example matrix A
in (6.6) implies that vertex 4 should be eliminated in the first elimination step, since
this vertex has degree one, whereas all other vertices have degree two, in the graph
G.A/. Indeed, eliminating the vertices in the order, say, 4, 2, 1, 3, 5, 6, and 6, the
only fill-in in the Cholesky factor L occurs at L73. This is easy to see by drawing
the elimination graphs. Hence, with this minimum degree ordering we get a single
fill-in, instead of four as with the natural ordering 1 to 7.

MATLAB supports a variant of the minimum degree reordering through the
command symamd. Using this we can permute a random symmetric sparse matrix
by typing
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SD1 D2Fig. 6.3 Matrix graph
dissected using nested
dissection into two subgraphs
Di , i D 1; 2, with
separator S

n=100;
A0=sprandsym(n,0.01); % random symmetric matrix
perm=symamd(A0); % minimum degree permutation
Ap=A0(perm,perm); % permuted matrix

We can use spy to view the structure of the matrix before and after reordering.

6.2.3.2 Nested Dissection

The nested dissection matrix reordering strategy tries to reorder the matrix A, so
that the fill-in is kept within certain matrix blocks in the Cholesky factor L.

To this end, the graph of A is dissected into smaller subgraphs by so-called
separators. A separator S between two subgraphs D1 and D2 is the set of vertices
containing all paths betweenD1 andD2. The rationale for making this dissection is
that there can not be any fill-in Lij with vertex i in D1 and j in D2. For example,
consider the graph G.A/ shown in Fig. 6.3.

Here, the vertices has been labeled with nested dissection. The vertices in the
center column are the separator S , and the two columns of vertices to the left and
right of S are the subgraphD1, and D2, respectively. In this case it is easy to find a
separator due to the grid like stricture of the graph. Note that the numbering of the
vertices is such that those of D1 are less than those of D2, which in turn are less
than those of S . This is a characteristic feature of nested dissection reorderings.

Making a symbolic Cholesky factorization of the matrix A we obtain a factor L
with the structure shown in Fig. 6.4.
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Fig. 6.4 Structure of Cholesky factor L

From this figure we see that L has the block structure

L D
2
4L11 0 0

0 L22 0

LS1 LS2 LSS

3
5 (6.19)

where the diagonal blocks Lii, i D 1; 2, and LSS stems from the vertex sets Di and
S , and the off-diagonal blocks LSi stems from the edge intersection of these sets.
Thus, due to the nested dissection any fill-in must occur in Lii or LSS. Clearly, this
limits the number of fill-ins.

The nested dissection procedure exemplified above is usually repeated recur-
sively, yielding a Cholesky factor L with a more fine grained block structure than
that of (6.19).

In the example above it was kind of obvious how to choose the separator S
due to the grid like nature of the graph. Indeed, this graph stems from a stiffness
matrix assembled on a quadrilateral mesh of a square. However, on unstructured
(e.g., triangular) meshes, it is generally very difficult to choose good (i.e., small)
separators. In fact, this is the most complicated task when implementing nested
dissection in software. Also, for finite element applications, instead of partitioning
the graph of the stiffness matrix, it is common to partition and renumber the
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elements and nodes of the mesh. This is done using a so-called mesh partitioner,
such as the software METIS by Karypis and Kumar [46], for example.

Nested dissection often performs at its best for large problems. Due to its
recursive substructuring of a matrix into submatrices it is usually combined with
the multifrontal factorization method. Loosely speaking, a primitive multifrontal
method uses five dense Cholesky factorizations to compute the matrix blocks Lii,
LSi and LSS of (6.19) as follows:

1. Compute Lii from LiiL
T
ii D Aii, for i D 1; 2.

2. Compute LSi from LiiL
T
Si D ATSi, for i D 1; 2.

3. Update ASS D ASS �P2
iD1 LSiL

T
Si.

4. Compute LSS from LSSL
T
SS D ASS.

We remark that nested dissection is a global reordering strategy, unlike the
minimum degree, which, as we know, is a local ditto.

6.3 Iterative Methods

Loosely speaking, discretization of one- and two-dimensional problems yields linear
systems that are small enough to be efficiently solved with direct methods. However,
three-dimensional problems usually leads to linear systems that are too large and
expensive for direct methods. Instead, cheaper iterative methods must be utilized.
Unlike direct methods, iterative methods do not have a fixed number of floating point
operations attached to them for computing the solution x to a linear system. Instead,
a sequence of approximations x.k/ is sought successively, such that x.k/ ! x in
the limit k ! 1. Of course, the unspoken hope is that convergence in one way or
another will be reached with only a small number of iterations.

6.3.1 Basic Iterative Methods

It is actually quite simple to create a framework for a set of basic iterative methods.
To this end consider, again, the linear system Ax D b, and let us split A into

A D M �K (6.20)

whereM is any non-singular matrix, andK the remainderK D M �A. This gives

.M �K/x D b (6.21)

Mx D Kx C b (6.22)

x D M�1Kx CM�1b (6.23)
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Now, if we have a starting guess x.0/ for x, this suggests the iteration

x.kC1/ D M�1Kx.k/ CM�1b (6.24)

Although we do not know for which linear systems the iteration scheme (6.24)
converges, if any, let us tacitly take it as our basic iterative method for solving linear
systems. Thus, we have the following algorithm.

Algorithm 18 Basic iterative method for solving a linear system

1: Choose a staring guess x.0/.
2: for k D 0; 1; 2; : : : until convergence do
3:

x.kC1/ D M�1Kx.k/ CM�1b (6.25)

4: end for

For this algorithm to be computationally practical, it is important that the splitting
of A is chosen such that M�1K and M�1b are easy to calculate, or at least their
action on any given vector. Recall that we do not want to compute any inverses.

Choosing, for example,M D ˛�1I and K D ˛�1I � A, with ˛ > 0 a constant,
we obtain the simple so-called Richardson iteration

x.kC1/ D .I � ˛A/x.k/ C ˛b (6.26)

which can be written as

x.kC1/ D x.k/ C ˛r.k/ (6.27)

where r.k/ D b�Ax.k/ is the residual at iteration k. The residual r.k/ can be viewed
as a correction to x.k/ and ˛ as a relaxation parameter. This is a typical construction
of the next iterate x.kC1/.

A naive MATLAB implementation of Richardson iteration takes only a few lines
of code.

function x = Richardson(A,x,b,maxit,alpha)
for k=1:maxit

x=x+alpha*(b-A*x);
end

Here, maxit denotes the maximum number of iterations.
In the following we shall study splittings of A of the form

A D D � U � L (6.28)
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where D is the diagonal of A, and �U and �L the strictly upper and lower
triangular part of A, respectively. This leads to two classical iterative methods,
known as the Jacobi and the Gauss-Seidel methods.

6.3.2 The Jacobi Method

Jacobi iteration is defined by choosing M DD and K D L C U , which gives the
iteration scheme

x.kC1/ D D�1.LC U /x.k/ CD�1b (6.29)

We observe that D is easy to invert, since it is a diagonal matrix.

6.3.3 The Gauss-Seidel Method

In the Gauss-Seidel method M D D � L and K D U , which gives the iteration
scheme

x.kC1/ D .D � L/�1.Ux.k/ C b/ (6.30)

We observe that sinceD�L has a lower triangular structure, the effect of .D�L/�1
can be computed by forward elimination.

6.3.4 Convergence Analysis

We now return to the question of convergence of our basic iterative method. By
inspection, we see that it can be rewritten as

x.kC1/ D Rx.k/ C c (6.31)

where R D M�1K is called the relaxation matrix, and c D M�1b.
Let e.k/ D x�x.k/ be the error after k iterations. A relation between the errors in

successive approximations can be be derived by subtracting x D RxCc from (6.31).
Indeed, we have

e.kC1/ D x.kC1/ � x D R.x.k/ � x/ D : : : D RkC1.x.0/ � x/ D RkC1e.0/ (6.32)

Here, for convergence, we requireRkC1e ! 0 as k ! 1 for any e. It turns out that
this requirement is equivalent to 
.R/ < 1, where 
.R/ D max1�k�n j�k.R/j is the
so-called spectral radius ofR, that is, the magnitude of the extremal eigenvalue ofR.
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Moreover, 
.R/ < 1 implies that there exist a consistent matrix norm kRk, such that
kRk < 1. Conversely, if kRk < 1 in any such matrix norm, then 
.R/ < 1.

Now, taking norms and using the Cauchy-Schwarz inequality, we have

ke.kC1/k � kRkC1k ke.0/k � kRkkC1ke.0/k (6.33)

From this it readily follows that kRk should be as small as possible, since it is the
amplification factor for the error in each iteration. Hence, the splitting of A should
preferably be chosen such that

• Rx D M�1Kx and x D M�1b are easy to evaluate.
• 
.R/ is small.

Unfortunately, these goals are contradictory, and a balance has to be struck. For
example, choosing

• M D I makesM�1 trivial, but we probably do not have 
.A� I / < 1.
• M D A givesK D 0, and, thus, 
.R/ D 
.M�1K/ D 0, but then M�1 D A�1,

which is very expensive to compute.

For the Jacobi and Gauss-Seidel methods it is possible to state more general
convergence criterions than just 
.R/ < 1, but before we do that, let us pause for a
moment to introduce the concept of a diagonally dominant matrix.

An n � n matrix A is said to be (strictly) diagonally dominant if, for each row,
the absolute value of the diagonal entry is larger than the sum of the absolute values
of the other entries. That is, if

jAiij >
nX

jD1;j¤i
jAij j; 8i D 1; 2; : : : ; n (6.34)

For example, the matrix

A D
2
4 4 1 0

�2 �5 1

6 0 �7

3
5 (6.35)

is diagonally dominant.
We have following convergence criteria.

Theorem 6.2.

• Jacobi’s method converges if A is strictly diagonally dominant.
• The Gauss-Seidel method converges if A is SPD.

Proof. Let us prove the first part of the theorem as the second part is somewhat
technical.

In Jacobi’s method, the relaxation matrix R has the entries
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Rij D Aij

Aii
; i ¤ j; Rii D 0 (6.36)

Taking the infinity norm of R we have, by definition,

kRk1 D max
1�i�n

nX
jD1; j¤i

jAij j
jAiij (6.37)

which shows that kRk1 < 1, and, thus, also 
.R/ < 1, provided that A is strictly
diagonally dominant. ut

We remark that if A is non-singular, but unsymmetric or indefinite, then it is
possible to apply the Gauss-Seidel method to the normal equations

ATAx D AT b (6.38)

In this case, since ATA is SPD, the iteration scheme will converge. However, the
rate of convergence may be very slow.

6.3.5 Projection Methods

The basic iterative methods are cheap and easy to implement, but generally slow
to converge. This has lead to the development of faster and smarter iterative
methods, which are based on the requirement that the residual r D b � Ax should
be orthogonal to subspaces of Rn. This is analogous to the finite element method,
which requires the residual of a partial differential equation to be orthogonal to the
finite element space Vh. Indeed, modern iterative methods for linear systems share
many features with finite elements.

Suppose we seek a solution approximation Qx to AxD b from a (small)
m-dimensional subspaceK � R

n, such that the residual

r D b �A Qx (6.39)

is orthogonal to anotherm-dimensional subspace L � R
n, that is,

wT r D wT .b �A Qx/ D 0; 8w 2 L (6.40)

By analogy with finite elements the subspace K is called trial space, and the
subspace L is called test space.

In case we have a starting guess x0 for x, the solution must be sought in the space

x0 CK (6.41)

Thus, we have
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Qx D x0 C d (6.42)

where d is some vector in K . Our problem is then to find Qx 2 x0 CK such that

wT r D wT .b � A.x0 C d// D wT .r0 � Ad/ D 0; 8w 2 L (6.43)

where we have introduced the initial residual r0 D b � Ax0.
Suppose that V D Œv1; v2; : : : ; vm� and W D Œw1;w2; : : : ;wm� are two n � m

matrices whose columns fvi gmiD1 and fwigmiD1 form a basis forK andL, respectively.
Then, we can write

Qx D x0 C d D x0 C Vy (6.44)

for some m � 1 vector y to be determined. The orthogonality of r against L means
that

wT .r0 �AVy/ D 0; 8w 2 L (6.45)

and since W is a basis for L this is equivalent to

W T .r0 � AVy/ D 0 (6.46)

or
W TAVy D W T r0 (6.47)

Hence, if the m �m matrix W TAV can be inverted then we end up with

Qx D x0 C Vy D x0 C V.W TAV /�1W T r0 (6.48)

Now, there are two instances when it is certain that W TAV can be inverted,
namely:

• If A is SPD, and L D K .
• If A is non-singular, and L D AK .

From the point of view of finite elements this is reminiscent of the Galerkin
method, in which the trial and test space is the same, and the so-called GLS
stabilization technique, in which the test space is the trial space plus a piece of
the differential operator applied to the trial space.

In practice, (6.48) is iterated. In each iteration a new pair of subspacesK andL is
used, with the initial guess x0 equal to the solution approximation from the previous
iterate.

6.3.6 One-Dimensional Projection Methods

The simplest choice is to let the trial and test spaceK and L to be one-dimensional.

K D span fvg; W D span fwg (6.49)
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where v and w are two given n � 1 vectors. This yields

Qx D x0 C ˛v (6.50)

where the scalar ˛, by virtue of (6.48), equals

˛ D wT r0
wT Av

(6.51)

Further, choosing v and w to be equal to the current residual r in an iteration yields
the so-called Steepest Descent algorithm.

Algorithm 19 Steepest descent

1: Choose a starting guess x.0/.
2: for k D 0; 1; 2; : : : until convergence do
3: r.k/ D b � Ax.k/

4: ˛.k/ D r.k/
T
r.k/=r.k/

T
Ar.k/

5: x.kC1/ D x.k/ C ˛.k/r.k/

6: end for

Since L D K steepest decent works in case A is SPD.
Other choices of v and w include v D r and w D Ar , which leads to the so-called

Minimal Residual algorithm (MINRES).
One-dimensional projection methods are simple, but generally not very efficient.

6.3.7 Krylov Subspaces

The most important iterative methods for sparse linear systems use projection onto
so-called Krylov subspaces.

The m-th Krylov subspaceKm.AI v/ � R
n is defined by

Km.AI v/ D spanfv; Av; A2v; : : : ; Am�1vg (6.52)

where A is a given n � n matrix and v is a given n � 1 vector. We say that A and v
generatesKm.

Let us try to motivate why the Krylov subspaces are defined as they are. Consider
a linear system with

A D
�
5 1

0 2

�
; b D

�
20

10

�
(6.53)
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The so-called characteristic polynomial p.�/ of A is defined by

p.�/ D det.A� �I/ D �2 � 7�C 10 (6.54)

The roots of the polynomial p.�/ are the eigenvalues of A. Now, according to
a result called the Cayley-Hamilton theorem, a matrix satisfies its characteristic
equation. That is, p.A/ D 0, or in our case

0 D A2 � 7AC 10I (6.55)

Thus, multiplying with A�1 and rearranging terms, we end up with

A�1 D 7
10
I � 1

10
A (6.56)

Hence, we have

x D A�1b D . 7
10
I � 1

10
A/b D 7

10
b � 1

10
Ab D

�
3

5

�
(6.57)

Here, the key observation is that the solution x to Ax D b is a linear combination
of the vectors b and Ab, which make up the Krylov subspace K2.AI b/. In other
words, the solution to Ax D b has a natural representation as a member of a Krylov
space, and therefore we may understand why one would construct approximations
to x from this space. The hope is that a good approximation to x can be found in
Km with a space dimensionm small compared to the matrix dimension n.

Because the Krylov vectors fAj vgm�1
jD0 tend very quickly to become almost

linearly dependent, methods relying on Krylov subspaces frequently involve some
orthogonalization procedure for numerical stability. The most general of these is the
Arnoldi procedure, which is an algorithm for building an orthonormal basis fqj gmjD1
to Km.AI v/.

Algorithm 20 Arnoldi’s Orthogonalization procedure
1: Choose a vector v and set q1 D v=kvk
2: for j D 1; 2; : : : ; m do
3: Compute z D Aqj
4: for i D 1; 2; : : : ; j do
5: Hij D qTi z
6: z D z �Hij qi
7: end for
8: HjC1j D kzk
9: if HjC1j D 0 then

10: break
11: end if
12: qjC1 D z=HjC1j

13: end for
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Here, at stage j , the basic idea is to first multiply the last Arnoldi vector qj
by A and then orthogonalize z DAqj against all the other Arnoldi vectors qi ,
i D 1; 2; : : : ; j using the well-known Gram-Schmidt method. Indeed, inspecting
the algorithm, we see that z is a linear combination of the Arnoldi vectors qi ,
i D 1; 2; : : : j C 1. The coefficients in this linear combination are the numbers
Hij .

A MATLAB realization of the Arnoldi algorithm is given below.

function [Q,H] = Arnoldi(A,q,m)
n=size(A,1);
Q=zeros(n,m+1);
H=zeros(m+1,m);
Q(:,1)=q/norm(q);
for j=1:m

z=A*Q(:,j);
for i=1:j

H(i,j)=dot(z,Q(:,i));
z=z-H(i,j)*Q(:,i);

end
H(j+1,j)=norm(z);
if H(j+1,j)==0, break, end
Q(:,j+1)=z/H(j+1,j);

end

Loosely speaking, the Arnoldi procedure factorizes the matrix A. At stage m of
the Arnoldi algorithm, it computes the factorization

AQm D QmC1 NHm (6.58)

where

Qm D
2
4q1 q2 : : : qm

3
5 (6.59)

is the n�m orthonormal matrix containing the Arnoldi vectors qj , j D 1; 2; : : : ; m,
as columns, and NHm is the .mC 1/ �m upper Hessenberg matrix

NHm D

2
666666664

H11 H12 H13 H14 : : : H1m

H21 H22 H23 H24 H2m

0 H32 H33 H3m

0 0 H43 H4m

:::
: : :

:::

0 0 : : : 0 HmC1m�1 HmC1m

3
777777775

(6.60)
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By definition, upper Hessenberg matrices have all zero entries below their first
subdiagonal. The factorization (6.58) is sometimes written

AQm D QmHm CHmC1memqTmC1 (6.61)

where Hm is the m � m matrix obtained by deleting the last row from NHm, and
em is column m of the m � m identity matrix Im. Because the columns of Qm are
orthonormal it is easy to confirm that

QT
mAQm D Hm (6.62)

In case A is symmetric Arnoldi’s algorithm simplifies, and is then called Lanczos
algorithm.

6.3.8 The Conjugate Gradient Method

Combining the prototype projection method (6.48) with the Krylov spaceKm.AI v/
we can derive the Conjugate Gradient (CG) method, which is the most famous
Krylov method.

Given a linear system AxD b with A SPD, and a starting guess x0 for its
solution, let us consider a projection method with similar test and trial space
L D K D Km.A; r0/, where r0 is the initial residual. First, to generate a basis
Qm for Km.A; r0/ we do m steps of the Arnoldi procedure with the first Arnoldi
vector chosen as q1 D r0=kr0k. Then, substituting V D W D Qm into the left hand
side of (6.47) we have, by virtue of (6.62),

W TAV D QT
mAQm D Hm (6.63)

where Hm is the m � m Hessenberg matrix. Further, setting ˇ D kr0k and
substituting W D Qm into the right hand side of (6.47) we have, since all columns
of Qm except the first are orthogonal against r0,

QT
mr0 D QT

m.ˇq1/ D ˇe1 (6.64)

where the m � 1 vector e1 D Œ1; 0; : : : ; 0�T . Thus, (6.47) reduces to

Hmym D ˇe1 (6.65)

and, as a result, the approximate solution xm in (6.48) is given by

xm D x0 CQmym D x0 CQmH
�1
m ˇe1 (6.66)
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Now, the accuracy of xm depends on the dimension m of the Krylov space,
and, of course, A and r0. In practice, we would like to be able to improve xm by
choosing m dynamically during the iteration process. This is possible and leads to
the following algorithm called the Full Orthogonalization Method (FOM), which is
mathematically equivalent to the CG method.

Algorithm 21 The full Orthogonalization method
1: Choose a starting guess x0.
2: for m D 1; 2; 3; : : : until convergence do
3: ˇ D kr0k
4: Compute Qm by doing m steps of Arnoldi’s procedure.
5: Solve Hmym D ˇe1.
6: xm D x0 CQmym
7: end for

In FOM all m Arnoldi vectors qj , j D 1; 2; : : : ; m are needed for computing
xm, and afterm iterations the cost of storingQm is thereforemn, which may be too
expensive for large n. A remedy for this is to periodically restart FOM after a given
number of iterations with the previous solution approximation xm as initial guess
x0. The restarting of a Krylov method is a common technique for saving memory.

As a by-product of the Arnoldi process we obtain a way of computing the residual
residual rm at a low cost. Indeed, from (6.61) we have

rm D b �Axm (6.67)

D r0 �AQmym (6.68)

D ˇe1 �QmHmym �HmC1meTmymqmC1 (6.69)

D �HmC1meTmymqmC1 (6.70)

Thus, the old residual rm is a multiple of the new Arnoldi vector qmC1. This yields

krmk D HmC1mjeTmymj (6.71)

which is a simple and important result, since the norm of rm is used to decide when
to terminate the iteration.

Because A is symmetric the Hessenberg matrixHm becomes tridiagonal, and the
linear system Hmym D ˇe1 can be solved efficiently using LU factorization. This
can be further exploited by noting that the difference in the Lm and Um factors of
Hm between successive iterates m� 1 andm lies only in the last rows and columns
to derive short recurrences between the involved vectors and matrices. In particular,
the current solution can be updated as xm D xm�1C˛mpm, where ˛m is a scalar and
pm a so-called search direction. Similar three term recursions hold for the residuals
rm and search directions pm. The search directions are A-conjugate, which means
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that pTi Apj D 0, i ¤ j . Hence, the name conjugate gradients. All in all, we get the
very concise and elegant CG algorithm.

Algorithm 22 The Conjugate Gradient method
1: Choose a starting guess x.0/.
2: Compute the initial residual r.0/ D b � Ax.0/, and set p.1/ D r.0/.
3: for m D 1; 2; 3; : : : until convergence do
4: t .m/ D Ap.m/

5: ˛.m/ D r.m�1/T r.m�1/=p.m/
T
t .m/

6: x.m/ D x.m�1/ C ˛.m/p.m/

7: r.m/ D r.m�1/ � ˛.m/t .m/

8: ˇ.mC1/ D r.m/
T
r.m/=r.m�1/T r.m�1/

9: p.mC1/ D r.m/ C ˇ.mC1/p.m/

10: end for

This is a cheap algorithm both regarding computational complexity and memory
requirements, since it only requires:

• One matrix-vector multiplication tm D Apm per iteration.
• Storage of four vectors, and not all the m Arnoldi vectors.

In theory, the CG method should converge to the solution after at most n
iterations, since the Krylov space then span all of R

n. In practice, however, this
is not so due to the finite precision of computer arithmetic. In fact, rounding errors
can quickly destroy the orthogonality of the involved Arnoldi vectors. The simple
remedy for this is to make more iterations.

The rate of convergence of the CG method depends on the condition number
�.A/ of A. It is a tedious task to show that the error em D x � xm decreases as

kemkA
ke0kA � 2

 p
�.A/� 1p
�.A/C 1

!m
(6.72)

where k � kA denotes the energy norm kvkA D p
vT Av. Now, this may look like

bad news considering the fact that, as we might recall, �.A/ � Ch�2, with h the
minimum mesh size, and A the usual stiffness matrix. With h small we may end up
with virtually no convergence as the quotient .

p
� � 1/=.p

�C 1/ is close to unity.
However, this is often too pessimistic as the problem with slow convergence can, at
least partially, be overcome by proper so-called preconditioning. Also, from (6.72)
it follows that the number of iterations m needed to get kemkA=ke0kA within a
prescribed tolerance � > 0 is given by

m � log.2=�/
p
�.A/ � Ch�1 (6.73)
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In MATLAB the CG method is implemented as a black box solver with syntax

x=pcg(A,b,tol,maxit)

Input is the system matrix A, the right hand side vector b, a desired tolerance tol,
and the maximum number of iterations maxit. Output in the simplest case is the
solution approximation x.

6.3.9 The Generalized Minimal Residual Method

Conjugate gradients only works for linear systems with A SPD. This is somewhat
limiting and we shall therefore next study another Krylov method, which works also
for A indefinite and unsymmetric.

The Generalized Minimum Residual method (GMRES) is a projection method
based on takingK D Km.AI r0/ and L D AKm.AI r0/. This choice of trial and test
space implies that the solution approximation xm minimizes the residual norm krmk
over x0 CKm.AI r0/. Thus, GMRES is a least squares method.

To derive GMRES, first recall that any vector x in x0CKm.AI r0/ can be written
as

x D x0 CQmy (6.74)

for somem�1 vector y to be determined. Then, defining the least squares functional

J.y/ D kb �Axmk2 D kb �A.x0 CQmym/k2 (6.75)

the property (6.58) of NHm implies

b � Ax D b � A.x0 CQmy/ (6.76)

D r0 � AQmy (6.77)

D ˇq1 �QmC1 NHmy (6.78)

D QmC1.ˇe1 � NHmy/ (6.79)

Also, the orthonormality of Qm implies

J.y/ D kb � A.x0 CQmy/k2 D kˇe1 � NHmyk2 (6.80)

Now, the GMRES solution approximation xm is defined as the n � 1 vector xm D
x0 C Qmym, where the m � 1 vector ym minimizes the least squares functional
J.y/ over x0 CKm.AI r0/. This minimizer is inexpensive to compute, since it only
requires the solution of an .mC1/�m linear least squares problem. Indeed, ym is the
solution to the normal equations NHT

m
NHmym D NHT

mˇe1. However, as it is inefficient
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to compute the matrix product NHT
m

NHm other methods from dense linear algebra are
used to efficiently compute ym. A common method is QR decomposition involving
so-called Givens rotations.

Summarizing, we have the following algorithm for GMRES.

Algorithm 23 The generalized minimum residual method
1: Compute r0 D b � Ax0 and set q1 D r0=kr0k.
2: for m D 1; 2; 3; : : : until convergence do
3: Compute Qm with Arnoldi’s process.
4: Compute ym, the minimizer of J.y/ D kˇe1 � NHmyk.
5: xm D x0 CQmym
6: end for

6.3.10 Other Krylov Methods

There are many Krylov methods. For example, there is the CG on the Normal
Equations (CGNE) method, which solves ATAx D AT b using conjugate gradients.
The rationale for doing so is that the matrix A need not be SPD, but only
invertible. However, CGNE has poor convergence due to the squared condition
number �.ATA/D �.A/2. Also, there is the Bi-Conjugate Gradient (BiCG) method,
which stems from choosing the test space L as Km.A

T I �/. This method is cheaper
than GMRES, but its convergence is erratic and break down often occurs. To
remedy these shortcomings there is the CG Squared (CGS) method, which avoids
multiplication with AT in BiCG, and the Quasi Minimal Residual method (QMR),
which has a smoother convergence behavior than BiCG.

6.4 Preconditioning

As we have seen the convergence rate of many iterative methods depend on the
spectrum (i.e., eigenvalues) of the system matrix A. Thus, to accelerate this rate, it
is tempting to try to transform the linear system AxD b into one that has better
spectral properties and can be solved with fewer number of iterations. This is
generally accomplished through so-called preconditioning. A preconditioner M is
a matrix that approximatesA in some sense, but is easier to construct and invert.

MultiplyingAx D b byM�1 from the left we have the transformed linear system

M�1Ax D M�1b (6.81)

which, obviously, has the same solution as Ax D b, but whose matrix M�1A may
be better from the numeric point of view (e.g., a smaller spectral radius). Loosely
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speaking, if M is a good preconditioner, then M�1A is approximately the identity
I , with eigenvalues clustered around one, or at least away from zero, and a condition
number �.M�1A/ close to one.

In constructing a good preconditioner a balance has to be struck between the
cost of computing it, and its efficiency per iteration. For example, M D I is a
useless preconditioner, while M DA is the most expensive as it means inverting A.
For linear systems of equations with A constant throughout the iteration process
it usually pays off to use a sophisticated and expensive preconditioner, whereas
cheaper and maybe more primitive preconditioning is most economic to use for
non-linear systems with A D A.x/, since A changes in each iteration. The cost of
computing a preconditioner must always be amortized by frequent application.

Preconditioners for finite element applications are generally of two types.
First, there are problem specific preconditioners, which are constructed based
on information about the particular differential equation under consideration. For
example, M may be defined as the stiffness matrix A assembled on a coarse
mesh or using finite elements of lower order (e.g., piecewise constants). Second,
there are black box preconditioners, which need only the matrix entries of A for
their construction. Examples of such preconditioners include the Jacobi and the
incomplete LU preconditioner.

We remark that it is generally not necessary to form the matrixM�1A explicitly,
since this would be too expensive and lead to loss of symmetry. Instead, the iterative
methods are rewritten to incorporate the effect of the preconditioner M through
matrix-vector multiplications with A and solutions of linear systems of the form
M z D r .

6.4.1 Jacobi Preconditioning

The simplest black box preconditioner consists of just the diagonal of the matrix A,
that is,M D diag.A/. This is known as Jacobi preconditioning and can successfully
be applied to linear systems with A SPD. The Jacobi preconditioner needs no
additional storage, and is very easy to implement. However, it is usually quite
inefficient on real-world problems.

6.4.2 Polynomial Preconditioners

If B is a matrix with spectral radius 
.B/ < 1, then the series

.I � B/�1 D
1X
jD0

Bj (6.82)
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converges and gives a simple representation of the inverse of I � B . By choosing

B D I �A=! (6.83)

with ! > 0 a big enough constant we can not only keep 
.B/ < 1, but also get
A�1 D !.I � .I � A=!//�1 D .I � B/�1. Further, by truncating the sum (6.82)
after just a few terms we obtain a simple approximate inverse of A that can be used
as the preconditioner M�1. This is called polynomial preconditioning, and works
for definite matrices A.

6.4.3 Incomplete Factorizations

An advanced and modern black box preconditioner is the so-called incomplete LU
factorization (ILU). The idea underlying ILU factorization is surprisingly simple.
When computing the ordinary LU factorization A D LU , entries of L and U that
are deemed too small are discarded to save memory. Hence, the name incomplete
LU factorization. The preconditioner M is then defined by M DLU . This type
of preconditioning has proven to be efficient in combination with GMRES. The
difficulty is to choose a good drop tolerance, that is, the level below which the
matrix entries of L and U or M are ignored. A high drop tolerance yields a dense
M , while a low drop tolerance makes M inefficient. A trial and error approach is
usually used to decide on a good drop tolerance. However, there is no guarantee
that a high drop tolerance per say leads to a more efficient preconditioner. In fact,
the preconditioner may get worse before getting better. This has to do with the
fact that the fill-in of L and U occur in a more or less random fashion, and it
may happen that M DLU is a too crude approximation of A. Because of this ILU
preconditioners are sometimes known to be unstable. Various strategies have been
proposed to automatically choose the drop tolerance, sparsity pattern, and, thus, fill-
in of M .

For SPD matrices ILU is known as incomplete Cholesky factorization (IC). It is
commonly used in combination with the CG method. For low values of the the drop
tolerance it can be shown that the condition number ofM�1A is �.M�1A/ D Ch�2,
that is, similar to that of A, but with a smaller constant C . However, for a particular
factorization known as modified incomplete Cholesky (MIC) this condition number
can be improved to �.M�1A/ D Ch�1. This dramatically speeds up the CG method.
The basic idea behind MIC is that the row sums of A and M should be the same.
Loosely speaking this amounts to adding the discarded fill-in of M to the diagonal
of M .

MATLAB has two built-in routines called luinc and cholinc for computing
incomplete LU and Cholesky factorizations, respectively. For example, to solve a
linear system using GMRES with ILU preconditioning we type
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[L,U]=luinc(A,1.e-3); % drop tolerance=0.001
x=gmres(A,b,[],tol,m,L,U);

6.5 Towards Multigrid

6.5.1 The Smoothing Property

Many basic iterative methods have a so-called smoothing property, which loosely
speaking means that fast frequencies of the error is damped faster than slow
frequencies. In order to study this property in more detail we consider again the
simple Richardson iteration

x.kC1/ D .I ���1A/x.k/ C��1b (6.84)

where � is an upper bound on the spectral radius of A. That is, �i � � for all
eigenvalues �i , i D 1; 2; : : : ; n, of A. For simplicity, let us assume that A is SPD.

Then, following our convergence analysis for basic iterative methods, we have
the error equation for e.k/ D x � x.k/

e.k/ D Rke.0/ (6.85)

where R is the relaxation matrix

R D I � 1

�
A (6.86)

Now, letting 	i denote the eigenvectors of A with corresponding eigenvalues �i
and writing

e.0/ D
nX
iD1

e
.0/
i 	i (6.87)

we get

e.k/ D Rk
nX
iD1

e
.0/
i 	i (6.88)

D
nX
iD1

e
.0/
i R

k	i (6.89)
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D
nX
iD1

e
.0/
i

�
1 � �i

�

�k
	i (6.90)

Thus, we arrive at the identity

e
.k/
i D e

.0/
i

�
1 � �i

�

�k
; i D 1; 2; : : : ; n (6.91)

Since �i � � for all i D 1; 2; : : : ; n we have

0 � 1 � �i

�
< 1 (6.92)

and we note that we have faster convergence for larger eigenvalues since the larger

�i is the smaller is 1 � �i
�

and, thus,
	
1 � �i

�


k ! 0 faster as k ! 1.

6.5.2 A Two-Grid Method

Based on the observation that a simple iterative solver like the Richardson iteration
quickly decreases the high frequency components of the error but does a poor job on
the low frequency components we propose to first use Richardson iteration and then
use another solver to correct the remaining low frequency part of the error. This can
be done by using a direct solver on a coarser grid. Since the coarser mesh has fewer
degrees of freedom it is cheaper to solve on that grid and therefore we can afford to
use a more expensive solver on the coarse mesh.

To make this idea precise, let Vh be our finite element space consisting of
continuous piecewise linear functions on a fine mesh Kh, and let VH � Vh be a
subspace on a coarser mesh KH . We assume that Kh is obtained by a finite number
of uniform refinements ofKH . In order to transfer data between the grids we define
a prolongation operator Ph;H that takes a function vH on the coarse mesh and
represents it as another function vh on the fine mesh. Since VH is a subspace of
Vh we let Ph;H be the matrix of the natural embedding (i.e., linear interpolation) of
VH into Vh. That is, given the nodal values �H of vH we have �h D Ph;H �H with
�h the nodal values of vh. By analogy, we let the restriction operator RH;h take a
function in Vh and represent it in VH . In doing so, a common choice is to take the
restriction operator to be more or less the transpose of the prolongation operator
RH;h D PT

h;H . We let Ah and bh denote the stiffness matrix and load vector on the
fine grid and we let AH denote the stiffness matrix on the coarse grid. With this
notation a two-grid method can be summarized in the following algorithm.
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Algorithm 24 A Two-Grid method

1: Given u.0/h 2 Vh with nodal values �.0/h .
2: for k D 0; 1; : : :, until convergence do
3: Compute �.k/h by doing m Richardson iterations on the linear system Ah�h D bh.

4: Compute the residual r.k/h D bh � Ah�
.k/

h .

5: Restrict the residual to the coarse grid r.k/H D RH;hr
.k/

h .

6: Solve the linear system AHı
.k/
H D r

.k/
H for the nodal values ı.k/H of the correction e.k/H 2 VH .

7: Prolongate the correction to the fine grid ı.k/h D Ph;H ı
.k/
H .

8: Update the solution �.kC1/

h D �
.k/

h C ı
.k/

h .
9: end for

As a small example, consider �u00 D 1 with u.0/ D u.L/ D 0 on a uniform
grid with nine uniformly spaced nodes 0 D x0 < x1 < � � � < x8 D L. The fine
grid consists of all the nodes x1; x2; : : : ; x7, with h D 1=8, whereas the coarse grid
consists of the three nodes x2, x4, and x6, with H D 2h D 1=4. The nodes x0
and x8 are not considered since they are associated with boundary conditions. Thus,
the unknowns are the 7 non-zero nodal values �1; : : : ; �7 of uh 2 Vh. The 7 � 7

tridiagonal stiffness matrix Ah, and the 7 � 1 load vector bh are given by

Ah D 1

h

2
666666664

2 �1
�1 2 �1

�1 2 �1
: : :

: : :
: : :

�1 2 �1
�1 2

3
777777775
; bh D h

2
666666664

1

1

1
:::

1

1

3
777777775

(6.93)

Now, given a function on the coarse grid we choose to transfer it to the fine grid
using linear interpolation. In doing so, we let the coarse nodes that are also in the
fine grid keep their value. However, the fine nodes that are not in the coarse grid are
given the average value of their left and right neighbour nodes. This gives the 7 � 3
prolongation matrix

Ph;H D

2
6666666664

1
2

1
1
2
1
2

1
1
2
1
2

1
1
2

3
7777777775

(6.94)

Figure 6.5a shows the prolongation vh with nodal values �h D Ph;H �H of a
function vH with nodal values �H D Œ2; 3; 2�T .
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a b

Fig. 6.5 Prolongation and restriction (-) with given (�) and computed (�) node values. (a)
Prolongation. (b) Restriction

Utilizing the prolongation, the 3 � 7 restriction matrix is given by

RH;h D PT
h;H =2 (6.95)

where we have divided by a factor two since we want the rows to sum up to unity.
This is natural for any interpolation or averaging operator. Figure 6.5b shows the
restriction vH with nodal values �h D Ph;H �H of a function vh with nodal values
�H D Œ1; 2; 2:5; 3; 2:5; 2; 1�T .

In MATLAB, our two-grid method can be coded as shown below.

function TwoGrid()
nf=2*25-1; % number of fine nodes
nc=(nf-1)/2; % coarse nodes
h=1/(nf+1); % mesh size
x=0:h:1; % mesh
e=ones(nf,1);
A=spdiags([-e 2*e -e],-1:1,nf,nf)/h; % fine stiffness matrix
b=ones(nf,1)*h; % load vector
u=zeros(nf,1); % solution guess
P=sparse(nf,nc); % prolongation matrix
for i=1:nc

P(2*i-1,i)=0.5;
P(2*i,i)=1;
P(2*i+1,i)=0.5;

end
R=0.5*P’; % prolongation matrix
RAP=R*A*P; % coarse stiffness matrix
for k=1:5 % outer iteration loop

u=Richardson(A,u,b,4,0.25*h);
r=R*(b-A*u); % residual
e=RAP\r; % correction
u=u+P*e; % solution update

end
plot(x,[0 u’ 0]), xlabel(’x’), ylabel(’u_h’) % plot
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Fig. 6.6 Semilog plot of max jr.k/H j for the iterates k D 1; 2; : : : ; 11

Here, we make 5 outer iterations with 4 Richardson smoothing steps per iteration.
The involved relaxation parameter is heuristically chosen as ˛ D h=4.

By design, the two-grid method is good at decaying the low frequency content
of the error. In fact, it turns out that the error reduction per iteration is practically
independent of the mesh size h. That is, the convergence of the two-grid method
does not deteriorate significantly as h ! 0. This is clearly seen in Fig. 6.6, which
shows the maximum absolute value of the coarse grid residual r.k/H for 11 iterations
k D 1; 2; : : : ; 11.

In the two-grid method, we have used a direct solver to make the coarse grid
correction, which is generally too expensive for large problems. To overcome this
difficulty it is customary to replace this solve by recursive smoothing on a sequence
of successively coarser grids with the correction being solved for only on the
coarsest grid. To obtain a symmetric method it is common to apply smoothing not
just before but also after the coarse grid correction. This is called a V-cycle and is
the basic idea behind the so-called multigrid method.

6.6 Further Reading

The basic numerical algorithms, such as Gaussian elimination, and forward and
backward substitution, for instance, for solving dense linear systems, can be found
in almost any text book on numerical linear algebra. We refer to Heath [41] or
Demmel [23].
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An in-depth treatment of direct methods for large sparse SPD matrices is given
by George and Liu [32]. The generalization of these methods to unsymmetric
and indefinite matrices is given by Duff et al. [25]. Iterative methods for large
sparse linear systems is comprehensively treated by Saad [57], and Barret and
co-authors [7]. A pedagogical and painless introduction to the CG method is given
by Shewchuk [63]. A survey of preconditioning techniques is given by Benzi [10].

An introduction to multigrid is given by Demmel [23]. A more advanced
treatment is given by Hackbush [39].

6.7 Problems

Exercise 6.1. Plot the structure, using spy, of the usual stiffness matrix A, given by

[p,e,t]=initmesh(’circleg’,’hmax’,0.1);
A=assema(p,t,1,0,0);

Plot also the structure of its inverse. Use nnz to find out how many non-zeros there
are in each matrix.

Exercise 6.2. Reorder the stiffness matrix A from the previous exercise using the
approximate minimum degree ordering symamd. Plot the matrix structure before and
after reordering.

Exercise 6.3. On the L-shaped domain lshapeg with mesh size one tenth, assem-
ble the stiffness and mass matrix, viz.,

[A,M]=assema(p,t,1,1,0);

Compute the Cholesky factorization of A+M using chol. Reorder the matrix using
symamd and repeat. How much sparser is the Cholesky factor after reordering?

Exercise 6.4. Draw the graph G.A/ of the symmetric matrix

A D

2
664
10 1:2 0 0

1:2 3 �5:3 2:4
0 �5:3 1:6 7

0 2:4 7 8

3
775

(a) How many vertices and edges are there in the graph?
(b) What is the degree of each vertex?
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Exercise 6.5. Suppose A is SPD with structure

A D

2
66666664

1 x x x

x 2 x

3 x x

x 4

x x 5

x x 6

3
77777775

(a) Draw the graph of A.
(b) Draw the sequence of elimination graphs corresponding to the Cholesky

factorization A D LLT .
(c) Draw the structure of L.

Exercise 6.6. Write two routines Jacobi and GaussSeidel implementing Jacobi
and Gauss-Seidel iteration. Let the syntax for calling the routines be given by

[x,k]=Jacobi(A,b,tol)
[x,k]=GaussSeidel(A,b,tol)

where tol is a number specifying the desired relative residual kr.k/k=kr.0/k, and k
is the number of iterations performed. Test your codes by solving the linear system
with

A D

2
66666664

12 1 0 0 0 �1
1 10 1 0 0 0

2 0 20 2 0 0

0 0 1 12 �1 0

0 3 0 0 30 3

0 0 0 2 �2 24

3
77777775
; b D

2
66666664

8

24

70

46

174

142

3
77777775

Exercise 6.7. Use Jacobi and GaussSeidel to compare the number of iterations
required by these methods to converge to a given accuracy from a zero starting
guess. Let A and b be defined by

e=ones(n,1);
A=spdiags([-e 2*e -e], -1:1, n, n);
b=rand(n,1);

Record the number of iterations needed to achieve the tolerance 0:1, 0:01, 0:001,
and 0:0001 for a few different values of n, say 10, and 100. How many times faster
is Gauss-Seidel than Jacobi?

Exercise 6.8. Show that Jacobi iteration may take the form

x.kC1/ D x.k/ CHr.k/
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where H is a matrix to be defined by you and r.k/ D b � Ax.k/ is the residual
at stage k. Can you interpret this result from the point of view of one-dimensional
projection methods for Ax D b.

Exercise 6.9. Consider the m-th Krylov space Km.AI b/, and the corresponding
Krylov matrix

Km D �
b Ab A2b : : : Am�1b

�

Let A = diag([1 2 3 4]) and b = [1 1 1 1]’.

(a) Compute the Krylov matrix K4. Then express the vector x D A�1b D
Œ1; 1

2
; 1
3
; 1
4
�T as a linear combination of the columns of K4.

(b) Use Arnoldi to compute the 4 � 4 matrices Q and H in the Arnoldi
factorization of A, (i.e., such that AQDQH ). Use q1 D b=kbk as starting
vector. (Note that since the Arnoldi algorithm stops at stage 3, the last column
of H is not actually computed. It comes from a final command H(:,4) =
Q’*A*Q(:,4).)

(c) Assume that we have run Arnoldi’s algorithm for 2 steps so that we have access
to the orthogonal basis Q2 D Œq1; q2� that span the Krylov subspace K2.AI b/.
Show how the matrixH2 can be used to get a Galerkin solution x2, that is, such
that the residual r2 D b � Ax2 is orthogonal to the span of the basis vectors q1
and q2. Compute x2. What is the residual r2?

Exercise 6.10. Consider a linear system with coefficient matrix and right hand side
vector, A and b, defined by

[p,e,t]=initmesh(’lshapeg’,’hmax’,0.1); x=p(1,:); y=p(2,:);
[A,M]=assema(p,t,2,1,0); b=M*(x+y)’; A=A+M;

Solve A*x=b using pcg and cholinc. Use the parameters tol=1e-6, maxit=10000,
and droptol=1e-3. How many iterations are needed to obtain a solution within
the desired tolerance with and without the preconditioner?

Exercise 6.11. Use TwoGrid to verify the results of Fig. 6.6.



Chapter 7
Abstract Finite Element Analysis

Abstract In this chapter we study the mathematical theory of finite element
methods from a broader perspective by introducing a general theory for linear
second order elliptic partial differential equations. This allows us to handle a
large class of problems with the same analytical techniques. We do this by first
introducing a general elliptic problem and its abstract weak form posed on a so-
called Hilbert space. We show that this weak problem has a solution by proving
the Lax-Milgram lemma, and that this solution is unique. Knowing that the solution
exists we then show how to approximate it by finite elements. Finally, we prove
basic a priori and a posteriori error estimates for the finite element approximation.

7.1 Function Spaces

In this section we introduce spaces of functions that are useful in the analysis of
partial differential equations and the finite element method. We begin by recalling
some basic concepts from linear algebra.

7.1.1 Normed and Inner Product Vector Spaces

A real vector space is V is a set with operations C W V �V ! V and � W R�V ! V

such that

• u C v D v C u
• .u C v/C w D u C .v C w/
• � � .u C v/ D � � u C � � v
• .�C �/ � u D � � u C � � u

for all vectors u; v;w 2 V and scalars �;� 2 R. In addition, there should be a zero
vector 0 such that u C 0 D u, and a negative vector �u such that u C .�u/ D 0 for

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__7, © Springer-Verlag Berlin Heidelberg 2013
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any vector u 2 V . Examples of real vector spaces include Euclidean space R
n, the

space Pk.I / of polynomials of order k on an interval I , and the space of continuous
functions C0.I / on I . In general, we simplify the notation for the product between
a scalar � 2 R and a vector v 2 V and write � � v D �v.

A norm on a vector space V is a mapping k � k W V ! R that satisfies

• ku C vk � kuk C kvk
• k�uk D j�j kuk
• kuk 	 0, with equality if and only if u D 0

for all u; v 2 V and � 2 R. A semi-norm j � j W V ! R is a mapping that satisfies
the requirements of a norm, except that juj D 0 does not need to imply u D 0.
A normed vector space is a vector space equipped with a norm. Perhaps needless
to say there are many norms. For example, we may equip R

n with the Euclidean
2-norm or the max norm

kvk2 D
 

nX
iD1

jvi j2
!1=2

; kvk1 D max
1�i�n jvi j (7.1)

We may also equip the function spaces Pk.I / and C0.I / with the corresponding
norms

kvkL2.I / D
�Z

I

jvj2 dx
�1=2

; kvkL1.I / D sup
x2I

jv.x/j (7.2)

A basis for the vector space V is a minimal set of vectors f�igniD1 that span
V . This means that any vector v in V can be written as the linear combination
v D c1�1 C c2�2 C � � � C cn�n for some coefficients ci , i D 1; 2; : : : ; n. The bases
�i must be linearly independent in the sense that v D 0 if and only if ci D 0 for
all i . The number of basis vectors n is called the dimension of V . For example, the
set f1; x; x2; : : : ; xkg of monomials forms a basis for the polynomial space Pk.I /.
Since there are k C 1 monomials, the dimension of Pk.I / is k C 1. If k < 1 we
say that Pk.I / is of finite dimension. If k D 1 the set fxi g1

iD0 forms a basis for the
space of square integrable functions L2.I /. In this case, since the number of basis
functions are infinite, L2.I / is said to be of infinite dimension.

If a subset V0 of V is a vector space itself under the operations of V , then it is a
subspace of V .

A functional or linear form on a vector space V is a mapping l.�/ W V ! R that
satisfies

• l.u C v/ D l.u/C l.v/
• l.�u/ D �l.u/

for all u; v 2 V and � 2 R. A linear form is continuous, or bounded, if there is a
constant C such that

jl.v/j � Ckvk (7.3)

for all v 2 V . The norm of l.�/ is defined by
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klk D sup
v2V

jl.v/j
kvk (7.4)

The set of all continuous functionals on V is called the dual space V � of V . It can
be shown that V � is a linear vector space under the C and � operations, .� � l C � �
m/.v/ D � � l.v/ C � � m.v/ for any functionals l; m 2 V � and scalars �;� 2 R.
The dual space V � can be normed by setting klkV � D klk.

A bilinear form on a vector space V is a mapping a.�; �/ W V � V ! R such
that

• a.u C v;w/ D a.u;w/C a.v;w/
• a.u; v C w/ D a.u; v/C a.u;w/
• a.�u; v/ D �a.u; v/
• a.u; �v/ D �a.u; v/

for all u; v;w 2 V and � 2 R. The bilinear form is symmetric if

a.u; v/ D a.v; u/ (7.5)

for all u; v 2 V and continuous, or bounded, if there is a constant C such that

a.u; v/ � Ckuk kvk (7.6)

for all u; v 2 V .
A symmetric bilinear form a.�; �/ is called an inner product if

• a.u; u/ 	 0, with equality if and only if u D 0

for all u 2 V . Inner products are often also denoted .�; �/. An inner product defines
a so-called induced norm by

kuk2 D .u; u/ (7.7)

on V . In particular, a.�; �/ defines the induced energy norm jjjujjj2 D a.u; u/.
A vector space equipped with an inner product is called an inner product vector

space. In such spaces the Cauchy-Schwarz inequality

.u; v/ � kuk kvk (7.8)

holds for all u; v 2 V . In order to prove Cauchy-Schwarz inequality we note that it
is trivially satisfied if kvk D 0. Assuming kvk ¤ 0 we have

0 � ku C �vk2 D .u C �v; u C �v/ D kuk2 C 2�.u; v/C �2kvk2 D g.�/ (7.9)

for all u; v 2 V and � 2 R. Computing the minimum of the function g.�/ with
respect to the scalar variable � we eventually end up with

0 � kuk2 � j.u; v/j2
kvk2 (7.10)
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and the inequality follows. Using the Cauchy-Schwarz inequality we can easily
verify that the norm defined by the inner product satisfies the Triangle inequality
and therefore indeed is a norm.

We define the angle � between two vectors u; v 2 V by

� D arccos
.u; v/

kuk kvk (7.11)

and we say that u and v are orthogonal if .u; v/ D 0. If u; v 2 V are orthogonal, then
the Pythagorean theorem

ku C vk2 D kuk2 C kvk2 (7.12)

holds. Finally, we recall that the Parallelogram law

ku C vk2 C ku � vk2 D 2kuk2 C 2kvk2 (7.13)

holds for all u; v 2 V in an inner product space.

7.1.2 Banach and Hilbert Spaces

In order to define Banach and Hilbert spaces we first need to define the concept of
completeness.

A Cauchy sequence in a normed vector space V is a sequence fvig1
iD1 of elements

vi 2 V , i D 1; 2; : : : , such that for all � > 0 there is a positive integer n such that

kvi � vj k � �; for i; j 	 n (7.14)

A sequence fvi g1
iD1 is convergent if there exists v 2 V such that for all � > 0 there

is a positive integer n such that

kv � vik � �; for i 	 n (7.15)

If a sequence is convergent, then it is also a Cauchy sequence. A vector space is said
to be complete if every Cauchy sequence is also convergent.

A Banach space is a complete normed vector space and a Hilbert space is a
complete inner product vector space. We shall see below that completeness plays
an important role when one seeks to prove the existence of solutions to certain
problems. Then a common strategy is to construct a sequence of approximate
solutions to the problem, show that the sequence is indeed a Cauchy sequence and
finally use completeness to show that the sequence converges.
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A linear subspace V0 � V of a Hilbert space V is said to be closed if all
sequences in V0 has a limit in V0. That is, if fvig1

iD1 with vi 2 V0 and vi ! v
implies v 2 V0. If so, V0 is also a Hilbert space under the same norm as V .

Let .�; �/ be the inner product on the Hilbert space V . Given a closed linear
subspace V0 of V , the orthogonal complement V ?

0 D fv 2V W .v; v0/ D 0;8v0 2
V0g is also a closed linear subspace of V . Moreover, we have the orthogonal
decomposition V D V0 ˚ V ?

0 . As a consequence, for any u 2 V , there is a unique
function u0 2 V0 that is closest to u with respect to the induced norm k � k2V D .�; �/.
Indeed, u0 is characterized by the best approximation result

ku � u0kV � ku � v0kV ; 8v0 2 V0 (7.16)

7.1.3 Lp Spaces

In finite element analysis the most important Banach and Hilbert spaces are vector
spaces of functions and originate from the following families of functions.

The Lp.˝/ function spaces are defined by

Lp.˝/ D fv W ˝ ! R W kvkLp.˝/ < 1g (7.17)

where

kvkLp.˝/ D
�Z

˝

jvjp dx
�1=p

; 1 � p < 1 (7.18)

and
kvkL1.˝/ D sup

x2˝
jv.x/j; p D 1 (7.19)

Here, the integral is a so called Lebesgue integral which allows integration of more
general functions than the classical Riemann integral. In fact, these functions do not
need to have well-defined point values. It is possible to show thatLp.˝/ are Banach
spaces for all 1 � p � 1. We shall not go into the theory of Lebesgue integration
here, since it is quite involved, and since the completeness of the Lp.˝/ spaces is
the main property that will be needed later.

If p D 2, then kvk2
L2.˝/

D .v; v/L2.˝/, where .u; v/L2.˝/ D R
˝

uv dx, is the

L2.˝/ inner product and, thus, L2.˝/ is a Hilbert space. If p ¤ 2, then k � kLp.˝/
is not given by any inner product, and, thus, Lp.˝/ is only a Banach space.

7.1.4 Weak Derivatives

Because functions in Hilbert spaces are not in general regular enough for the
standard definition of the derivative to make sense we shall introduce a concept
called weak derivative where the derivative is defined in an average sense. To
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this end, let Ck.˝/ be the space of all k < 1 times continuously differentiable
functions in˝ . Also, letD.˝/ be the space of all infinitely differentiable compactly
supported functions in ˝ . That is,

D.˝/ D f' 2 C1.˝/ W supp.'/ �� ˝g (7.20)

where the support of ' is the closure of the open set fx 2 ˝ W '.x/ ¤ 0g. A function
' is said to have compact support with respect to ˝ if supp.'/ is a compact set !
that is a subset of the interior of ˝ . A subset ! � ˝ is compact if and only if it is
closed and bounded. We write supp.'/ �� ˝ to signify that supp.'/ � ! � ˝

with ! compact, and say that the support of ' is compactly contained in ˝ . Thus,
the functions inD.˝/ can be differentiated an infinite number of times, and are non-
zero strictly within ˝ . In particular, they vanish sufficiently close to the boundary
@˝ .

To simplify the derivative notation let us introduce the concept of a multi-index.
A multi-index ˛ D .˛1; ˛2; : : : ; ˛d / is a d -tuple of non-negative integers ˛i . The
order j˛j of ˛ is defined by

j˛j D
dX
iD1

˛i (7.21)

We let

D˛' D
dY
iD1

�
@

@xi

�˛i
'; ' 2 D.˝/ (7.22)

denote the classical partial derivative. Using partial integration and the fact that
boundary terms vanish, since the support of ' is compact, we derive the following
identity Z

˝

@u

@xi
'dx D �

Z
˝

u
@'

@xi
dx; 8' 2 D.˝/ (7.23)

for any u 2 C1.˝/. Repeating this formula we obtain

Z
˝

.D˛u/'dx D .�1/j˛j
Z
˝

uD˛'dx; 8' 2 D.˝/ (7.24)

for any u 2 C j˛j.˝/. Here, we note that only the right hand side requires the
strong regularity u 2 C j˛j.˝/. We finally introduce the space of locally integrable
functions

L1loc.˝/ D fv W v 2 L1.K/;8K �� ˝g (7.25)

Let u 2 L1loc.˝/. If there is a function g 2 L1loc.˝/ such that

Z
˝

g'dx D .�1/j˛j
Z
˝

uD˛'dx; 8' 2 D.˝/ (7.26)
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then we say that g is the weak derivative D˛u of u. We note that both the left and
right hand side integrals are well-defined. For instance, for the right hand side, we
have ˇ̌

ˇ̌Z
˝

uD˛'dx

ˇ̌
ˇ̌ � kukL1.K/kD˛'kL1.K/ < 1 (7.27)

whereK D supp.'/.
As an example, let ˝ D .�1; 1/, and let u D 3 � jxj. The weak derivative

g D D1u is equal to

g D
(
1; �1 < x � 0

�1; 0 < x < 1
(7.28)

In order to verify this we need to prove that

Z 1

�1
g' dx D �

Z 1

�1
uD1' dx; 8' 2 D.˝/ (7.29)

Integrating by parts, we get

�
Z 1

�1
uD1'dx D �

Z 0

�1
uD1'dx �

Z 1

0

uD1'dx (7.30)

D
Z 0

�1
D1u'dx �

h
u'
i0

�1 C
Z 1

0

D1u'dx �
h
u'
i1
0

(7.31)

D
Z 0

�1
'dx � .3'.0/� 2'.�1//�

Z 1

0

'dx � .2'.1/� 3'.0//
(7.32)

D
Z 1

�1
g'dx (7.33)

Here, we used that '.�1/ D '.1/ D 0, since ' has compact support.
Weak and classical derivatives share many properties, such as linearity, the chain

rule, and differentiation of products, for instance.

7.1.5 Sobolev Spaces

Let u 2 L1loc.˝/ and assume that all weak derivatives D˛u with j˛j � k, where k
is a non-negative integer, exist. We define the Sobolev norm of u by

kukW p

k .˝/
D
0
@X

j˛j�k
kD˛ukpLp.˝/

1
A
1=p

; 1 � p < 1 (7.34)
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and
kukW p

k .˝/
D max

j˛j�k
kD˛ukL1.˝/; p D 1 (7.35)

The Sobolev space W p

k .˝/ is then defined by

W
p

k .˝/ D fu 2 L1loc.˝/ W kukW p
k .˝/

< 1g (7.36)

Thus, W p

k .˝/ is the space of Lp.˝/ functions u, whose weak derivatives D˛u,
j˛j � k, also lies in Lp.˝/.

In this context we also define the Sobolev semi-norms

jujW p
k .˝/

D
0
@X

j˛jDk
kD˛ukpLp.˝/

1
A
1=p

; 1 � p < 1 (7.37)

and
jujW p

k .˝/
D max

j˛jDk
kD˛ukL1.˝/; p D 1 (7.38)

If @˝ is sufficiently regular, it can be shown that C1.˝/ is dense in W p

k .˝/

for 1 � p < 1. Loosely speaking this means that smooth functions lie arbitrarily
close to Sobolev functions. In fact, any Sobolev function can be approximated by a
sequence of smooth functions. Indeed, for any u 2 W

p

k .˝/ there is ui 2 C1.˝/
such that ui ! u as i ! 1. This approximation holds within the interior of
the domain ˝ , and up to the boundary provided that @˝ has C1 continuity. As a
consequence, we may alternatively define W p

k .˝/ as the completion of C1.˝/
with respect to the Sobolev norm k � kW p

k .˝/
. In other words, W p

k .˝/ contains all
limits of all sequences of C1.˝/ functions with norm less than infinity.

The fact that complicated Sobolev functions can be approximated by simple
smooth functions is often used to avoid working with weak derivatives. In doing
so, the basic idea is to first establish the desired results for smooth functions and
then generalize these results to Sobolev functions by taking limits.

The Sobolev spaces are Banach spaces for all 1 � p � 1. However, for p D 2,
W 2
k .˝/ is also a Hilbert space with inner product and norm

.u; v/W 2
k .˝/

D
X

j˛j�k
.D˛u;D˛v/L2.˝/ (7.39)

kuk2
W 2
k .˝/

D
X

j˛j�k
kD˛uk2

L2.˝/
(7.40)

The case p D 2 is the most common in finite element analysis and we shall use
the notationHk.˝/ D W 2

k .˝/ to emphasize the Hilbert space property. Thus, with
k D 1, we have the familiar space
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H1.˝/ D fv 2 L2.˝/ W D1u 2 L2.˝/g (7.41)

with inner product and norm

.u; v/H1.˝/ D .u; v/L2.˝/ C .ru;rv/L2.˝/ (7.42)

kuk2
H1.˝/

D kuk2
L2.˝/

C kruk2
L2.˝/

(7.43)

The regularity of functions in Hilbert spaces depends on the space dimension d
of the domain ˝ � R

d . Regarding H1.˝/ it can be shown that its functions are
continuous for d D 1, may lack values at certain isolated points for d D 2, and be
discontinuous along a curve for d D 3.

7.1.6 Traces

The properties of Sobolev functions on the boundary @˝ is a delicate matter. This
has to do with the fact that such functions are defined by the Lebesgue integral only
up to a set of measure zero, and that @˝ has precisely zero measure. This means that
it is meaningless to speak about the restriction of a Sobolev function to the boundary,
since we may to a large extent alter its boundary values without changing its status
as a member of the space. Thus, the question arise how to define the restriction of
a Sobolev function on the domain boundary? The answer is of course trivial if the
function is continuous. We simply evaluate the function on the boundary. However,
this leads to the idea that for a general Sobolev function we can first make a smooth
approximation from within the domain, and then evaluate this approximation on
the boundary. This is called the trace of the function. Loosely speaking, any w 2
W

p
1 .˝/ can be restricted to v 2 Lp.@˝/. Conversely, any v 2 Lp.@˝/ can be

extended to w 2 W p
1 .˝/. Indeed, assuming that @˝ is sufficiently regular, say C1,

the so-called trace operator

� W W p
1 .˝/ ! Lp.@˝/ (7.44)

is well-defined and satisfies the following stability estimate

k�vkLp.@˝/ � Ckvk1�1=pLp.˝/kvk1=p
W
p
1 .˝/

(7.45)

The case p D 2 is of particular importance from which we infer the Trace inequality

k�vkL2.@˝/ � Ckvk1=2
L2.˝/

kvk1=2
H1.˝/

(7.46)

We sometimes need to use the Trace inequality on a domain K whose diameter
scales with a parameter hK . A typical example is a triangle element. In order to get
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the correct asymptotic behavior as hK ! 0 we need to take the parameter hK into
account. This yields

k�vk2
L2.@K/

� C
	
h�1
K kvk2

L2.K/
C hKkrvk2

L2.K/



(7.47)

Using the trace operator we can define the constrained Hilbert space

H1
0 .˝/ D fv 2 H1.˝/ W .�v/j@˝D 0g (7.48)

which consists of all functions in H1.˝/ that vanish in the sense of the trace
operator on @˝ . On this space the full norm k � kH1.˝/ may be replaced by the
semi-norm j � jH1.˝/, since the only constant function inH1

0 .˝/ is the zero function.
Often, the trace operator is omitted and .�v/j@˝ is simply written vj@˝ .

7.2 Interpolation of Functions in Hilbert Spaces

To approximate functions in the infinite dimensional Hilbert spaces we often use
interpolation onto finite dimensional polynomial spaces. However, the interpolation
operator � we have considered so far depends on pointwise evaluation and requires
the function that we interpolate to be continuous. Now, because Hilbert space
functions are not continuous in general we need to construct interpolation operators
for these functions as well. We give a brief description of two types of such
interpolants. For simplicity, we restrict our attention to interpolation with piecewise
linear continuous functions defined on a shape regular triangulation K of ˝ . As
usual, let Vh be the space of continuous piecewise linears on K .

7.2.1 The Clement Interpolant

Let v 2 C0.˝/ be a continuous function and recall that the usual interpolant �v 2
Vh of v is defined by

�v D
npX
iD1

v.Ni/ 'i (7.49)

where fNignpiD1 is the set of nodes, f'ignpiD1 is the standard hat function basis in Vh,
and np is the number of nodes. In order to extend this definition to more general
functions we shall replace the nodal values v.Ni/ by local averages of v. We define
for each node Ni a patch of elements N.Ni / consisting of all elements that share
the node Ni . We let P1.N.Ni // denote the linear polynomials onN.Ni / and define
the average using L2-projection as follows: find Piv 2 P1.N.Ni // such that
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Z
N.Ni /

Pivwdx D
Z
N.Ni /

vwdx; 8w 2 P1.N.Ni // (7.50)

The so-called Clement interpolant �C W L1.˝/ ! Vh is then defined by

�C v D
npX
iD1

Piv.Ni/ 'i (7.51)

This interpolant is due to Clement [20]. It satisfies the interpolation error estimate

kv � �C vkHm.K/ � Chk�mjvjHk.N.K//; m D 0; 1; m � k � 2; 8K 2 K
(7.52)

whereN.K/ is the neighborhood of elementK consisting of all elements that share
a node with K .

7.2.2 The Scott-Zhang Interpolant

The Clement interpolant is not a projection and it does not satisfy boundary
conditions. Scott and Zhang [61] proposed another approach that solved these
problems. Essentially, the idea is to represent the evaluation of a polynomial in a
node as an inner product with a certain weight function. Here, we first associate one
triangle Ki , that has Ni as one of its nodes, to each node Ni . Let P1.Ki/ be the
space of linear polynomials on Ki . We note that the mapping

v 7! v.Ni / (7.53)

is a linear functional on P1.Ki / and that there exists �i 2 P1.Ki/ such that

v.Ni/ D
Z
Ki

v�i dx; 8v 2 P1.Ki/ (7.54)

In this identity only the left hand side requires v to be continuous to be well defined.
The right hand side is well defined for v 2 L1.K/. We can thus define the Scott-
Zhang interpolation operator �SZ W L1.˝/ ! Vh as follows

�SZv D
npX
iD1

Z
Ki

v�i dx 'i (7.55)

By construction �SZv D v for v 2 Vh, and, thus, �SZ is a projection. Furthermore,
the same interpolation error estimates as for the Clement interpolant holds. That is,

kv � �SZvkHm.K/ � Chk�mjvjHk.N.K//; m D 0; 1; m � k � 2; 8K 2 K
(7.56)
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In the following, we shall always assume that � D �SZ is the Scott-Zhang
interpolation operator.

7.3 The Abstract Setting

Let us now put the pieces together and formulate an abstract variational problem
posed in a Hilbert space and prove that it has a unique solution. Our reason for doing
so is that many important, so-called elliptic, partial differential equations lead to
such variational problems, and that we can obtain existence and uniqueness results
for this whole class of problems with a single unified mathematical theory.

7.3.1 An Abstract Variational Problem

Let V be a Hilbert space and let a.�; �/ W V � V ! R be a bilinear form such that

• a.�; �/ is coercive (or elliptic). That is, there is a constantm such that

mkvk2V � a.v; v/; 8v 2 V (7.57)

• a.�; �/ is continuous. That is, there is a constant Ca such that

a.u; v/ � CakukV kvkV ; 8u; v 2 V (7.58)

Further, let l.�/ W V ! R be a continuous linear functional. That is, there is a
constant Cl such that

l.v/ � ClkvkV ; 8v 2 V (7.59)

Our abstract variational problem takes the form: find u 2 V such that

a.u; v/ D l.v/; 8v 2 V (7.60)

7.3.2 The Riesz Representation Theorem

In order to analyze our abstract variational problem we need the following famous
and fundamental result.

Theorem 7.1 (Riesz Representation Theorem). Let V be a Hilbert space with
inner product .�; �/. Every continuous linear form l.�/ on V can be uniquely
represented as

l.v/ D .u; v/ (7.61)

for some u 2 V .
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Proof. If l.�/ D 0, then u D 0, so let us assume that l.�/ ¤ 0. Let N be the null
space N D fv 2 V W l.v/ D 0g. Then, V admits the decomposition V D N CN?,
with N? the orthogonal complement to N with respect to the inner product on V .
Pick w 2 N?. Then, l.w/ ¤ 0, and, for any v 2 V ,

l

�
v � l.v/

l.w/
w

�
D 0 (7.62)

Thus, v � l.v/
l.w/w 2 N , which implies

�
v � l.v/

l.w/
w;w

�
D 0 (7.63)

From this equation we obtain

l.v/ D l.w/

kwk2V
.w; v/ (7.64)

Hence, l.v/ D .u; v/ with

u D l.w/

kwk2V
w (7.65)

It remains to show that u is unique. Suppose that u1 and u2 both satisfy l.v/ D
.ui ; v/, i D 1; 2, for all v 2 V . Then, by subtraction .u1 � u2; v/ D 0. Choosing
v D u1 � u2 yields ku1 � u2kV D 0, so u1 D u2. ut

In the special case that the bilinear form a.�; �/ is symmetric existence and
uniqueness of a solution to the abstract variational problem (7.60) immediately
follows from the Riesz representation theorem due to the fact that a.�; �/ defines
an inner product on V . Hence, there is a unique u 2 V for each l 2 V �.

7.3.3 An Equivalent Minimization Problem

If the bilinear form a.�; �/ is symmetric, then the solution u 2 V to the abstract
variational problem (7.60) is also the minimizer of a minimization problem. In fact,
these two problems are equivalent.

Theorem 7.2. Let V be a Hilbert space, and let a.�; �/ be a symmetric coercive
continuous bilinear form on V , and let l.�/ be a continuous linear form on V . Then,
the abstract variational problem (7.60) is equivalent to the minimization problem:
find u 2 V such that

F.u/ D min
v2V F.v/ (7.66)



190 7 Abstract Finite Element Analysis

where

F.v/ D 1

2
a.v; v/� l.v/ (7.67)

Proof. Let u be the minimizer of (7.66) and consider the function g W R ! R such
that

g.�/ D F.u C �v/ (7.68)

for a fixed, but arbitrary, v 2 V . Expanding g we have

g.�/ D 1

2
a.u C �v; u C �v/ � l.u C �v/ (7.69)

D 1

2
.a.u; u/C 2�a.u; v/C �2a.v; v//� l.u/� �l.v/ (7.70)

where we have used the symmetry a.u; v/ D a.v; u/. By construction, g.�/ assumes
its minimum for � D 0, which implies g0.0/ D 0. Thus, differentiating g with
respect to � we have

g0.�/ D a.u; v/� �a.v; v/ � l.v/ (7.71)

implying

g0.0/ D a.u; v/� l.v/ D 0 (7.72)

for each v 2 V . This is exactly our abstract variational problem.
Now, let u instead be the solution to the abstract variational problem (7.60).

Expanding F.u C v/, with v 2 V arbitrary, we have

F.u C v/ D 1

2
a.u C v; u C v/� l.u C v/ (7.73)

D 1

2
.a.u; u/C 2a.u; v/C a.v; v// � l.u/� l.v/ (7.74)

D F.u/C a.u; v/� l.v/C 1

2
a.v; v/ (7.75)

D F.u/C 1

2
a.v; v/ (7.76)

	 F.u/ (7.77)

where we have used that a.u; v/ D l.v/ for all v 2 V . From this we conclude that
F.u C w/ attains its minimum value for v D 0.

Hence, (7.60) and (7.66) are equivalent. ut
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In mechanics applications the minimization problem can be through of as a
demand for minimal energy. Indeed, the functional F.�/ represents the mechanical
energy of the physical system under consideration, and the solution u a displacement
from a state of rest into one of equilibrium of forces.

7.3.4 The Lax-Milgram Lemma

The extension of the Riesz representation theorem to non-symmetric bilinear forms
a.�; �/ is known as the Lax-Milgram lemma.

Theorem 7.3 (Lax-Milgram Lemma). Let V be a Hilbert space with inner
product .�; �/, and let a.�; �/ be a coercive continuous bilinear form on V , and let
l.�/ be a continuous linear form on V . Then, there exist a unique solution u 2 V to
the abstract variational problem: find u 2 V such that

a.u; v/ D l.v/; 8v 2 V (7.78)

Proof. Since l.�/ is a continuous linear functional on V , there is a b 2 V such that
l.v/ D .b; v/ for all v 2 V by the Riesz representation theorem. Also, since a.u; �/
is a linear and continuous functional on V for each u 2 V on V , there is a w 2 V

such that a.u; v/ D .w; v/ for all v 2 V , again, by the Riesz representation theorem.
Thus, let Au D w. The operator A W V ! V is linear and continuous. The linearity
follows from

.A.�u C �w/; v/ D a.�u C �w; v/ D �.Au; v/C �.Aw; v/ (7.79)

for any u; v 2 V and �;� 2 R. The continuity follows from

kAuk2V D .Au; Au/ D a.u; Au/ � CkukV kAukV (7.80)

or

kAukV � CkukV (7.81)

Thus, instead of the variational equation a.u; v/ D l.v/ on V , let us consider the
operator equation Au D b in V �. For this equation to be solvable we require that
b 2 V is in the range R.A/ D fw 2 V W w D Av for some vg of A for any b. To
show this, we use the coercivity

mkuk2V � a.u; u/ D .Au; u/ � CkukV kAukV (7.82)

or

mkukV � CkAukV (7.83)
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We want R.A/ D V and, consequently, R.A/? D N.A/ D f0g, where N.A/ D
fw 2 V W Aw D 0g is the null space of A. Assume that Avi ! w as i ! 1. Then,
mkvi � vj kV � CkAvi � AvjkV ! 0 as i; j ! 1, so fvi � vj g is a Cauchy
sequence. Set v D limi!1 vi . This limit exist, since V is complete. Also, since A
is continuous, we have Av D w, which shows that R.A/ is a closed subspace of V .
To show that R.A/ is the whole of V , assume z 2 N.A/. Then, we have

mkzkV � CkAzkV D 0 (7.84)

which shows that z is zero, and that N.A/ is the zero set f0g. Thus, since V D
R.A/˚N.A/, we conclude that R.A/ D V . Hence, there exist a solution u 2 V to
Au D b for any b 2 V .

It remains to show that u is unique. Suppose that u1 and u2 both satisfy Aui D b,
i D 1; 2. Thenmku1 � u2kV � CkA.u1 � u2/kV D 0, so u1 D u2. ut

There are several variants and extensions of the Lax-Milgram lemma. For
example, to complex-valued problems.

7.3.5 Application to Elliptic Partial Differential Equations

Let us demonstrate the usability of the Lax-Milgram lemma by working through
some examples. For ease of notation, let .�; �/ and k � k denote the L2.˝/ inner
product and norm on the domain˝ , respectively.

7.3.5.1 Poisson’s Equation

Let us first revisit Poisson’s equation

�u D f; x 2 ˝; u D 0; x 2 @˝ (7.85)

As we have seen before, the bilinear and linear form for this equation are given by

a.u; v/ D .ru;rv/ (7.86)

l.v/ D .f; v/ (7.87)

and the appropriate Hilbert space is V D H1
0 .˝/ with norm kvkV D kvkH1

0 .˝/
D

krvk.
The coercivity of a.�; �/ follows trivially.

a.u; u/ D .ru;ru/ D kruk2 	 mkuk2V (7.88)

with m D 1.
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The continuity of a.�; �/ follows from the Cauchy-Schwarz inequality.

a.u; v/ D .ru;rv/ � kruk krvk � kukV kvkV (7.89)

The continuity of l.�/ follows from the Cauchy-Schwarz inequality, again, and
the Poincaré inequality.

l.v/ D .f; v/ � kf k kvk � Ckf k krvk � Ckf k kvkV D CkvkV (7.90)

Here, we have absorbed the norm of f into the constant C at the end. This shows
that it is natural to demand f 2 L2.˝/, since kf k might not be well-defined
otherwise.

Hence, the requirements of the Lax-Milgram lemma are fulfilled.

7.3.5.2 The Diffusion-Reaction Equation

As a second example we consider the Diffusion-Reaction equation

�u C cu D f; x 2 ˝; n � ru D 0; x 2 @˝ (7.91)

where c 2 L2.˝/ is a given positive function with minimum value c0 > 0, and
f 2 L2.˝/ is a given function. The bilinear and linear forms for this equation are
given by

a.u; v/ D .ru;rv/C .cu; v/ (7.92)

l.v/ D .f; v/ (7.93)

and the appropriate Hilbert space is V D H1.˝/ with norm kvk2V D kvk2
H1.˝/

D
krvk2 C kvk2.

The coercivity of a.�; �/ follows from

a.u; u/ D .ru;ru/C .cu; u/ (7.94)

	 kruk2 C c0kuk2 (7.95)

	 min.1; c0/ .kruk2 C kuk2/ (7.96)

	 mkuk2V (7.97)

with m D min.1; c0/. Also, the continuity of a.�; �/ follows from

a.u; v/ D .ru;rv/C .cu; v/ (7.98)

� kruk krvk C kckL1.˝/kuk kvk (7.99)

� C.kruk krvk C kuk kvk/ (7.100)
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� C.kruk2 C kuk2/1=2.krvk2 C kvk2/1=2 (7.101)

� CkukV kvkV (7.102)

The continuity of l.�/ follows similarly from

l.v/ D .f; v/ � kf k kvk � Ckf k .krvk C kvk/ � CkvkV (7.103)

7.3.5.3 Laplace Equation with Mixed Boundary Conditions

As a final example we consider Laplace equation with mixed boundary conditions

�u D 0; x 2 ˝; u D 0; x 2 �D; n � ru D gN ; x 2 �N (7.104)

where gN 2 L2.�N / is a given function on �N . The bilinear and linear forms for
this equation are given by

a.u; v/ D .ru;rv/ (7.105)

l.v/ D .gN ; v/L2.�N / (7.106)

and the appropriate Hilbert space is V D fv 2 H1.˝/ W vj�DD 0g with norm
kvkV D krvk. The coercivity and continuity of a.�; �/ on V is obvious. However,
the continuity of l.�/ requires us to estimate the test function v 2 V on the boundary
segment �N . To this end, we first use the Cauchy-Schwarz inequality, then the Trace
inequality, and finally the Poincaré inequality.

l.v/ D .gN ; v/L2.�N / (7.107)

� kgN kL2.�N /kvkL2.�N / (7.108)

� CkgN kL2.�N / .kvk C krvk/ (7.109)

� CkgN kL2.�N /krvk (7.110)

� CkgN kL2.�N /kvkV (7.111)

D CkvkV (7.112)

7.3.6 A General Linear Second Order Elliptic Problem

Let us consider the general problem

Lu D f; in ˝ (7.113a)

u D 0; on @˝ (7.113b)



7.3 The Abstract Setting 195

where L is the linear second order differential operator

Lu D
dX

i;jD1
� @

@xi

�
aij

@u

@xj

�
C

dX
iD1

bi
@u

@xi
C cu (7.114)

where aij , i; j D 1; 2; : : : ; d , bi , i D 1; 2; : : : ; d , and c are given coefficients
depending only on the space coordinate x.

We shall assume that there is a constant a0 > 0 such that

a0

dX
iD1

x2i �
dX

i;jD1
aij xixj (7.115)

for any x 2 ˝ , and that these coefficients are symmetric in the sense that aij D aj i .
We shall also assume that there is a constant c0 > 0 such that

1

2
c �

dX
iD1

@bi

@xi
> c0 (7.116)

for any x 2 ˝ .
In compact form, we may write

Lu D �r � .aru/C b � ru C cu (7.117)

where a is the d � d matrix with entries aij , and b is the d � 1 vector with entries
bi . This kind of partial differential equation is a called elliptic.

The assumption (7.115) is the same as assuming that the d � d matrix a is
symmetric and positive definite.

Multiplying f D Lu D �r � .aru/ C b � ru C cu with a function v 2 V D
H1
0 .˝/, and integrating by parts using Green’s formula, we obtain the weak form:

find u 2 V such that
a.u; v/ D l.v/; 8v 2 V (7.118)

where the bilinear form and linear form are defined by

a.u; v/ D .aru;rv/C .b � ru; v/C .cu; v/ (7.119)

l.v/ D .f; v/ (7.120)

Let us verify that the assumptions on the coefficients aij , bi , and c are necessary
to fulfill the requirements of the Lax-Milgram lemma. It is easy to show that a.�; �/
is continuous on V .

a.u; v/ D .aru;rv/C .b � ru; v/C .cu; v/ (7.121)
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� C.kakL1.˝/kruk krvk C kbkL1.˝/kruk kvk C kckL1.˝/kuk kvk/
(7.122)

� CkukV kvkV (7.123)

wherekakL1.˝/ D max1�i;j�d kaij kL1.˝/ andkbkL1.˝/ D max1�i�d kbikL1.˝/.
It is harder to show that a.�; �/ is coercive on V . To this end, we first use the chain
rule to get

.r � .bu2/; 1/ D .r � bu; u/C 2.b � ru; u/ (7.124)

The divergence theorem and the boundary condition u D 0 on @˝ then gives us

0 D .n � bu2; 1/L2.@˝/ D .r � .bu2/; 1/ (7.125)

Finally, as a consequence,

a.u; u/ D .aru;ru/� 1

2
..r � b/u; u/C .cu; u/ (7.126)

	 a0kruk2 C c0kuk2 (7.127)

	 mkuk2V (7.128)

with m D min.a0; c0/.
It is obvious that, l.�/ is continuous on V .

7.4 Abstract Finite Element Approximation

7.4.1 Abstract Finite Element Method

From the Lax-Milgram lemma we know that the solution u to the weak form (7.60)
exist and is unique. Thus, let us seek to approximate it using finite elements. To
this end, let Vh � V be a finite dimensional subspace of V typically consisting of
continuous piecewise linear polynomials on a mesh K of ˝ with mesh size h.

The finite element approximation of (7.60) takes the form: find uh 2 Vh such that

a.uh; v/ D l.v/; 8v 2 Vh (7.129)

7.4.2 The Stiffness Matrix and Load Vector

Let f'igniD1 be a basis for Vh. The finite element method is equivalent to

a.uh; 'i / D l.'i /; i D 1; 2; : : : ; n (7.130)
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Indeed, if (7.129) holds for v anyone of the basis functions 'i , i D 1; 2; : : : ; n, then
it also holds for v a linear combination of these basis functions. Conversely, since
any v 2 Vh is precisely such a linear combination, (7.130) implies (7.129).

Since the finite element solution uh 2 Vh it can written as the linear combination

uh D
nX

jD1
�j 'j (7.131)

where �j , j D 1; 2; : : : ; n, are n unknown coefficients to be determined.
Inserting (7.131) into (7.130) we get

bi D l.'i / D
nX

jD1
�j a.'j ; 'i / D

nX
jD1

Aij �j ; i D 1; 2; : : : ; n (7.132)

which is n linear algebraic equations for the unknowns �j , j D 1; 2; : : : ; n. In
matrix form, we write this

A� D b (7.133)

where the entries of the n�n matrixA are given byAij D a.'j ; 'i /, and the entries
of the n � 1 vector b are given by bi D l.'i /. For historical reasons, A and b are
referred to as stiffness matrix and load vector. Solving the linear system A� D b for
the unknown n � 1 vector � containing the unknowns �j yields the finite element
solution uh D Pn

jD1 �j 'j .

7.4.3 Galerkin Orthogonality

To extract information about the error e D u � uh we can subtract the finite element
method (7.129) from the weak form (7.60). In doing so, since Vh � V , we obtain
the Galerkin orthogonality

a.e; v/ D 0; 8v 2 Vh (7.134)

Thus, the error e is orthogonal to Vh with respect to the inner product a.�; �/.

7.4.4 A Priori Error Estimates

The Galerkin orthogonality yields the following abstract best approximation result
known as Cea’s lemma.
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Theorem 7.4 (Cea’s Lemma). The error e satisfies the best approximation result

kekV � Ca

m
ku � vkV ; 8v 2 Vh (7.135)

Proof. Starting from the coercivity of a.�; �/ we have, for any v 2 Vh,

mkek2V � a.e; e/ (7.136)

D a.e; u � uh/ (7.137)

D a.e; u � v C v � uh/ (7.138)

D a.e; u � v/C a.e; v � uh/ (7.139)

D a.e; u � v/ (7.140)

� CakekV ku � vkV (7.141)

where we have used that a.e; v � uh/ D 0 due to Galerkin orthogonality, and the
continuity of a.�; �/ in the last line. Dividing by kekV concludes the proof. ut

We can quantify Cea’s lemma by first choosing v as the interpolant �u 2 Vh of u,
and then use interpolation theory to estimate the difference u � �u. Assuming that
ku��ukV � ChjujH2.˝/, we immediately have the following abstract a priori error
estimate.

Theorem 7.5. The error e satisfies the a priori estimate

kekV � ChjujH2.˝/ (7.142)

Thus, the error measured in the energy norm on V tends to zero as the mesh size h
tends to zero. Hence, the convergence of the finite element method is asserted.

To obtain a priori error estimates in the L2-norm, instead of the V -norm, it is
generally necessary to use a duality argument.

7.4.5 A Posteriori Error Estimates

A priori estimates are not computable as they involve the unknown solution u.
By contrast, a posteriori estimates can be used to actually compute bounds on the
error e.

To derive abstract posteriori estimates we note that, for any v 2 Vh,

mkek2V � a.e; e/ (7.143)

D a.u; e/� a.uh; e/ (7.144)

D l.e/� a.uh; e/ (7.145)
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Introducing the weak residual R.uh/ 2 V �, defined by

.R.uh/; v/ D l.v/� a.uh; v/; 8v 2 V (7.146)

we obtain the following error representation

mkek2V � .R.uh/; e/ (7.147)

and thus

mkek2V � sup
v2V

.R.uh/; v/

kvkV kekV D kR.uh/kV �kekV (7.148)

Dividing by kekV we have the a posteriori estimate

kekV � 1

m
kR.uh/kV � (7.149)

Unfortunately the dual norm kR.uh/kV � is complicated to compute due to the
supremum, but, of course, we still wish to derive a computable estimate. To this
end, consider for simplicity Poisson’s equation �u D f in ˝ with u D 0 on @˝ ,
and assume that we are using a standard finite element method based on continuous
piecewise polynomial approximation. In this case, we have V D H1

0 .˝/, and
proceed as follows. First, we have from Galerkin orthogonality, and elementwise
integration by parts

.R.uh/; v/ D l.v/� a.uh; v/ (7.150)

D l.v � �v/ � a.uh; v � �v/ (7.151)

D
X
K2K

.f Cu; v � �v/K C 1

2
.Œn � ruh�; v � �v/@K (7.152)

�
X
K2K

kf CukKkv � �vkK C 1

2
kŒn � ruh�k@Kn@˝kv � �vk@K

(7.153)

Next, using the Scott-Zhang interpolant we have

kv � �vkK D ChkrvkN.K/ (7.154)

which together with the Trace inequality yields

kv � �vk2@K � C

h�1
K kv � �vk2K C hKkr.v � �v/k2K

�
(7.155)

� ChKkrvk2N.K/ (7.156)
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Now, combining the above results we arrive at

.R.uh/; v/ � C

 X
K2K

h2Kkf Cuk2K C 1

4
hKkŒn � ruh�k2@Kn@˝

!1=2

 X
K2K

krvk2N.K/
!1=2

(7.157)

D C

 X
K2K

h2Kkf Cuk2K C 1

4
hKkŒn � ruh�k2@Kn@˝

!1=2
kvkV (7.158)

Finally, dividing by kvkV and taking the supremum we get the following estimate

kekV � CkR.uh/kV � � C

 X
K2K

h2Kkf Cuk2K C 1

4
hKkŒn � ruh�k2@Kn@˝

!1=2

(7.159)

We finally remark that to obtain a posteriori estimates for any quantities other
than the V -norm it is generally necessary to solve dual problems.

7.5 Further Reading

There are many references on functional analysis. We mention Kreyszig [48]
and Rudin [56]. Texts on partial differential equations include Evans [29] and
Folland [30]. Sobolev spaces are treated by Adams and Fournier [1]. The functional
analysis and Sobolev space theory necessary for finite elements can also be found
in Brenner and Scott [60].

7.6 Problems

Exercise 7.1. Write out all terms in the sum
P

j˛jD2 D˛u.

Exercise 7.2. Calculate the weak derivative of the function

g D
(
x; 0 < x < 1

1; 1 < x < 2

Exercise 7.3. Write down the inner product and norm for the Hilbert spaceH2.˝/.

Exercise 7.4. Is L2.˝/ a subset of H1
0 .˝/? What about H2.˝/?
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Exercise 7.5. Let v D log.log.1=jxj// on the disc ˝ D f.r; �/ W 0 � r � R; 0 �
� < 2�g with R � 1=e. Verify that v 2 H1.˝/. Is v 2 C0.˝/?

Exercise 7.6. Consider the normed space C0.I / of all continuous functions on the
interval I D Œ0; 1� with norm kvkL1.I / D supx2I jv.x/j. Let f .x/ D 1 and g.x/ D
x. Does the Parallelogram law hold for f and g? Is C0.I / an inner product space?

Exercise 7.7. Show that the solution u 2 V to the weak form (7.60) satisfies the
stability estimate kukV � Cl=m.

Exercise 7.8. Use the Poincaré inequality to show that kvkH1.˝/ and jvjH1
0 .˝/

are

equivalent norms onH1
0 .˝/. In particular, verify that krvk D 0 implies v D 0.

Exercise 7.9. What numerical values do the constants m, Ca, and Cl have for the
problem �u D xy2 on the square˝ D Œ�1; 2� � Œ0; 3� assuming u D 0 on @˝?

Exercise 7.10. Consider

a.u; v/ D vT Au; l.v/ D vT b; V D R
n

where A is a real n � n matrix, b is a real n � 1 vector, and k � kV D k � k2 the
Euclidean 2-norm.

(a) Assuming that a.�; �/ is coercive on V , what can be said about the eigenvalues
of A?

(b) Show that there exist a unique solution u 2 V to the linear system Au D b.

Exercise 7.11. Verify the Trace inequality (7.46) for the particular choice v D x

on the square ˝ D Œ0; L�2 with side length L. How does the constant C in the
inequality depend on L?

Exercise 7.12. Decide if the requirements for the Lax-Milgram lemma are fulfilled
for the problem �r � .aru/ D 1 in ˝ D Œ0; 1�2, with u D 0 on @˝ , assuming that
a is the 2 � 2 matrix

a D
�
4 1

1 2

�



Chapter 8
The Finite Element

Abstract In this chapter we study the concept of a finite element in some more
detail. We begin with the classical definition of a finite element as the triplet of
a polygon, a polynomial space, and a set of functionals. We then show how to
derive shape functions for the most common Lagrange elements. The isoparametric
mapping is introduced as a tool to allow for elements with curved boundaries, and to
simplify the computation of the element stiffness matrix and load vector. We finish
by presenting some more exotic elements.

8.1 Different Types of Finite Elements

8.1.1 Formal Definition of a Finite Element

Formally, a finite element consists of the triplet:

• A polygonK � R
d .

• A polynomial function space P on K .
• A set of n D dim.P / linear functionals Li.�/, i D 1; 2; : : : ; n, defining the so-

called degrees of freedom.

The polygonK is of different type depending on if the space dimension d is 1, 2,
or 3. The most common types of polygons in use are lines, triangles, quadrilaterals,
tetrahedrons, and bricks. Occasionally, prisms are used. Each polygon stems from a
mesh K D fKg of the computational domain ˝ . Triangle and tetrahedron meshes
are able to easily represent domains with curved boundaries, while quadrilateral
and brick meshes are easy to implement in a computer. Prisms are primarily used
for domains with cylindrical symmetries, such as pipes, for instance.

Let us equip P with a basis fSj gnjD1. The basis functions Sj are generally called
shape functions.

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__8, © Springer-Verlag Berlin Heidelberg 2013
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204 8 The Finite Element

A finite element is said to be unisolvent if the functionals can uniquely determine
the shape functions. Unisolvency can be thought of as a necessary compatibility
condition for Li.�/, P , andK . By definition, it is equivalent to Li .v/ D 0 � v D 0,
for all v 2 P and all i . Even though it can be a bit hard to establish unisolvency,
the actual calculation of the shape functions is easy as it simply amounts to solving
a linear system. Indeed, the shape functions Sj are determined from the n linear
algebraic equations

Li.Sj / D ıij ; i; j D 1; 2; : : : ; n (8.1)

By taking a linear combination of shape functions and coefficients we get a
polynomial or finite element function in P on each polygonK .

Besides specifying the shape functions on each polygon K , the functionals
also specify the behavior of the these functions between adjacent polygons. For
instance, if we want finite element functions that are continuous on the whole
mesh K , then we must take care in choosing functionals, so that the resulting
shape functions become continuous, especially across the polygon boundary @K .
Indeed, the functionals determine both the local and the global properties of the
finite element space Vh.

The particular choice of functionals Li.�/ give rise to groups or families of
finite elements sharing similar properties (e.g., continuity) although they might be
different in other aspects (e.g., polynomial order). The Lagrange family is the most
popular and widely used. The defining functionals are

Li.v/ D v.Ni/; i D 1; 2; : : : ; n (8.2)

where Ni , i D 1; 2; : : : ; n are n carefully selected node points. The functionals are
the simplest possible in the sense that each of them only consist of a point evaluation
of v. Because each shape function is associated with a particular node, the resulting
set of shape functions is called a nodal basis. For d D 2 with P D P1.K/ the space
of linear polynomials on a triangle K , these node points are the triangle vertices,
and the shape functions Sj , j D 1; 2; 3, are the familiar hat functions. However, the
above functionals can be used to define shape functions in any dimension and for
any polynomial order provided that the node points are chosen appropriately. We
remark that for linear tetrahedrons the nodes are the tetrahedron vertices.

The Lagrange elements are continuous, but have discontinuous derivatives across
element boundaries. Thus, they are C0 continuous elements, which suffice to
approximate functions in H1. However, in some applications it is necessary to use
more regular elements. An example of such an element is the so-called Argyris
element, which has C1 continuity. Because all its first derivatives are continuous,
this element can be used to approximate functions in H2, which is the appropriate
space for some fourth order problems, such as 2u D 0, for instance. Not
surprisingly, construction of the Argyris element is more elaborate than for the
Lagrange element. Indeed, on a triangle there are 21 defining functionals involving
point evaluation of the first, normal, and second order derivatives for the Argyris
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Fig. 8.1 Node points for the
linear Lagrange element on
the reference triangle NK

element. Other element types with higher continuity properties include the Hermite
elements, and the Morley element, which we shall return to shortly.

8.1.2 Shape Functions for the Linear Lagrange Triangle

Let us derive the shape functions for the triangular linear Lagrange finite element.
To this end, let NK be the domain NK D f.r; s/ W 0 < r; s < 1; r C s < 1g, that is, the
triangle with vertices at origo, .1; 0/, and .0; 1/, see Fig. 8.1. We shall refer to this
as the reference triangle.

By definition, the appropriate polynomial space P is the space of linear
polynomials P1. NK/ on NK , and the defining functionals are given by

L1.v/ D v.0; 0/; L2.v/ D v.1; 0/; L3.v/ D v.0; 1/ (8.3)

That is, the nodes are the three vertices of NK.
Perhaps the simplest basis for P1.K/ is the canonical basis f1; r; sg, so anyone of

the three shape functions Sj , j D 1; 2; 3, can be expressed as a linear combination
of 1, r , and s. For example, S1 can be written S1 D c1 C c2r C c3s, where ci , i D
1; 2; 3 are coefficients to be determined. In doing so, we demand that Li .S1/ D ıi1,
which yields the 3 � 3 linear system

e1 D
2
410
0

3
5 D

2
4L1.1/ L1.r/ L1.s/L2.1/ L2.r/ L2.s/

L3.1/ L3.r/ L3.s/

3
5
2
4c1c2
c3

3
5 D

2
41 0 01 1 0

1 0 1

3
5
2
4c1c2
c3

3
5 D Vc (8.4)
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for the unknown coefficients ci . Note that the entries of V are very simple to
evaluate. For example, the first row is point evaluation of the functions 1, r , and
s at origo. This immediately gives us V11 D L1.1/ D 1, V12 D L1.r/ D 0,
V13 D L1.s/ D 0, and so on. The matrix V is generally called a Vandermonde
matrix. Computing V �1e1 we readily obtain c D Œ1; �1; �1�T , from which we
deduce that S1 D c1 C c2r C c3s D 1 � r � s. Proceeding similarly for the shape
functions S2 and S3 we eventually find that

S1 D 1 � r � s (8.5)

S2 D r (8.6)

S3 D s (8.7)

which we recognize as the usual hat functions on NK .
Let us list a routine for evaluating the linear shape functions and their partial

derivatives at a point .r; s/ in NK .

function [S,dSdr,dSds] = P1shapes(r,s)
S=[1-r-s; r; s];
dSdr=[-1; 1; 0];
dSds=[-1; 0; 1];

8.1.3 Shape Functions for the Quadratic Lagrange Triangle

For the triangular quadratic Lagrange finite element, the polynomial space P is the
space of quadratic polynomialsP2. NK/ on the reference triangleK , and the defining
functionals are given by

L1.v/ D v.0; 0/; L2.v/ D v.1; 0/; L3.v/ D v.0; 1/ (8.8)

L4.v/ D v.0:5; 0:5/; L5.v/ D v.0; 0:5/; L6.v/ D v.0:5; 0/ (8.9)

In other words, the nodes are the three vertices, and the mid-points of the three edges
of K , see Fig. 8.2.

Since a general polynomial of two variables has six coefficients, there must be
six shape functions Sj , j D 1; 2; : : : ; 6. To see this, note that the canonical basis for
P2. NK/ is f1; r; s; r2; rs; s2g, and thatNj is a linear combination of these monomials.
Thus, we have S1 D c1Cc2rCc3sCc4r

2Cc5rsCc6s
2 for example. To determine

the coefficients ci , i D 1; 2; : : : ; 6, we again demand that Li.S1/ D ıi1, which
yields the 6 � 6 linear system
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2
66666664
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c5
c6

3
77777775

D Vc (8.11)

from which it follows that c D Œ1;�3;�4; 2; 4; 2�T .
The other shape functions can be found in a similar fashion. Their explicit

formulas are

S1 D 1 � 3r � 3s C 2r2 C 4rs C 2s2 (8.12)

S2 D 2r2 � r (8.13)

S3 D 2s2 � s (8.14)

S4 D 4rs (8.15)

S5 D 4s � 4rs � 4s2 (8.16)

S6 D 4r � 4r2 � 4rs (8.17)

Let us list a routine for evaluating the quadratic shape functions and their partial
derivatives at a point .r; s/ in NK .
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o = 3 o = 4

Fig. 8.3 Node points for the
cubic and quartic Lagrange
elements

function [S,dSdr,dSds] = P2shapes(r,s)
S=[1-3*r-3*s+2*r^2+4*r*s+2*s^2;
2*r^2-r;
2*s^2-s;
4*r*s;
4*s-4*r*s-4*s^2;
4*r-4*r^2-4*r*s];

dSdr=[-3+4*r+4*s; 4*r-1; 0; 4*s; -4*s; 4-8*r-4*s];
dSds=[-3+4*r+4*s; 0; 4*s-1; 4*r; 4-4*r-8*s; -4*r];

8.1.4 Higher Order Triangular Lagrange Elements

The procedure for computing Lagrange shape functions on the reference triangle NK
generalizes to higher order. If the order of the polynomial space P is o, then there
are n D .o C 1/.o C 2/=2 nodes and shape functions. Moreover, the nodes are
positioned in a lattice called the principal lattice on the reference triangle NK. We
have already seen this lattice for o D 1 and 2. Figure 8.3 shows it also for o D 3

and 4. The generalization to any higher order should be obvious.

8.1.5 Shape Functions for the Bilinear Quadrilateral Element

As already mentioned, isoparametric finite elements can also be constructed on
quadrilaterals. To do so, let NQ be the reference square NQ D f.r; s/ W �1 < r; s < 1g,
as shown in Fig. 8.4, and let P. NQ/ be the space of so-called bilinear functions
spanned by the canonical basis f1; r; s; rsg. Defining, again, the functionalsLi.v/ D
v.Ni/, where the nodes Ni , i D 1; 2; 3; 4 are the four corners of the square NQ, it is
a simple task to verify that the shape functions take the form
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S1 D 1
4
.1 � r/.1 � s/ (8.18)

S2 D 1
4
.1C r/.1 � s/ (8.19)

S3 D 1
4
.1C r/.1C s/ (8.20)

S4 D 1
4
.1 � r/.1C s/ (8.21)

8.1.6 Shape Functions for the Linear Lagrange Tetrahedron

To construct isoparametric Lagrange finite elements on tetrahedrons, let NT D
f.r; s; t/ W 0 < r; s; t < 1; r C s C t < 1g be the reference tetrahedron with vertices
at origo, .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/, see Fig. 8.5.

In the linear case P D P1. NT /, the nodesNi , i D 1; 2; 3; 4, are the vertices of NT ,
and the functionals are given byLi.v/ D v.Ni/, where v D c0Cc1x1Cc2x2Cc3x3.
This yields the shape functions
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S1 D 1 � r � s � t (8.22)

S2 D r (8.23)

S3 D s (8.24)

S4 D t (8.25)

Higher order elements on tetrahedra can be constructed in the same way as shown
above for triangles.

8.1.7 Shape Functions for the Trilinear Brick Element

There are also isoparametric finite elements on bricks. Let NB D f.r; s; t/ W �1 <
r; s; t < 1g, as shown in Fig. 8.6, and let P. NB/ be the space of so-called trilinear
functions spanned by the canonical basis f1; r; s; t; rs; rt; st; rstg. Letting also the
functionals be Li.v/ D v.Ni /, with the nodesNi , i D 1; 2; : : : ; 8, the corners of the
brick, we obtain the shape functions

S1 D 1
8
.1 � r/.1 � s/.1 � t/ (8.26)

S2 D 1
8
.1C r/.1 � s/.1 � t/ (8.27)

S3 D 1
8
.1C r/.1C s/.1 � t/ (8.28)

S4 D 1
8
.1 � r/.1C s/.1 � t/ (8.29)

S5 D 1
8
.1 � r/.1 � s/.1C t/ (8.30)

S6 D 1
8
.1C r/.1 � s/.1C t/ (8.31)

S7 D 1
8
.1C r/.1C s/.1C t/ (8.32)

S8 D 1
8
.1 � r/.1C s/.1C t/ (8.33)
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8.2 The Isoparametric Mapping

Up to now we have used various tricks to integrate the entries of the element stiffness
matrix and load vector. However, this approach quickly gets cumbersome for higher
order elements. Also, to improve the geometry representation of the computational
domain we would like to be able to work with elements with curved boundaries.
Fortunately, it turns out that these two obstacles can be overcome by combining the
idea of numerical quadrature with so-called isoparametric elements. As we shall see,
the combination of these two ideas allows for a simple and uniform treatment of the
elemental assembly procedure. In the following, we shall present the isoparametric
mapping for triangle elements, although all concepts directly carry over to many
other element types, such as quadrilaterals, tetrahedrons, and bricks, for instance.

The setting up of the isoparametric map is easily described. Suppose we have
a triangle K with nodes at Ni D .x

.i/
1 ; x

.i/
2 /, i D 1; 2; : : : ; n. We will refer to K

as to the physical element, as opposed to the reference element NK. Now, the basic
idea is to use the shape functions Sj on NK to define the geometry of K through the
formulas

x1.r; s/ D
nX
iD1

x
.i/
1 Si .r; s/ (8.34)

x2.r; s/ D
nX
iD1

x
.i/
2 Si .r; s/ (8.35)

In other words, given a point .r; s/ in NK the above formulas maps it to a
corresponding physical point .x1; x2/ in K . We say that the coordinates x1 and x2
are parametrized by r and s. This is the two dimensional isoparametric mapping.
It is shown by Fig. 8.7 for a quadratic Lagrange triangle. In three dimensions
the isoparametric map is similar, but uses three parameters r; s; t to map a point
.x1; x2; x3/ from the reference to the physical element.

The isoparametric map implies that the boundary @K is curved whenever the
nodesNi on an edge ofK do not lie on a straight line. In fact, the boundary of K is
defined by interpolating the nodes on the edges by a polynomial of order o, where o
is the polynomial order of the shape functions Sj .

As usual, any finite element function v on K is also expressed using the shape
functions, viz.,

v.r; s/ D
nX
iD1

viSi .r; s/ (8.36)

where vi D v.Ni/ are the n nodal values of v.
Since the stiffness matrix involves partial derivatives of v we use the chain rule

to differentiate v with respect to r and s, yielding
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@v

@x1
D @v

@r

@r

@x1
C @v

@s

@s

@x1
(8.37)

@v

@x2
D @v

@r

@r

@x2
C @v

@s

@s

@x2
(8.38)

In matrix form we can write this as
"
@v
@x1
@v
@x2

#
D
"
@r
@x1

@s
@x1

@r
@x2

@s
@x2

#�
@v
@r
@v
@s

�
D J�1

�
@v
@r
@v
@s

�
(8.39)

where we have introduced the Jacobian matrix J , defined by

J D
�
@x1
@r

@x2
@r

@x1
@s

@x2
@s

�
(8.40)

Here, the explicit expressions for the entries of J are given by

J11 D @x1

@r
D

nX
iD1

@Si

@r
x
.i/
1 (8.41)

J12 D @x2

@r
D

nX
iD1

@Si

@r
x
.i/
2 (8.42)

J21 D @x1

@s
D

nX
iD1

@Si

@s
x
.i/
1 (8.43)

J22 D @x2

@s
D

nX
iD1

@Si

@s
x
.i/
2 (8.44)

Thus, we can compute the partial derivatives of v at any physical point .x1; x2/ in
K , or equivalently, at the corresponding reference point .r; s/ in NK, by solving the
2 � 2 linear system (8.39).



8.2 The Isoparametric Mapping 213

We remark that the invertability of J depends on the quality of K . If J�1 exist,
then the isoparametric map is one-to-one.

For the triangular linear Lagrange finite element the Jacobian matrix is given by

J D
"
x
.2/
1 � x.1/1 x

.2/
2 � x

.1/
2

x
.3/
2 � x.1/2 x

.3/
2 � x

.1/
2

#
(8.45)

Further, the determinant of J is given by

det.J / D 2jKj (8.46)

This is to be expected, since we might recall from calculus that the determinant of
a mapping is the area scale between the image and range of the mapping (i.e., two
domains K and NK). Now, the area of NK is 1=2. Hence, the factor 2 in front of jKj.
Note that det.J / is constant for this particular element.

A routine for computing the Jacobian J at a point .r; s/, given the n node
coordinatesNi D .x

.i/
1 ; x

.i/
2 /, is given below.

function [S,dSdx,dSdy,detJ] = Isopmap(x,y,r,s,shapefcn)
[S,dSdr,dSds]=shapefcn(r,s);
j11=dot(dSdr,x); j12=dot(dNdr,y);
j21=dot(dSds,x); j22=dot(dNds,y);
detJ=j11*j22-j12*j21;
dSdx=( j22*dSdr-j12*dSds)/detJ;
dSdy=(-j21*dSdr+j11*dSds)/detJ;

Here, shapefun is assumed to be a function handle, which can be either of the
subroutines P1shapes and P2shapes, depending on if we want to evaluate linear
or quadratic shape functions.

8.2.1 Numerical Quadrature Revisited

The entries of the stiffness matrix and load vector involves integrals over the
physical element K . However, since we want to compute on the reference element
NK we have to study how the isoparametric map .x1; x2/ 7! .r; s/ affects integrals.

To do so, we recall the change of variables formula

Z
K

f .x1; x2/ dx D
Z

NK
f .r; s/ det.J.r; s// drds (8.47)

which allows us to integrate over NK instead ofK .
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Now, approximating the integral over NK by a quadrature formula we have

Z
OK
f .r; s/ det.J.r; s// drds �

nqX
qD1

wqf .rq; sq/ det.J.rq; sq// (8.48)

whereNq is the number of quadrature points, wq the quadrature weights, and .rq; sq/
the quadrature points.

The construction of efficient quadrature rules on triangles is difficult and still
to some extent unexplored territory. Below, we present a routine, which tabulates
so-called Gauss quadrature weights and points on the reference triangle NK up to
precision four (i.e., polynomials of maximal degree four can be integrated exactly).
The weights are scaled so that they sum to one. As a consequence, the determinant
det.J / needs to be divided by two to integrate correctly.

function [rspts,qwgts] = Gausspoints(precision)
switch precision

case 1
qwgts=[1];
rspts=[1/3 1/3];
case 2
qwgts=[1/3 1/3 1/3];
rspts=[1/6 1/6;
2/3 1/6;
1/6 2/3];
case 3
qwgts=[-27/48 25/48 25/48 25/48];
rspts=[1/3 1/3;
0.2 0.2;
0.6 0.2;
0.2 0.6];
case 4
qwgts=[0.223381589678011
0.223381589678011
0.223381589678011
0.109951743655322
0.109951743655322
0.109951743655322];
rspts=[0.445948490915965 0.445948490915965;
0.445948490915965 0.108103018168070;
0.108103018168070 0.445948490915965;
0.091576213509771 0.091576213509771;
0.091576213509771 0.816847572980459;
0.816847572980459 0.091576213509771];
otherwise
error(’Quadrature precision too high on triangle’)

end
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As a small example of use, let us integrate the mass matrix MK D .Si ; Sj /K on
a triangle K with vertices at .0; 0/, .3; 0/ and .�2; 4/, using linear Lagrange shape
functions.

[rspts,qwgts]=Gausspoints(2) % quadrature rule
x=[0 3 -2]; % node x-coordinates
y=[0 0 4]; % y-
MK=zeros(3,3); % allocate element mass matrix
for q=1:length(qwgts) % quadrature loop
r=rspts(q,1); % r coordinate
s=rspts(q,2); % s
[S,dSdx,dSdy,detJ]=Isopmap(x,y,r,s,@P1shapes); % map
wxarea=qwgts(q)*detJ/2; % weight times det(J)
MK=MK+(S*S’)*wxarea; % compute and add integrand to MK

end

8.2.2 Renumbering the Mesh for Quadratic Nodes

As we have seen triangular Lagrange finite elements have n D .o C 1/.o C 2/=2

nodes per element. To correctly assemble the stiffness matrix and load vector it is
therefore necessary to modify the original mesh to include all nodes. In this section
we show how this can be done efficiently for the special case o D 2. Recall that
quadratic Lagrange elements have nodes at the vertices and the mid-points of the
edges. As the vertex nodes are already numbered by the mesh generator initmesh
the problem boils down to numbering the edge nodes. To do so, we first record the
node to edge incidence by using a sparse matrix A. More precisely, if there is an
edge between vertex i and j , then we set Aij D �1. Using the standard point and
triangle matrices p and t this can efficiently be done with the code snippet

np=size(t,2); % number of vertices
nt=size(t,2); % number of triangles
i=t(1,:); % i=1st vertex within all elements
j=t(2,:); % j=2nd
k=t(3,:); % k=3rd
A=sparse(j,k,-1,np,np); % 1st edge is between (j,k)
A=A+sparse(i,k,-1,np,np); % 2nd (i,k)
A=A+sparse(i,j,-1,np,np); % 3rd (i,j)

Since the edge between vertex i and j trivially also lies between vertex j and i we
should have Aij D Aji D �1. To ensure this we add the transpose AT to A and
look for negative matrix entries, that is,

A=-((A+A.’)<0);

We can look at the stored matrix entries (i.e., created edges) by typing
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A=triu(A); % extract upper triangle of A
[r,c,v]=find(A) % rows, columns, and values(=-1)

Now, to number the edges we simply take the matrix values, which are all �1,
and renumber them consecutively, staring from 1. Then, we reassemble the upper
triangle part of A. Finally, we expand A to symmetric form by, again, adding AT

to A.

v=[1:length(v)]; % renumber values (ie. edges)
A=sparse(rows,cols,entries,np,np); % reassemble A
A=A+A’; % expand A to a symmetric matrix

The edge numbers for the three edges of each element can now be read formA, viz.,

edges=zeros(nt,3);
for k=1:nt
edges(k,:)=[A(t(2,k),t(3,k))

A(t(1,k),t(3,k))
A(t(1,k),t(2,k))]’;

end

In the Appendix we list a routine called Tri2Edge containing the above code.
Using the edge numbering routine it is straight forward to insert the new nodes

into the point and triangle matrices p and t.

function [p,t] = ChangeP1toP2Mesh(p,t)
np=size(p,2); % number of nodes
edges=Tri2Edge(p,t); % get element edge numbers
edges=edges+np; % change edges to new nodes
i=t(1,:); j=t(2,:); k=t(3,:);
e=edges(:,1);
p(1,e)=0.5*(p(1,j)+p(1,k)); % edge node coordinates
p(2,e)=0.5*(p(2,j)+p(2,k));
e=edges(:,2);
p(1,e)=0.5*(p(1,i)+p(1,k));
p(2,e)=0.5*(p(2,i)+p(2,k));
e=edges(:,3);
p(1,e)=0.5*(p(1,i)+p(1,j));
p(2,e)=0.5*(p(2,i)+p(2,j));
t(7,:)=t(4,:); % move subdomain info, resize t
t(4:6,:)=edges’; % insert edge nodes into t

Upon return the quadratic mesh overwrites the linear one in p and t.
For higher order Lagrange elements it is necessary to insert more nodes on the

edges, but this is fairly simple once these have been properly numbered. Further,
higher order elements also contains interior nodes, but these are trivial to number
uniquely.
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8.2.3 Assembly of the Isoparametric Quadratic Stiffness Matrix

We next show how to assemble the usual stiffness matrix on a mesh renumbered for
isoparametric Lagrange finite elements of order 2.

function [A,M,F] = IsoP2StiffnessAssembler(p,t,force)
[rspts,qwgts]=Gausspoints(4); % quadrature rule
np=size(p,2); % number of nodes
nt=size(t,2); % number of elements
A=sparse(np,np); % allocate stiffness matrix
for i=1:nt % loop over elements

nodes=t(1:6,i); % node numbers
x=p(1,nodes); % node x-coordinates
y=p(2,nodes); % y-
AK=zeros(6,6); % elements stiffness
for q=1:length(qwgts) % quadrature loop

r=rspts(q,1); % quadrature r-coordinate
s=rspts(q,2); % s-
[S,dSdx,dSdy,detJ]=Isopmap(x,y,r,s,@P2shapes);
wxarea=qwgts(q)*detJ/2; % weight times area
AK=AK+(dSdx*dSdx’...

+dSdy*dSdy’)*wxarea; % element stiffness
end
A(nodes,nodes)=A(nodes,nodes)+AK;

end

To call this routine one can type, for example,

[p,e,t]=initmesh(’squareg’);
[p,t]=ChangeP1toP2Mesh(p,t);
A=IsoP2StiffnessAssembler(p,t);

8.3 Some Exotic Finite Elements

Finite elements are often invented for a particular purpose. For example, they
might be designed for a specific application area, or to mimic certain properties
of a particular function space. In this section we shall briefly look at a few exotic
elements, which are tailor made to approximate a certain Hilbert space, or that are
otherwise somewhat peculiar. For simplicity, we shall restrict attention mainly to
triangular elements.
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Fig. 8.8 Crouzeix-Raviart interpolant of 1C 2 sin.3x1/ on a mesh of the unit square

8.3.1 The Morley Element

The Morley element is perhaps the simplest example of a finite element with higher
continuity. However, it is neither C1 nor even C0. On a triangle K with vertices
vi , i D 1; 2; 3, and edge mid-points mi , the polynomial space is P2.K/, and the
defining functionals are given by

Li .v/ D v.vi / (8.49)

LiC3.v/ D n � rv.mi/ (8.50)

That is, the values of v at the vertices vi , and the normal derivative of v at the edge
mid-pointsmi .

The Morley element finds application in solid mechanics.

8.3.2 The Crouzeix-Raviart Element

The Crouzeix-Raviart element is a linear element, which is only continuous at the
mid-points of the triangle edgesmi . Figure 8.8 shows a mesh of the unit square and
the Crouzeix-Raviart interpolant of 1C 2 sin.3x1/.
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On a triangle K , the polynomial space for the Crouzeix-Raviart element is
P1.K/, and the defining functionals are given by

Li .v/ D .v; 1/L2.Ei /=jEi j; i D 1; 2; 3 (8.51)

whereEi is triangle edge i . These degrees of freedom are the mean values of v over
the edges.

Now, since the mean of a linear function v over any edge Ei is the value of v at
the edge mid-pointmi , we can alternatively define the functionals by

Li.v/ D v.mi/; i D 1; 2; 3 (8.52)

From this we see that the mid-points mi acts as nodes for the Crouzeix-Raviart
shape functions SCRi in the sense that SCRi has a unit value at mj if i D j , while
being zero if i ¤ j .

The explicit expressions for the Crouzeix-Raviart shape functions are given by

SCRi D �'i C 'j C 'k (8.53)

where 'i are the usual hat functions, and with cyclic permutation of the indices
fi; j; kg over f1; 2; 3g. We observe that since the gradient of a hat function is
the constant vector r O'i D Œbi ; ci �

T , the gradients of the Crouzeix-Raviart shape
functions take the form

rSCRi D
��bi C bj C bk

�ci C cj C ck

�
(8.54)

For later use, let us write a routine to compute these derivatives.

function [area,Sx,Sy] = CRGradients(x,y)
[area,b,c]=HatGradients(x,y);
Sx=[-b(1)+b(2)+b(3); b(1)-b(2)+b(3); b(1)+b(2)-b(3)];
Sy=[-c(1)+c(2)+c(3); c(1)-c(2)+c(3); c(1)+c(2)-c(3)];

Here, we have used the subroutine HatGradients to compute bi and ci . Input is the
triangle vertex coordinates x and y, and output the Crouzeix-Raviart shape function
derivatives Sx and Sy. The triangle area area is also computed.

We remark that the Crouzeix-Raviart space is not a subspace of H1 due its
discontinuous nature. This is actually somewhat surprising, since Crouzeix-Raviart
functions are often used to approximate precisely functions in H1. A discrete space
that is not a subspace of the continuous space on which the variational equation is
posed is called non-conforming. Thus the Crouzeix-Raviart element provide a non-
conforming approximation of H1. The use of a non-conforming element is called a
variational crime.

The Crouzeix-Raviart element finds application in fluid mechanics.
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a b c

Fig. 8.9 RT0 shape functions on a triangle. (a) SRT01 , (b) SRT02 , and (c) SRT03

8.3.3 The Lowest Order Raviart-Thomas Element

Not all finite elements are scalar and there are also vector valued elements. As
the name suggests, vector valued elements are used to approximate vector valued
functions. One such element is the Raviart-Thomas element, which is designed to
mimic the Hilbert space

H.divI˝/ D fv 2 ŒL2.˝/�2 W r � v 2 L2.˝/g (8.55)

That is, the space of all vectors with bounded divergence. A simple application
of Green’s formula shows that all such functions must have continuous normal
components, which is the basic design feature of the Raviart-Thomas element.

Actually there is a whole family of Raviart Thomas elements, but we shall only
study the simplest of them called the RT0 element. On a triangleK the polynomial
space for RT0 is given by P D ŒP0.K/�

2 C Œx1; x2�
T P0.K/, that is, all vectors of

the form

v D
�
a1
a2

�
C b

�
x1
x2

�
(8.56)

for some coefficients a1, a2, and b. Further, the functionals are given by

Li.v/ D .nEi ; v/L2.Ei /=jEi j; i D 1; 2; 3 (8.57)

where nEi is the unit normal on edge Ei onK .
Closed form formulas for the RT0 shape functions can be derived and are

given by

S
RT0
i D jEi j

2jKj

"
x1 � x.i/1
x2 � x.i/2

#
; i D 1; 2; 3 (8.58)

where .x.i/1 ; x
.i/
2 / are the coordinates of the vertex opposite edge Ei . See Fig. 8.9.
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a b c

Fig. 8.10 Lowest order Nédélec shape functions on a triangle. (a) SND1 , (b) SND2 , and (c) SND3

If the normal is chosen consistently on each edge in the mesh, then by
construction is the RT0 shape functions are continuous in the normal direction
across the edge of any two adjacent elements. This ensures that the RT0 functions
belong to H.divI˝/.

The isoparametric map can not be used for RT0 elements, since the divergence
is not preserved by this mapping.

The Raviart-Thomas elements typically find application in acoustics and
elasticity.

8.3.4 The Lowest Order Nédélec Element

The Nédélec, or edge, elements is another example of a family of vector valued
finite elements. The Nédélec element is designed to mimic the Hilbert space

H.curlI˝/ D fv 2 ŒL2.˝/�2 W r � v 2 L2.˝/g (8.59)

That is, the space of all vectors with bounded curl.
On a triangleK the polynomial space is P D ŒP0.K/�

2C Œx2; �x1�T P0.K/, and
the defining functionals are given by

Li.v/ D .tEi ; v/L2.Ei /=jEi j; i D 1; 2; 3 (8.60)

where tEi is a unit tangent vector on edge Ei . We shall assume that these tangent
vectors are directed so that the triangle perimeter is traversed counter clockwise
when moving along them.

Closed form formulas for the Nédélec shape functions can be derived and are
given by

SNDi D jEi j.'jr'k � 'kr'j / (8.61)

where 'i are the usual hat functions and with cyclic permutation of the indices
fi; j; kg over f1; 2; 3g. See Fig. 8.10.
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The curl of SNDi is given by

r � SNDi D jEi j
jKj (8.62)

which follows from the definition of the Nédélec shape functions, Stokes theorem,
and the fact that r � SNDi is a constant. To see this, note that

jEi j D .tEi ; SNDi /L2.Ei / D .t; SNDi /L2.@K/ D .r � SNDi ; 1/L2.K/ D r � SNDi jKj
(8.63)

The Nédélec shape functions are continuous in the tangent direction on the
element edges provided that the tangent vector is chosen consistently on each edge
in the mesh.

The isoparametric map can not be used for Nédélec elements, since the curl is
not preserved by this mapping.

The Nédélec elements finds application in electromagnetics.
We remark that it is straight forward to extend the Nédélec element to three

dimensions on tetrahedra. Indeed, on a tetrahedron K the shape functions are still
given by (8.61), with edge i lying between tetrahedron vertex j and k. Of course,
the involved hat functions are then three- and not two-dimensional.

8.4 Further Reading

The definition of a finite element as the triplet of a polygon, a polynomial space
and a set of functionals is due to Ciarlet, and is used in his book [19] to define
the most common types of finite elements. The same in done by Brenner and
Scott in [60]. The definition of more exotic finite elements can be found in Brezzi
and Fortin [31]. Advanced topics, such as the construction of hierarchical finite
elements, are presented in Solin [62].

8.5 Problems

Exercise 8.1. Work out formulas for the cubic Lagrange shape functions on the
reference triangle NK.

Exercise 8.2. Calculate the entries of the 4 � 4 element stiffness matrix AK using
bilinear shape functions on the square S D Œ0; h�2. What is the dependence of the
side length h?

Exercise 8.3. Show that the bilinear element is not unisolvent if the four nodes are
placed at .�1; 0/, .0;�1/, .1; 0/, and .0; 1/ on the reference square NQ.
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Exercise 8.4. Write a routine for assembling the mass matrix using Lagrange shape
functions of order 2.

Exercise 8.5. Draw the Crouzeix-Raviart shape functions on the reference trian-
gle NK.

Exercise 8.6. Calculate the Crouzeix-Raviart interpolant of f D 2x1x2 C 4 on the
reference triangle NK.

Exercise 8.7. Show that the curl of the Nédeĺec shape function SNDi is given by
r � SNDi D 2jEi jr'j � r'k .

Exercise 8.8. How does the isoparametric map look in three dimensions?



Chapter 9
Non-linear Problems

Abstract Many real-world problems are governed by non-linear mathematical
models. The drying of paint, the weather, or the mixing of fluids are just some
examples of non-linear phenomenons. In fact, most of the physical, biological, and
chemical processes going on around us everyday are described by more or less non-
linear laws of nature. Thus, extensions of the finite element method to non-linear
equations are of special interest. In this chapter we study the standard methods
for tackling non-linear partial differential equations discretized with finite ele-
ments, namely, Newton’s method and its simplified variant Piccard, or, fixed-point
iteration.

9.1 Piccard Iteration

Piccard, or fixed-point, iteration is perhaps the most primitive technique for solving
non-linear equations. It is applicable to equations of the form

x D g.x/ (9.1)

where we for simplicity assume that g is a scalar non-linear function of a single
variable x. The basic idea is to take a first rough guess x.0/ at the solution, say, Nx,
and then to compute successively until convergence, for k D 0; 1; 2; : : :,

x.kC1/ D g.x.k// (9.2)

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
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This leads to the following algorithm, which is Piccard’s iteration scheme:

Algorithm 25 Piccard iteration for a scalar non-linear equation
1: Choose a staring guess x.0/, and a desired accuracy �.
2: for k D 0; 1; 2; : : : do
3: Compute the next solution approximation from x.kC1/ D g.x.k//.
4: if jx.kC1/ � x.k/j < � then
5: Stop.
6: end if
7: end for

It turns out that this algorithm will converge if the operator g is a contraction
mapping, that is, if there exist a constantL < 1 such that kg.x/�g.y/k � Lkx�yk
for all x and y. To see this, first note that the exact solution satisfies Nx D g. Nx/, and
is therefore a so-called fixed point. By subtracting this from (9.2) we then have
kx.kC1/ � Nxk D kg.x.k// � g. Nx/k � Lkx.k/ � Nxk � LkC1kx.0/ � Nxk, from which
convergence indeed follows if L < 1.

Piccard iteration is simple to implement, but its rate of convergence is often slow.

9.2 Newton’s Method

Besides Piccard iteration there is also Newton’s method for solving non-linear equa-
tions. Newton’s method is more complicated than the Piccard iteration technique,
but it usually converges much faster. It is applicable to equations of the form

g.x/ D 0 (9.3)

where we again assume that g is a scalar non-linear function of the single variable
x.

In deriving Newton’s method the first step is to assume that the solution Nx can be
written as the sum

Nx D x0 C ıx (9.4)

where x0 is some known guess of Nx and ıx a correction. Assuming also that x0 is
close to Nx so that ıx is small and using Taylor expansion of g.x/ around Nx, we have

g. Nx/ D g.x0 C ıx/ D g.x0/C g0.x0/ ıx C O.ıx2/ (9.5)

Neglecting second order terms, and using that g. Nx/ D 0, we further have

0 � g.x0/C g0.x0/ ıx (9.6)
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Now, the key observation is that this is a linear equation for ıx, as opposed to the
non-linear equation for x. Thus, by evaluating

ıx D �g.x0/=g0.x0/ (9.7)

and adding ıx to x0 we expect to get a better approximation of Nx than just x0 alone,
at least if x0 is close to Nx. Iterating this line of reasoning leads to the following
algorithm, which is Newton’s method:

Algorithm 26 Newton’s method for a scalar non-linear equation

1: Choose a staring guess x.0/, and a desired accuracy �.
2: for k D 0; 1; 2; : : : do
3: Compute the correction ıx.k/ D �g.x.k//=g0.x.k//.
4: Update the solution guess x.kC1/ D x.k/ C ıx.k/ .
5: if jıx.k/j < � then
6: Stop.
7: end if
8: end for

In difficult cases it is sometimes good to use a damped update of the form
x.kC1/ D x.k/ C ˛ıx.k/ with 0 < ˛ < 1 a damping parameter.

Newton’s method is popular because it usually converges rapidly. It can be shown
that

kx.kC1/ � Nxk � Ckx.k/ � Nxk2 (9.8)

when x.k/ is sufficiently close to Nx. From this relation we see that the asymptotic rate
of convergence is quadratic, which is very fast for any numerical method. However,
quadratic convergence can only be obtained if g is differentiable and g0 is non-zero
near Nx. These are sometimes unrealistic expectations on g, since many real-world
problems are not smooth.

The primary drawback of Newton’s method is that it requires information about
the derivative g0, which can be costly to compute.

9.3 The Non-linear Poisson Equation

Having derived Newton’s method for a non-linear scalar equation we shall now do
the same for a non-linear partial differential equation. To this end, we first linearize
the continuous problem, and then apply finite element discretization. As model
problem we use the non-linear Poisson equation
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�r � .a.u/ru/ D f; in ˝ (9.9a)

u D 0; on @˝ (9.9b)

where a and f are given coefficients. The non-linearity is due to the coefficient
a D a.u/, which depends on the unknown solution u. In order to fulfill the Lax-
Milgram lemma, we assume that a.u/ is a well-behaved positive function. Typically,
a.u/ is, or can be approximated, by a polynomial in u.

9.3.1 The Newton-Galerkin Method

Multiplying f D �r�.a.u/ru/ by a test function v 2 V D H1
0 .˝/, and integrating

by parts using Green’s formula, we obtain the weak form of (9.1): find u 2 V such
that

.a.u/ru;rv/ D .f; v/; 8v 2 V (9.10)

Newton’s method is in the context of non-linear partial differential equations also
known as the Newton-Galerkin method, and to derive it we first write u as the sum

u D u0 C ıu (9.11)

where u0 is a some known approximation of u, and ıu is a correction. Inserting this
into (9.10) then gives us

.a.u0 C ıu/r.u0 C ıu/;rv/ D .f; v/; 8v 2 V (9.12)

Making a Taylor expansion of a.u/ D a.u0 C ıu/ around u0 we have

a.u0 C ıu/ D a.u0/C a0
u.u

0/ ıu C O.ıu2/ (9.13)

Substituting this into (9.12) we further have

..a.u0/C a0
u.u

0/ ıu C O.ıu2//r.u0 C ıu/;rv/ D .f; v/; 8v 2 V (9.14)

Neglecting all terms quadratic in ıu, we end up with a linear equation for the
correction ıu: find ıu 2 V such that

.a.u0/rıu C a0
u.u

0/ ıuru0;rv/ D .f; v/ � .a.u0/ru0;rv/; 8v 2 V (9.15)

Once we have solved (9.15) for ıu, the Newton-Galerkin method is then to iterate
with u0 C ıu as new solution guess.
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9.3.2 Finite Element Approximation

Let K D fKg be a mesh of ˝ , and let Vh � V be the usual space of continuous
piecewise linears on K . Replacing V with Vh we obtain the finite element
approximation of the weak form (9.15): find ıuh 2 Vh such that

.a.u0/rıuh C a0
u.u

0
h/ ıuhru0h;rv/ D .f; v/� .a.u0/ru0;rv/; 8v 2 Vh (9.16)

Here, we have tacitly assumed that u0 can be expressed as a function u0h in the finite
element space Vh.

A basis for Vh is given by the set of hat functions f'igniiD1 associated with the ni
interior nodes.

The finite element method (9.16) is equivalent to

.a.u0/rıuh C a0
u.u

0
h/ıuhru0h;r'i/ D .f; 'i /� .a.u0/ru0;r'i /; i D 1; : : : ; ni

(9.17)

Also, we can write ıuh as the sum

ıuh D
niX
jD1

dj 'j (9.18)

Inserting (9.18) into (9.17) we get

niX
jD1

dj .a.u
0
h/r'j C a0

u.u
0
h/'jru0h;r'i / D .f; 'i / � .a.u0h/ru0;r'i /; i D 1; : : : ; ni

(9.19)

which is just a set of ni linear algebraic equations for the unknowns dj . In matrix
form, we write this

Jd D r (9.20)

where J is the ni � ni so-called Jacobian matrix with entries

Jij D .a.u0h/r'j ;r'i /C .a0
u.u

0
h/'jru0h;r'i/; i; j D 1; : : : ; ni (9.21)

and r is the ni � 1 so-called residual vector with entries

ri D .f; 'i / � .a.u0h/ru0h;r'i /; i D 1; : : : ; ni (9.22)
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We can now formulate a discrete Newton-Galerkin method with the following
algorithm:

Algorithm 27 Newton-Galerkin method for the non-linear Poisson equation

1: Choose a starting guess u
.0/

h 2 Vh, and a desired tolerance �.
2: for k D 0; 1; 2; : : : do
3: Assemble the Jacobian matrix J .k/ and the residual vector r.k/ with entries

J
.k/
ij D .a.u

.k/

h /r'j ;r'i /C .a0

u.u
.k/

h /'jru
.k/

h ;r'i / (9.23)

r
.k/
i D .f; 'i /� .a.u.k/h /ru.k/h ;r'i / (9.24)

4: Solve the linear system

J .k/d .k/ D r.k/ (9.25)

5: Set u.kC1/

h D u.k/h C ıu.k/h , where ıu.k/h D Pni
jD1 d

.k/
j 'j .

6: if kıu.k/h k < � then
7: Stop.
8: end if
9: end for

Here, we terminate the iteration process when the correction ıu.k/h is small, which

indicates that the iteration error u.kC1/
h � u.k/h is small, but we could equally well

stop iterating when the residual r.k/ is small, which would indicate that the equation
is well satisfied by u.kC1/

h . Both these termination criteria are natural and it usually
does not matter which one is used.

9.3.3 Computer Implementation

Below we list a MATLAB code for assembling the Jacobian matrix (9.24) and the
residual vector (9.25). The computation of the derivative a0

u is done using numeric
differentiation.

function [J,r] = JacResAssembler2D(p,e,t,u,Afcn,Ffcn)
i=t(1,:); j=t(2,:); k=t(3,:); % triangle vertices
xc=(p(1,i)+p(1,j)+p(1,k))/3; % triangle centroids
yc=(p(2,i)+p(2,j)+p(2,k))/3;
% Evaluate u, a, a’, and f.
tiny=1.e-8;
uc=(u(i)+u(j)+u(k))/3;
a=Afcn(uc); % a(u)
da=Afcn(uc+tiny); % a(u+tiny)
da=(da-a)/tiny; % da(u)/du
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f=Ffcn(xc,yc); % f
[ux,uy]=pdegrad(p,t,u); % grad u
np=size(p,2); nt=size(t,2);
% Assemble Jacobian and residual
J=sparse(np,np); r=zeros(np,1);
for i=1:nt

nodes=t(1:3,i);
x=p(1,nodes); y=p(2,nodes);
[area,b,c]=HatGradients(x,y);
rK=(f(i)*ones(3,1)/3-a(i)*(ux(i)*b+uy(i)*c))*area;
JK=(a(i)*(b*b’+c*c’)+da(i)*(ux(i)*b+uy(i)*c)*ones(1,3)/3)*area;
J(nodes,nodes)=J(nodes,nodes)+JK;
r(nodes)=r(nodes)+rK;

end
% Enforce zero Dirichlet BC.
fixed=unique([e(1,:) e(2,:)]); % boundary nodes
for i=1:length(fixed)

n=fixed(i); % a boundary node
J(n,:)=0; % zero out row n of the Jacobian, J
J(n,n)=1; % set diagonal entry J(n,n) to 1
r(n)=0; % set residual entry r(n) to 0

end

Input to this routine is the usual point, edge, and connectivity matrices p, e, and
t, and a vector u containing the nodal values of the current approximation u.k/.
The coefficients a and f are assumed to be defined by two separate subroutines
Afcn and Ffcn defined elsewhere and passed via function handles. Output is the
assembled Jacobian matrix J and the residual vector r.

As a numerical experiment, let us compute the finite element solution to the non-
linear Poisson equation (9.1) on the unit square˝ D Œ0; 1�2 with a.u/ D 1=8C u2,
and f D 1. The necessary code is listed below.

function NewtonPoissonSolver2D()
g=Rectg(0,0,1,1);
[p,e,t]=initmesh(g,’hmax’,0.05); % create mesh
xi=zeros(size(p,2),1); % initial zero guess
for k=1:5 % non-linear loop
[J,r]=JacResAssembler2D(p,e,t,xi,@Afcn,@Ffcn);
d=J\r; % solve for correction
xi=xi+d; % update solution
sprintf(’|d|=%f, |r|=%f’, norm(d), norm(r))

end
pdesurf(p,t,xi)

function z = Afcn(u)
z=0.125+u.^2;

function z = Ffcn(x,y)
z=x.^0; % =1
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Fig. 9.1 Computed solution to the non-linear Poisson equation �r � ..1=8C u2/ru/ D 1 on the
unit square ˝ D Œ0; 1�2, with zero boundary conditions

Table 9.1 Norm of
correction and residual in
each Newton step

k kd.k/k kr.k/k
1 8.767519 0.038330
2 1.769684 0.038821
3 0.326485 0.007199
4 0.012397 0.000393
5 0.000022 0.000001

In Fig. 9.1 we show the computed solution uh. Due to the non-linearity a D
1=8Cu2, uh is flatter near its maximum and has steeper gradients near the boundary,
than in the linear case a D 1=8.

At each Newton step k we monitor the two-norm of the vectors d .k/ and r.k/

holding the nodal values of the correction and the residual. Table 9.1 shows these
numbers. Clearly, the convergence is very rapid.

9.3.4 Piccard Iteration as a Simplified Newton Method

The reassembly of the Jacobian J .k/ at each stage k of Newton’s method is
expensive, and we would like to avoid it, if possible. To this end we make the brutal
approximation of replacing J .k/ with the stiffness matrix A.k/. The rationale for
doing so is that J .k/ij contains the term .a.u.k//r'j ;r'i /, which, by definition, is

the stiffness A.k/ij . This gives the simplified Newton method

�.kC1/ D �.k/ C d .k/ (9.26)

D �.k/ C J .k/
�1
r.k/ (9.27)
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D �.k/ C A.k/
�1
.b � A.k/�.k// (9.28)

D A.k/
�1
b (9.29)

We recognize this as Piccard iteration on the non-linear system A.�/� D b. But
this system is precisely what we get when applying finite elements to the non-linear
Poisson equation �r � .a.u/ru/ D f . Hence, Piccard iteration can be seen as a
simplified Newton method. Of course, due to all the cheats, this method will work
only for mild non-linearities.

9.4 The Bistable Equation

Instead of deriving a Newton method by first linearizing the continuous problem
and then discretizing with finite elements, there is, of course, also the possibility of
doing these things in reverse order. That is, applying Newton’s method after finite
element discretization. Let us do this on the following non-linear time-dependent
equation called the Bistable equation.

Pu � �u D u � u3; in ˝ � J (9.30a)

n � ru D 0; in @˝ � J (9.30b)

u D u0; in ˝ , for t D 0 (9.30c)

Here, � > 0 is a small number, J D .0; T � is the time interval, and u0 a given initial
condition. Obviously, this is a non-linear equation due to the cubic term u3.

9.4.1 Weak Form

The weak form of (9.30) reads: find u such that for every fixed time t , u 2 H1.˝/

and
.Pu; v/C �.ru;rv/ D .f .u/; v/; 8v 2 H1.˝/ (9.31)

where f .u/ D u � u3.

9.4.2 Space Discretization

As always for transient problems we make the space discrete ansatz

uh D
npX
jD1

�j .t/'j (9.32)

where 'j , j D 1; : : : ; np , are the usual hat basis functions of Vh and np the number
of nodes.
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Substituting (9.32) into (9.31) and choosing v D 'i , i D 1; : : : ; np , we get a
system of np ODE s

npX
jD1

P�j .'j ; 'i /C �

npX
jD1

�j .r'j ;r'i/ D .f .uh//; 'i / (9.33)

In matrix notation we write this

M P� C A� D b.�/ (9.34)

whereM is the mass matrix,A is the stiffness matrix, and b a non-linear load vector,
with entries

Mij D .'j ; 'i / (9.35)

Aij D �.r'j ;r'i/ (9.36)

bi .�/ D .f .uh/; 'i / (9.37)

9.4.3 Time Discretization

Applying backward Euler on the ODE system (9.34) we get the time stepping
scheme

M
�l � �l�1
kl

CA�l D b.�l / (9.38)

or

.M C klA/�l D M�l�1 C klb.�l / (9.39)

We shall now solve this non-linear system of equations using both Piccard
iteration and Newton’s method.

9.4.4 Piccard Iteration

Applying Piccard iteration to (9.39) yields the iteration scheme

�
.k/

l D .M C klA/
�1.M�l�1 C klb.�

.k�1/
l // (9.40)

This iteration scheme has the structure of a double for loop over the indices l and k.
The outer loop keeps track of the time level l , whereas the inner loop counts the non-
linear iterate k. Indeed, for each time level l we solve the non-linear problem (9.39)
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by iterating over k. In doing so, the natural choice for the starting guess �.0/l is
the solution �l�1 from the previous time level. Once the inner loop has converged
to a new solution �.k/l , the old solution �l�1 is overwritten and the outer loop is
incremented. The double for loop is clearly seen in the code below, which solves
the Bistable equation (9.30) on the unit square ˝ D Œ0; 1�2 with the parameter
� D 0:01 and the initial condition u0 D cos.2�x21/ cos.2�x22/.

function PiccardBiStableSolver2D()
g=Rectg(0,0,1,1);
[p,e,t]=initmesh(g,’hmax’,0.025);
x=p(1,:)’; y=p(2,:)’;
xi_old=cos(2*pi*x.^2).*cos(2*pi*y.^2); % IC
xi_new=xi_old;
dt=0.1; % time step
epsilon=0.01;
[A,M]=assema(p,t,1,1,0);
for l=1:100 % time loop
for k=1:3 % non-linear loop
xi_tmp=xi_new;
b=M*(xi_tmp-xi_tmp.^3);
xi_new=(M+dt*epsilon*A)\(M*xi_old+dt*b);
fixpterror=norm(xi_tmp-xi_new)

end
xi_old=xi_new;
pdesurf(p,t,xi_new)
axis([0,1,0,1,-1,1]), caxis([-1,1]), pause(.1);

end

In Fig. 9.2 we show a few snapshots of the finite element solution uh at various
times. The Bistable equation is a little peculiar because it has three steady states,
u D ˙1, and u D 0. The first two of these are stable, while the third is unstable.
As a consequence, there is always a struggle between regions where the solution
is 1 and regions where it is �1. In the end, however, one of these will win and the
solution will always end up being constant and either 1 or �1. However, which of
these states it will be is somewhat random and depends on the parameter �, and in
the discrete setting also the mesh size h, and the time step kl . Indeed, from the figure
we see that the final solution at t D 25 is constant �1.

9.4.5 Newton’s Method

From the algebraic point of view Newton’s method for (9.39) corresponds to solving
the non-linear equations

r.�l / D 0 (9.41)
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Fig. 9.2 Snapshots of the computed solution to the Bistable equation. (a) t D 0:1. (b) t D 1.
(c) t D 2:5. (d) t D 5. (e) t D 20. (f) t D 25

where r.�l / is the residual vector

r.�l / D .M C klA/�l �M�l�1 � klb.�l / (9.42)

The entries of the Jacobian J are the partial derivatives Jij D @ri=@.�l /j , i; j D
1; : : : ; np . To compute J , we note that the first term .M C klA/�l in the left hand
side of (9.42) is easy to differentiate with respect to �l .
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@..M C klA/�l /i

@.�l /j
D Mij C klAij (9.43)

Continuing, the second term M�l�1 does not depend on �l , so its derivative with
respect to this variable is 0. The third term b.�l /, though, is a bit complicated. To
differentiate it we use the chain rule.

@b.�l /i

@�j
D @

@�j

Z
˝

f .�l /'i dx D
Z
˝

@f

@uh

@uh
@�j

'i dx D
Z
˝

@f

@u
'j'i dx (9.44)

Here, we have used that @f=@uh D @f=@u. This is just a mass matrix Mf 0 with
weight @f=@u. Hence, the Jacobian J is given by

J D .M C klA/ � klMf 0 (9.45)

A MATLAB implementation of Newton’s method is shown below.

function NewtonBiStableSolver2D()
g=Rectg(0,0,1,1);
[p,e,t]=initmesh(g,’hmax’,0.02);
x=p(1,:); y=p(2,:);
xi_old=(cos(2*pi*x.^2).*cos(2*pi*y.^2))’;
xi_new=xi_old;
dt=0.1; % time step
epsilon=0.01;
[A,M]=assema(p,t,1,1,0);
for l=1:100 % time loop

for k=1:3 % non-linear loop
ii=t(1,:); jj=t(2,:); kk=t(3,:);
xi_tmp=xi_new; % copy temporary solution to new
xi_tmp_mid=(xi_tmp(ii)+xi_tmp(jj)+xi_tmp(kk))/3;
f =(xi_tmp_mid-xi_tmp_mid.^3); % evaluate f
df=1-3*xi_tmp_mid.^2; % evaluate derivative df of f
[crap,Mdf,b]=assema(p,t,0,df’,f’);
J=(M+dt*epsilon*A)-dt*Mdf; % Jacobian
rho=(M+dt*epsilon*A)*xi_new ...

-M*xi_old-dt*b; % residual
xi_new=xi_tmp-J\rho; % Newton update
error=norm(xi_tmp-xi_new)

end
xi_old=xi_new; % copy old solution to new
pdesurf(p,t,xi_new)
axis([0 1 0 1 -1 1]), caxis([-1,1]), pause(.25)

end

9.5 Numerical Approximations of the Jacobian

We finish this chapter by presenting two ways of approximating the Jacobian using
only knowledge about the residual vector.
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9.5.1 Difference Quotient Approximation

Replacing the derivative Jij D @ri=@�j , j; i D 1; : : : ; np by the simplest difference
quotient we can compute column i of J from the formula

JWi D r.� C �ei /� r.�/

�
(9.46)

where � > 0 is a small parameter and ei column i of the np � np identity matrix
I . This is a simple, but very expensive, way of computing J , as it requites np
assemblies of r .

9.5.2 Broyden’s Method

A more elaborate way of numerically constructing a Jacobian is Broyden’s method,
which builds on the idea that J .k/ approximately satisfies the so-called secant
condition

J .k/.�.k/ � �.k�1// � r.k/ � r.k�1/ (9.47)

However, this is only np equations for the n2p matrix entries J .k/ij . Thus, to uniquely

determine J .k/ we need to impose additional constraints. To this end, we require
that J .k/ should be a minimal modification of J .k�1/ with respect to the so-called

Frobenius matrix norm, defined by kAkF D
qPnp

i;jD1 jAij j2 for any np�np matrix

A. This yields the following formula for J .k/.

J .k/ D J .k�1/ C y.k/ � J .k�1/s.k/

ks.k/k2 s.k/
T

(9.48)

where s.k/ D �.k/��.k�1/ and y.k/ D r.k/�r.k�1/. Thus, the modification of J .k�1/
is just the scaled outer product of the two vectors y.k/ � J .k�1/s.k/ and s.k/.

Using (9.48) we can cheaply and automatically update the Jacobian at each stage
k of Newton’s method without assembling anything else but the residual vector. The
convergence of the resulting method is somewhere between linear and quadratic.

Due to its construction J .k/ can be efficiently and explicitly inverted using the
Sherman Morrison formula.

A method closely related to Broyden’s is the BFGS method. Unlike Broyden’s,
the BFGS method is symmetry preserving. Both these methods belong to the class
of co-called quasi Newton methods.
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9.6 Further Reading

Non-linear problems are inherently difficult to analyze and therefore most books
on this topic are quite advanced. Books on finite elements for general non-linear
continua include those by Reddy [52], Belytschko, Liu and Moran [9], and Bonet
and Wood [14]. The simulation of non-linear solids and structures are treated,
among others, by Crisfield and co-authors [22].

9.7 Problems

Exercise 9.1. Show that Newton’s method applied to a square linear systemAxD b

converges in a single iteration.

Exercise 9.2. Derive Newton’s method for the following non-linear problems:

(a) �u D u C u3.
(b) �u C sin.u/ D 1.
(c) �r � ..1C u2/ru/ D 1.
(d) �u D f .u/, with f .u/ 2 L2.˝/ a differentiable function of u.

For simplicity, assume zero Dirichlet boundary conditions.

Exercise 9.3. Use NewtonPoissonSolver2D to solve (9.9) on the unit square with
a D 0:1C un and f D 1. Study the influence of the non-linear term un for the cases
n D 2 and 6. Compare with the linear case n D 0.

Exercise 9.4. Derive a Newton method for the so-called predator-pray system

� �u1 D u1.1 � u2/
�u2 D �u2.1 � u1/

with u1 D u2 D 0 on the boundary.
Hint: Set ui D u0i C ıui , i D 1; 2.



Chapter 10
Transport Problems

Abstract In this chapter we study the important transport equation that models
transport of various physical quantities, such as density, momentum, and energy,
for instance. In particular, the transportation of heat through convection is modeled
by this equation. That is, the transfer of heat by some external physical process,
such as air blown by a fan, or a moving fluid, for instance. Often, high convection
takes place alongside low diffusion (i.e., uniform spreading) of heat, leading to large
temperature gradients. As we shall see, this may cause numerical instabilities unless
special care is taken. To do so, we introduce the Galerkin Least Squares (GLS)
method, which is more robust than the standard Galerkin method. We illustrate with
numerical examples.

10.1 The Transport Equation

The transport equation is given by

��u C b � ru D f; in ˝ (10.1a)

u D 0; on @˝ (10.1b)

where � > 0 is a (small) parameter, b a given vector field, and f is a given function.
For this problem to be well-posed we must assume that r �b D 0. For simplicity, we
also assume homogeneous Dirichlet boundary conditions. However, other types of
boundary conditions are, of course, possible. Indeed, for the numerical experiments
we shall use both Neumann and Robin boundary conditions.

In (10.1) each of the two operators ��, and b � r play a specific role in deter-
mining what the solution u will look like, and can be given simple interpretations.
Loosely speaking, the first one smears u proportionally to �, while the second one
transports u in the direction of the vector b. Therefore, we say that these operators

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__10, © Springer-Verlag Berlin Heidelberg 2013
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model the physical processes of diffusion, and convection, respectively. In fact, the
transport equation is sometimes referred to as the Convection-Diffusion equation.

10.1.1 Weak Form

The weak form of (10.1) reads: find u 2 V D H1
0 .˝/ such that

a.u; v/ D l.v/; 8v 2 V (10.2)

where the bilinear and linear forms a.�; �/ and l.�/ are given by

a.u; v/ D �.ru;rv/C .b � ru; v/ (10.3)

l.v/ D .f; v/ (10.4)

The existence and uniqueness of u 2 V follows from the Lax-Milgram lemma,
since a.�; �/ is continuous and coercive on V , and l.�/ is continuous on V .

10.1.2 Standard Galerkin Finite Element Approximation

Let Vh � V be the usual space of continuous piecewise linears. The standard so-
called Galerkin finite element approximation of (10.2) reads: find uh 2 Vh such
that

a.uh; v/ D l.v/; 8v 2 Vh (10.5)

Now, let f'igniiD1 be the usual hat function basis for Vh, with ni the number of
interior nodes. Expanding the finite element ansatz uh D Pni

jD1 �j 'j , and choosing
v D 'i , i D 1; 2; : : : ; ni , in (10.5) we obtain the linear system for the unknown
nodal values �j of uh

.AC C/� D b (10.6)

where the matrix and vector entries are given by

Aij D �.r'j ;r'i / (10.7)

Cij D .b � r'j ; 'i / (10.8)

bi D .f; 'i / (10.9)

with i; j D 1; 2; : : : ; ni .
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10.1.3 Computer Implementation

In the linear system (10.6) we note that the diffusion (i.e., stiffness) matrix A, and
load vector b can be assembled using the built-in routine assema. However, we have
no routine to assemble the convection matrix C . In order to write such a routine we
note that the entries of the 3 � 3 element convection matrix CK is approximately
given by

CK
ij D .b � r'j ; 'i /K � b.xc/ � Œbj ; cj �T .'i ; 1/K

D b.xc/ � Œbj ; cj �T jKj=3; i; j D 1; 2; 3 (10.10)

where Œbj ; cj �T is the gradient of hat function 'j , and xc the centroid of elementK .
This immediately translates into an assembly routine for C .

function C = ConvectionAssembler2D(p,t,bx,by)
np=size(p,2);
nt=size(t,2);
C=sparse(np,np);
for i=1:nt

loc2glb=t(1:3,i);
x=p(1,loc2glb);
y=p(2,loc2glb);
[area,b,c]=HatGradients(x,y);
bxmid=mean(bx(loc2glb));
bymid=mean(by(loc2glb));
CK=ones(3,1)*(bxmid*b+bymid*c)’*area/3;
C(loc2glb,loc2glb)=C(loc2glb,loc2glb)+CK;

end

Here, input is the usual point and connectivity matrix p and t and the components
bx and by of the convection field. These components are and given as two np � 1

vectors of nodal values with np the number of nodes. Output is the assembled global
convection matrix C.

A main routine for solving the transport equation ��u C Œ1; 1�T � ru D 1 on
the square˝ D Œ�1; 1�2 with u D 0 on @˝ is listed below.

function TransportSolver2D()
epsilon=0.1; % diffusion parameter
[p,e,t]=initmesh(’squareg’,’hmax’,0.05); % mesh
np=size(p,2); % number of nodes
[A,unused,b]=assema(p,t,1,0,1); % diffusion matrix A

% load vector b
bx=ones(np,1); by=ones(np,1); % convection field
C=ConvectionAssembler2D(p,t,bx,by); % convection matrix C
fixed=unique([e(1,:) e(2,:)]); % boundary nodes
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Fig. 10.1 Surface plot of uh

free=setdiff([1:np],fixed); % interior nodes
b=b(free); % modify b for BC
A=A(free,free); C=C(free,free); % modify A and C for BC
xi=zeros(np,1); % solution vector
xi(free)=(epsilon*A+C)\b; % solve for free node values
pdesurf(p,t,U) % plot u

Running this code with �D 0:1 we get the results of Fig. 10.1. Notice how uh
is, so to speak, offset in the direction of b. This is even more clearly seen in
Fig. 10.2, which shows isocontours of uh. The compression of the isocontours seen
in the upper right corner, where uh must bend downwards to satisfy the boundary
condition, is called a boundary layer.

10.1.4 The Need for Stabilization

Using the coercivity of a.�; �/ and the continuity of l.�/ we have

�kruk2 � a.u; u/ D l.u/ � Ckf k kruk (10.11)

That is, the stability estimate

�kruk � Ckf k (10.12)

From this we see that as � decreases we loose control of the gradients of u. In other
words, small perturbations of f can lead to a large local values of ru. Indeed, it
is common for u to have thin regions called layers where it changes rapidly. As we
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Fig. 10.2 Isocountours of uh

have already seen, layers typically arise near a boundary, where u must adhere to a
Dirichlet boundary condition. However, layers may also occur in the interior of the
domain due to discontinuities in the coefficients �, b, and f , for example.

Standard finite element methods have great difficulties in handling layers. In
fact, layers may trigger oscillations throughout the whole computational domain
that renders the finite element approximation useless. For example, consider the
transport in one dimension, say,

��uxx C ux D 1; 0 < x < 1; u.0/ D u.1/ D 0 (10.13)

For small � the analytical solution u to this equation looks like u D x, except near
x D 1, where it abruptly changes from 1 to 0 in order to satisfy the boundary
condition u.1/ D 0. This change takes place over a small distance of length
proportional to � and is therefore a boundary layer.

Application of standard finite element discretization to (10.13) using a continu-
ous piecewise linear approximation for uh on a uniform mesh with nC 1 nodes and
mesh size h leads to the system of equations

�� �iC1 � 2�i C �i�1
h2

C �iC1 � �i�1
2h

D 1; i D 1; 2; : : : ; n � 1 (10.14)
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Fig. 10.3 Illustration of oscillations due to under resolution of the mesh (a). Increasing the number
of elements resolves the issue and yields a good finite element solution (b). Red asterisks denote
node values

where �i are the nodal values of uh with �0 D �n D 0. From this we see that if
� is small then information is only shared between every other node through the
convective term. This opens up for the possibility of oscillations, since node i C 1

and i � 1 talk with each other, but not with node i . Furthermore, in a layer we know
that there are naturally large variations between the node values �i . Now, suppose
that node i � 1 has value �i�1 D �1, whereas node i has value �i D 1. Then, due
to the finite element method (10.14), and neglecting the unit load which has a small
influence on a fine mesh, we will get �iC1 D �1, �iC2 D 1, �iC3 D �1, and so on.
That is, a highly oscillatory uh. Figure 10.3 shows the finite element solution uh for
� D 0:01 on two meshes with n D 10 and n D 100 elements, respectively.

The onset of oscillations is a mesh resolution problem. It occurs only if the
diffusion parameter � is smaller than the mesh size h. In this case the diffusion
acts on a length scale below the mesh size. As a consequence, small features in the
solution cannot be accurately represented on the mesh, and this triggers the onset of
oscillations. If the mesh size h can be decreased below �, then no oscillations occur.
The same oscillatory behavior is present also in higher dimension.

10.1.5 Least-Squares Stabilization

The forming of layers and the inability of the standard finite element method to deal
with these calls for modification of the numerical method. Since the oscillations
are due to the small diffusion parameter � a simple way of stabilizing is to add
more diffusion. In doing so, the general idea is to add as little as possible not to
sacrifice accuracy, but as much as needed to obtain stability. A natural choice is to
limit the smallest value of � to h. In doing so, the stabilization will automatically
decrease when using a finer mesh. This is known as isotropic stabilization or
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artificial diffusion. However, due to the perturbation of the equation, such a method
can never be more than first order accurate in h. It turns out that a more accurate
way to stabilize the equation is to use least squares stabilization.

To explain the least squares stabilization technique let us consider the abstract
equation

Lu D f (10.15)

where L is a differential operator, u the sought solution, and f a given function. We
do not worry about boundary conditions for the moment.

The standard Galerkin method, is obtained by multiplying the differential
equation by a test function v from a suitable function space V and integrate. This
leads to the weak form: find u 2 V such that

.Lu; v/ D .f; v/; 8v 2 V (10.16)

We can interpret this as a demand for residual orthogonality .r; v/ D 0 with r D
f � Lu is the residual. A potential problem with this is if the product .Lu; v/ does
not define a norm on V , in which case it is not associated with a minimization
principle of some sort. This can happen if .Lu; v/ is not coercive or symmetric on
V . In this case, the numerical method resulting from finite element discretization
might be unstable. Indeed, as we have seen, this is so for the transport equation.

Using instead the idea of least squares minimization we seek a solution u 2 V ,
which is the minimizer of the problem

F.u/ D min
v2V F.v/ (10.17)

where the functional F.�/ is defined by

F.v/ D kLv � f k2 (10.18)

The first order optimality condition for this optimization problem takes the form:
find u 2 V such that

.Lu; Lv/ D .f; Lv/; 8v 2 V (10.19)

From linear algebra we recognize this as the normal equations of the Least Squares
method.

Here, the bilinear form .Lu; Lv/ is always symmetric, trivially coercive with
respect to the least squares norm kLuk, and by setting v D u we have the stability
estimate kLuk � kf k, which is a stronger stability compared to the Galerkin
method.

The Galerkin Least Squares (GLS) method is obtained by combining the standard
Galerkin and the Least Squares method. In effect, this amounts to replacing the test
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function v by vCıLv, where ı is a parameter to be chosen suitably (i.e., for maximal
accuracy). In doing so, we obtain the variational equation: find u 2 V such that

.Lu; v C ıLv/ D .f; v C ıLv/; 8v 2 V (10.20)

or

.Lu; v/C ı.Lu; Lv/ D .f; v/C ı.f;Lv/; 8v 2 V (10.21)

The hope is to combine the accuracy of the Galerkin method with the stability of the
Least Squares method.

10.1.6 GLS Finite Element Approximation

In operator form the transport equation (10.1) can be written Lu D f with L D
��C b � r. The Galerkin Least Squares finite element method therefore takes the
form: find uh 2 Vh such that

ah.uh; v/ D lh.v/; 8v 2 Vh (10.22)

where the bilinear and linear form ah.�; �/ and lh.�/ are defined by

ah.u; v/ D a.u; v/C ı
X
K2K

.��u C b � ru;��v C b � rv/L2.K/ (10.23)

lh.v/ D l.v/C ı
X
K2K

.f;��v C b � rv/L2.K/ (10.24)

Here, we have written the GLS stabilization terms .Lu; Lv/ and .f; Lv/ as a sum
over the elements K in the mesh K . This is due to the fact that the term ��v
does not lie in L2.˝/, since the second order derivatives of the test function v are
unbounded across element boundaries. However, this term does lie in L2.K/ on any
K 2 K . In fact, to obtain well-defined integrals we only apply GLS stabilization
only to the interior of the elements. Now, since we are using piecewise linear
approximation we have v D 0, which implies that (10.23) and (10.24) reduces
to simply

ah.u; v/ D �.ru;rv/C .b � ru; v/C ı.b � ru; b � rv/ (10.25)

lh.v/ D .f; v/C ı.f; b � rv/ (10.26)

Because b � ru is the derivative of u in the flow direction (i.e., b) we see that
ı.b � ru; b � rv/ stabilizes the numerical method by adding diffusion proportional to



10.1 The Transport Equation 249

ı along the streamlines. Therefore, this low order GLS method is sometimes referred
to as the Streamline-Diffusion (SD) method.

Next we note that ah.�; �/ is coercive on Vh with respect to the norm

jjjvjjj2 D �krvk2 C ıkb � rvk2 (10.27)

This norm is more natural to use than k � kH1
0 .˝/

, since it is closely related to the
bilinear form ah.�; �/ and gives additional control over the streamline derivative.

Setting v D u and observing that .b � rv; v/ D 0, which follows from the fact
that 0 D .b � nv2; 1/L2.@˝/ D .r � .bv2/; 1/ D ..r � b/v; v/C 2.b � rv; v/ for any
v 2 H1

0 .˝/, and that r � b D 0, we obtain

ah.v; v/ D �krvk2 C ıkb � rvk2 D jjjvjjj2 (10.28)

which shows that ah.�; �/ is coercive on Vh. Hence, uh exist and is unique.
From (10.28) we observe that the coercivity depends on the stabilization

parameter ı, which, consequently, must not be too small for problems with small
�. However, for problems with large �, ı may practically vanish as no stabilization
is needed. A good choice of ı turns out to be

ı D
(
Ch2; if � > h

Ch=kbkL1.˝/; if � < h
(10.29)

where h is the mesh size. As we shall see, this choice is optimal and follows from
the error analysis.

10.1.7 A Priori Error Estimate

The GLS method (10.22) is consistent in the sense that it is satisfied by the exact
solution u, that is,

ah.u; v/ D lh.v/; 8v 2 Vh (10.30)

Subtracting (10.30) from (10.22) we immediately obtain the Galerkin orthogo-
nality

ah.u � uh; v/ D 0; 8v 2 Vh (10.31)

A difficulty with the error analysis of our GLS method stems from the fact that
the continuous and discrete bilinear forms a.�; �/ and ah.�; �/ are not the same. For
example, we do not have coercivity of a.�; �/ in the norm jjj � jjj. Therefore, the
derivation of error estimates differs somewhat from the ordinary.
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Let us first write the error

e D u � uh D .u � �u/C .�u � uh/ (10.32)

where �u 2 Vh is the interpolant of u. Application of the Triangle inequality then
yields

jjjejjj � jjju � �ujjj C jjj�u � uhjjj (10.33)

Here, we shall estimate jjju � �ujjj using interpolation error estimates, and jjj�u �
uhjjj using the approximation properties of the GLS method. Indeed, using the
coercivity of ah.�; �/ on Vh, and the Galerkin orthogonality (10.31) with v D uh��u,
we find

jjjuh � �ujjj2 D ah.uh � �u; uh � �u/ (10.34)

D ah.uh � �u; uh � �u/C ah.u � uh; uh � �u/ (10.35)

D ah.u � �u; uh � �u/ (10.36)

Let us estimate each of the three terms in ah.u � �u; uh � �u/ separately using the
trivial estimates

p
�krvk � jjjvjjj and

p
ıkb � rvk � jjjvjjj. First, we have

�.r.u � �u/;r.uh � �u// � p
�kr.u � �u/k p

�kr.uh � �u/k (10.37)

� C
p
�hjujH2.˝/jjjuh � �ujjj (10.38)

Then, integrating by parts, using that u D �u D 0 on @˝ , and that r � b D 0, we
further have

.b � r.u � �u/; uh � �u/ D .n.u � �u/; b.uh � �u//L2.@˝/

� .u � �u;r � .b.uh � �u/// (10.39)

� ku � �uk kb � r.uh � �u/k (10.40)

� Ch2jujH2.˝/jjjuh � �ujjj=
p
ı (10.41)

Finally, we have

ı.b � r.u � �u/; b � r.uh � �u// � ıkb � r.u � �u/k kb � r.uh � �u/k (10.42)

�
p
ıkbkL1.˝/kr.u � �u/k jjjuh � �ujjj

(10.43)

� C
p
ıhjujH2.˝/jjjuh � �ujjj (10.44)
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Now, in the case of high convection � � Ch, and, consequently, ı D Ch. Thus,
the three right hand sides of (10.38), (10.41), and (10.44) are all of order h3=2, and
we see that

jjjuh � �ujjj � Ch3=2jujH2.˝/ (10.45)

It remains to estimate jjju � �ujjj. Repeating the above estimates with uh � �u
replaced by u � �u it is easily seen that this term is also of order h3=2. Hence, we
have shown the following a priori estimate.

Theorem 10.1. The finite element solution uh, defined by (10.22), satisfies the
estimate

jjju � uhjjj � Ch3=2jujH2.˝/ (10.46)

10.1.8 Computer Implementation

10.1.8.1 Heat Transfer in a Fluid Flow

Assembly of the SD matrix Sd stemming from the GLS term .b � ru; b � rv/ is easy.
We list a routine for doing so below.

function Sd = SDAssembler2D(p,t,bx,by)
np=size(p,2);
nt=size(t,2);
Sd=sparse(np,np);
for i=1:nt
loc2glb=t(1:3,i);
x=p(1,loc2glb);
y=p(2,loc2glb);
[area,b,c]=HatGradients(x,y);
bxmid=mean(bx(loc2glb));
bymid=mean(by(loc2glb));
SdK=(bxmid*b+bymid*c)*(bxmid*b+bymid*c)’*area;
Sd(loc2glb,loc2glb)=Sd(loc2glb,loc2glb)+SdK;

end

Input is the same as for the routine ConvectionAssembler2D. Output is the global
SD matrix Sd.

We now study a real-world application with more general boundary conditions,
namely, heat transfer in a fluid flow. This kind of physical problem is of interest
when designing heat exchangers or electronic devices, for instance. More precisely,
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Fig. 10.4 Geometry of the channel domain and boundaries

we consider a heated object submerged into a channel with a flowing fluid. See
Fig. 10.4. The channel is rectangular and fluid is flowing from left to right round a
heated circle.

The fluid flow is unaffected by the temperature and given by the velocity field

b1 D U1
�
1 � x21 � x22

.x21 C x22/
2

�
(10.47)

b2 D �2U1
x1x2

.x21 C x22/
2

(10.48)

where U1 D 1 is the free stream velocity of the fluid. Figure 10.5 shows a glyph
plot of b.

Let us write a routine to evaluate the vector field b.

function [bx,by] = FlowField(x,y)
a=1; % cylinder radius
Uinf=1; % free stream velocity
r2=x.^2+y.^2; % radius vector squared
bx=Uinf*(1-a^2*(x.^2-y.^2)./r2.^2); % x-component of b
by=-2*a^2*Uinf*x.*y./r2.^2; % y-

We assume that the cylinder is kept at constant temperature 1. Further, the walls
of the channel are insulated so that no heat can flow across them. In other words,
the normal heat flux n � q is zero on the walls, where q is given by Fourier’s law

q D ��ru C bu (10.49)



10.1 The Transport Equation 253

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

x1

x 2

Fig. 10.5 Glyphs showing the fluid velocity field b

At the outflow we ignore the diffusion, so that �n � ru D 0. Finally, at the inflow
the fluid has zero temperature.

All in all, we have the following transport equation and boundary conditions for
the fluid temperature u.

��u C b � ru D 0; in ˝ (10.50a)

u D 0; on �in (10.50b)

u D 1; on �cyl (10.50c)

��n � ru D 0; on �out (10.50d)

n � .��ru C bu/ D 0; on �wall (10.50e)

In order to simplify the computer implementation we first approximate the
Dirichlet conditions (10.50b) and (10.50c) using the Robin conditions ��n � ru D
106u on �in and ��n � ru D 106.u � 1/ on �cyl, respectively. Multiplying 0 D
��uCb �ru by v 2 V D H1.˝/ and integrating both the diffusive and convective
term by parts, we then have

0 D �.ru;rv/ � �.n � ru; v/L2.@˝/ � .u; b � rv/C .n � bu; v/L2.@˝/ (10.51)

D �.ru;rv/C 106.u; v/L2.�in/ C 106.u � 1; v/L2.�cyl/

� .u; b � rv/C .n � bu; v/L2.�out / (10.52)
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As a consequence, the weak form of (10.50) reads: find u 2 V such that

�.ru;rv/C 106.u; v/L2.�in/ C 106.u; v/L2.�cyl/

�.u; b � rv/C .n � bu; v/L2.�out / D 106.1; v/L2.�cyl/; 8v 2 V (10.53)

To approximate V let Vh � V be the usual space of all continuous piecewise
linears. Adding the least squares term ı.b � ru; b � rv/ to the weak form we obtain
the GLS finite element approximation: find uh 2 Vh such that

�.ru;rv/C 106.u; v/L2.�in/ C 106.u; v/L2.�cyl/

�.u; b � rv/C .n � bu; v/L2.�out / C ı.b � ru; b � rv/ D 106.1; v/L2.�cyl/; 8v 2 Vh
(10.54)

We observe that the left hand side boundary terms can be written .�u; v/L2.@˝/ with
� defined by

� D

8̂̂
<
ˆ̂:
106; on �in [ �cyl

b � n; on �out

0; elsewhere

(10.55)

or, in the MATLAB language,

function k = Kappa2(x,y)
k=0;
if x<-1.99 % inflow
k=1e6;

end
if sqrt(x^2+y^2)<1.01 % cylinder
k=1e6;

end
if x>5.99 % outflow
[bx,by]=FlowField(x,y);
nx=1; ny=0; % normal components
k=bx*nx+by*ny; % kappa = dot(b,n)

end

Similarly, the right hand side boundary term may be written .�gD C gN ; v/L2.@˝/
with � as above, and gD and gN defined by

function g = gD2(x,y)
g=0;
if sqrt(x^2+y^2)<1.01, g=1; end

function g = gN2(x,y)
g=0;
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Fig. 10.6 Isocontours of the temperature uh in the fluid

We can now compute all boundary terms with a call to RobinAssembler2D with
function handles to Kappa2, gD2, and gN2, as arguments.

Finally, we notice that the convection matrix stemming from the term
�.u; b � rv/ is just the negative transpose of the matrix assembled by
ConvectionAssembler2D.

Putting all the pieces together we obtain the following main routine.

function HeatFlowSolver2D()
channel=RectCircg(); % channel geometry
epsilon=0.01; % diffusion parameter
h=0.1; % mesh size
[p,e,t]=initmesh(channel,’hmax’,h); % create mesh
A=assema(p,t,1,0,0); % stiffness matrix
x=p(1,:); y=p(2,:); % node coordinates
[bx,by]=FlowField(x,y); % evaluate vector field b
C=ConvectionAssembler2D(p,t,bx,by); % convection matrix
Sd=SDAssembler2D(p,t,bx,by); % GLS stabilization matrix
[R,r]=RobinAssembler2D(p,e,@Kappa2,@gD2,@gN2); % Robin BC
delta=h; % stabilization parameter
U=(epsilon*A-C’+R+delta*Sd)\r; % solve linear system
pdecont(p,t,U), axis equal % plot solution

Note that the mesh size h D 0:1, while the diffusion parameter � D 0:01, which can
lead to potential problems with oscillations. However, by choosing the stabilization
parameter ı proportional to h we get additional diffusion along the streamlines of
b that prevents the forming of oscillations. Running this code we get the result of
Fig. 10.6.

From this figure it is clearly seen how the temperature behind the cylinder is
transported downstream by the fluid flow, whereas a boundary layer is formed in
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front of the cylinder. As expected the temperature is decreasing downstream due to
the artificial diffusion and no oscillations are visible. A nice detail visible is that
the outflow appears transparent in the sense that the temperature isocontours seem
unaffected by the domain boundary and the truncation of the computational domain.

10.2 Further Reading

A basic analysis of the SD method can be found in the book by Johnson [45]. A
more recent and deeper analysis of GLS methods can be found in the book by Roos,
Stynes, and Tobiska [55].

10.3 Problems

Exercise 10.1. Compute the least squares solution to the linear system Ax D b

with

A D
2
41 00 1
1 1

3
5 ; x D

�
x1

x2

�
; b D

2
412
6

3
5

Which norm is minimized by this solution?

Exercise 10.2. Verify that a standard one-dimensional finite element method for
the transport equation on a uniform mesh yields the linear system (10.14).

Exercise 10.3. Derive a GLS method for the problem

��u C b � ru C cu D f; x 2 ˝; u D 0; x 2 @˝

Use a standard continuous piecewise linear approximation of the solution. What
does the linear system resulting from finite element discretization look like?

Exercise 10.4. Fill in the details of the a priori error estimate (10.45) for the GLS
method.

Exercise 10.5. Use TransportSolver2D to verify that standard Galerkin is unsta-
ble also in higher dimensions. Choose the diffusion parameter � D 0:01 and the
mesh size h D 0:05, for example.

Exercise 10.6. Show that jjj � jjj is a norm on H1
0 .˝/.

Exercise 10.7. Show that the bilinear form ah.�; �/, defined by (10.25), is continu-
ous in the norm jjj � jjj on the space of continuous piecewise linears Vh. Do the same
for the linear form lh.�/, defined by (10.26).



Chapter 11
Solid Mechanics

Abstract Solid mechanics is arguably one of the most important areas of appli-
cation for finite elements. Indeed, finite element analysis is used together with
computer aided design (CAD) to optimize and speed up the design and manufac-
turing process of practically all mechanical structures, ranging from bearings to
airplanes. In this chapter we derive the equations of linear elasticity and formulate
finite element approximations of them. We do this in the abstract setting of elliptic
partial differential equations introduced before and prove existence and uniqueness
of the solution using the Lax-Milgram lemma. A priori and a posteriori error
estimates are also proved. Some effort is laid on explaining the implementation of
the finite element method. We also touch upon thermal stress – and modal analysis.

11.1 Governing Equations

11.1.1 Cauchy’s Equilibrium Equation

Consider a volume ˝ occupied by an elastic material and let ! denote an arbitrary
subdomain of ˝ with boundary @! and exterior normal n. Two types of forces can
act on !. First, there are forces acting on the whole volume, so called body forces.
These are described by a force density f , which expresses force per unit volume.
The most common body force is gravity with f D Œ0; 0;�9:82�T . Second, there
are forces acting on the boundary @!. These are assumed to have the form � � n,
where � is the so called stress tensor � � n denotes the vector with components
.� � n/i D P3

jD1 �ij nj . The stress tensor is a second order tensor with components
�ij , i; j D 1; 2; 3, where �ij expresses the force per unit area in direction xi on a
surface with unit normal in direction xj . It follows from conservation of angular
momentum that the stress tensor is symmetric with six independent components.

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__11, © Springer-Verlag Berlin Heidelberg 2013
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Summing body forces and contact forces we obtain the total net force F on ˝

F D
Z
!

fdx C
Z
@!

� � nds (11.1)

Using the divergence theorem on the surface integral we obtain

F D
Z
!

.f C r � �/ dx (11.2)

In equilibrium F D 0, and since ! is arbitrary, we conclude that

f C r � � D 0 (11.3)

which is Cauchy’s equilibrium equation. It is a system of equations, given in
component form by

f1 C �11

@x1
C �12

@x2
C �13

@x3
D 0 (11.4a)

f2 C �21

@x1
C �22

@x2
C �23

@x3
D 0 (11.4b)

f3 C �31

@x1
C �32

@x2
C �33

@x3
D 0 (11.4c)

As there are six independent stress components, the above system with three
equations needs to be closed by a material specific so-called constitutive equation,
which relates the stress in the material to its deformation.

11.1.2 Constitutive Equations and Hooke’s Law

The displacement of a material particle is defined as the vector u D x�x0, where x
is the current and x0 the initial position of the particle. Under assumption of small
displacement gradients the measure of deformation, the so-called strain, is given by
the strain tensor

" D 1

2
.ru C ruT / (11.5)

which in component form reads

"ij D 1

2

�
@ui
@xj

C @uj
@xi

�
; i; j D 1; 2; 3 (11.6)
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A desirable property for the strain tensor is that it is invariant under rigid body
motion, that is, translation and rotation. For the linear strain tensor above this is,
however, only partially true since it vanishes for translations, but not for proper
rotations – only linearized rotations. Hence, in the linearized theory of elasticity, a
critical assumption is that any rotations are small. The set of rigid body translations
and linearized rotations are commonly referred to as the rigid body modes.

The diagonal components "i i is the relative change in length along the xi -axis,
and the off diagonal components "ij are to the first order proportional to the change
in angle between the coordinate axes xi and xj , which initially are orthogonal.

The constitutive equation relating stress to deformation in linear elastic materials
is called Hooke’s law. It is a linear relationship, which in its most general form reads
�ij D P

kl Cijkl"kl , where Cijkl is a fourth order tensor with up to 36 independent
components, or elastic moduli, that describe the material. However, in isotropic
materials, that is, materials in which the material properties are independent of
spatial direction, only two elastic moduli are required. Assuming that the body is
stress free before deformation, Hooke’s law for linear elastic isotropic materials
takes the form

� D 2�".u/C �.r � u/I (11.7)

where I is the 3 � 3 identity matrix. The elastic moduli � and � are the so called
Lamé parameters, defined by

� D E

2.1C �/
; � D E�

.1C �/.1� 2�/ (11.8)

where E is Young’s elastic modulus, and � is Poisson’s ratio. Young’s modulus
describes the stiffness of the material, whereas Poisson’s ratio describes the
material’s tendency to shrink its cross section when stretched. For homogeneous
materials, E and � are constant throughout the material.

Combining the equilibrium equation (11.3) with the constitutive relation (11.7)
we get a system of two vector valued partial differential equations, in the unknowns
� and u.

11.1.3 Boundary Conditions

To obtain a unique solution u, (11.3) and (11.7) must be supplemented by boundary
conditions, which can be of the two standard types, Dirichlet and Neumann.
Dirichlet boundary conditions are constraints on the displacements u and take the
form u D gD , where gD is given function. Often, gD D 0, which corresponds to
a situation where the material is clamped to the surrounding and unable to move.
Neumann boundary conditions are constraints on the normal stress and take the
form � � n D gN , where n is the outward unit normal to the boundary, and gN a
given so-called traction load.
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Fig. 11.1 Illustration of a
clamped elastic material body
˝ deforming under a body
load f and a traction load
gN . The solid line shows the
initial and the dashed line the
deformed configuration

11.2 Linear Elastostatics

Thus, the basic problem of linear elastostatics is to find the stress tensor � and the
displacement vector u such that

�r � � D f; in ˝ (11.9a)

� D 2�".u/C �.r � u/I; in ˝ (11.9b)

u D 0; on �D (11.9c)

� � n D gN ; on �N (11.9d)

where �D and �N are two boundary segments associated with the Dirichlet and
Neumann boundary conditions, respectively. See Fig. 11.1.

11.2.1 Weak Form

To derive the weak form of (11.9), let V be the Hilbert space

V D fv 2 ŒH1.˝/�3 W vj�DD 0g (11.10)

That is, all sufficiently smooth displacement vectors vanishing on �D .
Multiplying f D �r � � with a test function v 2 V , and integrating by parts, we

have

.f; v/ D .�r � �; v/ (11.11)

D
3X

i;jD1

�
�@�ij
@xj

; vi

�
(11.12)

D
3X

i;jD1
� �ij ; nj vi

�
@˝

C
�
�ij ;

@vi
@xj

�
(11.13)
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Introducing the contraction operatorW, defined by

A W B D
3X

i;jD1
Aij Bij (11.14)

for any two 3 � 3 matrices A and B we further have

�.� � n; v/@˝ C .� W rv/ D .f; v/ (11.15)

where the entries of the 3 � 3 gradient matrix rv are given by Œrv�ij D @vi =@vj .
Using finally the Neumann boundary condition � � n D gN on �N , and that v D 0

on �D, we end up with

.� W rv/ D .f; v/C .gN ; v/�N ; 8v 2 V (11.16)

Actually, we can simplify this a bit more. If a 3 � 3 matrix A is symmetric and
another 3� 3 matrix B is anti-symmetric with zero diagonal, then A W B D 0. Now,
recalling that any matrix can be decomposed into its symmetric and anti-symmetric
part, viz., A D .AC AT /=2C .A �AT /=2, it follows that

� W rv D � W 1
2
.rv C rvT /C � W 1

2
.rv � rvT / D � W �.v/C 0 (11.17)

This allows us to replace rv with �.v/ in (11.16), which yields

.�.u/ W �.v// D .f; v/C .gN ; v/�N ; 8v 2 V (11.18)

or, if we insert Hooke’s law � D 2��.u/C �.r � u/I , and use that I W ".v/ D r � v,

2�.".u/ W ".v//C �.r � u;r � v/ D .f; v/C .gN ; v/�N ; 8v 2 V (11.19)

Hence, the weak form of (11.9) reads: find u 2 V such that

a.u; v/ D l.v/ 8v 2 V (11.20)

where the bilinear from a.�; �/ and the linear form l.�/ are defined by

a.u; v/ D 2�.".u/ W ".v//C �.r � u;r � v/ (11.21)

l.v/ D .f; v/C .gN ; v/�N (11.22)
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11.2.2 Existence and Uniqueness of the Solution

We next show that the weak form (11.20) fulfills the requirements of the Lax-
Milgram lemma. In doing so, to measure the size of the various matrices, tensors,
and vectors involved we define the following norms on V for any 3 � 3 matrix or
tensor A, and any 3 � 1 vector b.

kAk2V D
3X

i;jD1
kAij k2

H1.˝/
; kbk2V D

3X
iD1

kbik2H1.˝/
(11.23)

The semi-norms of A and b on V are defined analogously.
The continuity of a.�; �/ follows from the Cauchy-Schwarz inequality.

a.u; v/ D 2�.".u/ W ".v//C �.r � u;r � v/ (11.24)

� 2�k".u/k k".v/k C �kr � uk kr � vk (11.25)

� Ckruk krvk (11.26)

� CkukV kvkV (11.27)

The continuity of l.�/ follows from the trace inequality

kvk�N � C.krvk C kvk/ � CkvkV (11.28)

and, again, the Cauchy-Schwarz inequality.

l.v/ � .f; v/C .g; v/�N (11.29)

� kf k kvk C kgk�N kvk�N (11.30)

� kf k kvkV C kgk�N kvkV (11.31)

� CkvkV (11.32)

To prove coercivity of a.�; �/ we need the following result.

Theorem 11.1 (Korn’s Inequality). There is a constant C such that

Ckrvk2 � k".v/k2 D
Z
˝

3X
i;jD1

"ij .v/"ij .v/ dx (11.33)

Proof. For simplicity, let us assume that u D 0 on the whole boundary @˝ .
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Straight forward calculation reveals that

Z
˝

3X
i;jD1

"ij .v/"ij .v/ dx D
Z
˝

3X
i;jD1

1

2

�
@vi
@xj

C @vj
@xi

�
1

2

�
@vi
@xj

C @vj
@xi

�
dx

(11.34)

D 1

4

Z
˝

3X
i;jD1

�
@vi
@xj

�2
C 2

@vi
@xj

@vj
@xi

C
�
@vj
@xi

�2
dx

(11.35)

D 1

2
krvk2 C 1

2

3X
i;jD1

Z
˝

@vi
@xj

@vj
@xi

dx (11.36)

Obviously, the claim follows if we can show that the last term is positive.
Using partial integration twice together with the boundary condition v D 0 on

@˝ , we have

3X
i;jD1

Z
˝

@vi
@xj

@vj
@xi

dx D �
3X

i;jD1

Z
˝

vi
@2vj
@xi@xj

dx C
Z
@˝

nj vi
@vj
@xi

ds (11.37)

D
3X

i;jD1

Z
˝

@vi
@xi

@vj
@xj

dx �
Z
@˝

nivi
@vj
@xj

ds (11.38)

D
Z
˝

 
3X
iD1

@vi
@xi

!0
@ 3X
jD1

@vj
@xj

1
A dx (11.39)

D
Z
˝

.r � v/2 dx 	 0 (11.40)

which concludes the proof. ut
The coercivity of a.�; �/ now follows from Korn’s inequality.

a.u; u/ D 2�k".u/k2 C �kr � uk2 	 2�k".u/k2 	 Ckruk2 	 mkvk2V (11.41)

Thus, we conclude that the requirements for the Lax-Milgram lemma are
fulfilled. Hence, there exist a unique solution u 2 V to the weak form (11.20).

11.2.3 Finite Element Approximation

From the Lax-Milgram lemma we know that the weak form (11.20) has a unique
solution u 2 V , which can be approximated with finite elements. To this end, we



264 11 Solid Mechanics

choose to approximate each component of u using continuous piecewise linears. Let
K D fKg be a shape regular tetrahedral mesh on ˝ , and let Vh be the polynomial
space

Vh D fv 2 V W vjK2 ŒP1.K/�3; 8K 2 Kg (11.42)

That is, all displacement vectors with continuous piecewise linear components
vanishing on �D .

Our finite element method takes the form: find uh 2 Vh, such that

a.uh; v/ D l.v/; 8v 2 Vh (11.43)

11.2.4 A Priori Error Estimate

As always, we wish to assert the accuracy of the finite element solution uh by
estimating the error e D u � uh. In doing so, we have the following a priori error
estimate.

Theorem 11.2. The finite element solution uh, defined by (11.43), satisfies the
estimate

krek � ChjujH2.˝/ (11.44)

where C is constant independent of u, uh, and the mesh size h.

Proof. Using the coercivity of a.�; �/ we have

mkrek2 � a.e; e/ D a.e; u � uh/ D a.e; u � �u C �u � uh/ D a.e; u � �u/
(11.45)

where we have added and subtracted an interpolant �u 2 Vh to u, and used that
a.e; �u/ D 0 by Galerkin orthogonality. Using also the continuity of a.�; �/ we
further have

mkrek2 � a.e; u � �u/ � Ckrek kr.u � �u/k (11.46)

Finally, using interpolation theory we have

kr.u � �u/k � ChjujH2.˝/ (11.47)

Dividing by krek concludes the proof. ut
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11.2.5 Engineering Notation

To simplify the bookkeeping of the test and trial functions v and uh and their
components, it is customary to rewrite the bilinear form a.uh; v/ as the product of a
few matrices. The starting point is to write the six independent components of the
stress tensor � as a vector, viz.,

� D �
�11 �22 �33 �12 �23 �31

�T
(11.48)

The strain tensor " is similarly written as a vector, viz.,

" D �
"11 "22 "33 2"12 2"23 2"31

�T
(11.49)

Hooke’s law (11.7) can then be written

� D D" (11.50)

where the 6 � 6 matrixD is given by

D D

2
66666664

�C 2� � � 0 0 0

� �C 2� � 0 0 0

� � �C 2� 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 �

3
77777775

(11.51)

in three-dimensions.
In two-dimensions one has to differ between so-called plane strain, defined by

"13 D "23 D "31 D 0; �33 D �.�11 C �22/ (11.52)

and so-called plane stress, defined by

�13 D �23 D �31 D 0; "33 D � �

E
.�33 C �22/ (11.53)

Both cases can be handled by a constitutive law of the form � D D", where

� D �
�11 �22 �12

�T
; " D �

"11 "22 2"12
�T

(11.54)

and

D D
2
4�C 2� � 0

� �C 2� 0

0 0 �

3
5 (11.55)
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for plane strain and

D D E

1 � �2

2
41 � 0

� 1 0

0 0 .1 � �/=2

3
5 (11.56)

for plane stress. We shall return to plane strain and stress shortly.
Now, the so-called engineering notation adopted so far allows us to write

" W � D "T � D "TD" (11.57)

which implies

a.uh; v/ D
Z
˝

".v/ W �.uh/ dx D
Z
˝

"T .v/�.uh/ dx D
Z
˝

"T .v/D".uh/ dx

(11.58)

Here, it is convenient to write the finite element ansatz uh 2 Vh in matrix form, viz.,

uh D
2
4u1

u2
u3

3
5
h

D
2
4'1 0 0 '2 0 0 : : : 'ni 0 0

0 '1 0 0 '2 0 : : : 0 'ni 0

0 0 '1 0 0 '2 : : : 0 0 'ni

3
5

2
66666666666666664

d11

d12
d13
d21
d22

d23
:::

dN1

dN2
dN3

3
77777777777777775

D 'd (11.59)

where 'i , i D 1; 2; : : : ; ni are the hat basis functions, and d is a vector containing
the nodal displacements. Because there are three displacements per node, d is of
length 3ni , with ni the number of interior nodes.

The strain field is linked to the displacements by (11.5). An alternative way of
writing this is

2
66666664

"11
"22
"33

2"12
2"23
2"31

3
77777775

D

2
66666664

@=@x1 0 0

0 @=@x2 0

0 0 @=@x3

@=@x2 @=@x1 0

0 @=@x3 @=@x2
@=@x3 0 @=@x1

3
77777775

2
4u1

u2
u3

3
5 (11.60)
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Introducing the strain matrix

B D

2
66666664

@=@x1 0 0

0 @=@x2 0

0 0 @=@x3
@=@x2 @=@x1 0

0 @=@x3 @=@x2

@=@x3 0 @=@x1

3
77777775

2
4'1 0 0 '2 0 0 : : : 'ni 0 0

0 '1 0 0 '2 0 : : : 0 'ni 0

0 0 '1 0 0 '2 : : : 0 0 'ni

3
5 (11.61)

we have the discrete strains and stresses

" D Bd (11.62)

� D DBd (11.63)

The linear system arising from the finite element method (11.43) can now be
written in matrix form as

�Z
˝

BTDB dx

�
d D

Z
˝

'T f dx C
Z
�N

'T gN ds (11.64)

or simply

Kd D F (11.65)

whereK is the 3ni � 3ni stiffness matrix

K D
Z
˝

BTDBdx (11.66)

and F is the 3ni � 1 load vector

F D
Z
˝

'T f dx C
Z
�N

'T gN ds (11.67)

11.2.6 Computer Implementation

Although deformation is a genuine three-dimensional phenomenon it is sometimes
possible to reduce to two dimensions. For example, say that we have a very
slender structure oriented along the x3-axis with length much greater than cross-
section area. Then the strains associated with length (i.e., "13, "23, and "33) are
small compared to the cross-sectional strains, since they are constrained by nearby
material. In such a case, it suffice to consider a reduced two-dimensional elastic
problem in the cross-section of the structure to deduce the deformation. The
conditions that u3 D 0 and that there is no variation with respect to x3 in any
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quantity is called the state of plain strain. By analogy, the state of plane stress applies
to structures, which are large, but thin, such as plates or shells, for instance.

Let us work through the details of writing a two-dimensional elastic finite
element solver. To this end, let ˝ � R

2 denote a two-dimensional domain in the
x1x2-plane, and let K D fKg be a triangle mesh of ˝ .

As usual, the stiffness matrix (11.66) and the load vector (11.67) can be assem-
bled by summing integral contributions from each element. Consider therefore an
element K with the three nodes Ni , i D 1; 2; 3. On K the element displacements
uKh are given by

uKh D
�
'1 0 '2 0 '3 0

0 '1 0 '2 0 '3

�
2
66666664

d11
d12
d21

d22
d31
d32

3
77777775

D 'KdK (11.68)

where 'i are the hat functions. Recall that these are given by 'i D ai C bix1 C ci x2
where ai , bi , and ci are determined from 'i .Nj / D ıij . Further, on K the element
strains are given by

"K D
2
4@=@x1 0

0 @=@x2

@=@x2 @=@x1

3
5 uKh D

2
4b1 0 b2 0 b3 00 c1 0 c2 0 c3

c1 b1 c2 b2 c3 b3

3
5dK D BKdK (11.69)

Note that the strain matrix BK is constant and that all strains are constant on the
element. Because the element strains are constant, so are also the element stresses
�K D D"K .

Now, the element stiffness matrix is given by

KK D
Z
K

BKTDBK dx (11.70)

which simplifies to KK D BKTDBK jKj, since the integrand is constant.
Writing a code for computingKK is easy.

function KK = ElasticStiffness(x,y,mu,lambda)
% triangle area and gradients (b,c) of hat functions
[area,b,c]=HatGradients(x,y);
% elastic matrix
D=mu*[2 0 0; 0 2 0; 0 0 1]+lambda*[1 1 0; 1 1 0; 0 0 0];
% strain matrix
BK=[b(1) 0 b(2) 0 b(3) 0 ;

0 c(1) 0 c(2) 0 c(3);



11.2 Linear Elastostatics 269

c(1) b(1) c(2) b(2) c(3) b(3)];
% element stiffness matrix
KK=BK’*D*BK*area;

Input to this routine is the element node coordinates x and y, and the Lamé
parameters lambda and mu. Output is the 6 � 6 element stiffness matrix KK.

Continuing, the element load vector is given by

FK D
Z
K

'K
T

fdx D
Z
K

2
66666664

'1 0

0 '1
'2 0

0 '2
'3 0

0 '3

3
77777775

�
f1

f2

�
dx (11.71)

To evaluate these integrals without effort we can use the old trick of replacing f
with its linear interpolant �f , and then integrate the interpolant. Recall that �f is
defined on K by

�f D
�
�f1

�f2

�
D
�
'1 0 '2 0 '3 0

0 '1 0 '2 0 '3

�
2
66666664

f11
f21
f12

f22
f13
f23

3
77777775

D 'K
T
f K (11.72)

where fij D fi .Nj / are the nodal force values. This gives us

FK D
Z
K

'K
T
fdx �

Z
K

2
66666664

'1 0

0 '1
'2 0

0 '2
'3 0

0 '3

3
77777775

�
'1 0 '2 0 '3 0

0 '1 0 '2 0 '3

�
2
66666664

f11
f21
f12

f22
f13
f23

3
77777775
dx (11.73)

D
Z
K

2
66666664

'21 0 '2'1 0 '3'1 0

0 '21 0 '2'1 0 '3'1
'1'2 0 '22 0 '3'2 0

0 '1'2 0 '22 0 '3'2
'1'3 0 '2'3 0 '23 0

0 '1'3 0 '2'3 0 '23

3
77777775

2
66666664

f11
f21
f12

f22
f13
f23

3
77777775
dx D MKf K (11.74)
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whereMK is the element mass matrix. Evaluating its integrals one finds that

MK D 1

12

2
66666664

2 0 1 0 1 0

0 2 0 1 0 1

1 0 2 0 1 0

0 1 0 2 0 1

1 0 1 0 2 0

0 1 0 1 0 2

3
77777775

jKj (11.75)

which immediately translates into MATLAB code.

function MK = ElasticMass(x,y)
area=polyarea(x,y);
MK=[2 0 1 0 1 0;

0 2 0 1 0 1;
1 0 2 0 1 0;
0 1 0 2 0 1;
1 0 1 0 2 0;
0 1 0 1 0 2]*area/12;

Since the element load is approximately given by FK D MKf K on each element,
it is straight forward to assemble the load vector F as the sum F D P

K F
K .

When performing the assembly of the global system of equations, we need to
take into account that there are two unknowns, or, degrees of freedom, per node.
This makes the insertion of element matrix contributions into the global system
matrix a bit more trickier than usual. In order to add the local stiffness KK

ij to its
correct location in the global stiffness matrix K , we have to make a local-to-global
map between the node numbers and the numbering of the displacement degrees
of freedom. Actually, we have already set up this mapping when ordering the nodal
displacements in the vector d . Recall that all odd vector entries d2i�1 have to do with
the x1-displacements, and that all even entries d2i have to do with x2-displacements.
This is also true for the element displacement vector dK . Thus, the two displacement
components in node number i is mapped onto vector entries d2i�1 and d2i , i D
1; 2; : : : ; ni , and the map between a node Ni and its degrees of freedom is conse-
quently i 7! .2i � 1; 2i/. For example, if element K has the nodes 3, 5 and 6, then
the degrees of freedom is 5, 6, 9, 10, 11, and 12. From this it follows that the local
stiffnessKK

15 should be added to row 5 column 11 in the global stiffness matrix K .
Using the subroutines ElasticStiffness and ElasticMasswe can now write

a routine for assembling the global stiffness matrixK and the global load vector F .
For future use let us also assemble the global mass matrix M .

function [K,M,F] = ElasticAssembler(p,e,t,lambda,mu,force)
ndof=2*size(p,2); % total number of degrees of freedom
K=sparse(ndof,ndof); % allocate stiffness matrix
M=sparse(ndof,ndof); % allocate mass matrix
F=zeros(ndof,1); % allocate load vector
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dofs=zeros(6,1); % allocate element degrees of freedom
for i=1:size(t,2) % assemly loop over elements

nodes=t(1:3,i); % element nodes
x=p(1,nodes); y=p(2,nodes); % node coordinates
dofs(2:2:end)=2*nodes; % element degrees of freedom
dofs(1:2:end)=2*nodes-1;
f=force(x,y); % evaluate force at nodes
KK=ElasticStiffness(x,y,lambda,mu); % element stiffness
MK=ElasticMass(x,y); % element mass
fK=[f(1,1) f(2,1) f(1,2) f(2,2) f(1,3) f(2,3)]’;
FK=MK*fK; % element load
K(dofs,dofs)=K(dofs,dofs)+KK; % add to stiffness matrix
M(dofs,dofs)=M(dofs,dofs)+MK; % add to mass matrix
F(dofs)=F(dofs)+FK; % add to load vector

end

Input is the usual point, edge, and connectivity matrices p, e, and t, the Lamé
parameters lambda, and mu, and a function handle to a subroutine Force specifying
the body force. For example,

function f = Force(x,y)
f=[35/13*y-35/13*y.^2+10/13*x-10/13*x.^2;
-25/26*(-1+2*y).*(-1+2*x)];

Output is the global stiffness matrix K, the global mass matrix M, and the global
load vector F.

The Lamé parameters � and � can conveniently be computed from the Young
modulus E and the Poisson’s ratio �, which are the usual physical data available,
with the following subroutine.

function [mu,lambda] = Enu2Lame(E,nu)
mu=E/(2*(1+nu));
lambda=E*nu/((1+nu)*(1-2*nu));

For the stiffness matrix to be invertible some boundary conditions must be
enforced. Assuming a Dirichlet type boundary condition this can be done as usual
by eliminating the known nodal displacements from the stiffness matrix and adding
them to the load vector. For example, if we have the homogeneous Dirichlet
boundary conditions on the whole boundary, then these can be enforced with
the code

bdry=unique([e(1,:) e(2,:)]); % boundary nodes
fixed=[2*bdry-1 2*bdry]; % boundary degrees of freedom, DoFs
values=zeros(length(fixed),1); % zero boundary values
ndof=length(F); % total number of DoFs
free=setdiff([1:ndof],fixed); % free DoFs
F=F(free)-K(free,fixed)*values; % modify load for BC
K=K(free,free); % modify stiffness for BC
d=zeros(ndof,1); % nodal displacement vector
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d(free)=K\F; % solve for free DoFs
d(fixed)=values; % insert known DoFs

The main routine for our linear elastic finite element solver is given below.

function ElasticSolver()
g=Rectg(0,0,1,1);
[p,e,t]=initmesh(g,’hmax’,0.1);
E=1; nu=0.3;
[mu,lambda]=Enu2Lame(E,nu);
[K,M,F]=ElasticAssembler(p,e,t,mu,lambda,@Force);
bdry=unique([e(1,:) e(2,:)]);
fixed=[2*bdry-1 2*bdry];
values=zeros(length(fixed),1);
ndof=length(F);
free=setdiff([1:ndof],fixed);
F=F(free)-K(free,fixed)*values;
K=K(free,free);
d=zeros(ndof,1);
d(free)=K\F;
d(fixed)=values;
U=d(1:2:end); V=d(2:2:end);
figure(1), pdesurf(p,t,U), title(’(u_h)_1’)
figure(2), pdesurf(p,t,V), title(’(u_h)_2’)

11.2.6.1 Verifying the Energy Norm Convergence

Let us verify that our finite element solver is implemented correctly. By taking
the logarithm of

p
a.e; e/ � Ch, which is nothing but the a priori estimate of

Theorem 11.2, we find that the error e D u � uh obeys

log
p
a.e; e/ � log.Ch/ D C C log.h/ (11.76)

where C is a constant depending on D2u. Recall that
p
a.�; �/ is the energy norm

jjj � jjj. From (11.76) it follows that if we make a plot of log.h/ versus log.jjjejjj/,
then we should asymptotically get a straight line with slope 1. However, to be able to
compute e we need to know the exact solution u, and we shall therefore manufacture
a problem with known solution. To this end, let ˝ D Œ0; 1�2, and let u D Œx1.1 �
x1/x2.1� x2/; 0�. This choice of u assures that u D 0 on the boundary @˝ . Using u
to first compute the strain tensor ", and then the stress tensor � , and finally �r � � ,
we find that the force f equals

f D
�
35=13x2 � 35=13x22 C 10=13x1 � 10=13x21

�25=26.�1C 2x2/.�1C 2x1/

�
(11.77)
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Table 11.1 Convergence of
jjjejjj for a sequence of finer
and finer meshes

h
p
F T d jjjejjj

0.1250 0.1372 0.0201
0.1125 0.1374 0.0187
0.1000 0.1377 0.0162
0.0875 0.1379 0.0146
0.0750 0.1381 0.0125
0.0625 0.1383 0.0103
0.0500 0.1384 0.0083
0.0375 0.1385 0.0061
0.0250 0.1386 0.0040
0.0125 0.1387 0.0020

10−2 10−1 100
10−3

10−2

10−1

h

|||
e|

||

Fig. 11.2 Loglog plot of the mesh size h versus the error in the energy norm jjjejjj

with E D 1 and � D 0:3. In the same way we also find that

a.u; u/ D .�.u/ W ".u// D 1=52 (11.78)

Next, to compute a.e; e/ we note that a.e; e/ D a.u; u/ � a.uh; uh/ by Galerkin
orthogonality, and that a.uh; uh/ can be easily computed as a.uh; uh/ D dTKd D
F T d . Recording the mesh size h and the energy norm error jjjejjj for ten different
uniform meshes we get the results shown in Table 11.1. In Fig. 11.2 we show a
loglog plot of the obtained data. Looking at the plot we see that it is almost a straight
line and by doing a linear least squares fit on the data we find that the slope of the
line is 1:0104, which is close to the predicted value of 1, indeed.
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11.2.7 A Posteriori Error Estimate

To formulate adaptive finite elements we wish to derive an posteriori estimate for
the error e D u � uh.

Starting from the coercivity of a.�; �/, and using Galerkin orthogonality a.e; v/ D
0 for all v 2 Vh with v chosen as the interpolant �e 2 Vh of e, we have

Ckrek2 � a.e; e � �e/ (11.79)

D a.u; e � �e/ � a.uh; e � �e/ (11.80)

D .f; e � �e/ � a.uh; e � �e/ (11.81)

D
X
K2K

.f; e � �e/K � .�h.uh/ W ".e � �e//K (11.82)

D
X
K2K

.f; e � �e/K C .r � �h; e � �e/ � .�h � n; e � �e/@K (11.83)

C .gN ; e � �e/@K\�N

D
X
K2K

.f C r � �h; e � �e/K �
�
1

2
Œ�h � n�; e � �e

�
@Kn@˝

(11.84)

C .gN � �h � n; e � �e/@K\�N

Here, Œ�h � n� denotes the jump in the computed normal stress over the element
boundaries. On the domain boundary �N we obtain the term .gN ; e � �e/�N when
integrating by parts due to the Neumann traction boundary condition. This term does
not vanish, since e � �e is not zero on �N . However, e � �e is zero on �D , since
both u and uh satisfies the Dirichlet boundary conditions.

Now, using the Cauchy-Schwarz inequality on each term in (11.84) we immedi-
ately get

krek2 � C
X
K2K

kf C r � �hkKke � �ekK (11.85)

k1
2
Œ�h � n�k@Kn@˝ke � �ek@Kn@˝

C kgN � �h � nk@K\�N ke � �ek@K\�N

Next, recalling the Trace inequality kvk@K � C.h
�1=2
K kvkK C h

1=2
K krvkK/,

the interpolation estimate kv � �vkK � ChKkrvkK , and the stability estimate
kr.�v/k � Ckrvk, we have

h
1=2
K ke � �ek@K � C.ke � �ekK C hKkr.e � �e/kK/ � hKkrekK (11.86)
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Using this result and the Cauchy-Schwarz inequality, again, we further have

krek2 � C
X
K2K

	
hKkf C r � �hkK C h

1=2
K

	1
2

kŒ�h � n�k@Kn@˝

C kgN � �h � nk@K\�N




krekK (11.87)

� C

 X
K2K

h2Kkf C r � �hk2K C hK

 
1

4
kŒ�h � n�k2@Kn@˝

CkgN � �h � nk2@K\�N

!!1=2
krek (11.88)

Finally, dividing by krek we end up with

krek � C

 X
K2K

h2Kkf C r � �hk2K

ChK

�
1

4
kŒ�h � n�k2@Kn@˝ C kgN��h � nk2@K\�N

��1=2
(11.89)

� C
X
K2K

hKkf Cr � �hkKCh1=2K
�
1

2
kŒ�h � n�k@Kn@˝CkgN��h � nk@K\�N

�

(11.90)

Hence, we have shown the following a posteriori error estimate.

Theorem 11.3. The finite element solution uh, defined by (11.43), satisfies the
estimate

krek � C
X
K2K

	K (11.91)

where the element residual 	K is the sum of the cell residualRK D hKkf Cr��hkK
and the edge residual rK D h

1=2
K . 1

2
kŒ�h � n�k@Kn@˝ C kgN � �h � nk@K\�N /.

Next we show how to compute the cell and edge residuals.
The cell residual is easy to compute with one point quadrature. Note that it

simplifies to RK D kf kK for a piecewise linear uh.

function RK = CellResiduals(p,t,force)
nt=size(t,2); % number of elements
RK=zeros(nt,1); % allocate element residuals
for i=1:nt % loop over elements
nodes=t(1:3,i); % nodes
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x=p(1,nodes); y=p(2,nodes); % node coordinates
[area,ds]=Triutils(x,y); % area and side lengths
f=force(mean(x),mean(y)); % force at element centroid
h=max(ds); % local mesh size is max side length
RK(i)=h*sqrt(dot(f,f)*area); % cell residual h|f|_K

end

Here, we use the following utility routine to compute the area, edge lengths, and
outward unit normals on an element. Edge 1 is opposite node 1, edge 2 opposite
node 2, etc.

function [area,ds,nx,ny] = Triutils(x,y)
area=polyarea(x,y); % triangle area
dx=[x(3)-x(2); x(1)-x(3); x(2)-x(1)];
dy=[y(2)-y(3); y(3)-y(1); y(1)-y(2)];
ds=sqrt(dx.*dx+dy.*dy); % side lengths
nx=-dy./ds; % outward unit normal components
ny=-dx./ds;

The edge residual is a little more complicated to compute than the cell residual,
since it requires information about the element neighbors. A routine called Tri2Tri
for computing element neighbors is given in the Appendix. Also, for simplicity, we
do not compute the term stemming from the traction gN .

function rK = EdgeResiduals(p,t,E,nu,U,V)
nt=size(t,2);
rK=zeros(nt,1); % allocate edge residuals
nbrs=Tri2Tri(p,t); % get element neighbours
[mu,lambda]=Enu2Lame(E,nu);
[ux,uy]=pdegrad(p,t,U); % gradient of U
[vx,vy]=pdegrad(p,t,V);
for i=1:nt

nodes=t(1:3,i);
x=p(1,nodes); y=p(2,nodes);
r=0; % sum of edge residuals sqrt(h)|0.5[n.sigma]|_dK
[area,ds,nx,ny]=Triutils(x,y);
h=max(ds);
for j=1:3 % loop over element edges

n=nbrs(i,j); % element neighbour
if n<0 % no neighbour

continue; % don’t compute on domain boundary!
% should compute sqrt(h)|g_N-n.sigma|_dK

end
Sp=Stress(mu,lambda,ux,uy,vx,vy,i); % stress on element i
Sm=Stress(mu,lambda,ux,uy,vx,vy,n); % stress on neighbour
jump=0.5*(Sm-Sp)*[nx(j); ny(j)]; % stress jump
r=r+dot(jump,jump)*ds(j);

end
rK(i)=sqrt(h)*sqrt(r);

end
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To compute the stress tensor on a given element we use the following subroutine.

function sigma = Stress(mu,lambda,ux,uy,vx,vy,i)
divu=ux(i)+vy(i); % div u
dudx=[ux(i) uy(i); vx(i) vy(i)]; % grad u
epsilon=(dudx+dudx’)/2; % strain
sigma=2*mu*epsilon+lambda*divu*eye(2); % stress

11.2.7.1 Adaptive Mesh Refinement on a Rotated L-Shaped Domain

We illustrate the use of the element indicator 	K by adaptively solving a problem
with a manufactured solution. The domain ˝ is a rotated L-shaped polygon with
vertex points .�1;�1/, .0; 0/, .�1; 1/, .0; 2/, .2; 0/, and .0;�2/. The solution u is
known in polar coordinates .r; �/

ur .r; �/ D 1

2�
r˛..c2 � ˛ � 1/ cos..˛ � 1/�/ � .˛ C 1/ cos..˛ C 1/�// (11.92)

u� .r; �/ D 1

2�
r˛..˛ C 1/ sin..˛ C 1/�/C .c2 C ˛ � 1/ sin..˛ � 1/�// (11.93)

where the exponent ˛ is the solution to the equation ˛ sin.2!/Csin.2!˛/ D 0 with
! D 3�=4, c1 D � cos..˛C1/!/= cos..˛�1/!/, and c2 D 2.�C2�/=.�C�/. This
displacement field satisfies the linear elastic equations with f D 0 and �D D @˝ .
In the computations we use E D 1 and � D 0:3.

By construction, the gradient of the solution u tends to infinity at the re-entrant
corner of the domain. Thus, in order to capture this rapid growth of the gradient it is
necessary to have a high density of nodes near this corner. Now, from the a posteriori
error estimate we know that the gradient error can be controlled by using the element
residuals 	K to select elements for refinement. Indeed, starting with the coarse mesh
with ten elements and making ten adaptive refinement loops we obtain the mesh
shown in Fig. 11.3. Clearly, the adaptivity has identified and resolved the region
around the re-entrant corner. The computed displacement is shown in Fig. 11.4.

11.3 Linear Thermoelasticity

Heating or cooling of a material often leads to isotropic expansion or contraction.
In such cases, it is common to assume that the total strain " is the sum of the
mechanical and the thermal strain "M and "T , respectively. The former is assumed
to obey Hooke’s law, while the latter is given by

"T D ˛.T � T0/I (11.94)
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where ˛ is the thermal expansion coefficient, T the temperature, and T0 a reference
temperature. As usual, I is the identity tensor.

These assumptions give rise to a generalized Hooke’s law, relating stresses,
temperature, and displacements, of the form

� D 2�".u/C �.r � u/I � ˛.3�C 2�/.T � T0/I (11.95)
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The generalized Hooke’s law can be combined with Cauchy’s equilibrium
equation to yield the equations of linear thermoelasticity. In weak form, assuming
for simplicity f D 0, these equations reads: find u 2 V such that

Z
˝

2�".u/ W ".v/C �.r � u/.r � v/dx D
Z
˝

˛.3�C2�/.T�T0/.r � v/ dx; 8v 2V
(11.96)

From this we see that the thermal strains yield a load proportional to the temperature
difference T � T0.

Usually the temperature T is not available in closed form, but has to be computed
by solving a heat transfer problem with finite elements. This is a simple, but very
common, example of a so called multi-physics problem where two or more different
types of physics are coupled together to describe the behavior of a system.

11.4 Linear Elastodynamics

We now consider the time dependent linear elasticity equations. Recall that
Newton’s second law, F D ma, says that the net force F acting on a particle equals
the mass m of the particle times its acceleration a. Translated to the continuum
setting this yields the equations of motion


 Ru D f C r � � (11.97)

where 
 is the density of the material and Ru is the second derivative of the
displacement u with respect to time t . To see the analogy between Newton’s second
law and (11.97) note that if we consider a small particle with volume dx inside a
material body, then 
dx is precisely the mass of the particle, Ru is its acceleration,
and .f C r � �/dx is the net force acting on it. Moreover, fdx is externally applied
force, whereas r � �dx D � � nds is internal stresses acting on the surface ds of dx
with n the outward unit normal.

We can now write down the basic problem of linear elastodynamics, namely: find
the time dependent symmetric stress tensor � and the time dependent displacement
vector u such that


 Ru � r � � D f; in ˝ � I (11.98a)

� D 2�".u/C �.r � u/I; in ˝ � I (11.98b)

u D 0; on �D � I (11.98c)

� � n D 0; on �N � I (11.98d)

u D u0; in ˝; for t D 0 (11.98e)

Pu D v0; in ˝; for t D 0 (11.98f)
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where I D .0; T � is the time interval, and u0 and v0 is a given initial displacement
and velocity, respectively.

11.4.1 Modal Analysis

Since the equations of motion (11.98) resembles a wave equation it is natural to look
for a solution in the form of a plane wave, that is,

u D z sin.!t/ (11.99)

where z is a function independent of time t and ! a frequency. We note that both z
and ! are unknown. Inserting this ansatz into 
 Ru � r � �.u/ D f , assuming 
 D 1

and f D 0, we obtain

�r � �.z/ D !2z (11.100)

which we recognize as an eigenvalue problem for the pair .z; !/.
The weak form of (11.100) reads: find .z; !/ 2 V � R such that

a.z; v/ D !2.z; v/; 8v 2 V (11.101)

The finite element approximation of (11.101) reads: find .zh; !h/ 2 Vh � R such
that

a.zh; v/ D !2h.zh; v/; 8v 2 Vh (11.102)

The finite element method leads to the generalized algebraic eigenvalue problem

Kd D wMd (11.103)

whereK is the stiffness matrix,M the mass matrix, w D !2h the eigenvalues, and d
a vector containing the nodal values of the eigenmodes zh.

The computation of eigenmodes and eigenvalues is important in engineering and
is routinely performed in industry. This is typically done during the design process
of a mechanical structure to identify resonance frequencies (i.e., eigenvalues).
Indeed, resonance vibrations can cause the structure to wear out unreasonably fast
or even fail due to fatigue.

11.4.1.1 Eigenvalues and Eigenmodes of a Steel Bracket

As a small numerical example we compute the ten smallest eigenvalues and
eigenmodes of a freely vibrating steel bracket. The geometry and mesh is shown in
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Table 11.2 The ten smallest
eigenvalues wi of the steel
bracket

i wi
1 �0.0000
2 �0.0000
3 0.0000
4 0.0555
5 0.0732
6 0.1050
7 0.2411
8 0.2679
9 0.3972
10 0.4532

Fig. 11.5. A skeleton code for assembling the mass and stiffness matrix, and calling
the MATLAB routine eigs, which computes eigenvalues and eigenmodes of sparse
eigenvalue problems is given below.

function ElasticModalSolver()
[p,e,t]=initmesh(...); % create mesh
E=1; % Young modulus
nu=0.3; % Poisson ratio
[mu,lambda]=Enu2Lame(E,nu);
[K,M]=ElasticAssembler(p,e,t,mu,lambda,@Force);
[D,w]=eigs(K,M,10,’SM’);

The computed eigenvalues are listed in Table 11.2, and in Fig. 11.6 we show the
corresponding first, fourth, fifth, and eighth eigenmode. Note that the three lowest
eigenvalues are zero. The corresponding eigenmodes are the rigid body modes.
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Fig. 11.6 Eigenmodes 1, 4, 5, and 8 of the steel bracket. (a) Mode 1. (b) Mode 4. (c) Mode 5.
(d) Mode 8

These express two-dimensional translation and rotation, and cause no stress or strain
in the bracket. Therefore, they belong to the kernel of the bilinear form a.�; �/, or
equivalently, the null space of the stiffness matrix K .

11.4.2 Time Stepping

11.4.2.1 Rayleigh Damping

If the transient response of a loaded elastic body is important, then the equations
of motion need to be solved for the time dependent stresses and displacements. In
semi-discrete form these equations are given by the system of ODE

M Rd.t/C C Pd.t/CKd.t/ D F.t/ (11.104)
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where M is the mass matrix, K the stiffness matrix, and F the load vector, which
may depend on time t . The time dependent vector d D d.t/ is the nodal values
of the approximate displacement uh. The matrix C is called a damping matrix and
accounts for any dissipation of energy, for example, due to friction. A common
choice is

C D ˛M C ˇK (11.105)

where ˛ and ˇ are parameters that are typically determined by experiments. This
choice of C is called Rayleigh damping and means that the damping is the sum of
viscous and solid damping (i.e., hysteresis).

11.4.2.2 Newmark’s Method

The most popular algorithms for time stepping the equations of motion is based on
the co-called Newmark family of methods. Newmark’s method for advancing the
displacement dl from time level l to l C 1 is defined by

�
1

ˇk2
M C �

ˇk
C CK

�
dlC1 D FlC1 (11.106)
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�
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�

where k denotes the time step. Once the displacement dlC1 has been found the
velocity vl and acceleration al are advanced using the defining relations

vlC1 D vl C k.1 � �/al C �kalC1 (11.107)

alC1 D 1

ˇk2
.ulC1 � ul /� 1

ˇk
vl �

�
1

2ˇ
� 1

�
al (11.108)

To start the time stepping scheme d0, v0 and a0 are needed. The initial conditions
d0 and u0 are usually given, as opposed to a0, which must be computed from some
form of equation, such as Ma0 D F0 �Kd0, for instance.

In the Newmark method the parameters 0 � ˇ � 1=2 and 0 � � � 1 can be
tuned to yield different numerical properties of the resulting time stepping scheme.
The choice ˇ D 1=4 and � D 1=2 leads to both unconditional stability with respect
to the size of the time step k, as well as second order accuracy in time. For any other
value of � than 1=2 the time stepping scheme is only first order accurate. Moreover,
with � > 1=2 artificial damping occurs.
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11.5 Thin Plates

In engineering special structures are commonly used, for instance, beams and
plates. These are characterized by a special geometry of ˝ which is very thin in
certain directions. Beams are essentially one dimensional for beams and plates are
two dimensional. To handle these structures efficiently special partial differential
equations have been derived for certain load cases. In this short section we briefly
describe a model for a thin plate and the finite element method.

A plate is a thin flat elastic object subjected to a load in the transversal direction,
that is, the surface normal direction. The resulting transversal deflection may be
modeled using so-called Kirchhoff-Love plate theory. As the thickness of the plate
is assumed to be very thin compared to the other two dimensions it is sufficient to
describe the deformation of the plate by the deflection of its mid-surface. Indeed,
the following hypothesis is made for thin plates:

• Straight lines normal to the mid-surface of the plate remain straight and normal
to the mid-surface after deformation.

• The thickness of the plate is constant during deformation.

While we will not give a derivation of the Kirchhoff-Love plate theory, we will
below supply the resulting governing equations and derive the weak form of a thin
plate problem.

11.5.1 Governing Equations

Consider a thin plate occupying a plane domain ˝ 2 R
2 under a transverse

shear force load p with a clamped boundary @˝ . We seek the (scalar) transversal
deflection u of the plate. By demanding equilibrium of certain forces and moments it
can be shown that u is governed by the following fourth-order problem, the so-called
the Biharmonic equation,

2u D f; in ˝ (11.109a)

u D n � ru D 0; on @˝ (11.109b)

with 2 the operator

2 D @4

@x41
C 2

@4

@x21@x
2
2

C @4

@x42
(11.110)

and f D p=D with D the bending stiffness of the plate

D D Et3

12.1� �2/
(11.111)

where E is Young’s modulus, � Poisson’s ratio, and t is the thickness of the plate.
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We remark that the Biharmonic equation can be supplemented with different sets
of boundary conditions. For example, for a plate rigidly clamped to the boundary
we have u D gD and n � ru D 0, where gD is a prescribed boundary displacement.
Also, for a simply supported, or pinned, plate we have u D gD and u D gM ,
where gM is a given bending moment on the boundary.

11.5.1.1 Weak Form

To derive the weak form of the Biharmonic equation (11.109) we begin by
introducing the Hilbert space

V D fv 2 H2.˝/ W vj@˝D n � rvj@˝D 0g (11.112)

Then, multiplying f D 2u by a test function v 2 V and integrating, using
Green’s formula twice, we end up with

.f; v/ D .2u; v/ (11.113)

D .n � ru; v/@˝ � .u; n � rv/@˝ C .u; v/ (11.114)

D .u; v/ (11.115)

where we have used that vj@˝D 0 and n �rvj@˝D 0 to get rid of the boundary terms.
Thus, the weak form of (11.109) takes the form: find u 2 V such that

a.u; v/ D l.v/; 8v 2 V (11.116)

with a.u; v/ D .u; v/ and l.v/ D .f; v/.

11.5.1.2 The C 1 Continuity Requirement and the Morley Approximation

As indicated by the fact that the weak form (11.116) includes second order
derivatives, this equation generally requires C1 continuous finite elements to be
solvable. An intuitive explanation for this necessity is that C1 continuity is needed
to ensure that the plate doesn’t kink between elements, producing infinite curvature
values (i.e., infinite u). This is a quite difficult requirement to meet, especially
for triangular elements on unstructured meshes. Indeed, the only triangular finite
element with full C1 continuity is the Argyris element. However, since this is a
costly element to use, much development has been done to derive non-conforming
alternatives. For the Biharmonic equation the simplest such alternative element
is the Morley element, which is neither C1 nor C0. Indeed, on a triangle mesh
K D fKg the Morley space Vh š V is given by
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Vh D fv 2 L2 W vjK2 P2.K/8K 2 K ; (11.117)

v continuous at the vertices;

n � rv continuous at the edge mid-pointsg

In addition, to satisfy the homogeneous boundary conditions all degrees of freedom
on the boundary are removed.

Using the Morley space, the finite element approximation of (11.116) takes the
form: find uh 2 Vh such that

a.uh; v/ D l.v/; 8v 2 Vh (11.118)

11.6 Further Reading

Finite element methods was originally developed for solid mechanics applications
and during the years the literature on this topic has grown and is today quite
extensive.

An introductory book on finite element methods for static linear elasticity is the
one by Ottosen and Petersson [51], which covers also finite element analysis of
trusses, beams, and plates. This is also covered by Šzabo and Babuška in [68] from a
kind of historic and mathematical point of view. Advanced books on finite elements
for dynamic and non-linear elasticity include the ones by Hughes [43], Bathe [8],
Wriggers [73], and Zienkiewicz and Taylor [74], which covers many of the more
complicated phenomenons of elasticity, such as large displacements, contact, and
creep, for instance.

In this context we mention the book by Kwon and Bang [4], which contains many
useful MATLAB implementations of the numerical methods used for elasticity and
heat transfer problems.

11.7 Problems

Exercise 11.1. Given the stress field �11 D x1x2, �12 D .1 � x22/=2, and �22 D 0.
Determine if this corresponds to a state of equilibrium under a zero body force.

Exercise 11.2. Show the vector identity 2r�".v/ D vCr.r�v/with v D Œv1; v2�.

Exercise 11.3. Use the previous result to rewrite (11.3) and(11.7) as the single
equation �u C .�C �/r.r � u/C f D 0.

Exercise 11.4. Show that the strain tensor ".u/ is zero under the deformation
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u D
�
a

b

�
C
�
0 ��
� 0

� �
x1
x2

�

where a, b, and � are constants. Can you give a physical interpretation of u,
assuming that � is small?

Exercise 11.5. Show that ".v/ W I D r � v.

Exercise 11.6. Verify that the requirements for the Lax-Milgram lemma are ful-
filled by the weak form (11.20). For simplicity, you only have to consider the case
of homogeneous Dirichlet boundary conditions u D 0 on the whole boundary @˝ .

Exercise 11.7. Calculate the element stiffness matrix KK by hand for the triangle
with corners at .0; 0/, .3; 1/, and .2; 2/. Assume that

D D
2
44 1 01 4 0

0 0 2

3
5

Verify that KK has three zero eigenvalues. Can you explain why?

Exercise 11.8. Calculate by hand the element mass matrix MK assuming a unit
density on the reference triangle with vertices at origo, .1; 0/, and .0; 1/.

Exercise 11.9. A mesh of the square domain ˝ D Œ�1; 1�2 is obtained by typing
[p,e,t]=initmesh(’squareg’). Compute and plot the ten lowest eigenmodes
on this domain. Assume elastic constants 
 D 1, E D 1, and � D 0:3. Test both
clamped and stress free boundary conditions.

Exercise 11.10. Calculate the Morley basis functions on the triangle with vertices
at origo, .1; 0/, and .1; 1/.



Chapter 12
Fluid Mechanics

Abstract In this chapter we study finite elements for incompressible fluids
(i.e., most liquids and gases). We start by reviewing the governing equations of
mass and momentum balance and derive the Navier-Stokes equations. Restricting
attention to laminar flow we then introduce the Stokes system and formulate a finite
element method for the velocity and pressure. We discuss the inf-sup condition
as a necessary requirement for existence and uniqueness of the solution. Three
types of inf-sup stable finite elements are presented. Uzawa’s algorithm and the
solution of saddle-point linear systems is briefly touched upon. The lid-driven cavity
benchmark is studied numerically. Both a priori and a posteriori error estimates
are derived using B-stability. Finally, we introduce Chorin’s classical projection
method as a simple numerical method to simulate time-dependent nearly turbulent
fluid flow.

12.1 Governing Equations

12.1.1 Conservation of Mass

In classical physics mass can neither be destroyed nor created. This means that the
mass of any small volume dx of matter (e.g., a fluid) can change over time only by
flow in and out of the boundary ds. Letting u denote the flow velocity vector we
immediately obtain the following mass balance equation for a fluid occupying the
domain˝ .

. P
; 1/C .
; u � n/@˝ D 0 (12.1)

Here, 
 is the density of the fluid and n is the outward pointing unit normal on the
boundary @˝ . Because dm D 
dx is the mass of dx, the first term represents the
rate of change of mass within the domain. Further, during the small time span dt a

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__12, © Springer-Verlag Berlin Heidelberg 2013
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total volume of matter of dm D 
u � nds will flow out of the surface ds. Hence,
the second term represents the rate of mass loss through the domain boundary. Now,
using the divergence theorem on the surface integral we have

P
 C r � .
u/ D 0 (12.2)

Assuming a constant density 
, this simplifies to

r � u D 0 (12.3)

Physically, this means that the volume of any small fluid particle dx does not change
under deformation. Such fluids are said to be incompressible. Most everyday fluids
(e.g., water) are incompressible to a very high degree.

12.1.2 Momentum Balance

Besides mass conservation a fluid also obeys conservation of momentum
(i.e., Newton’s second law). Recall that the momentum of a particle with mass
m and velocity u is defined as the product p D mu, and that Newton’s second law
says that the rate of change of momentum equals the net force F acting on the
particle, that is, Pp D F .

Now, the momentum dp of a small volume of fluid dx is given by dp D 
udx, so
taking into consideration the fact that momentum can be transported in and out of the
boundary @˝ of the domain˝ we also have the following equation for momentum
balance.

. P
u; 1/C .
u; u � n/@˝ D F (12.4)

Here, we can use our knowledge from mechanics to write the net force F D .r �
� C f; 1/ with � the stress tensor of the fluid, and f a given body load, such as
gravity, for instance. Using, again, the divergence theorem on the surface integral
we arrive at

@t
u C r � .
uu/ D r � � C f (12.5)

Here, the right left side can be simplified by differentiating using the chain rule, viz.,

@t 
u C r � .
uu/ D u P
C 
 Pu C ur � .
u/C 
.u � r/u (12.6)

D 
 Pu C 
.u � r/u (12.7)

where we have used conservation of mass (12.2) to eliminate the first and third term
in the right hand side of (12.6). Hence, we end up with
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 Pu C 
.u � r/u D r � � C f (12.8)

12.1.3 Incompressible Newtonian Fluids

The kinds of stresses acting on a fluid particle are of two types, namely:

• Internal stresses, �1, due to the fluid pressure.
• Viscous stresses, �2.

Internal stresses always arise when a fluid is brought into motion, since the
pressure p is changed from that existing when the fluid is at rest. The corresponding
stress tensor takes the form

�1 D �pI (12.9)

with I the d � d identity tensor, with d D 1, 2, or 3 the space dimension.
Viscosity is a measure of the resistance of a fluid to being deformed by stresses.

Indeed, it may be thought of as a friction caused by neighboring layers of fluid
rubbing against each other. In reality, though, it is fluid molecules with different
velocities that bump into each other. Viscosity is commonly perceived as the
thickness of the fluid. Thus, water is thin, having a lower viscosity, while oil is
thick having a higher viscosity. All real fluids have some resistance to stress, so a
fluid with no resistance is called either inviscid or ideal.

Viscous stresses oppose deformation of neighboring fluid particles. Now, because
a constant velocity field does not give rise to any relative movement between the
fluid particles, it is reasonable to assume that the stress tensor �2 is related only to
the velocity gradients ru. Clearly, the simplest assumption is that this relation is
linear. Recalling that � is symmetric yields

� D �1 C �2 D �pI C �.ru C ruT / (12.10)

where the coefficient of proportionality� is the viscosity of the fluid. Fluids obeying
this constitutive law are called Newtonian.

Finally, inserting (12.10) into (12.8), using that r �� D �.u Cr.r � u//� rp,
and assuming r � u D 0, we obtain a set of partial differential equations for the
velocity u and pressure p, namely,

Pu C .u � r/u D �u � rp



C f (12.11a)

r � u D 0 (12.11b)

where � D �=
. These are the famous Navier-Stokes equations.
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12.1.4 Boundary- and Initial Conditions

In order to yield a unique velocity-pressure pair .u; p/ the Navier-Stokes equations
must be supplemented by appropriate boundary conditions. The most common of
these have names, such as:

• Slip, u � n D 0.
• No-slip, u D gD .
• Stress free, � � n D 0.
• Do-nothing, n � ru � pn D 0.

Slip and no-slip boundary conditions apply at a solid wall with normal n. Slip
boundary conditions says that the fluid flow is parallel to the boundary (i.e.,
orthogonal to n). No-slip conditions prescribe that the velocity u agrees with a
known vector gD on the boundary (e.g., fluid flow near a moving wall with velocity
gD). Often gD D 0 meaning that the fluid is at rest. Stress free and do-nothing
boundary conditions are generally used on so-called outflow boundaries where the
flow leaves the domain. Stress free boundary conditions model free flow into a
large reservoir, while do-nothing boundary conditions are used to truncate very long
channel like domains.

Due to the time derivative on the velocity, it is also necessary to specify initial
conditions of the type u.�; t0/ D u0 with u0 a given velocity at the initial time t0.

12.2 The Stokes System

12.2.1 The Stationary Stokes System

Many applications involve laminar fluid flow, which means that the flow is slow
and calm with essentially parallel streamlines. In such cases it is possible to omit
the non-linear term .u � r/u, which governs inertial effects, from the Navier-Stokes
equations (12.11). Omitting also any time dependence (i.e., assuming steady state),
we end up with a set of linear stationary equations called the Stokes system. These
are given by

�u C rp D f; in ˝ (12.12a)

r � u D 0; in ˝ (12.12b)

u D gD; on @˝ (12.12c)

where f is a given body force, and gD is given boundary data. For simplicity,
we assume a unit viscosity � D 1.
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Perhaps needless to say, the reason for studying the Stokes system is that it is
much easier to analyze than the Navier-Stokes equations, but still provides a realistic
model of many fluid flows.

Since only the gradient of the pressure p enters the equations, p is only
determined up to an arbitrary constant called the hydrostatic pressure level. To
determine this constant it is customary to require the pressure to have a zero mean
value, that is,

.p; 1/=j˝j D 0 (12.13)

This is a characteristic feature of all enclosed flows (i.e., flow problems with only
no-slip boundary conditions).

As we shall see, for well-posedness, we require the boundary data gD to satisfy
.gD; n/@˝ D 0.

In this context we remark that a nice thing with the do-nothing boundary
condition is that it automatically fixes the hydrostatic pressure level.

12.2.2 Weak Form

In order to derive a weak form of the Stokes system (12.12) we need to introduce
two function spaces Vg and Q for the velocity u and pressure p, respectively. To
this end, let

Vg D fv 2 ŒH1.˝/�d W vj@˝D gDg (12.14)

Q D fq 2 L2.˝/ W .q; 1/ D 0g (12.15)

We see that the pressure space Q is the subset of L2.˝/ with zero mean value.
Now, multiplying the momentum equation f D �u C rp by a test vector

v 2 V0 and integrating by parts, we have

.f; v/ D .�u; v/C .rp; v/ (12.16)

D .�n � ru; v/@˝ C .ru W rv/C .pn; v/@˝ � .p;r � v/ (12.17)

which, since v D 0 on @˝ , simplifies to

.f; v/ D .ru W rv/ � .p;r � v/ (12.18)

Similarly, multiplying the incompressibility constraint r�u D 0 by a test function
q 2 Q and integrating, we trivially have

.r � u; q/ D 0 (12.19)
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One might ask why Q is the appropriate test space for the incompressibility
constraint r � u D 0? After all, the functions in Q are somewhat peculiar since
they all have a zero mean value. The reason is that it suffice to test against these
functions, since the variational equation (12.19) is void anyway for q constant. To
see this let c be a constant and recall that by assumption .gD; n/@˝ D 0. Using
integration by parts we then have

.r � u; c/ D .u; nc/@˝ C .u;rc/ D c.gD; n/@˝ D 0 (12.20)

Summarizing, the variational formulation of (12.12) reads: find u 2 Vg and p 2
Q such that

a.u; v/C b.v; p/ D l.v/; 8v 2 V0 (12.21a)

b.u; q/ D 0; 8q 2 Q (12.21b)

where we have introduced the linear forms

a.u; v/ D .ru W rv/ (12.22)

b.u; q/ D �.r � u; q/ (12.23)

l.v/ D .f; v/ (12.24)

Notice that the sign of the incompressibility constraint (12.21b) can be chosen
arbitrarily, since the right hand side is zero anyway. Often, b.u; q/ D 0 is preferred
over the perhaps more correct �b.u; q/ D 0, since it gives a symmetric variational
form. From a theoretical point of view it does not matter which sign is chosen.
However, it can have a large impact on the numerics. Recall that symmetric matrices
are often to be preferred when it comes to solving linear systems.

Equations of the form (12.21) are called saddle-point problems.
To avoid working with different trial and test spaces Vg and V0 let us extend gD

from @˝ to ˝ , and write u D gD C u0 with u0 2 V0 the new unknown. Then, the
weak form for u0 takes the form: find u0 2 V0 such that

a.u0; v/C b.v; p/ D l.v/� a.gD; v/; 8v 2 V0 (12.25a)

b.u0; q/ D 0; 8q 2 Q (12.25b)

Thus, for the purpose of analysis it suffice to consider only gD D 0, since any other
gD can be studied by defining a new body force Qf by . Qf ; v/ D .f; v/�a.gD; v/ for
all v 2 V0. Therefore, let us drop the subscripts and simply write Vg D V0 D V .

There is a more compact way of writing the weak form (12.21), namely: find the
solution pair .u; p/ 2 V �Q such that
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B..u; p/; .v; q// D F..v; q//; 8.v; q/ 2 V �Q (12.26)

where the big linear forms B.�; �/ and F.�/ are defined by

B..u; p/; .v; q// D a.u; v/C b.v; p/C b.u; q/ (12.27)

F..v; q// D l.v/ (12.28)

That (12.26) is equivalent to (12.21a) and (12.21b) can be seen by choosing the
test functions .v; 0/ and .0; q/, respectively.

12.2.3 Equivalent Optimization Problem

The weak form (12.21) can be viewed as the constrained minimization problem

u D min
v2V F.v/ (12.29)

with

F.v/ D 1
2
a.v; v/� l.v/ (12.30)

subject to the constraint

b.v; q/ D 0 (12.31)

with q 2 Q. The minimum, u, is of course the velocity, whereas the pressure, p, is
a Lagrange multiplier enforcing the constraint r � u D 0.

In the language of optimization finding the minimum, u, of the constrained
optimization problem (12.29) amounts to finding saddle-points .u; p/ of the uncon-
strained optimization problem

min
q2Q max

v2V L.v; q/ (12.32)

where L.�; �/ is the Lagrangian

L.v; q/ D 1
2
a.v; v/� l.v/C b.v; q/ (12.33)

Indeed, demanding that the partial derivatives ofL.�; �/with respect to v and q vanish
yields precisely (12.21a) and (12.21b). Of course, the saddle-point nature of the pair
.u; p/ is the reason why these equations are called a saddle-point problem.
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12.2.4 The Continuous Inf-Sup Condition

Existence of a solution pair .u; p/ to the variational equation (12.21) does not follow
from the Lax-Milgram lemma alone, since it is impossible to establish coercivity of
the big bilinear form B..u; p/; .v; q// D a.u; v/ C b.v; p/ ˙ b.u; q/ on V � Q.
Attempting to do so gives B..u; p/; .u; p// D a.u; u/, since b.u; p/ D 0. As p is
missing, no lower bound on B..u; p/; .u; p// of the form m.kukV C kpkQ/ can be
obtained. Thus, the question of existence of u and p must be settled in another way.

On close examination it turns out that it is the existence of p that is difficult to
deduce, but not so for u. Indeed, let Z D fv 2 V W b.v; q/ D 0; 8q 2 Qg be
the null space of b.�; �/, that is, the subspace of V containing all divergence free
vectors. This is a Hilbert space with norm k � kZ D k � kV . On Z the variational
equation (12.21a) reduces to: find u 2 Z such that

a.u; v/ D l.v/; 8v 2 Z (12.34)

Consequently, since a.�; �/ is continuous and coercive on Z, and l.v/ continuous
on Z, we can simply invoke the Lax-Milgram lemma to show existence, and also
uniqueness, of u.

Given u 2 Z, we are next faced with the problem of trying to determine p 2 Q
from

b.v; p/ D .r; v/; 8v 2 V (12.35)

where r is the weak residual, defined by .r; v/ D l.v/�a.u; v/ for all v 2 V . We note
that due to (12.34) r is orthogonal to Z, and therefore a member of the orthogonal
complementZ? D fv 2 V W .v; z/ D 0; 8z 2 Zg.

The well-posedness of (12.35) is by no means obvious, since the trial and
test spaces Q and V are more or less unrelated. Clearly, we can not just pick
any combination of V and Q and hope to solve the equation. For solvability,
there needs to be some kind of compatibility condition between Q, V , and b.�; �/.
Indeed, (12.35) means solving rp D r for p, with r in Z?. For this to be possible
the range of the gradient operator r must coincide with Z?. Now, using functional
analysis it can be shown that Z? is indeed the range of r if V D ŒH1

0 .˝/�
d

and QDL20.˝/. The combination V D ŒH1
0 .˝/�

d and Q D L20.˝/ is therefore
compatible in the sense that (12.35) is well-posed.

This is succinctly in the next theorem, alternatingly called the inf-sup, Babuška-
Brezzi, or Ladyshenskaya-Babuška-Brezzi condition.

Theorem 12.1 (Inf-Sup Condition). There exists a constant ˇ > 0 such that

ˇkqkQ � sup
v2V

b.v; q/

kvkV ; 8q 2 Q (12.36)

Proof. The proof is complicated and outside the scope of this book.
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The inf-sup condition can also be written

ˇ � inf
q2Q sup

v2V
jb.v; q/j

kvkV kqkQ (12.37)

Hence, its name.
The inf-sup condition is a kind of coercivity for b.�; �/ on the spaces V andQ. In

fact, it may be thought of as an abstract condition of the angle between V and Q.
Other equivalent statements of the inf-sup conditions include:

• The orthogonal complement to the null space of r� is the range of r.
• The orthogonal complement to the null space of r is the range of r�.
• For every q 2 Q there is a v 2 V such that r � v D q with kvkV � CkqkQ.
• For every z 2 Z? there is a q 2 Q such that rq D z with kqkQ � CkzkV .

Let us show how to use the inf-sup condition by proving the uniqueness of p. To
this end, suppose that both p and Qp satisfy (12.35). Then, by subtraction, we have

b.v; p � Qp/ D 0; 8v 2 V (12.38)

Combining this with the inf-sup condition, we further have

ˇkp � QpkQ � sup
v2V

b.v; p � Qp/
kvkV D 0 (12.39)

from which it readily follows that kp � QpkQ D 0, or p D Qp.
Summarizing, the following existence and uniqueness result hold for saddle-

point problems.

Theorem 12.2 (Brezzi). Let V and Q be Hilbert spaces, and let a.�; �/ and b.�; �/
be continuous bilinear forms on V � V and V �Q, respectively. Denote the kernel
of b.�; �/ by Z D fv 2 V W b.v; q/ D 0;8q 2 Qg. If a.�; �/ is coercive on Z, and if
b.�; �/ satisfies the inf-sup condition

ˇkqkQ � sup
v2V

b.v; q/

kvkV ; 8q 2 Q (12.40)

then there exist a unique solution .u; p/ 2 V � Q to the saddle-point
problem (12.21).

Perhaps needless to say, continuity of b.�; �/ amounts to the inequality

b.v; q/ � CkvkV kqkQ (12.41)

which is easily shown using the Cauchy-Schwarz and the trivial inequality kr �vk �
krvk.
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12.2.5 Finite Element Approximation

In order to formulate a numerical method let Vh andQh be two spaces of piecewise
polynomials that approximates V and Q.

The finite element approximation of (12.21) takes the form: find uh 2 Vh and
ph 2 Qh such that

a.uh; v/C b.v; ph/ D l.v/; 8v 2 Vh (12.42a)

b.uh; q/ D 0; 8q 2 Qh (12.42b)

or, in more compact form: find .uh; ph/ 2 Vh �Qh such that

B..uh; ph/; .v; q// D F..v; q//; 8.v; q/ 2 Vh �Qh (12.43)

A finite element method which uses two spaces to approximate two different
variables is commonly referred to as a mixed method.

Now, let f'i gn1 be a set of vector valued basis functions for Vh, and let f�i gm1 be
a set of scalar basis functions forQh. The finite element method (12.42) results in a
linear system which can be written in block form

�
A BT

B 0

� �
�

 

�
D
�
b

0

�
(12.44)

where A is the n � n stiffness matrix, and B is the n � m divergence matrix with
entries

Aij D a.'j ; 'i / (12.45)

Bij D b.'j ; �i / (12.46)

Further, b is the n � 1 load vector with entries bi D l.'i /. Also, � and  are n � 1
andm� 1 vectors containing the unknown degrees of freedom of uh D Pn

jD1 �j 'j
and ph D Pm

jD1  j �j , respectively.
Saddle-point linear systems, such as (12.44), are known to be notoriously difficult

to solve due to the all zero m �m lower diagonal block.

12.2.6 The Discrete Inf-Sup Condition

So far we have not said anything more specific about the finite element spaces Vh
and Qh. In fact, we do not even know if the finite element solution .uh; ph/ is well
defined. To assert this we must make sure that the linear system (12.44) can be
solved. This is equivalent to establishing a discrete inf-sup condition on Vh andQh.
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More precisely, there must exist a constant � > 0 such that

�kqkQ � sup
v2Vh

b.v; q/

kvkV ; 8q 2 Qh (12.47)

or, using matrix notation,

�.�TM�/1=2 � max
$2Rn;$¤0

�T B$

.$TA$/1=2
; 8� 2 R

m; � ¤ 1 (12.48)

where A is the stiffness matrix,B the divergence matrix, andM them�m pressure
mass matrix with entries Mij D .�j ; �i /. We emphasize that it is a non-trivial task
to show this, because even if we know that the inf-sup condition is satisfied on the
continuous spaces V and Q, it need not hold on the discrete spaces Vh and Qh, not
even if the inclusions Vh � V and Qh � Q hold. The condition � ¤ 1 means that
� can not be any constant vector except the zero vector, which is necessary for the
zero mean property.

That continuous inf-sup stability does not imply discrete ditto can be understood
by considering the discrete incompressibility constraint, that is, finding uh 2 Vh such
that b.uh; q/ D 0 for all q 2 Qh. Choosing Qh as a big subspace of Q means that
there are many test functions q. As each test function puts a restriction on r � uh, in
the form of a moment, there is a risk of over determining uh if Vh is a small subspace
of V . This is know as a locking phenomenon. What the discrete inf-sup condition
does is that it asserts that there is a good balance between the number of velocity
and pressure degrees of freedom.

All the same, if the discrete inf-sup condition does hold, then the discrete
pressure ph exists and is unique. This can be shown by doing block elimination
on the .nCm/ � .n C m/ linear system (12.44). From the first row we have
� D A�1.b � BT /. Plugging this into the second row, B� D 0, and rearranging
terms we obtain the m �m linear system

BA�1BT D BA�1b (12.49)

for the pressure degrees of freedom  . For this to make sense the matrix S D
BA�1BT , which is called the Schur complement, must be invertible. To show this,
we recall that since A is SPD it has the Cholesky factorization A D LLT , implying
A�1 D L�T L�1. Thus, S D BL�T L�1BT , from which we see that S is symmetric.
Further, due to the discrete inf-sup condition (12.48), for all � 2 R

m with � ¤ 1,
we have

0 < � � max
$¤0

�T B$

.$TA$/1=2.�TM�/1=2
(12.50)
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D 1

.�TM�/1=2
max

wDLT$;$¤0
�T BL�T w

.$T LLT$/1=2
(12.51)

D 1

.�TM�/1=2
max
w¤0

wT L�1BT �

.wTw/1=2
(12.52)

Here, the maximum is attained for w D L�1BT � , yielding

0 < � � ..L�1BT �/T .L�1BT �//1=2

.�TM�/1=2
D .�T BL�T L�1BT �/1=2

.�TM�/1=2
D .�T S�/1=2

.�TM�/1=2

(12.53)

This shows that S is SPD and, therefore, invertible.
Once  has been found, � can be retrieved by solving the n � n linear system

A� D b � BT (12.54)

This shows that also the discrete velocity uh exists and is unique.
The Schur complement S is not useful from a practical point of view, since it is a

full matrix requiringm �m floating point numbers to store in a computer. This has
among other things motivated development of iterative methods for solving saddle-
point linear systems.

12.2.6.1 The Uzawa Algorithm

A simple and robust, but slow, way of iteratively solving the saddle-point linear
system (12.44) is the Uzawa algorithm, which is defined by the following iteration
scheme:

Algorithm 28 The Uzawa algorithm

1: Set �.0/ D  .0/ D 0.
2: Choose a relaxation parameter � > 0, and a preconditioner M for the Schur complement
S D BA�1BT .

3: for k D 1; 2; : : : until convergence do
4: Solve

A�.k/ D b �BT  .k�1/ (12.55)

5: Set

 .k/ D  .k�1/ C �M�1B�.k/ (12.56)

6: end for
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Fig. 12.1 Velocity � and
pressure � nodes for the
Taylor-Hood element

In this algorithm, substituting the first equation into the second yields

 .k/ D  .k�1/ C �M�1BA�1.b � BT .k�1// (12.57)

which is nothing but a preconditioned Richardson iteration on the linear
system (12.49)

Often, the preconditionerM is chosen as them�m pressure mass matrix, which
is due to the fact that the eigenvalues of this matrix and the Schur complement S
has the same sign and order of magnitude. Thus, in a way, M resembles S . Recall
that if M D S , then the algorithm would converge in a single iteration.

We remark that the relaxation parameter � > 0 must obey 0 < � < 2�, with �
the viscosity parameter, for convergence.

12.2.7 Three Inf-Sup Stable Finite Elements

As we have seen, it is important to choose the finite element spaces so that the
discrete inf-sup condition is satisfied. We now present three finite elements that has
this property.

12.2.7.1 The Taylor-Hood Element

The Taylor-Hood finite element is the standard finite element for simulating
incompressible fluid flow, since it gives a good approximation of both velocity and
pressure, and since it is not too numerically costly to use. The element consists
of a continuous piecewise quadratic approximation of each velocity component
combined with a continuous piecewise linear approximation of the pressure. That
is, the velocity space is Vh D fv 2 ŒC 0.˝/�d W vjK2 ŒP 2.K/�d g, and the pressure
space Qh D fv 2 C0.˝/ W vjK2 P1.K/g. Figure 12.1 shows the position of the
velocity and pressure nodes on a triangle elementK .
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Fig. 12.2 Velocity � and
pressure � nodes for the
MINI element

12.2.7.2 The MINI Element

The MINI element is the simplest inf-sup stable element. It consists of a continuous
piecewise linear approximation for each velocity component as well as for the
pressure. However, on each element the velocity space is enriched by cubic bubble
functions of the form

'bubble D '1'2'3 (12.58)

where 'i , i D 1; 2; 3, are the usual hat functions. More precisely, the velocity
space is given by Vh D fv 2 ŒC 0.˝/�d W vjK2 ŒP 1.K/�d

L
ŒB.K/�d g, where

B.K/ D spanf'bubbleg is the space of bubble functions on element K . Perhaps
needless to say, the bubble function has earned its name from the fact that it has
the shape of a bubble. By construction 'bubble vanishes on the boundary @K , which
is important as it allows all bubble functions to be eliminated from the saddle-point
linear system (12.44) before attempting to invert it. The MINI element has become
popular because it is easy to implement. However, it is also known for giving a
poor approximation of the pressure. The velocity and pressure nodes on a triangle
elementK are shown in Fig. 12.2.

12.2.7.3 The Non-conforming P1 � P0 Element

The non-conforming P1 � P0 element amounts to approximating the velocity
components with Crouzeix-Raviart functions and the pressure with piecewise
constants. This element has the desirable property of being able to yield a finite
element solution that is exactly divergence free on each element. As we shall see
shortly, it is also fairly easy to implement. The velocity and pressure node locations
are shown in Fig. 12.3.
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Fig. 12.3 Velocity � and
pressure � nodes for the
non-conforming P 1 � P 0

element

12.2.8 Asserting the Inf-Sup Condition

12.2.8.1 Fortin’s Trick

There are a few ways to prove that the inf-sup condition holds for a particular finite
element. One is Fortin’s trick where one seeks to construct an interpolation operator
˘ from V to Vh satisfying

b.v �˘v; q/ D 0; 8v 2 V; q 2 Qh (12.59)

and

k˘vkV � CkvkV (12.60)

If there is such an operator then the inf-sup condition holds.
To show that the inf-sup condition follows if such an interpolation operator exists,

we observe that (12.59) and (12.60) implies

ˇkqkQ � sup
v2V

b.v; q/

kvkV D sup
v2V

b.˘v; q/

kvkV � C sup
v2V

b.˘v; q/

k˘vkV (12.61)

Hence, we have

ˇkqkQ � C sup
v2Vh

b.v; q/

kvkV ; 8q 2 Qh (12.62)

which is the discrete inf-sup condition.
Let us use Fortin’s trick to show that the non-conforming P1 � P0 element is

inf-sup stable. In this case, the discrete velocity and pressure space is given by Vh D
fv 2 ŒL2.˝/�2 W v 2 ŒP1.K/�2; 8K 2 K ; .Œvi �; 1/@K D 0; i D 1; 2g and Qh D fq 2
L20.˝/ W q 2 P0.K/; 8K 2 Kg, respectively. We consider the piecewise linear
interpolant˘v D Œ˘vi �2iD1 2 Vh, defined on each triangle K by

˘vi .mj / D .vi ; 1/Ej =jEj j; j D 1; 2; 3 (12.63)
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where mj is the mid-point of triangle edge Ej . In other words, component i of ˘v
on K is given by

˘vi D
3X

jD1

.vi ; 1/Ej
jEj j SCRj (12.64)

with SCRj the Crouzeix-Raviart shape functions.
Now, using the divergence theorem, the definition of ˘v, and that the integral of

the linear function ˘v over edge Ej is given by the value ˘v.mj /jEj j at the edge
mid-pointmj , we have

.r � v; 1/K D .v; n/@K (12.65)

D
3X

jD1
.v; n/Ej (12.66)

D
3X

jD1
˘v.mj / � njEj j (12.67)

D
3X

jD1
.˘v; n/Ej (12.68)

D .˘v; n/@K (12.69)

D .r �˘v; 1/K (12.70)

where n is the outward unit normal on @K . Thus, we have shown that b.˘v; q/ D
b.v; q/.

We must also show that k˘vkV � CkvkV . To this end, since the V norm is blind
to constants, let us write vi D OviCNvi with Nvi D ˘vi .m0/, that is, Nvi is the value of˘i

at edge mid-pointm0. As a consequence, Ov vanishes at m0. Further, since constants
are interpolated exactly by ˘ we have ˘v D ˘.Ov C Nv/ D ˘ Ov C Nv. Also, since ˘ Ov
is a Crouzeix-Raviart function, it can be written ˘ Ovi D P3

jD1.Ovj ; 1/Ej SCRj =jEj j.
Using these observations, we have

kr˘vikK D kr˘ OvikK (12.71)

� C max
j

j.Ovj ; 1/Ej j (12.72)

� CkOvik@K (12.73)

� C.kOvikK C krOvikK/ (12.74)

� CkrOvikK (12.75)

D CkrvikK (12.76)
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Here, we have used the Trace inequality, and the Poincaré inequality, which is
applicable since Ovi vanishes at m0. Summing this result over the elements K and
the space dimension i D 1; 2 we obtain k˘vkV � CkvkV .

12.2.9 A Priori Error Estimate

For the big bilinear form B.�; �/ there holds a kind of inf-sup condition called B-
stability, which is convenient to work with. In particular, for deriving error estimates.
By definition, B-stability is expressed by the inequality

sup
.v;q/2V�Q

B..u; p/; .v; q//

k.v; q/kV�Q
	 Ck.u; p/kV�Q (12.77)

where the product norm k.v; q/k2V�Q D kvk2V C kqk2Q.
B-stability is the same as if there for every pair .u; p/ 2 V � Q exists another

pair .v; q/ 2 V �Q satisfying

B..u; p/; .v; q// 	 Ck.u; p/k2V�Q (12.78)

with

k.v; q/kV �Q � Ck.u; p/kV�Q (12.79)

To show B-stability we begin by observing that due to the inf-sup condi-
tion (12.36) for every p 2 Q there exist a w 2 V such that b.w; p/ 	 �kpk2Q
with kwkV � kpkQ. Choosing then v D ˛u C ˇw and q D �˛p with ˛ D 1C ��2
and ˇ D 2��1 we have

B..u; p/; .v; q// D a.u; ˛u C ˇw/C b.˛u C ˇw; p/C b.u;�˛p/ (12.80)

D ˛a.u; u/C ˇa.u;w/C ˇb.w; p/ (12.81)

	 ˛kuk2V � ˇ

2�
kuk2V � ˇ�

2
kwk2V C ˇ�kpk2Q (12.82)

	 .˛ � ˇ

2�
/kuk2V C .�ˇ�

2
C ˇ�/kpk2Q (12.83)

D k.u; p/k2V �Q (12.84)

where we have used the arithmetic-geometric mean inequality 2a � b 	 �.a � a=�C
�b � b/, which holds for all vectors a and b, scalars � > 0, and all scalar products.

Further, using the Triangle inequality we also have

k.v; q/k2V �Q D k˛u C ˇwk2V C k � ˛pk2Q (12.85)
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� ˛2kuk2V C ˇ2kwk2V C ˛2kpk2Q (12.86)

� ˛2kuk2V C .ˇ2 C ˛2/kpk2Q (12.87)

� Ck.u; p/k2V�Q (12.88)

Hence, combining the above results we have showed the B-stability property.
B-stability also holds on Vh andQh provided the finite element employed is inf-

sup stable. This follows from a similar line of reasoning as shown above. In this
case, by subtracting the weak form (12.26) from the finite element method (12.43)
we obtain the Galerkin orthogonality

B..u � uh; p � ph/; .v; q// D 0; 8.v; q/ 2 Vh �Qh (12.89)

Not surprising, since both a.�; �/ and b.�; �/ are continuous, so is B.�; �/. That is,
we have

B..u; p/; .v; q// � Ck.u; p/kV�Qk.v; q/kV�Q (12.90)

Now, regarding the velocity and pressure error u � uh and p � ph we find by a
simple application of the Triangle inequality

k.u � uh; p � ph/k2V�Q D ku � uhk2V C kp � phk2Q (12.91)

D ku � v C v � uhk2V C kp � q C q � phk2Q (12.92)

� ku � vk2V C kp � qk2Q (12.93)

C kv � uhk2V C kq � phk2Q
where we have added and subtracted arbitrary functions v and q from Vh and Qh,
respectively. We may interpret each of the first two terms in (12.93) as a measure
of how close a discrete function may come to the solution. By contrast, each of
the last two terms in (12.93) measure of how close the finite element solution
may come to the best approximation. The first two terms can be estimated using
interpolation results. Thus, to turn this into an a priori error estimate we need bounds
for the last two terms. To this end, we use the B-stability (12.77) and the Galerkin
orthogonality (12.89) to obtain

Ck.v � uh; q � ph/kV�Q � sup
.w;s/2Vh�Qh

B..v � uh; q � ph/; .w; s//

k.w; s/kV�Q

(12.94)

D sup
.w;s/2Vh�Qh

B..v � u C u � uh; q � p C p � ph/; .w; s//
k.w; s/kV�Q

(12.95)
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D sup
.w;s/2Vh�Qh

B..v � u; q � p/; .w; s//

k.w; s/kV�Q

(12.96)

� sup
.w;s/2Vh�Qh

Ck.v � u; q � p/kV�Qk.w; s/kV�Q

k.w; s/kV�Q

(12.97)

� Ck.v � u; q � p/kV�Q (12.98)

where we have used the continuity of B.�; �/ in the second last line.
Thus we have shown the best approximation result

k.u � uh; p � ph/kV�Q � Ck.u � v; p � q/kV�Q; 8.v; q/ 2 Vh �Qh (12.99)

As usual, depending on the type of finite element employed and its interpolation
properties the term k.u � v; p � q/kV�Q can be further estimated in terms of u,
p, and the mesh size h. For example, assuming a Taylor-Hood approximation and
choosing v and q as the corresponding interpolants of u and p, and using standard
interpolation estimates, we have the a following a priori error estimate provided that
the solution is sufficiently regular.

Theorem 12.3. For a Taylor-Hood finite element approximation .uh; ph/ there
holds the estimate

ku � uhkV C kp � phkQ � Ch2.jujH3.˝/ C jpjH2.˝// (12.100)

In this context we remark that B-stability can be proven more generally than we
have done here (i.e., for a general saddle-point problem). In fact, it is a property
inherited by the big bilinear form B.�; �/ as soon as the requirements for Brezzi’s
Theorem 12.2 are fulfilled. We shall return to show this later on.

12.2.10 Computer Implementation

12.2.10.1 The Lid-Driven Cavity

Let us implement a Stokes solver to simulate a classical benchmark problem called
the lid-driven cavity. The setup is very simple. A square cavity ˝ D Œ�1; 1�2 is
filled with a viscous incompressible fluid. No-slip boundary conditions apply on all
four sides of the cavity. On the bottom and walls u1 D u2 D 0, while u1 D 1 and
u2 D 0 on the lid. This creates a swirling flow inside the cavity. There is no body
load. We wish to compute the velocity field u and pressure distribution p.

Let us write our solver based on the non-conforming P1 � P0 element. Recall
that this amounts to approximating both u1 and u2 with Crouzeix-Raviart functions
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and p with piecewise constants on a triangle mesh. To this end, we introduce the
following basis for the velocity space Vh.

f'ig2neiD1 D
��
SCR1
0

�
;

�
SCR2
0

�
; : : : ;

�
SCRne
0

�
;

�
0

SCR1

�
;

�
0

SCR2

�
; : : : ;

�
0

SCRne

��

(12.101)

where SCRi , i D 1; : : : ; ne , are the Crouzeix-Raviart shape functions and ne the
number of triangle edges. A basis for the pressure space Qh is trivially given by
f�i gntiD1 with �i the characteristic function on triangle i and nt the number of
triangles. That is, �i D 1 on triangle i and zero otherwise.

With this choice of bases the saddle-point linear system (12.44) can be written in
block form

2
4A11 0 BT

1

0 A22 B
T
2

B1 B2 0

3
5
2
4�1�2
 

3
5 D

2
4b1b2
0

3
5 (12.102)

where the matrix and vector entries are given by

.Ass/ij D .rSCRj ;rSCRi /; i; j D 1; 2; : : : ; ne (12.103)

.Bs/ij D �.@xsSCRj ; �i /; i D 1; 2; : : : ; nt ; j D 1; 2; : : : ; ne (12.104)

.bs/i D .fs; S
CR
i /; i D 1; 2; : : : ; ne (12.105)

with s D 1; 2.
The assembly of the global matrices Ass and Bs is done as usual by looping

over the elements and summing the local matrices from each element into the
appropriate places. In doing so, all element matrices are easy to evaluate since their
integrands are constant. The 3 � 3 element matrix .AK11/ij D .rSCRj ;rSCRi /K can
be computed as

A11K=(Sx*Sx’+Sy*Sy’)*area;

where Sx and Sy are the derivatives of the Crouzeix-Raviart shape functions output
from the routine CRGradients. Further, the 1 � 3 element matrices .BK

1 /ij D
�.@x1SCRj ; �i /K and .BK

2 /ij D �.@x2SCRj ; �i /K can be computed as

B1K=-Sx’*area;
B2K=-Sy’*area;

The numbering of the edges is done by reusing our routine Tri2Edge, which
outputs a nt � 3 matrix t2e containing numbers for the edges in each triangle.

Putting things together we have the following routine for assembling the matrices
A11, B1 and B2.

function [A11,B1,B2,areas] = NCAssembler(p,t2e,t)
nt=size(t,2);
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ne=max(t2e(:));
A11=sparse(ne,ne);
B1=sparse(nt,ne);
B2=sparse(nt,ne);
areas=zeros(nt,1);
for i=1:nt
vertex=t(1:3,i);
x=p(1,vertex);
y=p(2,vertex);
[area,Sx,Sy]=CRGradients(x,y);
edges=t2e(i,:);
A11(edges,edges)=A11(edges,edges)+(Sx*Sx’+Sy*Sy’)*area;
B1(i,edges)=-Sx’*area;
B2(i,edges)=-Sy’*area;
areas(i)=area;

end

Starting to write the main routine, we have

function NCStokesSolver()
[p,e,t]=initmesh(’squareg’); % mesh square [-1,1]^2
t2e=Tri2Edge(p,t); % triangle-to-edge adjacency
nt=size(t,2); % number of triangles
ne=max(t2e(:)); % number of edges
[A11,B1,B2,areas]=NCAssembler(p,t2e,t); % assemble
nu=0.1; % viscosity parameter
LHS=[nu*A11 sparse(ne,ne) B1’;

sparse(ne,ne) nu*A11 B2’;
B1 B2 sparse(nt,nt)]; % LHS matrix

rhs=zeros(2*ne+nt,1); % RHS vector

where LHS and rhs is the left hand side matrix and right hand side vector of the
linear system (12.102), respectively. Should we attempt to invert LHS we would find
that it is singular. This is of course due to the fact that we have neither enforced any
boundary conditions on the velocity nor a zero mean on the pressure.

In the discrete setting zero mean value on ph means that

.ph; 1/ D
ntX
KD1

 K.�i ; 1/K D aT  D 0 (12.106)

where a is the vector areas. To enforce this constraint we augment the saddle-point
linear system with this equation together with a Lagrangian multiplier � to get

2
664
A11 0 B1 0

0 A11 B2 0

BT
1 BT

2 0 a

0 0 aT 0

3
775
2
664
�1
�2

 

�

3
775 D

2
664
b1
b2

0

0

3
775 (12.107)
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The code to do this looks like

last=[zeros(2*ne,1); areas]; % last row and column
LHS=[LHS last; last’ 0];
rhs=[rhs; 0];

The last thing we need to do is to enforce the no-slip boundary condition u D g.
We do this as explained by first writing uh D gh C u0 with gh the Crouzeix-
Raviart interpolant of g, then shrinking the matrix LHS and the vector rhs according
to (12.25), and finally solving for u0. The setting up of gh is a bit messy since
it requires the computation of edge mid-points along with corresponding edge
numbers. We can compute this information using the routine EdgeMidPoints listed
below. The values of gh can then be found by looping over the edges and evaluating
g on each edge. We have

[xmid,ymid,edges] = EdgeMidPoints(p,t2e,t);
fixed=[]; % fixed nodes
gvals=[]; % nodal values of g
for i=1:length(edges) % loop over edges
n=edges(i); % edge (ie. node) number
x=xmid(i); % x-coordinate of edge mid-point
y=ymid(i); % y-
if (x<-0.99 | x>0.99 | y<-0.99 | y>0.99) % boundary
fixed=[fixed; n; n+ne]; % fix velocity nodes
u=0; v=0; % bc values
if (y>0.99), u=1; end % u=1,v=0 on lid
gvals=[gvals; u; v];

end
end

To shrink the matrix and vector and solve the resulting linear system we type

neq=2*ne+nt+1; % number of equations
free=setdiff([1:neq],fixed);
rhs=rhs(free)-LHS(free,fixed)*gvals; % shrink vector
LHS=LHS(free,free); % shrink matrix
sol=zeros(neq,1); % allocate solution
sol(fixed)=gvals; % insert no-slip values
sol(free)=LHS\rhs; % solve linear system

Finally, we make plots of the velocity and pressure

U=sol(1:ne); V=sol(1+ne:2*ne); P=sol(2*ne+1:2*ne+nt);
figure(1), pdesurf(p,t,P’)
figure(2), quiver(xmid,ymid,U’,V’)

Running this code we get the velocity and pressure of Figs. 12.4 and 12.5. As
expected the velocity glyphs show a swirling fluid due to the moving lid. The
pressure distribution shows a high pressure in the upper right corner of the cavity,
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Fig. 12.5 Pressure distribution ph in the cavity

where the fluid collides with the right wall. Similarly, a low pressure is visible in
the upper left corner, where the fluid is swept away from the left wall by the moving
lid.

To check our implementation we can make a test and compute the null space of
the matrix BT D ŒB1 B2�

T , which is the discrete gradient operator �r. Recall
that this operator determines the pressure ph and should therefore have a null
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space consisting of the single vector 1, or a scaled copy of this vector. This is
the discrete hydrostatic pressure mode, which we eliminated by adding the zero
mean value constraint for ph. The BT matrix can be extracted from the saddle-point
linear system. In doing so we must remember that the matrix LHS shrunk when
we removed the boundary conditions. The null space is computed using the null
command.

nfix=length(fixed);
n=2*ne-nfix; % number of free velocity nodes
Bt=LHS(1:n,n+1:n+nt); % extract B’
nsp=null(full(Bt)) % compute null space of B’

Indeed, the result of executing these lines is the vector nsp, which is a constant times
the vector 1. This is a necessary condition for a finite element to be inf-sup stable.
Of course it does not prove inf-sup stability, but it is one way of testing the code.
Other ways to validate the code include computing the eigenvalues of the Schur
complement, which should be positive, or checking that the Lagrange multiplier is
close to the machine precision.

12.2.11 A Posteriori Error Estimate

We next show how to derive a basic a posteriori error estimate.
From the Galerkin orthogonality (12.89) we have

B..u � uh; p � ph/; .v; q// D B..u � uh; p � ph/; .v; q//� B..u � uh; p � ph/; .�v; 0//
(12.108)

D B..u � uh; p � ph/; .v � �v; q// (12.109)

since �v 2 Vh and the zero function is a member of Qh. Rewriting this, we further
have

B..u � uh; p � ph/; .v � �v; q// D F..v � �v; q// � B..uh; ph/; .v � �v; q//

(12.110)

D l.v � �v/ � a.uh; v � �v/ � b.v � �v; ph/
(12.111)

� b.uh; q/

D
X
K2K

.f Cuh � rph; v � �v/K (12.112)
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� 1
2
.Œn � ruh � phn�; v � �v/@Kn@˝

C .r � uh; q/K

where we have broken the integrals into a sum over the elementsK in the mesh K ,
and integrated by parts. As usual, the brackets Œ�� denote the jump of the enclosed
quantity between adjacent elements. Note that if ph is continuous, then Œph� D 0.
Further, denoting the sum (12.112) by S and estimating each term in it using the
Cauchy-Schwartz inequality, and recalling the interpolation estimates kv ��vkK �
ChKkrvkK , and kv � �vk@K � Ch

1=2
K krvkK , we have

S �
X
K2K

kf Cuh � rphkKkv � �vkK (12.113)

C 1
2
kŒn � ruh � phn�k@Kn@˝kv � �vk@Kn@˝

C kr � uhkKkqkK
� C

X
K2K

hKkf Cuh � rphkKkrvkK (12.114)

C 1
2
h
1=2
K kŒn � ruh � phn�k@Kn@˝krvkK

C kr � uhkKkqkK

�
 X
K2K

h2Kkf Cuh � rphk2K C 1
4
hKkŒn � ruh � phn�k2@Kn@˝ C kr � uhk2K

!1=2

.krvk C kqk/ (12.115)

Introducing the element residual 	K , defined by

	K D hKkf Cuh � rphkK C 1
2
h
1=2
K kŒn � ruh � phn�k@Kn@˝ C kr � uhkK

(12.116)

we thus have

B..u � uh; p � ph/; .v; q// � C

 X
K2K

	K

!
k.v; q/kV�Q (12.117)

Finally, continuous B-stability implies

Ck.u � uh; p � ph/kV�Q � sup
.v;q/2V�Q

B..v � uh; q � ph/; .v; q//

k.v; q/kV �Q
(12.118)
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� C sup
.v;q/2V�Q

P
K2K 	K

� k.v; q/kV �Q
k.v; q/kV�Q

(12.119)

� C
X
K2K

	K (12.120)

Hence, we have shown the following a posteriori error estimate.

Theorem 12.4. The finite element solution .uh; ph/ satisfies the estimate

k.u � uh; p � ph/kV�Q � C
X
K2K

	K (12.121)

where the element residual 	K is the sum of the cell residualRK D hKkf Cuh �
rphkK C kr � uhkK and the edge residual rK D 1

2
h
1=2
K kŒn � ruh � phn�k@Kn@˝ .

12.2.12 Stabilized Finite Element Methods

12.2.12.1 Spurious Pressure Modes

Unfortunately, the choice of equal order Lagrange spaces for both velocity and
pressure does not satisfy the inf-sup condition. For example, it is not possible to use
piecewise linears for both uh and ph. This is unfortunate since these elements are
very simple to implement in a computer. Attempting to do so yields a gradient matrix
BT with a too large null space (i.e., not only the constant vector 1). The basis vectors
for this larger null space represent unphysical pressures, called spurious or parasitic
pressure modes, which pollute ph. Typically, these parasites are highly oscillatory
and renders the pressure useless from a practical point of view as it varies abruptly
from element to element. In fact, neighbouring elements often have opposite values.
This is called the checkerboard syndrome.

The explanation for the occurrence of spurious modes is that with equal order
interpolation the discrete inf-sup constant � becomes implicitly proportional to the
mesh size h. This is a hidden dependency in the sense that there is no way to control
the size of � . In particular, we can not prevent it from getting too small. Indeed, as h
tends to zero � also tends to zero, and numerical stability is lost. This is particularly
problematic from the point of view of mesh refinement.

12.2.12.2 Galerkin Least Squares Stabilization

One way of mitigating the effects of spurious pressure modes is to use some sort
of Galerkin Least Squares (GLS) stabilization. This is also a common way to
circumvent the inf-sup condition.
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The most widespread GLS method, which is suitable for approximation of both
the pressure and velocity using equal order Lagrange elements, amounts to replacing
the continuous linear forms B.�; �/ and F.�/ in the finite element method (12.43)
by the discrete forms Bh.�; �/ and Fh.�/, defined by

Bh..uh; ph/; .v; q// D B..u; p/; .v; q//C ı
X
K2K

.�uh C rph;�v C rq/K
(12.122)

Fh..v; q// D F..v; q//C ı
X
K2K

.f;�v C rq/K (12.123)

where B..u; p/; .v; q// now is the non-symmetric version of the big bilinear form,
that is,

B..u; p/; .v; q// D a.u; v/C b.v; p/� b.u; q/ (12.124)

and ı is a stabilization parameter to be chosen suitably.
In the special case with a continuous piecewise linear approximation of both the

velocity and pressure the termsuh andv drop out, and we are left with

Bh..u; p/; .v; q// D B..u; p/; .v; q//C ı.rph;rq/ (12.125)

Fh..v; q// D F..v; q//C ı.f;rq/ (12.126)

This stabilization corresponds to relaxing the incompressibility constraint by adding
the term �ıp to the equation r � u D 0. Roughly speaking the GLS stabilization
term ı.rph;rq/makes the discrete pressure ph smoother. In particular, it penalizes
large gradients of ph, which is important to prevent spurious pressure modes to
occur. Setting v D u and q D p we note that

B..u; p/; .u; p// D kruk2 C ıkrpk2 (12.127)

since we are using the non-symmetric form. Hence, existence and uniqueness of uh
and ph follow from the Lax-Milgram lemma without the imposition of any inf-sup
condition. The coercivity constant ˛ will depend on the stabilization parameter ı
and, thus, still vanish as ı tend to zero. However, this dependency is explicit and
can be controlled by choosing ı properly. In particular, ˛ can be prevented from
getting too small. In doing so, we want ı to be large enough for numerical stability,
but as small as possible not to perturb the solution too much, which leads to ı D
Ch2 with h the mesh size and C a constant of moderate size. With this choice of
stabilization parameter it is also possible to establish inf-sup stability, with inf-sup
constant independent of h, of the method.

We remark that more elaborate GLS methods do exist, for example, incorporating
stabilization of conservation of mass.
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12.2.12.3 Macroelement Techniques

An old and maybe somewhat primitive way to prevent spurious pressure modes is to
use a macroelement technique. This amounts to clustering a set of adjacent elements
to form a so-called macroelement. The rationale for doing so is that internal velocity
degrees of freedom are created within the macroelement thereby enlarging the
velocity space. The pressure space is, however, not made larger. Indeed, generally,
more velocity than pressure degrees of freedom is necessary for inf-sup stability.
In a way, all macroelements are reminiscent of the MINI element in which bubble
functions is added to the piecewise linears to make the velocity space larger. Of
course, instead of enlarging the velocity space it is possible to restrict the pressure
space. Indeed, this is a common way to make the popularQ1 �Q0 element inf-sup
stable. This element is defined on quadrilaterals with a bilinear approximation of
each velocity component and a constant approximation of the pressure. Groups of
four adjacent quadrilaterals are created to form the macroelement giving effectively
a nine node velocity element with the pressure being the average of the four pressure
values. This averaging is often referred to as a filtering of the pressure. Filtering
smooths the pressure and hinders the rapidly oscillating spurious modes to occur.
An advantage of the filtering is that it is simple to implement in the sense that it
does not change the assembly procedure, as it can be applied at the end of each step
of an iterative method, such as the Uzawa algorithm for instance, when solving the
saddle-point linear system (12.44) arising from finite element discretization.

12.3 The Navier-Stokes Equations

Having studied some of the basic features of incompressible fluid flow, let us
now consider the Navier-Stokes equations, which is a time-dependent, non-linear,
generally convection dominated, saddle-point problem. Indeed, the Navier-Stokes
equations are so complex that still basic properties like existence, uniqueness, and
stability, of the solution are not settled. However, due to their wide range of use
the numerical study of the Navier-Stokes equations has grown into a discipline of
its own called computational fluid dynamics (CFD). CFD is a vast field involving
continuum mechanics, thermodynamics, mathematics, and computer science. The
applications are many and range from optimizing the mix of air and fuel in turbine
engines to predicting the stresses in the walls of human blood vessels. The grand
theoretical challenge for CFD is the understanding of turbulence. Turbulence is
the highly chaotic flow pattern exhibited by a rapidly moving fluid with low
viscosity. Think of the irregular plume of smoke rising from a cigarette, for example.
Physically, turbulence is caused by a combination of dissipation of energy into heat
at the microscopic level, with a large transport of momentum at the macroscopic
level. The basic measure of the tendency for a fluid to develop a turbulent flow
is the dimensionless Reynolds number, defined as Re D UL=�, where � is the
viscosity and U and L is a representative velocity and length scale, respectively. A
high Reynolds number implies a turbulent flow, while a low implies a steady state
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laminar flow. Because turbulence occurs on all length scales, down to the smallest
so-called Kolmogorov scale Re�3=4, it is very difficult to simulate using finite
elements on a coarse mesh. This is further complicated by the fact that turbulent
flows are highly convective, which requires stabilization of the corresponding
finite element methods with subsequent potential loss of accuracy. To remedy this
substantial efforts have been made to model the effect of turbulence on the small
scales by statistical means and derive additional terms supplementing the original
equations. This has lead to turbulence models, which hope to account for turbulence
effects on average. For example, in the simplest case this amounts to changing
the viscosity � to � C �T , where �T is a variable eddy viscosity depending on
the magnitude of the local velocity gradients. This is the frequently used so-called
Smagorinsky turbulence model. Obviously, there is much more to say on this matter,
but we shall not attempt to do so here. Suffice to say that many important fluid
mechanic applications are somewhere in between laminar and turbulent, which
make them amenable to simulation.

For completeness, recall that the Navier-Stokes equations take the form

Pu C .u � r/u C rp � �u D f; in ˝ � J (12.128a)

r � u D 0; in ˝ � J (12.128b)

u D gD; in �D � J (12.128c)

�n � ru � pn D 0; in �N � J (12.128d)

u D u0; in ˝ , for t D 0 (12.128e)

where � is viscosity, u and p the sought velocity and pressure, and f a given body
force. As usual, we assume that the boundary @˝ is divided into two parts �D and
�N associated with the no-slip and the do-nothing boundary conditions (12.128c)
and (12.128d), respectively. Typically, ˝ is a channel and �D denotes either the
rigid walls of the channel, with gD D 0, or the inflow region, with gD the inflow
velocity profile, while �N denotes the outlet with the boundary condition �n � ru �
pn D 0. The velocity at time t D 0 is given by the initial condition u0 and J D
.0; T � is the time interval with final time T .

12.3.1 The Fractional Step Method

12.3.1.1 Time Discretization

There are many ways to derive a numerical method for the Navier-Stokes equations
and it is certainly not easy to know which one is the best. Several questions may
arise, for example:

• Should we use implicit or explicit time stepping?
• Do we need to use an inf-sup stable element?
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• Is Newton’s method necessary to cope with the non-linear term u � ru?
• Must the finite element method be GLS stabilized for dealing with any high

convection?

Needless to say, each answer to these questions has its own pros and cons regarding
the accuracy and computational cost of the resulting numerical method. As usual,
the application at hand has to be considered, and a balance has to be struck.

In the following, we shall favor computational speed and present a simple method
due to Chorin [17] called the fractional step method, for discretizing the Navier-
Stokes equations. The basic idea is as follows.

Discretizing the momentum equation (12.128a) in time using the forward Euler
method we have the time stepping scheme

ulC1 � ul
kl

C .ul � r/ul C rpl � �ul D fl (12.129)

where kl is the timestep and the subscript l indicates the time level. Now, adding
and subtracting a tentative velocity u� in the discrete time derivative k�1

l .ulC1 � ul /
we further have

ulC1 � u� C u� � ul
kl

C .ul � r/ul C rpl � �ul D fl (12.130)

Obviously, this equation holds if

u� � ul
kl

D �.ul � r/ul C �ul C fl (12.131)

and

ulC1 � u�
kl

D �rpl (12.132)

hold simultaneously.
The decomposition of (12.128a) into (12.131) and (12.132) is called operator

splitting. The rationale is that we get a decoupling of the diffusion and convection
of the velocity, and the pressure acting to enforce the incompressibility constraint.
Thus, assuming we know ul , we can compute u� from (12.131) separately without
having to worry about the pressure. However, to determine also the pressure we take
the divergence of (12.132), yielding

r � ulC1 � u�
kl

D �r � .rpl/ (12.133)

Now, since we desire r � ulC1 D 0 this reduces to

�r � u�
kl

D �pl (12.134)

It follows that the pressure pl can be determined from a Poisson type equation. In
fact, (12.134) is frequently referred to as the pressure Poisson equation (PPE). Thus,
given u� we can solve (12.134) to get a pressure pl , which makes the next velocity
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ulC1 divergence free. As pl is manufactured from the tentative velocity u�, it is not
the actual pressure p, but at best a first order approximation in time.

The actual computation of ulC1 is done by reusing (12.132), but now in the form

ulC1 D u� � klrpl (12.135)

This line of reasoning leads us to the following algorithm:

Algorithm 29 The fractional step method
1: Given an initial condition u0 D 0.
2: for l D 1; 2; : : : ; m do
3: Compute the tentative velocity u

�
from

u
�

� ul
kl

D �.ul � r/ul C �ul C fl (12.136)

4: Solve the pressure Poisson equation

�r � u
�

D �klpl (12.137)

for pl .
5: Update the velocity

ulC1 D u
�

� klrpl (12.138)

6: end for

The boundary conditions for u� and pl are not obvious and has been the
source of some controversy. The simplest choice is to put the no-slip boundary
conditions (12.128d) on u�, and the natural boundary condition n � rpl D 0 on pl .
The exception is at the outflow, where the do-nothing boundary condition (12.128e)
is imposed term by term by assuming n � rul D 0 and pl D 0. This generally
means that ulC1 will not satisfy the velocity boundary conditions other than in a
vague sense. The source of controversy is the natural boundary condition on the
pressure, which is unphysical and leads to a poor quality of both pl and ulC1 near
the boundary. This has raised questions of the validity of the projection method.
Numerous methods have been suggested to remedy this with, at least, partial
success.

12.3.1.2 Space Discretization

Next, in order to obtain a fully discrete method we apply finite elements to
each of the three Eqs. (12.136)–(12.138). We use continuous piecewise linears
to approximate all occurring velocities and pressures. Using matrix notation, the
discrete counterpart of Algorithm 29 takes the form:
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• Compute the discrete tentative velocity �� from

�
�1

�2

�
�

D
�
�1

�2

�
l

� kl

�
M 0

0 M

��1 ��
C C �A 0

0 C C �A

� �
�1

�2

�
�
�
b1

b2

��
l

(12.139)

• Solve the discrete pressure Poisson equation

klA l D � �B1 B2�
�
�1
�2

�
�

(12.140)

for  l .
• Update the discrete velocity

�
�1
�2

�
lC1

D
�
�1
�2

�
�

� kl

�
M 0

0 M

��1 �
B1
B2

�
 l (12.141)

Here, A is the np � np stiffness matrix with np the number of nodes. Similarly,
M is the np � np mass matrix, which for computational efficiency can be lumped.
Further, Cl is the np � np convection matrix with convection field ul D Œu1; u2�l .
Because Cl depends on the current velocity it must be reassembled at each timestep
l . Furthermore, B1 and B2 are the np � np x1- and x2-differentiation matrices, that
is, convection matrices arising from convection fields Œ1; 0� and Œ0; 1�, respectively.
As usual, the np � 1 load vectors b1 and b2 contain contributions from any body
force. Finally, �1, �2, and  denote the np �1 vectors of nodal velocity and pressure
values. Of course, these equations have to be adjusted for boundary conditions.

The time step of the presented numerical method is limited by the use of the
forward Euler scheme. Indeed, for numerical stability it is necessary that the time
step kl is of magnitude h=U for convection dominated flow with � < Uh, and h2=�
for diffusion dominated flow with � 	 Uh.

12.3.2 Computer Implementation

12.3.2.1 The DFG Benchmark

The practical implementation of the fractional step method is straight forward. As
test problem we use the so-called DFG benchmark, which is a two-dimensional
channel flow around a cylinder. The channel is rectangular with length 2:2 and
height 0:41. At .0:2; 0:2/ is a cut out circle with diameter 0:1. The fluid has viscosity
� D 0:001 and unit density. On the upper and lower wall and on the cylinder a zero
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no-slip boundary condition is prescribed. A parabolic inflow profile with maximum
velocity Umax D 0:3 is prescribed on the left wall,

u1 D 4Umaxy.0:41 � y/
0:412

; u2 D 0 (12.142)

The boundary conditions on the right wall is of do-nothing type, since this is the
outflow. There are no body forces. Zero initial conditions are assumed.

The channel geometry is output from the routine DFGg listed in the Appendix.
We start writing our solver by calling this routine, creating the mesh, and extracting
the number of nodes and the node coordinates from the point matrix p.

function NSChorinSolver()
channel=DFGg();
[p,e,t]=initmesh(channel,’hmax’,0.25);
np=size(p,2);
x=p(1,:); y=p(2,:);

The zero boundary condition on the pressure is most easily enforced by adding
large weights, say 106, to the diagonal entries of A corresponding to nodes on the
outflow. This penalizes any deviation from zero of the pressure in these nodes. It is
convenient to store the weights in a diagonal matrix R, which can be built with the
following lines of code.

out=find(x>2.199); % nodes on outflow
wgts=zeros(np,1); % big weights
wgts(out)=1.e+6;
R=spdiags(wgts,0,np,np); % diagonal penalty matrix

Moreover, the boundary conditions on the velocity can be be enforced a little simpler
than usual due to the explicit time stepping. In each time step we can simply zero
out any current value of the no-slip nodes and replace with zero. However, to do so
we need two vectors mask and g to identify nodes with no-slip boundary conditions
and to store the corresponding nodal value. These are computed as follows.

in =find(x<0.001); % nodes on inflow
bnd=unique([e(1,:) e(2,:)]); % all nodes on boundary
bnd=setdiff(bnd,out); % remove outflow nodes
mask=ones(np,1); % a mask to identify no-slip nodes
mask(bnd)=0; % set mask for no-slip nodes to zero
x=x(in); % x-coordinate of nodes on inflow
y=y(in); % y-
Umax=0.3; % maximum inflow velocity
g=zeros(np,1); % no-slip values
g(in)=4*Umax*y.*(0.41-y)/0.41^2; % inflow profile

The assembly of all matrices M , A, C , and Bs is easy to do by using the built-in
routine assema for A and M , and our own ConvectionAssembler2D for Bs and
C . To speed up the computation we lump the mass matrix M . Thus, we have
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Fig. 12.6 Velocity glyphs for the DFG benchmark (Re = 20)

[A,unused,M]=assema(p,t,1,0,1);
Bx=ConvectionAssembler2D(p,t,ones(np,1),zeros(np,1));
By=ConvectionAssembler2D(p,t,zeros(np,1),ones(np,1));

Using these data structures the actual time loop with the projection scheme can be
very compactly written, viz.,

dt=0.01; % time step
nu=0.001; % viscosity
V=zeros(np,1); % x-velocity
U=zeros(np,1); % y-
for l=1:100
% assemble convection matrix
C=ConvectionAssembler2D(p,t,U,V);
% compute tentative velocity
U=U-dt*(nu*A+C)*U./M;
V=V-dt*(nu*A+C)*V./M;
% enforce no-slip BC
U=U.*mask+g;
V=V.*mask;
% solve PPE
P=(A+R)\-(Bx*U+By*V)/dt;
% update velocity
U=U-dt*(Bx*P)./M;
V=V-dt*(By*P)./M;
pdeplot(p,e,t,’flowdata’,[U V]),axis equal,pause(.1)

end

The setup gives a Reynolds number of Re D 20 with the characteristic
velocityU D 2

3
Umax D 0:2 the mean of the parabolic profile andLD 0:1 the cylinder

diameter. This is a low Reynolds number and we expect to see a laminar flow.
Running the code and simulating the flow during one second we obtain the results of
Figs. 12.6–12.8. Due to the low Reynolds number a steady state flow has evolved and
from the glyphs plot we see that it is, indeed, laminar. As we might have anticipated
the pressure isocontours shows a high pressure in front of the cylinder and a low
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Fig. 12.7 Isocontours of the pressure (Re = 20)

Fig. 12.8 Magnitude of the velocity (Re = 20)

pressure behind it. In this region we also see a small wake with recirculating flow
forming. This is typical for incompressible fluid flow.

12.4 Further Reading

The finite element literature concerning fluids is relatively rich. Good books on fluid
mechanics in general and numerical methods in particular include those of Chorin
and Marsden [18], and Turek [71], Gresho and Sani [58], and Zienkiewicz, Taylor
and Nithiarasu [75]. The book by Brezzi and Fortin [31] contains a detailed account
of the theory for mixed finite elements and saddle-point problems, along with a
list of inf-sup stable finite elements. This can also be found in the book by Braess
[15]. Fast iterative solvers for solving the linear systems arising from saddle-point
problems is the topic of the book by Elman, Silverster, and Wathen [26]. Stabilized
GLS methods for the Stokes system are analyzed by Franca, Hughes and Stenberg
in [38]. An overview of finite elements for Stokes equations is given by Boffi, Brezzi
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and Fortin in [12]. Books concerning only the Navier-Stokes equations include those
by Girault and Raviart [34], and Temam [69].

12.5 Problems

Exercise 12.1. Formulate a finite element approximation of the Stokes equations
using the Taylor-Hood element. In particular, deduce the entries of the saddle-point
linear system, resulting from finite element discretization.

Exercise 12.2. Modify NCStokesSolver and solve the following problem called
the colliding flow problem. The domain is the square ˝ D Œ�1; 1�2, with no-slip
boundary conditions on the whole boundary @˝ given by the benchmark solution

u1 D 20x1x
3
2 ; u2 D 5x41 � 5x42; p D 60x21x2 � 20x32

which satisfies the Stokes equations with zero body force, and zero mean pressure.

Exercise 12.3. Write a routine, Uzawa, for solving the saddle-point linear system
in NCStokesSolver using the Uzawa algorithm. The calling syntax should be
sol(free)=Uzawa(A,Bt,b,areas);. The relevant matrices and vectors can be
extracted from LHS and rhs by typing

A=LHS(1:n,1:n); Bt=LHS(1:n,n+1:n+nt); b=rhs(1:n);

where n is the number of free velocity nodes. Note that the zero mean pressure
condition must be enforced at each iteration k. That is, the constant vector 1 must
be filtered out of  .k/. This can be done by setting

 .k/ D  .k/ � .aT  .k//=.aT 1/1

at the end of each iteration. Here, a is the areas vector. For simplicity, let M D
diag.a/.

Exercise 12.4. How would Chorin’s projection method look with Euler backward
time stepping? What is the pros and cons of this as compared to Euler forward time
stepping?

Exercise 12.5. Run a sequence of simulations on the DFG benchmark with varying
viscosity from � D 0:1 to 0:005. In each run make 1,000 timesteps using kl D 0:01.
Study the transition from laminar to almost turbulent flow as you decrease �. Make
plots of the velocity and pressure.

Exercise 12.6. Simulate the Lid-Driven cavity problem using the fractional step
method with viscosity � D 0:1 and 0:005. To fix the pressure you can set p D 0
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in the point .�1; 0/. Make plots of the velocity magnitude. Can you say something
about the effect of the non-linear term u.�ru/?

Exercise 12.7. Since the Navier-Stokes equations are non-linear it is possible to use
Newton’s method to solve them. This requires the linearization of the 3 � 1 vector
Œ��u C .u � ru/C rp;r � u�T . Do this by first setting ui D u0i C ıui , i D 1; 2,
and p D p0 C ıp. Then, discard all terms proportional to ı2.

Exercise 12.8. Show that the GLS stabilized big linear form B..u; p/; .v; q// D
.ru W rv/�.p;r �v/C.r �u; q/Cı.rp;rq/, with ı > 0 a stabilization parameter,
is continuous and coercive on a suitable pair of velocity and pressure space .V;Q/.



Chapter 13
Electromagnetics

Abstract In this chapter we briefly study finite elements for electromagnetic
applications. We start off by recapitulating Maxwell’s equations and look at some
special cases of these, including the time harmonic and steady state case. Without
further ado we then discretize the time harmonic electric wave equation using
Nédélec edge elements. The computer implementation of the resulting finite element
method is discussed in detail, and a simple application involving scattering from
a perfectly conducting cylinder is studied numerically. Next, we introduce the
magnetostatic potential equation as model problem. Using this equation we study
the basic properties of the curl-curl operator r � r�, which frequently occurs
in electromagnetic problems. In connection to this we also discuss the Helmholtz
decomposition and its importance for characterizing the Hilbert space H.curlI˝/.
The concept of a gauge is also discussed. For the mathematical analysis we reuse the
theory of saddle-point problems and prove existence and uniqueness of the solution
as well as derive both a priori and a posteriori error estimates.

13.1 Governing Equations

Electromagnetism is the area of science describing how stationary and moving
charges affect each other. Loosely speaking stationary charges give rise to electric
vector fields, whereas moving charges (i.e., current) give rise to magnetic vector
fields. The electric vector field is commonly denoted by E , and the magnetic vector
field by B . These fields extend infinitely in space and time and models the force
felt by a small particle of charge q traveling with velocity v. This so-called Lorentz
force is given by

F D q.E C v � B/ (13.1)

and is used to define the E and B vectors at any given point and time.

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__13, © Springer-Verlag Berlin Heidelberg 2013
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13.1.1 Constitutive Equations

Certain media called dielectric materials have charges trapped inside their atomic
structure. Under the influence of an externally applied electric field E these charges
are slightly dislocated and form dipoles. The resulting so-called dipole moment
polarizes the material. This polarization can be thought of as a frozen-in electric
field, and is described by a polarization field P . Because it may be hard to know
anything about P beforehand, it is desirable to try to separate the effects of free
and bound charges within the material. This can sometimes be done by working
with the electric displacement field D, defined by D D �0E C P with �0 the
electric permittivity of free space (i.e., vacuum). In linear, isotropic, homogeneous
materials P D �0�E , where � is the electric susceptibility indicating the degree of
polarization of the dielectric material. This yields the constitutive relation

D D �E (13.2)

where � D �0.1 C �/. In free space � is a positive scalar, but for a general linear,
anisotropic, inhomogeneous medium in d dimensions it is a d � d positive definite
tensor with entries that depend on space, but not time. For non-linear materialsD is
a more complicated function of E .

The D field has units charge per meters squared. It can be interpreted as a
measure of the number of electrical force lines passing trough a given surface.
Indeed, D is also called the electric flux field. By contrast, E has units of force
per charge, and is called the electric field intensity.

Many electrically important materials are dielectrics. For example, many plastics
used to make capacitors, and, also, nearly all insulators.

By analogy with the pair D and E , the magnetic flux density, or magnetic
induction, field B , has a closely related cousin called the magnetic field strength
H , which in linear materials obeys the constitutive relation

B D �H (13.3)

where � generally is a d �d positive definite tensor called the magnetic
permeability.

We next study the laws of nature for the fields E , D, H , and B , that is, Gauss’
laws, Ampère’s law, and Faraday’s law.

13.1.2 Gauss’ Laws

Gauss’ two laws are perhaps the simplest and most easily grasped fundamental
physical principles governing electromagnetic phenomena.
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The first Gauss’ law states that the electrical flux through any closed surface
@˝ is equal to the total net charge Q enclosed by the surface. In the language of
mathematics this translates into

.D; n/@˝ D Q (13.4)

where n is the outward unit normal on the surface. We can turn this surface integral
into a volume integral by making use of the divergence theorem. In doing so, we
have

.r �D; 1/ D Q (13.5)

By introducing a charge density q, defined by .q; 1/ D Q, we have

.r �D � q; 1/ D 0 (13.6)

Finally, observing that the surface @˝ is arbitrary we conclude that

r �D D q (13.7)

A similar argument for the magnetic flux leads to

r � B D 0 (13.8)

The right hand side being zero since there are no magnetic monopoles (i.e., elec-
trons). Because the magnetic field is solenoidal, all magnetic field lines must always
be closed. This is Gauss’ second law.

13.1.3 Ampère’s Law

Ampère’s law states that the flow of electric current gives rise to a magnetic field.
More precisely, the circulation of the magnetic field H around a closed curve @S is
equal to the amount of electric current J passing through the enclosed surface S .
See Fig. 13.1. From the mathematical point of view this is equivalent to

.H; t/@S D J (13.9)

where t is the unit tangent vector on @S . To mold this integral into a differential we
recall Stokes’ theorem .H; t/@S D .r �H;n/S , with n the unit normal to S , from
which it readily follows that

r �H D j (13.10)

where j is the current density, defined by .j; n/S D J ,
The current density j can be written as the sum
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Fig. 13.1 Magnetic field H
around a conducting wire
with current J . Ampère’s law
states that the circulation of
H around a closed curve @S
equals the current through the
enclosed surface S

j D ja C �E (13.11)

where ja is externally applied, or impressed, current, and where the so-called eddy
current �E reflects the fact that the electric field E may itself give rise to current.
The eddy current is a generalization of Ohm’s famous law, which says that current
equals resistance times voltage. This term is particularly important when dealing
with metallic materials. The parameter � is the electric conductivity of the material.
In free space � D 0.

Although (13.10) is valid at steady state, the current density j must be modified
according to j C PD to account for any varying electrical field. The so-called
displacement current PD is needed for consistency with conservation of charge. With
this modification we arrive at

r �H D j C PD (13.12)

13.1.4 Faraday’s Law

Faraday’s law says that a moving magnetic field generates a companion electrical
field. In particular, the induced voltage in any closed circuit is equal to the time rate
of change of the magnetic flux through the circuit. See Fig. 13.2. Mathematically,
this is the same as

r �E D � PB (13.13)

13.1.5 Maxwell’s Equations

The collection of Gauss’, Ampère’s, and Faraday’s laws are know as Maxwell’s
equations, and provide the fundamental mathematical model of electromagnetic
interaction. Maxwell’s equations are given by
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Fig. 13.2 An electric circuit
@S in a time dependent
magnetic field B . Faraday’s
law states that the induced
voltage in the circuit equals
the negative time rate of
magnetic flux through the
enclosed surface S , that is,
.E; t/@s D �. PB; n/S

r � E D � PB (13.14a)

r �H D j C PD (13.14b)

r �D D q (13.14c)

r � B D 0 (13.14d)

By definition, current is moving charges, and therefore the current density j and
the charge density q are related through a continuity equation, which takes the form

r � j D � Pq (13.15)

Of the four partial differential equations comprising Maxwell’s equations, only
three of them are independent, namely (13.14a), (13.14b), and (13.14c). Alterna-
tively, (13.14a), and (13.14b) can be used together with the continuity equation
(13.15) to obtain a well posed problem.

13.1.6 Initial- and Boundary Conditions

On the interface between two conducting media Maxwell’s equations give rise to a
set of continuity conditions for E , D, H , and B , given by

ŒE� � n D 0 (13.16)

ŒH � � n D js (13.17)

ŒD� � n D qs (13.18)

ŒB� � n D 0 (13.19)

Here, the brackets Œ�� denote the jump across the boundary, and n is a unit normal.
The letters js and qs denote any external surface charge and surface current densities
on the boundary surface, respectively.
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These conditions mean that the tangential component of E is continuous across
the interface, and that the difference of the tangential component of H is equal to
the surface current density. By contrast, the difference of the normal components
of D is equal to the surface charge density, and the normal components of B is
continuous.

In the special, but common, case that the interface is a perfect conductor unable
to sustain any electromagnetic fields the above interface conditions reduce to the
boundary conditions

E � n D 0 (13.20)

H � n D js (13.21)

D � n D qs (13.22)

B � n D 0 (13.23)

Of course, since the Maxwell’s equations (13.14) are time dependent they must
be supplemented by proper initial conditions to be solvable. In doing so, care must
be take so that (13.14c) and (13.14d) are fulfilled by the initial conditions.

Finite element methods have only rarely been applied to the full set of Maxwell’s
equations without rewriting them in one way or another. The reason being either to
adapt the equations to the application at hand or to limit the complexity or cost of
the numerical method. We shall therefore next look at a few ways of simplifying
Maxwell’s equations under certain assumptions.

13.2 The Electric and Magnetic Wave Equations

To avoid working with two unknowns it is possible to eliminate either E (or D)
or H (or B) from Maxwell’s equations. The choice of unknown to eliminate is
usually based on the boundary conditions prescribed. Elimination of H , say, is
done by taking the curl of Faraday’s law (13.14a) while differentiating Ampère’s
law (13.14b) with respect to time. This yields the two equations r � ��1r � E D
�r � PH and r � PH D Pj C� RE , which can be combined to the single equation forE

r � ��1r � E C � RE D � Pj (13.24)

This is the so-called electric wave equation.
Taking the divergence of both sides of (13.24) and using the fact that the

divergence of a curl is always zero, and the continuity equation (13.15), it is easy to
show that a solutionE also satisfies Gauss’s law r �D D q. Thus, the electric wave
equation is in a sense self contained.

There is a similar wave equation forH .



13.4 Electro- and Magnetostatics 333

13.3 The Time Harmonic Assumption

Electrical devices are often powered by alternating current, which calls for a study
of Maxwell’s equations assuming periodically varying electric and magnetic fields
of the form

E D OEei!t ; H D OHei!t (13.25)

where i is the imaginary unit with i 2 D �1, t is time, and ! > 0 is a given
frequency. The so-called phasors OE and OH are assumed to be independent of time,
but complex-valued. Substituting this ansatz into Maxwell’s equations, assuming j
and q are also varying like ei!t , we immediately obtain the time harmonic form of
Maxwell’s equations

r � OE D �i!� OH (13.26a)

r � OH D Oj C i!� OE (13.26b)

r � OB D 0 (13.26c)

r � OD D Oq (13.26d)

Here, since the time t has been eliminated by the time harmonic ansatz and replaced
by the frequency ! we say that the equations are posed in the frequency domain, as
opposed to the time domain.

13.4 Electro- and Magnetostatics

In the steady state all time derivatives vanish and Maxwell’s four equations decouple
into two systems with two equations each. One system governs the electric field E ,
(orD), whereas the other system governs the magnetic field H (or B). The electric
system is given by

r �E D 0 (13.27a)

r �D D q (13.27b)

and the magnetic by

r �H D j (13.28a)

r � B D 0 (13.28b)

We remark that if the current density j contains the eddy current �E we may
still get a coupling between the above two systems.
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13.5 The Time Harmonic Electric Wave Equation

Substituting the time harmonic ansatz E D OEei!t into the electric wave equa-
tion (13.24) assuming j D ja C �E with ja D Ojaei!t we obtain the time harmonic
electric wave equation

r � ��1r � OE C .i�! � �!2/ OE D �i! Oja (13.29)

for the phasor OE.
Perhaps needless to say, the solution OE has wave characteristics.
In case the current density j is zero, (13.29) reduces to the so-called Maxwell

eigenvalue problem

r � ��1r � OE C �2 OE D 0 (13.30)

for OE and �2 D .i�! � �!2/.
The time harmonic electric wave equation is arguably one of the most important

equations in computational electromagnetics. There are two main reasons for this.
First, it frequently occurs in real-world applications, such as antenna radiation or
power loss in electrical motors, for instance. Second, it offers a very rich set of
mathematical problems, both from the numerical and analytical point of view.

13.5.1 Boundary Conditions

There are two common types of boundary conditions for the time harmonic electric
wave equation (13.29), namely:

• Dirichlet type boundary conditions of the form n � OE D OED , with OED D 0

implying a perfect electric conductor.
• Neumann type boundary conditions of the form ��1.r � OE/ � n D �i! OjN ,

which is equivalent to OH � n D OjN . This boundary condition is typically
used on antennas, since OjN can be interpreted as a surface current density. The
homogeneous case OjN D 0 implies a perfect magnetic conductor.

Other types boundary conditions include different kinds of so-called radiation
boundary conditions, which loosely speaking says that the electric field OE should
vanish at infinity. These are the Silver-Müeller and Sommerfeld boundary condi-
tions, which apply in infinite or unbounded domains. In principle, OE is supposed
to extend infinitely in space. However, in simulations, it is necessary to truncate
the computational domain and introduce artificial boundary conditions. This leads
to so-called absorbing boundary conditions (ABC). ABC s dampen the electrical
waves near the boundary to avoid reflection of these back into the domain. The
most famous type of ABC is called the perfectly matched layer (PML).
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13.5.2 Green’s Formula Revisited

The frequent occurrence of the curl r� calls for special attention to this operator.
Recall that the curl of a vector v D Œvi �diD1 is defined differently depending on the
space dimension d . For d D 2 the curl of v is the number r � v D @x1v2 � @x2v1.
For d D 3 it is the vector r �v D Œ@x2v3�@x3v2; @x3v1�@x1v3; @x1v2�@x2v1�. Also,
the curl of a scalar s is sometimes defined as the vector r � s D Œ@x2 s;�@x1s�.

With these definitions the following variant of Green’s, or integration by parts,
formula holds.

.r � u; v/ D .u;r � v/ � .u � n; v/@˝ (13.31)

The boundary term �.u � n; v/@˝ can also be written .u; v � n/@˝ , or .v � u; n/@˝ .
In this context we remark that if u and v are complex-valued functions, then we

have to interpret the usual L2 inner product .u; v/ as
R
˝ uvdx, with v the complex

conjugate of v. As a consequence, the L2-norm kvk2 D .v; v/ D R
˝ vvdx. Recall

that the complex conjugate of a complex number z D a C ib is z D a � ib.

13.5.3 Weak Form

Let us derive the weak form of the time harmonic electric wave equation. To this
end, we assume that boundary conditions are given by OE � n D 0. Further, to ease
the notation, let �2 D .i�! � �!2/, and Of D �i! Oj . Then, multiplying, (13.29)
with a sufficiently smooth complex-valued vector v, satisfying v � n D 0 on the
boundary, and integrating by parts, we have

Z
˝

Of � vdx D
Z
˝

.r � ��1r � OE/ � vdx C �2
Z
˝

OE � vdx (13.32)

D
Z
˝

��1.r � OE/ � .r � v/ dx C
Z
@˝

��1.r � OE/ � .v � n/ ds C �2
Z
˝

OE � vdx

(13.33)

D
Z
˝

��1.r � OE/ � .r � v/ dx C �2
Z
˝

OE � vdx (13.34)

For the occurring integrals to be well defined it suffice that the integrands OE and
v have bounded norm of their curl in L2.˝/, that is, belong to the spaceH.curlI˝/,
defined by

H.curlI˝/ D fv 2 ŒL2.˝/�d W r � v 2 ŒL2.˝/�d g (13.35)

Further, to satisfy the Dirichlet boundary condition OE and v also need to reside
in the homogeneous space H0.curlI˝/ D fv 2 H.curlI˝/ W n � vj@˝D 0g.
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Both H.curlI˝/ and H0.curlI˝/ are Hilbert spaces. Their norm is the same and
defined by

kvkH.curlI˝/ D kvk C kr � vk (13.36)

Thus, the weak form of (13.29) reads: find E 2 H0.curlI˝/ such that

a. OE; v/ D l.v/; 8v 2 H0.curlI˝/ (13.37)

where we have introduced the linear forms

a. OE; v/ D
Z
˝

��1.r � OE/ � .r � v/ dx C �2
Z
˝

OE � v dx (13.38)

l.v/ D
Z
˝

Of � v dx (13.39)

Formally, OE should also satisfy Gauss’ law, r �.� OE/ D Oq, but this is already built
into (13.37). By combining Gauss’s law with the continuity equation r � Oj D �i! Oq
and Ohm’s law Oj D Oja C � OE we obtain r � ..i!� � �/ OE/ D r � Oja. But this is also
what we get by setting v D r� with � 2 H1

0 .˝/ and integrating by parts in (13.37).
Thus, Gauss’ law is automatically satisfied in a weak sense. In the following we
shall assume that � and � are constants and that r � Oja D Oq D 0, which implies that
r � OE D 0.

The question of existence of a solution OE to (13.37) is a quite complicated matter.
This has to do with the fact that the principal part of the linear form a.�; �/ has a large
null space, and that a.�; �/ is indefinite for large values of !. If � > 0 then it can be
shown that a.�; �/ is coercive and a variant of the Lax-Milgram lemma for complex-
valued spaces can be used to show that OE exist. However, if � D 0 then a result from
functional analysis called the Fredholm alternative must be used to assert existence
of OE . Loosely speaking, Fredholm says that the operator .I C �T / is invertible
up to a set of singular values � provided that the operator T is compact. Now, in
strong form (13.37) can be written .I C�2K�1/ OE D K�1 Of withK D r ���1r�
so we are done by showing that T D K�1 is compact. Suffice to say that this is
indeed possible to do with some work. The singular values � D �2 are called the
Maxwell eigenvalues, and can formally be found by solving (13.30). In real-world
applications, care must always be taken so that � is not chosen as, or close to, a
Maxwell eigenvalue, since this can cause resonance effects.

13.5.4 Finite Element Approximation

To design a robust and accurate finite element method we need to select a finite
element which has good ability to approximate vectors in H0.curlI˝/. In doing
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so, the natural choice is to use a member of the Nédélec finite element family.
Recall that on a triangle mesh K the simplest of these consists of vectors which
on every element K are linear in each component and tangential continuous across
the element edges. Indeed, the tangent continuity is a characteristic feature of
H0.curlI˝/. The formal definition of the Nédélec space of lowest order is given by

Vh D fv 2 H.curlI˝/ W vjKD
�
a1

a2

�
C b

�
x2

�x1
�
;8K 2 Kg (13.40)

Because we do not have a full linear polynomial in each component of v, the degree
of the Nédélec element is somewhere between 0 and 1.

With this choice of discrete space Vh the finite element approximation of (13.37)
takes the form: find OEh 2 Vh such that

a. OEh; v/ D l.v/; 8v 2 Vh (13.41)

A basis for Vh is given by the set of Nédélec shape functions fSNDi gneiD1, with ne
the number of triangle edges in the mesh. Using this basis we can write the unknown
electric field OEh D Pne

jD1 �j SNDj for some coefficients �j to be determined. As
usual, these are given by the entries of the ne � 1 solution vector � to the linear
system

A� D b (13.42)

where the entries of the ne � ne stiffness matrix A and the ne � 1 load vector b are
given by

Aij D a.SNDj ; SNDi /; i; j D 1; 2; : : : ; ne (13.43)

bi D l.SNDi /; i D 1; 2; : : : ; ne (13.44)

In this context we point out that there are actually a good number of reasons
for using edge elements to discretize (13.37), besides the fact that the Nédélec
space is a subspace of H.curlI˝/. First, Nédélec vectors are divergence free
within the interior of each element, so there is reason to believe that the equation
r � OE D 0 is very nearly satisfied by OEh. However, this does not imply that OEh
is globally divergence free, since its normal component may jump across element
edges. Second, if the material is such that � is discontinuous, it is known that
the tangent component of OE is continuous, whereas the normal component is
discontinuous. Indeed, this feature is possible to capture with edge elements, which
have tangent, but not normal continuity. Third, edge elements fits the boundary
conditions n � OE D OED perfectly in the sense that the degrees of freedom are
exactly the curl of the shape functions for the edge elements.
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K +

K −

Ei

Fig. 13.3 The vector fields
making up the Nédélec shape
function SNDi must point in
the same direction on edge Ei

13.5.5 Computer Implementation

The implementation of edge elements is essentially the same as for any other solver.
The linear system resulting from the finite element discretization is assembled by
adding local contributions from each element to the global stiffness matrix A and
load vector b. In doing so, we must remember that the degrees of freedom for the
edge elements are located on the element edges, which must be numbered. However,
the edges must also be oriented in order for the shape functions to be truly tangent
continuous. Indeed, the two vector fields making up shape function SNDi on the
two neighbouring elements KC and K� sharing edge Ei must point in the same
direction. An illustration of this is shown in Fig. 13.3.

The edge orientation is easy as it amounts to assigning a sign � to each edge on
each element, signifying if the shapes need to be negated or not. On an element, if
the element neighbor on the other side of an edge has a larger number than the ele-
ment, then the edge has sign � D �1, and otherwise � D C1. This can be concisely
coded. The element neighbours are found by calling neighbors=Tri2Tri(p,t).
The signs are then found by comparing all element numbers against the numbers of
their neighbours. This can be done with the somewhat cryptic code

signs=2*((neighbors’<[1:nt; 1:nt; 1:nt])-1/2)

where nt=size(t,2) is the number of elements. The sign of edge i in element j
is given by signs(i,j). Each shape function must be multiplied by its sign prior
to usage to be correct.

To compute the 3� 1 element load vector bK we note that, by definition, SNDi D
�i jEi j.'jr'k � 'kr'j / D jEi j.'j Œbk; ck�T � 'kŒbj ; cj �

T /, where �i denotes the
sign of edge Ei in element K . Also, the integral of any hat function 'i over K is
jKj=3. Assuming tacitly that the vector Of is constant over K , we thus have the
entries bKi D . Of ; SNDi /K D �i Of � Œbk �bj ; ck �cj �T jKj=3, with cyclic permutation
of the indices fi; j; kg over f1; 2; 3g.
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Continuing, entry AKij of the 3 � 3 element stiffness matrix AK is the sum of
the curl-curl term W K

ij D .��1r � SNDj ;r � SNDi /K and the mass term MK
ij D

�2.SNDj ; SNDi /K . Recalling that r �SNDi D �i jEi j=jKj we compute without effort
W K
ij D ��1�i �j jEi jjEj j=jKj. By contrast, MK

ij requires some labor to compute.
To this end, let us first define fij D bibj C ci cj . Then, recalling that .'i ; 'j /K D
.ıij C 1/jKj=12 with ıij the Kronecker symbol, we have for the mass with, say,
i D j D 1,

MK
11 D �2.SND1 ; SND1 /K (13.45)

D �2�21 jE1j2.'2r'3 � '3r'2; '2r'3 � '3r'2/K (13.46)

D �2�21 jE1j2.'22 jr'3j2 � 2'2'3r'3 � r'2 C '23 jr'2j2; 1/K (13.47)

D �2�21 jE1j2.f33 � f23 C f22/jKj=6 (13.48)

The other masses can be computed similarly. In doing so, we have

MK
12 D �2�1�2jE1jjE2j.f31 � f33 � 2f21 C f23/jKj=12 (13.49)

MK
13 D �2�1�3jE1jjE3j.f32 � 2f31 � f22 C f21/jKj=12 (13.50)

MK
22 D �2�22 jE2j2.f11 � f13 C f33/jKj=6 (13.51)

MK
23 D �2�2�3jE1jjE3j.f12 � f11 � 2f32 C f31/jKj=12 (13.52)

MK
33 D �2�23 jE3j2.f22 � f12 C f11/jKj=6 (13.53)

Obviously,MK is symmetric.
A routine for computing AK and bK is listed below.

function [AK,bK] = RotRot(x,y,sigmas,mu,kappa,fhat);
[area,b,c]=HatGradients(x,y);
f=b*b’+c*c’;
len=zeros(3,1); % edge lengths
len(1)=sqrt((x(3)-x(2))^2+(y(3)-y(2))^2);
len(2)=sqrt((x(1)-x(3))^2+(y(1)-y(3))^2);
len(3)=sqrt((x(2)-x(1))^2+(y(2)-y(1))^2);
len=len.*sigmas; % edge lengths times signs
m11=(f(3,3)-f(2,3)+f(2,2))/6;
m22=(f(1,1)-f(1,3)+f(3,3))/6;
m33=(f(2,2)-f(1,2)+f(1,1))/6;
m12=(f(3,1)-f(3,3)-2*f(2,1)+f(2,3))/12;
m13=(f(3,2)-2*f(3,1)-f(2,2)+f(2,1))/12;
m23=(f(1,2)-f(1,1)-2*f(3,2)+f(3,1))/12;
MK=[m11 m12 m13; m12 m22 m23; m13 m23 m33]*area;
WK=ones(3)/area;
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AK=(WK/mu+kappa^2*MK).*(len*len’);
bK=zeros(3,1);
bK(1)=dot(fhat,[b(3); c(3)]-[b(2); c(2)]);
bK(2)=dot(fhat,[b(1); c(1)]-[b(3); c(3)]);
bK(3)=dot(fhat,[b(2); c(2)]-[b(1); c(1)]);
bK=bK.*len*area/3;

Input to this routine is the triangle vertex coordinates x and y, the signs of the
triangle edges signs, the material parameters mu and kappa, and the current
density vector fhat. Output is the element stiffness matrix AK and the element load
vector bK.

13.5.5.1 Electromagnetic Scattering from a Cylinder

Scattering simulations are one of the most common tasks in computational electro-
magnetics. It finds applications in radar and remote sensing for instance. The basic
problem setup is very simple. An incident electric wave hits a conducting object
and is scattered. The task is to compute the scattered electric field. By measuring
the amount of electric power reflected back by the scattered field (i.e., wave), the
radar cross section of the scatterer can be determined.

Let us write a code to simulate the electric field scattered by a cylinder. This
amounts to solving the time harmonic electric wave equation for the scattered field
Es within the square S D fx W �5 � x1; x2 � 5g with the cut out cylinderC D fx W
x21 C x22 < 1g. The cylinder C is perfectly conducting, and the surrounding cavity
˝ D S n C is free space, with � D � D 1. The current density j D 0.

It is customary to write the total electric field as the sum of the scattered and
incident field, viz.

OE D OEi C OEs (13.54)

Inserting this ansatz into (13.24) yields

r � ��1r � .Ei CEs/C �2.Ei C Es/ D 0 (13.55)

As OEi is known only OEs needs to be solved for. Let us choose OEi as

OEi D
�
1

0

�
e�i!x2 (13.56)

with cyclic frequency ! D 2� . This represents a plane wave with unit wave length
traveling in the x2-direction. Moreover, with our choice of material parameters �, �,
and � D 0, it is a simple matter to check thatEi satisfies r���1r�EiC�2Ei D 0,
which reduces (13.55) to simply

r � ��1r �Es C �2Es D 0 (13.57)
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Fig. 13.4 Geometry with scattering cylinder and PML, and subdomain numbers

The boundary condition for Es on the perfect conducting cylinder surface @C is
OE � n D 0, which implies

OEs � n D � OEi � n; on @C (13.58)

To avoid reflection of the scattered wave at the outer boundary of the square back
into the cavity we use an absorbing boundary condition in the form of a perfectly
matched layer (PML). This amounts to increasing the conductivity � in a strip of
width, say, 2, near the boundary. This non-physical conductivity is assumed to have
a polynomial profile in the absorbing layer, being zero in the cavity. Indeed, referring
to Fig. 13.4, which shows the subdomain numbering from pdeinit, we choose

� D 2�n�0

8̂
<̂
ˆ̂:
.jx1j � 3/n; if x 2 ˝6 [˝8

.jx2j � 3/n; if x 2 ˝2 [˝9

.jx1j � 3/n C .jx2j � 3/n; if x 2 ˝1 [˝3 [˝4 [˝5

(13.59)

where the parameter n D 4 is the degree of absorption, and �0 D 1 is the maximum
conductivity in the absorbing layer. The PML region is terminated with a perfectly
conducting boundary condition OEs � n D 0. Of course, due to the PML it is only
within the cavity subdomain˝7 that we can expect the solution OEs to be accurate.
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The main routine is listed below.

function MaxwellSolver()
dl=Scatterg();
[p,dummy,t]=initmesh(dl,’hmax’,0.1);
neighbors = Tri2Tri(p,t);
e = Tri2Edge(p,t);
ne = max(e(:));
nt = size(t,2);
A = sparse(ne,ne);
b = zeros(ne,1);
omega = 2*pi/1;
mu = 1;
epsilon = 1;
signs=2*((neighbors’<[1:nt; 1:nt; 1:nt])-1/2)
for i=1:size(t,2);

nodes = t(1:3,i);
x = p(1,nodes);
y = p(2,nodes);
edges = e(i,:);
sigma = 0;
sd=t(4,i);
if sd==7 % cavity

%
elseif sd==2 | sd==9 % up down pml

sigma=5*(abs(mean(y))-3)^4;
elseif sd==6 | sd==8 % left right pml

sigma=5*(abs(mean(x))-3)^4;
else

sigma=5*(abs(mean(x))-3)^4+(abs(mean(y))-3)^4;
end
kappa=sqrt(sqrt(-1)*sigma*omega-epsilon*omega^2);
[AE,FE] = RotRot(x,y,signs(:,i),mu,kappa,[0,0]);
A(edges,edges) = A(edges,edges) + AE;
b(edges) = b(edges) + FE;

end
[xmid,ymid,edges] = EdgeMidPoints(p,e,t);
fixed=[]; % fixed nodes
gvals=[];
hold on
for i=1:ne % loop over edges
r=edges(i); % edge or node number
x=xmid(i); % node x-coordinate
y=ymid(i); % y-
if (sqrt(x^2+y^2)<1.001) % cylinder
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Fig. 13.5 Glyphs of the scattered electric field < OEs
h

normal = -[x; y]/sqrt(x^2+y^2);
fixed = [fixed; r];
gvals = [gvals; normal(2)*exp(omega*y*sqrt(-1))];

end
if (abs(x)>4.999 | abs(y)>4.999) % pml

fixed = [fixed; r];
gvals = [gvals; 0];

end
end
free=setdiff([1:ne],fixed);
b=b(free)-A(free,fixed)*gvals;
A=A(free,free);
xi=zeros(ne,1);
xi(fixed)=gvals;
xi(free)=A\b;

Running the code we get the scattered electric field OEs
h shown in Fig. 13.5.

Figures 13.6 and 13.7 show the components of OEs
h. Only the real part of OEs

h

is plotted. Note the unit wave length, the complex interference pattern, and the
damping of the wave in the PML region.
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13.6 The Magnetostatic Potential Equation

Having familiarized ourselves somewhat with the practical aspects of computational
electromagnetics, let us now turn to study this area from a more theoretical point of
view.
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Returning to Maxwell’s equations, in the magnetostatic case, since r � B D 0,
there exist a vector potential A such that

B D r � A (13.60)

and, thus,

H D ��1r � A (13.61)

Substituting this into Ampère’s law r �H D j yields

r � ��1r � A D j (13.62)

which is called the magnetostatic potential equation and is the fundamental equation
of magnetostatics. For simplicity we shall in the following assume that the magnetic
permittivity � > 0 is constant.

We observe that depending on if the space dimension d is 2 or 3, A is either a
scalar or a vector. This is a consequence of the definition of the curl operator. The
two dimensional case also follows from the three dimensional one by assuming no
dependency of any quantity on, say, x3, and A D .0; 0; A3/. In this case, we then
have B D .B1; B2; 0/ and j D .0; 0; j3/.

Expressing B as the curl of A automatically implies r � B D 0, since the
divergence of a curl is always zero.

Although the potential A is enough to uniquely specify the magnetic field B , the
potential equation (13.62) itself is not enough to uniquely specify the potential A,
not even with appropriate boundary conditions. This is a consequence of the fact
that both the curl and divergence must be specified in order to uniquely specify a
vector field. Therefore, it is necessary to impose a constraint, a so-called gauge, on
A. The most common is the Coulomb gauge

r � A D 0 (13.63)

With the imposition of the gauge A is determined uniquely up to a constant,
which should be handled by the boundary conditions.

Using the vector identity r � r � A D �A C r.r � A/ it is possible to
rewrite (13.62) as ���1A D j . The rationale is that it decouples the original
vector equation into a set of scalar equations for the components Ai of A. This is
particularly useful in two dimensions, since it reduces the magnetostatic potential
equation to a Poisson equation forA3. In three dimensions, however, this rewriting is
not so advantageous, since the boundary conditions are awkward and still introduce
couplings between the componentsAi .

In the following we shall mainly study the magnetostatic potential equation in
the three dimensional case, as the two dimensional case has already been dealt with
considering Poisson’s equation.
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13.6.1 Boundary Conditions

There are two common types of boundary conditions for the magnetic potential
equation (13.62), namely:

• Dirichlet type boundary conditions of the form A � n D AD .
• Neumann type boundary conditions of the form ��1.r �A/� n D jN , which is

equivalent to B � n D jN .

13.6.2 Weak Form

To analyze the magnetostatic potential equation (13.62) we write it in weak form.
To this end, let us assume that the boundary conditions are given by A� n D 0. For
uniqueness, we require A to satisfy the Coulomb gauge r � A D 0.

Multiplying j D r � r � A with a vector v 2 H0.curlI˝/ and integrating by
parts yields

.j; v/ D .��1r � A;r � v/ (13.64)

Similarly, multiplying 0 D r � A by a function q in, say, L2.˝/ yields

0 D .r � A; q/ (13.65)

or, if we assume q to be more regular, say, in H1
0 .˝/,

0 D .r � A; q/ D .n � A; q/@˝ � .A;rq/ D �.A;rq/ (13.66)

Contemplating this we have, at least, two ways to enforce r �A D 0. One way is
to choose q D r � v in (13.65) and add �.r � A;r � v/, with � > 0 a (big) constant,
to (13.64). The larger the constant �, the more penalization on any divergence of A.
Moreover, the form .��1r�A;r�v/C�.r�A;r�v/ is coercive on V D ŒH1.˝/�d ,
and can therefore be discretized by standard (i.e., nodal) finite elements. Indeed,
the resulting finite element method works well as long as the domain is convex.
However, if the domain is non-convex with re-entrant corners, it turns out that the
solution A is so singular that it can not be approximated by continuous piecewise
polynomials. In fact, it can be shown that A does not even belong to V . Thus,
the weak form is posed on a faulty space V , and the finite element approximation
is unable to converge. This clearly limits the practical use of this particular finite
element method.

Another way to obtain a divergence free magnetic potential A is to use (13.66)
in combination with a dummy Lagrangian multiplier�. This leads to the following
weak form of (13.64): find .A;�/ 2 H0.curlI˝/ �H1

0 .˝/ such that
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a.A; v/C b.v; �/ D l.v/; 8v 2 V (13.67a)

b.A; q/ D 0; 8q 2 Q (13.67b)

where we have introduced the linear forms

a.u; v/ D .��1r � A;r � v/ (13.68)

b.A; q/ D �.A;rq/ (13.69)

l.v/ D .j; v/ (13.70)

We recognize (13.67) as a saddle-point problem, similar to the Stokes system.
Indeed, the magnetostatic potential equation and the Stokes system share many
features, which is reflected by the fact that the mathematical analysis of them is
the same in many aspects. For example, as we shall see, existence and uniqueness
of a solution can be shown similarly. However, since the involved spaces and linear
forms are different, many details differ.

In the following, for ease of notation, let us denote V D H0.curlI˝/, and Q D
H1
0 .˝/.
In compact form (13.67) can be written: find .A;�/ 2 V �Q such that

B..A;�/; .v; q// D F..v; q//; 8.v; q/ 2 V �Q (13.71)

where we have introduced the big linear forms

B..A;�/; .v; q// D a.u; v/C b.v; �/C b.A; q/ (13.72)

F..v; q// D l.v/ (13.73)

13.6.3 The Helmholtz Decomposition

When the magnetic potential A itself is not of prime interest, but rather its curl, that
is, the magnetic flux B D r � A, yet another weak form than (13.67) is sometimes
used. This alternative, or reduced, weak form relies on the following result from
functional analysis called the Helmholtz decomposition.

Theorem 13.1 (Helmholtz Decomposition). Any vector v 2 H0.curlI˝/ can be
written as

v D z C r� (13.74)

where z 2 Z D fv 2 H0.curlI˝/ W .v;rq/ D 0; 8q 2 H1
0 .˝/g is divergence free,

and � 2 H1
0 .˝/.
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We note that, by definition, z and r� are L2 orthogonal. We also note that the space
Z coincides with the null space of the bilinear form b.�; �/. It can be shown that Z
is a Hilbert space under the norm k � kH.curlI˝/.

From the abstract point of view, the Helmholtz decomposition allows for a simple
characterization of the space H0.curlI˝/ in the sense that it can be written as the
direct sum

H0.curlI˝/ D Z ˚ rH1
0 .˝/ (13.75)

We remark that there are many variants of the Helmholtz decomposition. For
example,H.curlI˝/ can be written as the direct sumH.curlI˝/ D Z˚rH1.˝/.

But let us return to the derivation of a reduced weak form of the magnetostatic
potential equation. Using the Helmholtz decomposition we can write A as A D
A0 C r� with A0 2 Z and � 2 H1

0 .˝/. In doing so, we make the key observation
that, due to the vector identity r�.r�/ D 0, onlyA0 is required to computeB from
A. To see this note thatB D r�A D r�.A0Cr�/ D r�A0. Therefore, let us try
to eliminate � all together. To this end, we substitute the Helmholtz decomposition
of A into the bilinear form a.�; �/, which yields

a.A; v/ D a.A0 C r�; v0 C r	/ (13.76)

D .��1r � .A0 C r�/;r � .v0 C r	// (13.77)

D .��1r �A0;r � v0/ (13.78)

Here, we have made a Helmholtz decomposition of also the test function v D v0 C
r	, with v0 2 Z and 	 2 H1

0 .˝/. Continuing similarly with the linear form l.�/ we
have

l.v/ D .j; v0 C r	/ (13.79)

D .j; v0/ � .r � j; 	/C .n � j; 	/@˝ (13.80)

D .j; v0/ � .r � j; 	/ (13.81)

where we have used integration by parts and that 	 vanish on the boundary. Now,
assuming tacitly that

r � j D 0 (13.82)

we are left with

l.v/ D .j; v0/ (13.83)

Under the assumption of a divergence free current density j , we observe that
neither the trial function � nor its test function 	 lingers in any of the linear forms
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a.�; �/ and l.�/. Thus, we have managed to eliminate � from the equation as we
wanted. As a consequence, we end up with the reduced weak form: find A0 2 Z

such that

a.A0; v0/ D l.v0/; 8v0 2 Z (13.84)

An advantage of the reduced weak form over the saddle-point problem is that it
does not include the Lagrangian multiplier �, but a drawback is that it is posed on
the space Z of divergence free vectors, which is difficult to discretize numerically.

We remark that the requirement r � j D 0 is not necessary for the saddle-
point problem (13.67) to be well posed. However, if j is divergence free, then the
Lagrangian multiplier� vanish for the exact solution A.

13.6.4 Existence and Uniqueness of the Solution

Because the weak form (13.67) is a saddle-point problem, existence and uniqueness
of the solution must be deduced from Brezzi’s Theorem 12.2. To this end, we need
to show that the bilinear form a.�; �/ is coercive and continuous on the null space
Z of b.�; �/, that the linear form l.�/ is continuous on Z, and that the bilinear form
b.�; �/ is continuous on Z and satisfies the inf-sup condition

sup
v2V

b.v; q/

kvkV 	 CkqkQ; 8q 2 Q (13.85)

For the Stokes system, a great deal of effort is needed to show the inf-sup condition.
Here, it is easy. By taking v D rq with q 2 Q, we have

b.rq; q/
krqkV D .rq;rq/

kr � .rq/k C krqk D krqk2
krqk D krqk D kqkQ (13.86)

This is an admissible choice of v, since we know from the Helmholtz decomposition
that rq is a member of H.curlI˝/.

Unlike for the Stokes system, the coercivity of a.�; �/ on Z is hard to establish.
To do so, we need the following variant of the Poincaré inequality on Z

kvk � Ckr � vk (13.87)

Taking this result for granted, we immediately have

a.A;A/ D ��1kr � Ak2 	 C.kr � Ak2 C kAk2/ D CkAk2V (13.88)

which shows the coercivity property, since by assumption ��1 > 0.
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The linearity of a.�; �/ is easy to deduce using the Cauchy-Schwarz inequality.

a.A; v/ D ��1.r �A;r � v/ (13.89)

� Ckr � Ak kr � vk (13.90)

� CkAkV kvkV (13.91)

The linearity of b.�; �/ also follows from the Cauchy-Schwarz inequality.

b.A; q/ D �.A;rq/ (13.92)

� kAk krqk (13.93)

� CkAkV kqkQ (13.94)

Thus, we conclude that the requirements for Brezzi’s Theorem 12.2 are fulfilled.
Hence, the existence and uniqueness of A and � is guaranteed.

We remark that the existence and uniqueness of a solutionA0 2 Z to the reduced
weak form (13.84) follows from the Lax-Milgram lemma, since, as we have seen,
a.�; �/ is coercive and continuous on Z.

13.6.5 Finite Element Approximation

In order to formulate a numerical method, let K be a mesh of the domain ˝ into
tetrahedral elements K . On this mesh, let Vh be the Nédélec space of lowest order,
andQh the space of continuous piecewise linears, defined by

Vh D fv 2 V W vjKD a C b � x;8K 2 Kg (13.95)

Qh D fv 2 Q W vjK2 P1.K/; 8K 2 Kg (13.96)

Now, the finite element approximation of (13.67) takes the form: find .Ah;�h/ 2
Vh �Qh such that

a.Ah; v/C b.�h; v/ D l.v/; 8v 2 Vh (13.97a)

b.Ah; q/ D 0; 8q 2 Qh (13.97b)

or, in compact form: find .Ah;�h/ 2 Vh �Qh such that

B..Ah;�h/; .v; q// D F..v; q//; 8.v; q/ 2 Vh �Qh (13.98)

Existence and uniqueness of the finite element solution .Ah;�h/ follows from
the fact that the combination of Nédélec and Lagrange elements form discrete inf-
sup stable pairs.
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To assert that the current density j is divergence free, it is common to express j
as j D r � t , where t is a potential. Moreover, this potential is often interpolated
onto the Nédélec space for ease of implementation.

13.6.6 A Priori Error Estimate

The derivation of an a priori error estimate for the magnetostatic potential equation
follows the same line of reasoning as for the Stokes system. In doing so, recall that
a key ingredient is the B-stability property

sup
.v;q/2V�Q

B..A;�/; .v; q//

k.v; q/kV �Q
	 Ck.A;�/kV�Q (13.99)

In principle, we can show B-stability in the same way as we did for the Stokes
system together with the Helmholtz decomposition. However, as the calculations
are a bit lengthy let us tacitly assume that (13.99) holds.

Once the B-stability property has been established the following best approx-
imation result is a simple consequence of the Triangle inequality and Galerkin
orthogonality

kA � AhkV C k� ��hkQ � C.kA� vkV C k� � qkQ/; 8.v; q/ 2 V �Q
(13.100)

Now, without going into the detains it is possible to construct a Nédélec
interpolant �v 2 Vh to a vector v 2 V , which satisfies the interpolation estimates

kv � �vk � ChjvjH1.˝/ (13.101)

kr � .v � �v/k � Chjr � vjH1.˝/ (13.102)

provided v and r � v are sufficiently regular.
Choosing finally v D �A 2 Vh in the best approximation result and using the

above and standard interpolation estimates we readily obtain the following a priori
error estimate.

Theorem 13.2. The finite element approximation .Ah;�h/ satisfies the estimate

kA �AhkV C k� ��hkQ � Ch
jAjH1.˝/ C jr � AjH1.˝/ C jr�jH1.˝/

�
(13.103)

This a priori error estimate can be further simplified by observing that if the current
density j is divergence free, then both the continuous and discrete Lagrangian
multiplier� and �h vanish.
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13.6.7 A Posteriori Error Estimate

The derivation of an a posteriori error estimate for the magnetostatic potential
equation again follows the same line of reasoning as for the Stokes system.

From Galerkin orthogonality we have

B..A � Ah;� ��h/; .v; q// D B..A �Ah;���h/; .v � �v; q � �q//

(13.104)

where �v 2 Vh and �q 2 Qh are interpolants of v and q. Using the Helmholtz
decomposition we write v ��v D rCr', with r 2 Z and ' 2 H1

0 .˝/. It has been
shown by Schöberl [59] that r and ' can essentially be chosen such that

h�1
K krkK C kr � rkK � kr � vkK; h�1

K k'kK C kr'kK � kvkK (13.105)

on each elementK . Substituting this into (13.104), yields

B..A � Ah;� ��h/; .v � �v; q � �q// D F..v; q//� B..Ah;�h/; .v � �v; q � �q//
(13.106)

D l.v � �v/ � a.Ah; v � �v/ � b.v � �v; �h/
(13.107)

� b.Ah; q � �q/

D l.r C r'/ � a.Ah; r C r'/ � b.r C r';�h/
(13.108)

� b.Ah; q � �q/

D l.r/� a.Ah; r/� b.r';�h/ (13.109)

� b.Ah; q � �q/

where we have used the vector identity r � .r'/ D 0, and that r is orthogonal to
r�h. Breaking the integrals into a sum over the elements as usual, and integrating
by parts on each term, and estimating using the Cauchy-Schwarz inequality, further
yields

l.r/ � a.Ah; r/ � b.r';�h/ � b.Ah; q � �q/ D .j; r/ � .��1r � Ah;r � r/
C .r';r�h/ (13.110)

C .Ah;r.q � �q//

D
X
K2K

.j � r � ��1r � Ah; r/K

� 1
2
.Œ��1.r � Ah/ � n�; r/@K
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C .r';r�h/K

� .r � Ah; q � �q/K

C 1
2
.Œn � Ah�; q � �q/@K

�
X
K2K

kj � r � ��1r �AhkKkrkK
(13.111)

C 1
2
kŒ��1.r � Ah/ � n�kKkrk@K

C kr'kKkr�hkK
C kr � AhkKkq � �qkK
C 1

2
kŒn � Ah�k@Kkq � �qk@K

Now, because r is divergence free its normal component r � n is zero, and, thus,
r has only tangent component r �n on the element boundary @K . On this boundary
there holds the Trace inequality kv � nk@K � C.h

�1=2
K kvkK C h

1=2
K kr � vkK/.

Thus, in view of the inequality for r in (13.105) we have krk@K D kr � nk@K �
Ch1=2.kvkK C kr � vkK/. Using this and standard interpolation estimates we can
estimate the sum (13.111), which we denote by S , by

S �C
X
K2K

hKkj � r � ��1r � AhkKkr � vkK (13.112)

C 1
2
h
1=2
K kŒ��1.r � Ah/ � n�k@Kn@˝.kvkK C kr � vkK/

C kr�hkKkvkK
C hKkr � AhkKkrqkK
C 1

2
h
1=2
K kŒn � Ah�k@Kn@˝krqkK

�
 
C
X
K2K

	K

!
.kvk C kr � vk C krqk/ (13.113)

where we have introduced the element residual 	K , defined by

	K D hKkj � r � ��1r � AhkK C 1
2
h
1=2
K kŒ��1.r � Ah/ � n�k@Kn@˝ (13.114)

C kr�hkK C hKkr � AhkK C 1
2
h
1=2
K kŒn � Ah�k@Kn@˝

Summarizing, we thus have

B..A � Ah;� ��h/; .v � �v; q � �q// � C

 X
K2K

	K

!
k.v; q/kV�Q (13.115)
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Using this the following a posteriori error estimate is a simple consequence of
B-stability.

Theorem 13.3. The finite element solution .Ah;�h/ satisfies the estimate

k.A� Ah;� ��h/kV�Q � C
X
K2K

	K (13.116)

where the element residual 	K is the sum of the cell residual RK D hK.kj � r �
r �AhkK C kr �AhkK/C kr�hkK and the edge residual rK D 1

2
h
1=2
K .kŒ��1.r �

Ah/ � n�k@Kn@˝ C kŒn � Ah�k@Kn@˝/.

13.7 Further Reading

Introductory books on computational electromagnetics include the ones by Chari
and Salon [16] and Bondesson et al. [13]. Both these books look at computational
electromagnetics from a broad perspective and contain material on a wide range of
numerical methods, such as FD, FDTD, FEM, BEM, and MoM, for instance. More
advanced books include those of Jin [44], Solin [66] and Monk [49].

13.8 Problems

Exercise 13.1. In electrostatics, due to (13.27a), there exists a scalar potential �,
such that E D �r�. Show, using (13.27b), that � satisfies Poisson’s equation
�� D q=�0 in free space. Can you interpret the Dirichlet and Neumann boundary
conditions � D 0 and n � r� D 0 from the physical point of view?

Exercise 13.2. Derive the weak form of the electric wave equation r � ��1r �
E � �!2E D 0, subject to the boundary conditions E � n D gD on �D and
.��1r � E/ � n� i�!2 D gN on �N .

Exercise 13.3. Show (13.55).

Exercise 13.4. Write down three benefits with using Nédélec edge elements instead
of nodal Lagrange elements to discretize a problem involving the curl-curl operator
r � r�.



Chapter 14
Discontinuous Galerkin Methods

Abstract In this final chapter we present the discontinuous Galerkin (dG) method.
This method is based on finite element spaces that consist of discontinuous
piecewise polynomials defined on a partition of the computational domain. Such
methods are very flexible, for example, since they allow construction of more
general methods and since they allow for simple adaptation. Discontinuous Galerkin
methods were originally developed for first order problems and were later extended
to second order problems. We cover both categories, and derive basic stability
and error estimates. Due to the discontinuous nature of the finite element space
additional terms in the weak form are necessary to enforce the proper continuity
conditions between adjacent elements. We also consider how to handle these
additional terms in the implementation of the method.

14.1 A First Order Problem

14.1.1 Model Problem

Let ˝ be a domain in R
d , d D 1; 2, or 3 with boundary @˝ . Let b D Œbi �

d
iD1 be

a given vector field and c a given scalar function. We consider the following first
order problem modeling convection and reaction: find u such that

cu C b � ru D f; in ˝ (14.1a)

u D g; on @˝� (14.1b)

where
@˝� D fx 2 @˝ W n.x/ � b.x/ < 0g (14.2)

is the so-called inflow part of the boundary. For simplicity, we assume that b is a
constant vector and c a constant function.

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6__14, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 14.1 The inflow boundary @˝
�

, where n � b < 0

The operators c and b � r can be simply interpreted. The first scales u so that it
is proportional to f . The second, transports u along the direction of b. To describe
this we speak about reaction and convection. Note that there is no diffusion term like
��u, which can smooth u and make it adhere to a boundary condition. Therefore,
we can only have boundary conditions on the inflow part of the boundary. That is,
the parts of @˝ where the vectors of b point into ˝ . See Fig. 14.1.

14.1.2 Discontinuous Finite Element Spaces

Let K D fKg be a mesh of ˝ and define the space of discontinuous piecewise
linear functions

Vh D fv W vjK 2 P1.K/; 8K 2 Kg (14.3)

where P1.K/ is the space of linear polynomials on element K .
Thus, the members of Vh are linear on each element K , but generally discontin-

uous across the element boundaries @K .
As before, we let EI denote the set of interior edges and with each interior edge

E we associate a fixed unit normal n. We denote by KC the element for which n is
the exterior normal, and K� the element for which �n is the exterior normal. For
edges on the boundary @˝ we let n be the exterior unit normal to ˝ . Further, we
define the jump and the average of a function v 2 Vh at the edge E by
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Œv� D vC � v�; hvi D uC C u�

2
(14.4)

14.1.3 The Discontinuous Galerkin Method

To derive a discontinuous Galerkin method we multiply the transport equation by
v 2 Vh and integrate over˝ . Integrating by parts on each element gives

.f; v/ D
X
K2K

.cu C b � ru; v/K (14.5)

D
X
K2K

.cu; v/K � .u; b � rv/K C .n � bu; v/@K (14.6)

D
X
K2K

.cu; v/K � .u; b � rv/K (14.7)

C
X
E2EI

.n � bu; Œv�/E C .n � bg; v/@˝
�

C .n � bu; v/@˝n@˝
�

where we have used the boundary condition u D g on @˝�, the fact that u is
continuous along the characteristics, and that r � b D 0 so that r � .bu/ D b � ru.
In order to make sense of this form also for u 2 Vh we replace u by the average
hui C �Œu�, where � is a parameter on interior edges to be determined, which gives

.f; v/ � .n � bg; v/@˝
�

D
X
KK
.cu; v/K � .u; b � rv/K (14.8)

C
X
E2EI

.n � bhui; Œv�/E C .�n � bŒu�; Œv�/E C .n � bu; v/@˝n@˝
�

D
X
K2K

.cu; v/K C .b � ru; v/K (14.9)

�
X
E2EI

.n � bŒu�; hvi/E C .�n � bŒu�; Œv�/E � .n � bu; v/@˝
�

Here, we finally have used integration by parts on each element together with the
identity

Œuv� D Œu�hvi C huiŒv� (14.10)

We may thus formulate the following discontinuous Galerkin method: find uh 2
Vh such that

ah.uh; v/ D l.v/; 8v 2 Vh (14.11)

where the bilinear and linear form ah.�; �/ and lh.�/ are defined by
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ah.u; v/ D
X
K2K

.cu; v/K C .b � ru; v/K (14.12)

�
X
E2EI

.n � bŒu�; hvi/E C .�n � bŒu�; Œv�/E � .n � bu; v/@˝
�

l.v/ D .f; v/� .n � bg; v/@˝
�

(14.13)

respectively.
We note that the method satisfies the Galerkin orthogonality

ah.u � uh; v/ D 0; 8v 2 Vh (14.14)

Of course, this is due to the fact that u satisfies (14.11). We say that the method is
consistent.

14.1.4 Stability Estimates

For the stability analysis we introduce the weighted norms

kvk2b;EI D
X
E2EI

.jn � bjv; v/E; kvk2@˝ D .jn � bjv; v/@˝ (14.15)

Assuming that there is a constant C > 0 such that

C jn � bj � �n � b; 8E 2 EI (14.16)

the following stability estimate holds

C.kuk2˝ C kŒu�k2b;EI C kuk2b;@˝/ � ah.u; u/ (14.17)

where kuk˝ is to be interpreted as
P

K2K kukK . Before we turn to the proof of this
estimate, let us investigate the meaning of condition (14.16) on the parameter � . We
first note that the average is a convex combination

hui C �Œu� D
�
1

2
C �

�
uC C

�
1

2
� �

�
u� (14.18)

Next we note that if n �b > 0 then � is positive and we get larger weight onKC, the
element located upstream of the edge, while if n �b < 0we get a negative � and thus
a larger weight onK� which is the upstream element in this case. Thus we conclude
that upwinding, in the sense that a larger weight is used on the upstream side of the
edge, yields stability of the method. In particular, choosing � D sign.n � b/=2 we
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obtain the traditional discontinuous Galerkin method for first order problems where

Œu�C �hui D
(

uC; if n � b > 0
u�; if n � b < 0 (14.19)

is precisely the upstream value at the face.
We now turn to the proof of (14.17). Setting v D u we get

ah.u; u/ D
X
K2K

.cu; u/K C .b � ru; u/K �
X
E2EI

.n � bŒu�; hui/E � .n � bu; u/@˝
�

(14.20)

Focusing on the second term and using integration by parts we obtain

X
K2K

.b � ru; u/K D �
X
K2K

.u; b � ru/K C .n � bu; u/@K (14.21)

D �
X
K2K

.b � ru; u/K C 2
X
E2EI

.n � bŒu�; hui/E C .n � bu; u/@˝

(14.22)

where we have used the identity

nC � b.uC/2 C n� � b.u�/2 D n � b..uC/2 � .u�/2/ D 2n � bŒu�hui (14.23)

Thus, we conclude that the following identity holds for the second term

X
K2K

.b � ru; u/K D
X
E2EI

.n � bŒu�; hui/E C 1

2
.n � bu; u/@˝ (14.24)

Inserting this identity into (14.20) we get the desired estimate.
Next we seek to improve the control of the streamline derivative b � rv. Since we

are using discontinuous functions we may choose v D hb � ru, which gives

ah.u; hb � ru/ D
X
K2K

h.cu; b � ru/K C h.b � ru; b � ru/K (14.25)

�
X
E2EI

h.n � bŒu�; hb � rui/E � h.n � bu; b � ru/@˝
�

	 hkb � ruk2˝ � Chkuk˝kb � ruk˝ (14.26)

� CkŒu�kb;EI h1=2kb � ruk˝ � Ckukb;@˝kb � ruk@˝
	 C1

X
K2K

hkb � ruk2K � C2.kuk2˝ C kŒu�k2b;EI C kuk2b;@˝/ (14.27)
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Thus, we conclude that there are constants C1 and C2 such that

ah.u; hb � ru/ 	 C1
X
K2K

hkb � ruk2K � C2.kuk2˝ C kŒu�k2b;EI C kuk2b;@˝/ (14.28)

In order to state our final stability result, we introduce the norm

jjjujjj2 D kuk2˝ C
X
K2K

hkb � ruk2K C kŒu�k2b;EI C kuk2b;@˝ (14.29)

Theorem 14.1. The following inf-sup condition holds

C jjjujjj � sup
v2Vh

ah.u; v/

jjjvjjj (14.30)

Proof. In order to prove this result, we first set v D u C ıhb � ru, where ı is a
positive parameter. Then, we have

ah.u; u C ıhb � ru/ D ah.u; u/C ıah.u; hb � ru/ (14.31)

	 C.kuk2˝ C kŒu�k2b;EI C kuk2b;@˝ / (14.32)

C ı.C1
X
K2K

hkb � ruk2K � C2.kuk2˝ C kŒu�k2b;EI C kuk2b;@˝ //

	 C jjjujjj2 (14.33)

for ı small enough. Next, we have the estimate

jjjvjjj � jjjujjj C ıjjjhb � rujjj � C jjjujjj (14.34)

and the inf-sup condition follows. ut
Finally, in order to verify (14.34) we note that

jjjhb � rujjj2 D h2kb � ruk2˝ C
X
K2K

h3kb � r.b � ru/k2K (14.35)

C h2kŒb � ru�k2b;EI C h2kb � ruk2b;@˝
� h2kb � ruk2˝ C C

X
K2K

h2kb � ruk2@K (14.36)

� h2kb � ruk2˝ C C
X
K2K

hkb � ruk2K (14.37)

� C jjjujjj2 (14.38)
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where we have used the fact that b � ru is constant, since we assumed that b is
constant and u is piecewise linear, so that all second order derivatives of b � ru
vanish together with the Trace inequality.

14.1.5 A Priori Error Estimates

The following a priori error estimate holds.

Theorem 14.2. The dG solution uh, defined by (14.11), satisfies the estimate

jjju � uhjjj � Ch3=2jujH2.˝/ (14.39)

Proof. To prove the estimate, we use the Triangle inequality to divide the error into
an interpolation error and a discrete error

jjju � uhjjj � jjju � �ujjj C jjj�u � uhjjj (14.40)

For the second term we first use the inf-sup condition (14.30) and then Galerkin
orthogonality (14.14) to get

C jjj�u � uhjjj � sup
v2Vh

ah.�u � uh; v/

jjjvjjj D sup
v2Vh

ah.�u � u; v/

jjjvjjj (14.41)

Setting �u � u D 	 we have using integration by parts on each element

ah.	; v/ D .c	; v/C
X
K2K

�.	; b � rv/K (14.42)

C
X
E2EI

.n � bh	i; Œv�/E C .n � b	; u/@˝n@˝
�

� Ck	k˝kvk˝ C C
X
K2K

h�1=2k	kKh1=2kb � rvkK (14.43)

C kh	ikb;EI kŒv�kb;EI C k	kb;@˝kvkb;@˝

� C

 X
K2K

h�1k	k2K C hkr	k2K
!1=2

jjjvjjj (14.44)

� Ch3=2jujH2.˝/ (14.45)

where we used the following estimate

kh	ik2b;EI � C
X
K2K

k	k2@K � C
X
K2K

h�1k	k2K C hkr	k2K (14.46)

and finally standard interpolation error estimates. ut
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14.2 A Second Order Elliptic Problem

14.2.1 Model Problem

During the last decade, there has been a revived interest in dG methods. This is
partially due to the fact that efficient discretizations of second order terms have
been derived. Therefore, let us revisit the familiar Poisson equation: find u such that

�u D f; in ˝ (14.47a)

u D 0; on @˝ (14.47b)

where is the second order Laplacian operator.

14.2.2 The Symmetric Interior Penalty Method

To derive a discontinuous Galerkin method we multiply the equation with a test
function v 2 Vh. Integration by parts on each element gives us

.f; v/ D
X
K2K

.ru;rv/K � .n � ru; v/@K (14.48)

D
X
K2K

.ru;rv/K �
X
E2EI

.n � ru; Œv�/E � .n � ru; v/@˝ (14.49)

where we used that fact that n �ru is continuous across the element faces, or in other
words Œn � ru� D 0. To make sense of this expression also for u 2 Vh we replace
the normal flux n � ru by the discrete flux hn � rui � ˇh�1Œu�, where ˇ is a positive
parameter. Note that the discrete flux may be viewed as a certain approximation of
the normal derivative across the face that take the average slope hn � rui as well as
the negative jump divided by the meshsize �h�1Œu� D h�1.u� � uC/, which may
be interpreted as a finite difference approximation of the contribution of the jump to
the normal flux, into account. Inserting the discrete flux we immediately arrive at

.f; v/ D
X
K2K

.ru;rv/K �
X
E2EI

.hn � rui; Œv�/E � .n � ru; v/@˝ (14.50)

C
X
E2EI

.ˇh�1Œu�; Œv�/E C .ˇh�1u; v/@˝
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Finally, we note that the following term is zero when u is the exact solution

X
E2EI

.Œu�; hn � rvi/E C .u; n � rv/@˝ (14.51)

and therefore we can subtract it on the right hand side to obtain a symmetric form
without losing consistency.

We thus define the bilinear and linear form

ah.u; v/ D
X
K2K

.ru;rv/K �
X
E2EI

.hn � rui; Œv�/E � .n � ru; v/@˝ (14.52)

�
X
E2EI

.Œu�; hn � rvi/E � .u; n � rv/@˝

C
X
E2EI

ˇh�1.Œu�; Œv�/E C .ˇh�1Œu�; Œv�/@˝

lh.v/ D .f; v/ (14.53)

where we note that the first edge and boundary term stems from elementwise partial
integration, the second edge and boundary term is added for symmetry, and the
third edge term penalizes the jump of the solution u between adjacent elements and
the third boundary term enforces the Dirichlet boundary condition. The parameter
ˇ > 0 controls the amount of penalization.

With the above definitions of ah.�; �/ and lh.�/, the finite element method reads:
find uh 2 Vh such that

ah.uh; v/ D lh.v/; 8v 2 Vh (14.54)

This dG method is called the Nitsche’s method or the Symmetric Interior Penalty
Galerkin method (SIPG).

We note that the SIPG method is consistent, and satisfies the Galerkin orthogo-
nality condition

ah.u � uh; v/ D 0; 8v 2 Vh (14.55)

14.2.3 Approximation Properties

For the analysis of the method we define the following energy type norm
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jjjvjjj2 D
X
K2K

krvk2K C
X
E2EI

hkhn � rvik2E C hkn � rvk2@˝ (14.56)

C
X
E2EI

h�1kŒv�k2E C h�1kvk2@˝

We also define the interpolation operator � , so that .�u/jK D �Ku, and prove the
interpolation error estimate

jjju � �ujjj � ChjujH2.˝/ (14.57)

Setting 	 D u � �u and using the Trace inequality

k	k2@K � C.h�1k	k2K C hkr	k2K/ (14.58)

we get the estimate

jjj	jjj2 D
X
K2K

kr	k2K C
X
E2EI

hkhn � r	ik2E C hkn � r	k2@˝ (14.59)

C
X
E2EI

h�1kŒ	�k2E C h�1k	k2@˝

�
X
K2K

kr	k2K C Ch.h�1kr	k2K C hkr.r	/k2K/ (14.60)

C Ch�1.h�1k	k2K C kr	k2K/
� Ch2

X
K2K

juj2
H2.K/

(14.61)

14.2.4 A Priori Error Estimates

In order to prove a priori error estimates we first establish coercivity and continuity
of the bilinear form. In this case the bilinear form is coercive only on the discrete
space Vh and it also requires the penalty parameter ˇ to be large enough. Continuity
holds for sufficiently elementwise regular functions.

The following coercivity holds on Vh.

C jjjvjjj2 � ah.v; v/; 8v 2 Vh (14.62)

In order to prove this result we first note that the following inverse inequality holds

h1=2kn � rvk@K � CkrvkK; 8v 2 P1.K/ (14.63)
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For piecewise linear elements this inequality is a consequence of the Trace
inequality, since

kn � rvk2@K � krvk2@K � C.h�1krvk2K C hkr.rv/k2K/ � Ch�1krvk2K (14.64)

where we finally used that r.rv/ D 0 for any v 2 P1.K/. We then have

ah.u; u/ 	
X
K2K

kruk2K (14.65)

�
X
E2EI

2h1=2khn � ruikEh�1=2kŒu�kE � 2h1=2kn � ruk@˝h�1=2kuk@˝

C
X
E2EI

ˇh�1kŒu�k2E C ˇh�1kuk2@˝

	
X
K2K

kruk2K (14.66)

�
X
E2EI

.ıhkhn � ruik2E C ı�1h�1kŒu�k2E /� .ıhkn � ruk2@˝ C ı�1h�1kuk2@˝/

C
X
E2EI

ˇh�1kŒu�k2E C ˇh�1kuk2@˝

	
X
K2K

kruk2K �
X
K2K

ıCkruk2K (14.67)

C
X
E2EI

.ˇ � ı�1/h�1kŒu�k2E C .ˇ � ı�1/h�1kuk2@˝

where we have used the scaled arithmetic-geometric mean inequality 2ab � ıa2 C
ı�1b2 and the inverse inequality (14.63). Choosing ı > 0 small enough and ˇ large
enough the estimate follows. Next, we have the continuity

ah.u; v/ � jjjujjj jjjvjjj; 8v 2 H2 [ Vh (14.68)

which follows directly from the Cauchy-Schwarz inequality

ah.u; v/ �
X
K2K

krukKkrvkK (14.69)

C
X
E2EI

khn � ruikEkŒv�kE C kŒu�kEkhn � rvikE

C kn � uk@˝kvk@˝ C kn � vk@˝kuk@˝
C ˇh�1kŒu�kEkŒv�kE C ˇh�1kuk@˝kvk@˝



366 14 Discontinuous Galerkin Methods

� C jjjujjj jjjvjjj (14.70)

Using these estimates we may prove the following a priori error estimate.

Theorem 14.3. The dG solution uh, defined by (14.54), satisfies the estimate

jjju � uhjjj � ChjujH2.˝/ (14.71)

Proof. To prove this estimate, we use the triangle inequality to divide the error into
an interpolation error and a discrete error

jjju � uhjjj � jjju � �ujjj C jjj�u � uhjjj (14.72)

The first contribution can be estimated directly using the interpolation error
estimate. For the second we use the coercivity followed by Galerkin orthogonality

C jjj�u � uhjjj2 � ah.�u � uh; �u � uh/ (14.73)

� ah.u � �u; �u � uh/ (14.74)

� jjju � �ujjj jjj�u � uhjjj (14.75)

� ChjujH2.˝/jjj�u � uhjjj (14.76)

ut
We may also use a duality argument to prove an estimate for the L2-norm of the

error of the form
ku � uhk � Ch2jujH2.˝/ (14.77)

14.2.5 Non-symmetric Versions of the Method

For Poisson’s equation it is also possible to use the following non-symmetric form

ah.u; v/ D
X
K2K

.ru;rv/K (14.78)

�
X
E2EI

.hn � rui; Œv�/E C ˛
X
E2EI

.Œu�; hn � rvi/E C
X
E2EI

ˇh�1.Œu�; Œv�/E

where ˛ is a parameter. Common choices include ˛ D 0 and ˛ D 1. The latter
choice leads to a very simple coercivity proof which does not require the inverse
inequality. However, the standard proof for the L2 error estimate is not applicable
and indeed the behavior of the method in L2 is complicated. The former choice
˛ D 0 necessitates a sufficiently large value of ˇ in order for coercivity to hold.
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14.2.6 Computer Implementation

To implement the SIPG method we note that a basis for the polynomial spaceP1.K/
on each elementK is given by the usual hat basis functions 'i D ai C bix1 C cix2,
i D 1; 2; 3. However, unlike the usual case these are not continuous across element
boundary @K . Indeed, each node or triangle vertex has a different number and is
a different degree of freedom on each element. More precisely, we let Ki , i D
1; 2; : : : ; nt contain the degrees of freedom 3i , 3i�1 and 3i�2, with nt the number
of triangles.

Let us write a routine to evaluate the hat functions at a given point within a
triangle element.

function [v,b,c] = HatCoefficients(xc,yc,ex,ey)
V=[ones(3,1) xc yc];
A=V\eye(3,3);
a=A(1,:); b=A(2,:); c=A(3,:);
v=a+b*ex+c*ey;

Input is the triangle vertex coordinates xv and yv and the evaluation point
coordinates ex and ey. Output is the hat function values v, and the partial derivatives
b and c. These can also be computed with HatGradients.

Now, the 3�3 element stiffness matrixAKij D .r'j ;r'i /K , and the 3�1 element
load vector bKi D .f; 'i /K are easy to compute and assemble by looping over the
elements and using a simple one point quadrature rule on each element. In doing so,
we obtain the following routine.

function [A,B] = dG1CellAssembler2D(p,t,force)
nt=size(t,2);
A=sparse(3*nt,3*nt); % stiffness matrix
B=zeros(3*nt,1); % load vector
for i=1:nt
nodes=t(1:3,i);
xv=p(1,nodes)’;
yv=p(2,nodes)’;
[area,b,c]=HatGradients(xv,yv);
dofs=[1:3]+3*(i-1); % element degrees of freedom
AK=(b*b’+c*c’)*area;
BK=force(mean(xv),mean(yv))*ones(3,1)/3*area;
A(dofs,dofs)=A(dofs,dofs)+AK;
B(dofs)=B(dofs)+BK;

end

Here, input is the usual point and connectivity matrices p and t, and a function
handle to a subroutine force describing the force f . Note that the degrees
of freedom dofs=[1:3]+3*(i-1) on each element are based on the triangle
number i.
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The edge flux matrix SK D .hn � r'j i; Œ'i �/E , and the edge penalty matrix
PE D .Œ'j �; Œ'i �/E are more difficult to compute and assemble. To this end, we
loop over the elements and consider the edges fEg. For each E , we consider the
pair of adjacent elements KC and K� that share E . As these two element involves
three basis functions the size of the matrices SE and PE are 6 � 6. To compute
these, we put these basis functions into a 6 � 1 vector, viz.,

'E D

2
66666664

'C
1

'C
2

'C
3

'�
1

'�
2

'�
3

3
77777775

(14.79)

Assuming that the current element is K�, say, with neighbourK�, we than have

Œ'E� D

2
66666664

'C
1

'C
2

'C
3

�'�
1

�'�
2

�'�
3

3
77777775

(14.80)

since all hats 'i̇ , i D 1; 2; 3, are zero outside their corresponding element K˙.
Further, since nE D nC, we have

hn � r'Ei D 1

2
nE � r'E (14.81)

The outer products Œ'E�hn � r'EiT and Œ'E�Œ'E�T are the integrands of SE and
PE , respectively. For the actual integration we use Simpson’s formula mapped from
Œ0; 1� onto E , which is sufficient for integrating these products of hat functions.
Using this approach we obtain the following routine.

function [P,S] = dG1EdgeAssembler2D(p,t,neighbours)
nt=size(t,2);
S=sparse(3*nt,3*nt); % flux matrix
P=sparse(3*nt,3*nt); % penalty matrix
edge2node=[2 3; 1 3; 1 2]; % edge-to-node lookup table
cmat=[2 0; 1 1; 0 2]/2; wvec=[1 4 1]/6; % Simpson’s formula
for i=1:nt
pnodes=t(1:3,i); % nodes on "plus" element
xp=p(1,pnodes)’;
yp=p(2,pnodes)’;
[area,ds,nx,ny]=Triutils(xp,yp);
for j=1:3 % loop over edges
n=neighbours(i,j); % element neighbour
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if n>i, continue; end % only assemble once on each edge
if n<0, n=i; end % boundary?
e2n=edge2node(j,:); % nodes on edge
ex=cmat*xp(e2n); % x-coordinates of quadrature points
ey=cmat*yp(e2n); % y-
SE=zeros(6,6);
PE=zeros(6,6);
mnodes=t(1:3,n); % nodes on "minus" element
xm=p(1,mnodes)’;
ym=p(2,mnodes)’;
for q=1:length(wvec) % quadrature loop on edge
wxlen=wvec(q)*ds(j); % quadrature weight times edge length
[vp,bp,cp]=HatCoefficients(xp,yp,ex(q),ey(q));
[vm,bm,cm]=HatCoefficients(xm,ym,ex(q),ey(q));
jump=[vp -vm]; % jump
avgdn=[nx(j)*bp+ny(j)*cp nx(j)*bm+ny(j)*cm]/2; % average
PE=PE+jump’*jump*wxlen;
SE=SE+jump’*avgdn*wxlen;

end
dofs=[[1:3]+3*(i-1) [1:3]+3*(n-1)];
if n==i % boundary
PE=PE(1:3,1:3);
SE=SE(1:3,1:3)*2; % no average on boundary
dofs=dofs(1:3);

end
P(dofs,dofs)=P(dofs,dofs)+PE;
S(dofs,dofs)=S(dofs,dofs)+SE;

end
end

Here, we reuse the routine Triutils for computing edge lengths and normals.
Note that SK and PK must be modified on the boundary of˝ , since the average

hn � r'Ei and jump Œ'E� is only one-sided on @˝ (i.e., there is no K� element).
Putting the pieces together we obtain the following main routine.

function dG1PoissonSolver2D()
clear all, close all
g=Rectg(0,0,1,1); % unit square
beta=9; % penalty parameter
alpha=-1; % SIPG parameter
h=0.0625; % mesh size
[p,e,t]=initmesh(g,’hmax’,h);
neighbours=Tri2Tri(p,t); % element neighbours
force = inline(’2*pi^2*sin(pi*x)*sin(pi*y)’,’x’,’y’);
[A,B]=dG1CellAssembler2D(p,t,force);
[P,S]=dG1EdgeAssembler2D(p,t,neighbours);
U=(A-S+alpha*S’+beta/h*P)\B;
% - visualization ---
nt=size(t,2);
X=zeros(3*nt,1); Y=zeros(3*nt,1);
i=t(1,:); j=t(2,:); k=t(3,:);
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Fig. 14.2 Plot of uh with ˇ D 3 and h D 0:25

X(1:3:end)=p(1,i); X(2:3:end)=p(1,j); X(3:3:end)=p(1,k);
Y(1:3:end)=p(2,i); Y(2:3:end)=p(2,j); Y(3:3:end)=p(2,k);
trisurf(reshape([1:3*nt],3,nt)’,X,Y,U)
xlabel(’x_1’), ylabel(’x_2’)

Running this code with f D 2�2 sin.�x1/ sin.�x2/, which corresponding to
u D sin.�x1/ sin.�x2/ on the unit square ˝ D Œ0; 1�2, and ˇ D 3 and ˇ D 36 on
a coarse mesh h D 0:25 we obtain the dG solution uh of Figs. 14.2 and 14.3. From
this we see that ˇ controls the amount of discontinuity of uh. As ˇ is increased uh
becomes more continuous. A value of ˇ in the range 1–10 is common. Indeed, using
ˇ D 9 and a finer mesh with h D 0:125 we obtain the uh shown in Fig. 14.4.

14.3 The Transport Equation with Diffusion

A natural extension of the dG methods for the first and second order equations
presented above is to combine them to get a numerical method for the transport
equation: find u such that

��u C b � ru C cu D f; in ˝ (14.82a)

u D g; on @˝ (14.82b)
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Fig. 14.3 Plot of uh with ˇ D 36 and h D 0:25
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Fig. 14.4 Plot of uh with ˇ D 9 and h D 0:0625

The dG method takes the form: find uh 2 Vh such that a.uh; v/ D lh.v/ for all
v 2 Vh, where

ah.u; v/ D
X
K2K

�.ru;rv/K C .b � ru; v/K C .cu; v/K (14.83)
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�
X
E2EI

�.hn � rui; Œv�/E C ˛
X
E2EI

�.Œu�; hn � rvi/E C
X
E2EI

ˇh�1�.Œu�; Œv�/E

� �.n � ru; v/@˝ C ˛�.u; n � rv/@˝ C ˇh�1�.u; v/@˝

�
X
E2EI

.n � bŒu�; hvi/E C .�n � bŒu�; Œv�/E � .n � bu; v/@˝
�

l.v/ D .f; v/C ˛�.g; n � rv/@˝ C ˇh�1�.g; v/@˝ � .n � bg; v/@˝
�

(14.84)

Since this dG method includes upwinding, which is stabilizing in case of high
convection and low diffusion, it can be used as an alternative to the SD or GLS
method.

Note that the smaller � is the weaker the boundary condition u D g is enforced.

14.4 Further Reading

We refer to the books by Di Pietro and Ern [24], Riviere [54], Cockburn,
Karniadakis, Shu [21], and Hesthaven [42].

14.5 Problems

Exercise 14.1. Use dG1PoissonSolver2D to test the so-called NIPG method by
changing the parameter ˛ to C1.



Appendix A
Some Additional Matlab Code

A.1 Tri2Edge.m

The following routine numbers the edges of a triangle mesh.

function edges = Tri2Edge(p,t)
np=size(p,2); % number of vertices
nt=size(t,2); % number of triangles
i=t(1,:); % i=1st vertex within all elements
j=t(2,:); % j=2nd
k=t(3,:); % k=3rd
A=sparse(j,k,-1,np,np); % 1st edge is between (j,k)
A=A+sparse(i,k,-1,np,np); % 2nd (i,k)
A=A+sparse(i,j,-1,np,np); % 3rd (i,j)
A=-((A+A.’)<0);
A=triu(A); % extract upper triangle of A
[r,c,v]=find(A); % rows, columns, and values(=-1)
v=[1:length(v)]; % renumber values (ie. edges)
A=sparse(r,c,v,np,np); % reassemble A
A=A+A’; % expand A to a symmetric matrix
edges=zeros(nt,3);
for k=1:nt
edges(k,:)=[A(t(2,k),t(3,k))

A(t(1,k),t(3,k))
A(t(1,k),t(2,k))]’;

end

Input is the standard point and triangle matrix p and t. Output is a nt � 3 matrix,
with nt the number of triangles, edges containing the edge numbers. In element i
the global edge number of local edge j is given by edges(i,j). In triangle i local
edge j lies opposite local vertex j .

M.G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation,
and Applications, Texts in Computational Science and Engineering 10,
DOI 10.1007/978-3-642-33287-6, © Springer-Verlag Berlin Heidelberg 2013
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A.2 EdgeMidPoints.m

The following routine computes the coordinates of edge midpoints.

function [xmid,ymid,e] = EdgeMidPoints(p,t2e,t)
i=t(1,:); j=t(2,:); k=t(3,:); % triangle vertices
t2e=t2e(:); % all edges in a long row
start=[j i i]; % start vertices of all edges
stop =[k k j]; % stop
xmid=(p(1,start)+p(1,stop))/2; % mid point x-coordinates
ymid=(p(2,start)+p(2,stop))/2; % y-
[e,idx]=unique(t2e); % remove duplicate edges
xmid=xmid(idx); % unique edge x-coordinates
ymid=ymid(idx); % y-

Input is the standard point and triangle matrix p and t, and the edges t2e of every
triangle, as defined by the output from Tri2Edge.m. Output, are the three vectors e,
xmid, and ymid, which are the same length ne , with ne=max(t2n(:)) the number
of unique edges, so that xmid(i) and ymid(i) are the midpoint of edge e(i),
i D 1; : : : ; ne .

A.3 Tri2Tri.m

The following routine finds neighbouring elements in a triangle mesh.

function neighbors = Tri2Tri(p,t)
np=size(p,2); % number of vertices
nt=size(t,2); % number of triangles
n2e=sparse(np,nt); % node-to-element adjacency matrix

% n2e(i,j)=1 means node "i" is in element "j"
for i=1:nt
n2e(t(1:3,i),i)=ones(3,1);

end
neighbors=-ones(nt,3); % -1 means no neighbor
for i=1:nt

% 1st edge lies between nodes t(2,i) and t(3,i), so search
% the adjacency matrix for elements sharing these two nodes
nb=intersect(find(n2e(t(2,i),:)),find(n2e(t(3,i),:)));
nb=setdiff(nb,i); % remove element "i" from neighbors "nb"
if isscalar(nb), neighbors(i,1)=nb(1); end
% 2nd edge
nb=intersect(find(n2e(t(3,i),:)),find(n2e(t(1,i),:)));
nb=setdiff(nb,i);
if isscalar(nb), neighbors(i,2)=nb(1); end
% 3rd edge
nb=intersect(find(n2e(t(1,i),:)),find(n2e(t(2,i),:)));
nb=setdiff(nb,i);
if isscalar(nb), neighbors(i,3)=nb(1); end

end
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Input is the standard point and triangle matrix p and t. Output neighbors is a
nt � 3 matrix, with nt the number of triangles, in which row i contains the three
element neighbours to element i . No neighbour is indicated by �1. Each row is
ordered in the sense that the first neighbour shares edge 1 with the element, the
second neighbour shares edge 2, and so on.

A.4 Dslitg.m

Geometry matrix for the double slit geometry.

function g = Dslitg()
g = [2 0 1.0000 0 0 1 0

2 1.0000 1.0000 0 1.0000 1 0
2 1.0000 0 1.0000 1.0000 1 0
2 -0.2500 0 0.3333 0.3333 1 0
2 0 -0.2500 0.4167 0.4167 1 0
2 -0.2500 0 0.5833 0.5833 1 0
2 0 -0.2500 0.6667 0.6667 1 0
2 0 0 0 0.3333 0 1
2 0 0 0.4167 0.5833 0 1
2 0 0 0.6667 1.0000 0 1
2 -0.2500 -0.2500 0.3333 0.4167 0 1
2 -0.2500 -0.2500 0.5833 0.6667 0 1
]’;

A.5 Airfoilg.m

Geometry matrix for a wing.

function g=Airfoilg()
g=[2 17.7218 16.0116 1.5737 1.6675 1 0
2 16.0116 9.0610 1.6675 1.3668 1 0
2 9.0610 -0.5759 1.3668 -0.1102 1 0
2 -0.5759 -9.5198 -0.1102 -1.8942 1 0
2 -9.5198 -15.6511 -1.8942 -2.5938 1 0
2 -15.6511 -18.1571 -2.5938 -1.7234 1 0
2 -18.1571 -16.9459 -1.7234 0.2051 1 0
2 -16.9459 -12.4137 0.2051 2.2238 1 0
2 -12.4137 -5.4090 2.2238 3.4543 1 0
2 -5.4090 2.8155 3.4543 3.5046 1 0
2 2.8155 10.6777 3.5046 2.6664 1 0
2 10.6777 16.3037 2.6664 1.7834 1 0
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2 16.3037 17.7218 1.7834 1.5737 1 0
2 -30.0000 30.0000 -15.0000 -15.0000 1 0
2 30.0000 30.0000 -15.0000 15.0000 1 0
2 30.0000 -30.0000 15.0000 15.0000 1 0
2 -30.0000 -30.0000 15.0000 -15.0000 1 0]’;

A.6 RectCircg.m

Geometry matrix for a rectangle with a cut out circle.

function g = RectCircg()
g=[ 2 2 2 2 1 1 1 1

6 6 -2 -2 -1 0 1 0
6 -2 -2 6 0 1 0 -1
-2 2 -2 -2 -0 -1 0 1
2 2 2 -2 -1 0 1 0
1 1 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1];

A.7 DFGg.m

Geometry matrix for the DFG benchmark.

function g = DFGg()
g=[2 2 2 2 1 1 1 1
2.20 2.20 0 0 0.15 0.20 0.25 0.20
2.20 0 0 2.20 0.20 0.25 0.20 0.15
0 0.41 0 0 0.20 0.15 0.20 0.25
0.41 0.41 0.41 0 0.15 0.20 0.25 0.20
1 1 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 0 0 0 0.20 0.20 0.20 0.20
0 0 0 0 0.20 0.20 0.20 0.20
0 0 0 0 0.05 0.05 0.05 0.05];
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A.8 Scatterg.m

Geometry matrix for the scattering cylinder.

function g = Scatterg()
g=[2 5 5 -5 -3 5 0 0 0 0
2 5 5 -3 3 8 0 0 0 0
2 5 5 3 5 3 0 0 0 0
2 -5 -3 5 5 0 1 0 0 0
2 -3 3 5 5 0 2 0 0 0
2 3 5 5 5 0 3 0 0 0
2 -5 -3 -3 -3 6 4 0 0 0
2 3 5 -3 -3 8 5 0 0 0
2 -5 -3 3 3 1 6 0 0 0
2 -3 3 3 3 2 7 0 0 0
2 3 5 3 3 3 8 0 0 0
2 3 3 -5 -3 9 5 0 0 0
2 3 3 -3 3 7 8 0 0 0
2 3 3 3 5 2 3 0 0 0
2 -3 -3 -5 -3 4 9 0 0 0
2 -3 -3 3 5 1 2 0 0 0
2 -5 -5 -5 -3 0 4 0 0 0
2 -5 -5 -3 3 0 6 0 0 0
2 -5 -5 3 5 0 1 0 0 0
2 -5 -3 -5 -5 4 0 0 0 0
2 -3 3 -5 -5 9 0 0 0 0
2 3 5 -5 -5 5 0 0 0 0
2 -3 3 -3 -3 7 9 0 0 0
2 -3 -3 -3 3 6 7 0 0 0
1 -1 0 -0 -1 0 7 0 0 1
1 0 1 -1 0 0 7 0 0 1
1 1 0 0 1 0 7 0 0 1
1 0 -1 1 -0 0 7 0 0 1

]’;
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