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Abstract 

 

Blood coagulation factor VIII (fVIII) functions as a cofactor in the blood coagulation 

cascade for proteolytic activation of factor X by factor IXa. During coagulation, fVIII is activated 

and subsequently binds to activated platelet surfaces by coordination of the fVIII C1 and C2 

domains to the exposed phosphatidylserine of activated platelet membranes. Structural and 

mutational studies have suggested that both hydrophobic and electrostatic interactions occur 

between the two tandem C domains and activated lipid surfaces, but models of C domain 

phospholipid binding propose conflicting regions that directly interact with the membrane surface. 

 This thesis reports the determination of the molecular structure of an isolated fVIII porcine 

C2 domain in the presence of the phosphatidylserine headgroup (OPLS) at 1.3 Å. The OPLS 

molecule makes direct contact with Q2213, N2217, S2289, and R2320. This structure represents 

the first deposited structure of fVIII C domains in the presence of a lipid headgroup moiety. 

Furthermore, phospholipid binding characteristics of basic residues within the proposed 

phospholipid binding regions were investigated by mutagenesis. Specifically, mutations at R2163, 

R2320, and a double mutant of R2163/R2320 caused almost complete abrogation of lipid binding 

to soluble lipid nanodiscs. Using these findings, an updated model of fVIII lipid binding is 

proposed using structural information from C2 domain inhibitors, previous literature, and newly 

defined interactions between C2 and OPLS. Together, this study proposes that R2163 and R2320 

are the center of a conserved phospholipid binding motif that extends across homologous blood 

clotting proteins. 
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Introduction 

Hemostasis is a multi-faceted, essential process that prevents extended bleeding episodes 

during vascular injury through formation of stable blood clots. The processes that encompass blood 

clot formation are intricate, positive-feedback loops comprised of protein complexes formed 

between serine proteases and subsequent cofactors. These complexes are essential to hemostasis, 

as dysregulation or mutations to the blood factors complexes leads to bleeding disorders. Our area 

of interest stems from the bleeding disorder hemophilia A, which is caused by deficient or absent 

blood coagulation factor VIII within the circulatory system. During vascular injury, fVIII functions 

in the secondary arm of the coagulation cascade, binding in tandem with blood coagulation factor 

IX to activated platelet surfaces to amplify the production of terminal blood coagulation thrombin. 

The activity of fVIII is dependent on its ability to bind to activated platelet surfaces in which 

binding occurs through two carboxy-terminal (C) domains. Mutations to fVIII C domains have 

been shown to prevent fVIII activity in hemophilia A patients, which can potentially result in life-

threating bleeding. Although studies have demonstrated that the main interactions of fVIII to 

phospholipids are centered on the C domains, the molecular basis of the interactions is still 

debated. The putative binding interactions consist of hydrophobic contacts between C2 and the 

anhydrous tails of lipid molecules and charge-charge interactions between basic residues grouped 

within the C domains to acidic phospholipid head groups present on activated membrane surfaces. 

We investigated the specific association of both C domains to activated platelet-mimicking 

surfaces to explain the components of fVIII phospholipid binding and inform the role of mutations 

in causing hemophilia A. 
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Chapter 1: Hemostasis and FVIII 

Introduction to the Hemostasis 

Hemostasis is a highly regulated and localized physiological process that seals vascular injuries 

while maintaining normal blood flow within the circulatory system. This physiological process 

relies on the interplay between smooth muscles, platelets, blood clotting proteins, and feedback 

loops to control hemorrhages.2 During a normal hemostatic response, three major events occur in 

the formation of a blood clot: vasoconstriction, primary hemostasis, and secondary hemostasis.2 

Vasoconstriction, or otherwise known as vascular spasm, is an autonomic reflex occurring 

immediately after vascular injury to minimize blood loss at the site of injury.3 This constriction of 

the blood vessel reduces the diameter and exposes collagen fibers from the underlying connective 

tissue to initiate primary hemostasis.2 

Primary Hemostasis (platelet plug formation) 

Primary hemostasis involves the localized 

activation and aggregation of platelets at the 

site of injury.4 Platelets are small non-nuclear 

cell fragments produced from 

megakaryocytes found in bone marrow.5 

Platelets contain two distinct types of 

granular bodies, alpha and dense, which 

release their contents during platelet 

activation. Alpha granules (Figure 1) contain 

numerous clotting factors such as fVIII, 

Figure 1. Transmission electron microscopy image 

of a non-activated platelet containing alpha 

granules (arrow).81 

Alpha Granule 



 

3 
 

factor V (fV), and von Willebrand factor (vWF), which function throughout the secondary stage 

of hemostasis.5 Dense granules contain smaller signaling molecules and hormones including 

histamine, calcium, and epinephrine which attract immune cells for protection from foreign 

particles. In healthy blood vessels, circulating platelets do not adhere to the surface or self-

aggregate due to antithrombotic factors that line blood vessels.4 But, upon vascular injury, the 

exposed sub-endothelial collagen acts as a scaffold for platelet adhesion.6 

The adhesion process is mediated by numerous receptors on platelet surfaces, notably 

GPIb-IX-V, which binds to vWF.4 vWF is a large multimeric glycoprotein composed of three A 

domains, three B domains, two C domains, and four D domains that circulates in plasma, resides 

in the sub-endothelial layer, and is released from platelets during activation.7 During hemostasis, 

the A3 domain of vWF associates to the exposed collagen from the interstitial fluid.8 Concurrently, 

binding of the vWF A3 domain to collagen spatially orients the vWF A1 domain near GPIb-IX-V 

receptors on platelets.4,8 Once adhered to the site of vascular injury, the platelet undergoes a 

morphological change and releases the contents of the granules into the surrounding vessel in a 

process called activation (Figure 2).6 During this activation, platelets become irregular in shape, 

promoting platelet-platelet interactions through self-aggregation.9 In addition to macroscopic 

changes in platelet morphology, the membrane composition of platelet surfaces undergoes a 

Figure 2. Morphological change of activated (left) and unactivated (right) platelets.9  
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procoagulant change due to redistribution of negatively charged phosphatidylserine (PS) and 

phosphatidylethanolamine (PE) to the membrane surface (Figure 3).6 An enzyme, scramblase, 

nonspecifically flips the negatively charged PS or PE residing in the cytosolic side of platelet 

membranes with positively charged phosphatidylcholine (PC) on the extracellular side.6,10 

Activated platelets contain approximately 5-fold higher PS composition compared to circulating 

platelets. The increase of negatively charged phospholipid headgroups on the outside of platelets 

provides a surface for released coagulation factors to bind during secondary hemostasis and 

stabilize the initial platelet plug. 

 

  

Figure 3. A. Typical membrane composition of non-activated platelets with PS and PE concentrated 

in the inner leaflet. B. Extracellular leaflet redistribution post-vascular injury. Scramblase, activated 

by influx of calcium, nonspecifically switches PC lipid heads with PS or PE. Adapted from 

Lhermusier et al.82 

No procoagulant effect  

Coagulation  

PC  PE  PS 

Vascular injury  

A 

B 

Intercellular fluid 

Plasma 
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Secondary Hemostasis (thrombin generation) 

 After formation of the initial unstable clot, the secondary pathway of hemostasis begins, 

involving a cascade of proteolytically activated clotting factors to produce a stable fibrin clot 

(Table 1). Secondary hemostasis is generally referred to as the Blood Coagulation Cascade (BCC) 

and functions in two separate, yet intimately connected, pathways: the extrinsic and intrinsic 

pathways. 

 

 

Clotting factor 

Abbreviation 

Clotting Factor 

Name 

Function 

I Fibrinogen Stable clot formation 

II Prothrombin Activation of I, V, VII, VIII, XI, XIII, and platelets 

TF (III) Tissue Factor Co-factor to VIIa 

V Proaccelerin Cofactor to Xa 

VII Proconvertin Activates IX, X 

VIII Antihaemophilic 

factor A 

Cofactor to IXa 

IX Antihaemophilic 

factor B 

Activates X, forms X-ase complex with VIIIa 

X Stuart-Prower 

factor 

Activates II, forms prothrombinase complex with Va 

XI Plasma 

Thromboplastin 

antecedent 

Activates IX 

XII Hageman factor Activates XI, VII 

XIII Fibrin-

stabilizing factor 

Cross-links fibrin 

Table 1. Nomenclature of Pertinent Coagulation factors involved in the BCC.5 
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Extrinsic Pathway 

The extrinsic pathway is initiated immediately upon blood vessel damage (Figure 4). Along 

with collagen, tissue factor (TF), an integral membrane protein, is exposed to the plasma at the site 

of injury and acts as a cofactor to factor VII (fVII), promoting activation of fVII and formation of 

the extrinsic tenase (Xase) complex (TF:FVIIa).11 Formation of the extrinsic Xase complex 

catalyzes the generation of fXa which associates with cofactor fVa to negatively charged platelet 

surfaces.1 The complex of fXa:fVa:PS:Ca2+ forms the prothrombinase complex and catalyzes the 

cleavage of prothrombin (fII) to thrombin (fIIa). Thrombin, as the terminal coagulation factor, 

catalyzes the formation of fibrin (Ia) from fibrinogen (I). Thrombin additionally catalyzes the 

activation of transglutaminase fXIII to form cross-linked fibrin, yielding an elastic and stable clot.1 

The generation of a cross-linked fibrin clot through the prothrombinase complex is called the 

“common pathway”. Although the extrinsic pathway forms a stable clot, the rate of blood clot 

formation is low and insufficient to effectively stop hemorrhage. The intrinsic pathway, however, 

is a positive feedback loop initiated by thrombin, the extrinsic pathway, and collagen to amplify 

the level of activated coagulation factors, setting the stage for large scale thrombin production.5 
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Intrinsic Pathway (amplification of thrombin generation). 

The intrinsic pathway is activated by two separate proteins. The first is collagen, which 

activates Hageman factor (fXIIa).1 FXIIa proteolytically activates fXI, which can also be activated 

by thrombin.11 Following activation, fXIa converts fIX to fIXa. The second protein, Thrombin 

(IIa), also proteolytically activates fVIII (fVIIIa) and causes fVIIIa dissociation from its carrier 

protein, vWF.12 FVIIIa binds to activated platelets, functioning as a cofactor for fIXa and together 

form the intrinsic Xase complex.1 Subsequently, the Xase complex activates fX (fXa) and the 

association of fXa to fVa on platelet surfaces forms the prothrombinase complex, producing large-

Figure 4. Extrinsic arm of the blood coagulation cascade. Tissue factor (TF) is exposed to the 

interstitial fluid prior to vessel hemorrhage. Upon hemorrhage, TF is exposed to fVIIa containing 

plasma and activates small amounts of fX by forming the extrinsic tenase complex (fXa:fVa:PS:Ca2+). 

This generation of fXa allows coordination with fVa to form the prothrombinase complex, producing 

a small influx of thrombin for use in the second arm of secondary hemostasis.  

 

TF fX fVIIa 
TF:fVIIa 

(Tenase) 

fII  
fIIa 

(Thrombin) 

Fibrin clot 

Fibrinogen 

Fibrin 

RBC 

fXa 

fVa 
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scale thrombin generation through the common pathway. The initial formation of thrombin from 

the extrinsic pathway becomes amplified by the intrinsic pathway, increasing the downstream 

generation of insoluble fibrin and stable blood clots.1 Dysregulation of the intrinsic arm of the 

pathway is associated with numerous blood clotting deficiencies; namely hemophilia A (fVIII), 

hemophilia B (fIX), Hemophilia C (fXI), and factor X deficiency. Specifically, fIXa in the absence 

of fVIII has a catalytic efficiency 200,000-fold lower than in the presence of fVIII and hinders the 

functionality of the intrinsic arm of the cascade. It is for this reason that fVIII is of principle 

concern within this study. 

 

fVIII 

fII  

fIIa 

(Thrombin) 

Fibrin clot 

Fibrinogen 

Fibrin 
RBC 

fXa 

 

fVa 

fIIa 

(Thrombin) 

fVIIIa 

fVIIIa:fIXa 

(Tenase) 

fIXa 

fX 

 

Figure 5. Intrinsic (amplification) arm of the blood coagulation cascade. Thrombin generated in the 

extrinsic arm activates fVIII. Dissociation of fVIII from vWF allows interaction with fIXa on 

activated platelet surfaces. Formation of fVIIIa:fIXa:Ca2+:PS (intrinsic tenase complex) generates 

large scale thrombin product, which in a positive feedback loop, functions to generate a cascade of 

fVIIIa. This positive feedback loop is inactivated by  active protein C when hemostasis is reached.83 
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 Factor VIII and Hemophilia A 

Blood coagulation factor VIII (fVIII) is a 2,332 residue glycoprotein secreted from endothelial 

cells and activated platelets, functioning as an essential cofactor in the intrinsic aspect of the blood 

coagulation cascade.13,14 Factor VIII is synthesized with the domain structure A1-a1-A2-a2-B-a3-

A3-C1-C2 with each A domain containing a highly acid region (a1, a2, and a3) heavily clustered 

with aspartate and glutamate residues (Figure 6).14 The three A domains of fVIII retain 40% 

sequence similarity to one another and have sequence homology to both factor V (fV) and the 

copper binding protein, ceruloplasmin.14,15 Between differing species, the B domain has high 

sequence divergence and offers little physiological benefit, as removing the B domain retains 

procoagulant activity.16 Initial processing of fVIII cleaves away approximately 300 residues of the 

B domain, generating a heterodimer that circulates bound with its carrier protein, vWF.17 

Figure 6. Molecular details of fVIII. A) Activation schematic of fVIII. Thrombin activates fVIII by 

cleaving between A1-A2, A2-B, and A2-A3 domains, generating heterotrimeric fVIIIa at highly acidic 

regions (denoted a1, a2, a3). Schema is modified from Mazurkiewicz-Pisarek et al 2016. B) Current 

human model of fVIII at 3.7 Å. The three A domains are clustered above the two platelet binding C 

domains. Derived from PDB: 6MF2. 

A B 

hC1 
hC2 

hA2 

hA1 

hA3 
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Heterodimeric fVIII consists of a heavy chain (A1-a1-A2-a2-B) with differing lengths of the B 

domain due to limited proteolysis, and a light chain (A3-a3-C1-C2) containing the phospholipid 

binding region.15 VWF interacts with the fVIII light chain to protect fVIII from premature 

inactivation during normal hemostasis, but the exact binding interaction between fVIII and VWF 

is not completely understood.18 During vascular injury, thrombin proteolytically activates fVIII by 

cleaving fVIII at residues R372 (A1-A2), R740 (A2-B), and R1689 (A3 N-terminal).19 Thrombin 

activation cleaves away the remaining segment of the B domain, separates the A1 and A2 domains, 

and removes the acidic region from the A3 domain.15 Post-activation, fVIIIa is released from vWF 

as a heterotrimer of A1/A2/A3-C1-C2 and binds to activated platelet surfaces with fIXa to form 

the intrinsic Xase complex.20 

An X-ray crystallographic structure of B domain-deleted recombinant fVIII was first reported 

in 2008 at a resolution of 3.7 Å.14 The structure of fVIII highlighted slight differences between the 

fluidity of the two C domains. The C2 domain loosely packs to the C1 and A3 domains, 

maintaining a 400 Å2 and 200 Å2  hydrophobic interface, respectively, between the domains.14 In 

contrast, the C1 domain is tightly associated with the A3 domain, creating a 1200 Å2 hydrophobic 

interface.14 This inherent flexibility of the C2 domain was suggested to play a role in platelet 

association. In 2020, the high-resolution structure of a fVIII gene therapeutic candidate ET3i was 

crystalized with two molecules of ET3i in the same space group, allowing comparative analysis 

between local conformational changes. Specifically, the fVIII C2 domains in each of the models 

were in different conformations. Model A adopted a conformation previously described in 

literature whereas model B underwent a central axis rotation of ~35-45 degrees in relation to 

previously described structures (Figure 7). 
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Figure 7. Flexibility of the fVIII C2 domain. A.)  fVIII gene therapeutic candidate ET3i model A 

(green) aligned with ET3ia model B (purple). B.) Alignment of ET3i model A and B C1 domain. 

Black line represents a central axis orientation. C.) C2 domain alignment of ET3i model A and B. 

Model B adopts a unique conformation previously not published in literature. The entire C2 domain 

rotates about the central axis, causing the hydrophobic loops to swing and rotate away from the C1 

domain. 

 

A 

C B 
9.1 Å 

15.2 Å 

13.2 Å 
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This flexibility of the C2 domain compared to the C1 domain, presumably due to the 

differences in hydrophobic contacts with the A domains, may allow two distinct motifs of fVIII, 

one upon which platelet binding occurs and the other where the fVIII C2 domain is rotated away 

during binding to vWF. Structural analysis of fVIII bound to lipids would provide insight into the 

C2 domain ligand bound conformational state compared 

to known native conditions.  

The C domains of fVIII are contiguous across other 

clotting factors, originate from the discoidin class of 

lectins, and share unique properties that facilitate binding 

to phospholipid surfaces. The two fVIII C domains are 

structurally homologous to one another and contain two 

beta hairpin loops that extend beyond the overall globular 

fold.14 High resolution structures of the C2 domain from 

fVIII and fV demonstrate high structural homology with 

common features such as the two hydrophobic 

protrusions on the bottom portion of the protein domain 

(Figure 8).21 The affinity of recombinant C2 to 

phospholipids is 5-100 fold lower than fVIII, suggesting 

that both C domains must be present for optimal binding. 

Disruption of functional fVIII is essential for effective clotting as absence of or mutations to 

fVIII can lead to the development of the bleeding disorder, hemophilia A. 

  

Figure 8. Structural alignment of 

C2 domains from various C domain 

containing molecules. Lactadherin 

(PDB: 3BN6, blue), factor V (PDB: 

1CZS, cyan), human fVIII (PDB: 

6MF2, red), porcine fVIII (PDB: 

4MO3, orange).  
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Hemophilia A 

Hemophilia A is a recessive, X-linked bleeding disorder resulting from mutations to the F8 

gene in which hemostasis is interrupted due to deficient or inactive fVIII. Approximately 1 in 

5,000 males worldwide are affected by these gene mutations and one third of hemophiliacs are the 

result of spontaneous mutation with no prior family history.22,23 Individuals with hemophilia A are 

unable to form effective blood clots, causing extended or spontaneous bleeding episodes (Table 

2).23 Severity of Hemophilia A is characterized as severe (<1% of normal fVIII activity), moderate 

(1-5% of normal fVIII activity), and mild (5-40% of normal fVIII activity).23  

Treatment for hemophilia A includes prophylaxis: injections of fVIII concentrates to 

prevent anticipated bleeding episodes.23 Although the available treatment is generally successful, 

previously untreated patients are vulnerable to developing inhibitors to fVIII therapy and 

approximately 30% of severe hemophiliacs develop an inhibitory response to treatment.22,24 

Development of inhibitory antibodies (inhibitors) can reduce treatment efficacy, increase bleeding 

episodes, and increase hemophilia severity.25,26 Treatments for fVIII inhibitors includes non-

replacement therapy or immune tolerance induction (ITI). Non-replacement therapy universally 

applies to either small molecule therapy or bypassing agents. Small molecule therapies utilize low 

  

Severity Factor VIII Level  Bleeding phenotype 

Mild 5-40 % of normal Severe bleeding during surgery or traumatic incident 

Moderate 1-5 % of normal Occasional spontaneous bleeding, severe bleeding 

during surgery or traumatic incident 

Severe <1 % of normal Spontaneous bleeding into muscle and joints, 

predominately in the absence of hemostatic challenge 

Table 2. Classification of bleeding phenotype with severity of hemophilia A. 
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molecular weight compounds that increase fVIII levels without offering fVIII replacement. One 

of these small molecule treatments, Desmopressin acetate (1-deamino-8-D-arginine vasopressin, 

DDAVP), is an analog of Vasopressin and is used to treat von Willebrand disease (VWD) or 

Hemophilia A.27 Bypassing agents amplify the blood clotting cascade without utilizing fVIII. 

Addition of recombinant activated fVII (rfVIIa), activated prothrombin complex (FEIBA), or anti-

tissue factor pathway inhibitor antibody (TFPI, Concizumab) increase clotting through 

amplification of the common or extrinsic pathway of blood coagulation.28–30 One promising 

bypassing agent is an anti-fIX-fX bispecific antibody manufactured by Roche called Hemlibra. By 

binding both fIX and fX, Hemlibra replaces fVIII’s coordinating role in the intrinsic tenase 

complex, allowing effective downstream thrombin production. One caveat to this treatment is the 

FDA has assigned a black box label, alluding to major risks associated with the drug. Whereas 

small molecule therapy and bypassing agents aim to promote hemostasis without fVIII, ITI 

involves overwhelming the immune system with large quantities of fVIII, eliminating the 

inhibitory response, and allowing resumption of fVIII replacement therapy.24 Low-responding 

inhibitors can generally be overcome with small, increased doses of fVIII concentrates, but only 

30% of inhibitor-possessing patients have low-responding inhibitors.25 For the 70% of patients 

with high-responding inhibitors, treatments must utilize bypassing agents or ITI. Reversal of 

inhibitors by ITI permits the resumption of fVIII replacement therapy and is generally considered 

the best treatment option to date.24,31 Although ITI is effective in reversing the immunological 

response to fVIII replacement therapy, the cost and quantity of fVIII required for treatment poses 

a substantial obstacle to most patients.22  

One avenue for current fVIII therapeutics entails producing a more effective fVIII replacement 

product that minimizes immune response generated during replacement therapy and the financial 
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burden of replacement therapy. The financial burden stems from shortage of fVIII concentrates 

due to low fVIII in vitro and in vivo expression.32 In vitro expression of fVIII occurs by cloning 

the fVIII gene into eukaryotic cells, producing recombinant fVIII (rfVIII). Many of these rfVIII 

product are expressed and recovered at low yields, however, and have ignited significant research 

efforts into increased fVIII expression and half-life.32 Research from the Loller lab in 2002 

compared the expression of human rfVIII (rh-fVIII) to porcine (pig) rfVIII (rp-fVIII).32 Rp-fVIII 

expressed 10- to 14-fold higher than rh-fVIII. One next-generation therapeutic approach that could 

become more effective than replacement therapy is gene therapy, which involves correcting the 

defective or absent gene within the affected patients’ cells. Gene therapy would prevent the weekly 

injections patients incur with replacement therapy and minimize cost but may still cause an 

unwanted immune response since the immune system doesn’t recognize fVIII as a non-foreign 

entity. Although still in animal model testing, development of a bioengineered human/porcine 

chimeric fVIII construct ET3i (Figure 9) with porcine A1 and A3 (pA1, pA3) domains and human 

A2, C1, and C2 (hA2, hC1, hC2) domains may offer a solution to both financial and inhibitor 

probelms.33 ET3i expresses 5.3 ± 0.75-fold greater than rh-fVIII in COS-7 cells and maintains 

slightly higher activity than rh-fVIII.34 Immunogenicity studies demonstrate porcine fVIII elicits 

a lower immune response than human fVIII with ET3i studies demonstrating similar results. This 

next generation therapeutic may offer a future less immunogenic, higher expressing fVIII molecule 

that can minimize frequent injections and prevent development of neutralizing inhibitors. 
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FVIII inhibitors 

As previously mentioned, the most serious complication to fVIII replacement therapy is the 

development of pathogenic inhibitory antibodies.25 Inhibitors significantly reduce the efficacy of 

fVIII replacement therapy, increase the severity of bleeding symptoms, and increase morbidity 

from 12% to 43%.26 Approximately 30% of patients with severe hemophilia A develop inhibitors, 

Figure 9. Structure of Bioengineered ET3i. A) Ribbon diagram representing ET3i model A (PDB: 

6MF0), blue: human A2, C1, and C2 domains, purple: porcine A1 and A3 domains. Doman structure 

of ET3i (shaded regions represent porcine swapped domains, unshaded represent human domains). B) 

Structural alignment of human/porcine chimeric fVIII construct ET3i (cyan) and high resolution 

human fVIII (magenta) (PDB: 6MF2).  

A B 
hA2 

pA3 

hC2 

hA1 

hC1 
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normally developing within the first 10-20 exposures to fVIII treatment.25 To quantify the 

anamnestic response of a patient, the concentration of titer is defined as a Bethesda unit (BU), the 

inverse dilution factor. In a Bethesda assay, inhibitor containing plasma is diluted with pooled 

normal plasma until 50% of fVIII activity in the mixture is recovered.25 Plasma samples requiring 

more extensive dilutions (high-responding inhibitors) record values of 5 BU or higher, with low-

responding inhibitors generally showing less than 5 BU.25  

Antibodies are immunoglobulins produced by white blood cells. These glycoproteins belong 

to the immunoglobulin super family (IgSF) and are comprised of two heavy and two light chains.35 

Each immunoglobulin chain contains a single NH2-terminal variable IgSF domain and a constant 

COOH-terminal domain, both connected by a disulfide bridge.35 Within each variable domain, 

three hypervariable complementarity determining regions (CDR) constitute the antigen binding 

region of each immunoglobulin, also known as the paratope.35 Each paratope binds to a specific 

region (epitope) of the target substrate (antigen).35 Inhibitors for fVIII are categorically organized 

by specific domain recognition and sub-classified for effects on fVIII function. The two most 

common targets of fVIII inhibitors are the A2 and C2 domains.36 Anti-A2 inhibitors are known to 

inhibit fVIIIa through preventing Xase activation of fX, but still allow binding to fX.37 These 

antibodies are presumed to bind between residues 373-606, yet specific epitopes are not yet 

structurally defined.37 While A2 antibodies have been isolated to one functional disruption and 

one structural epitope, anti-C2 antibodies are sub-classified as non-classical or classical inhibitors. 

It was first suggested in 1989 by Morio Aria et al. that anti-C2 antibodies prevent effective 

interaction of fVIII with phospholipids.36 These “classical” anti-C2 antibodies differ from “non-

classical” anti-C2 domain antibodies as non-classical anti-C2 antibodies do not interfere with 

phospholipid interactions. Non-Classical anti-C2 domain antibodies disrupt the activation of fVIII 
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by fXa or thrombin, regardless of whether fVIII is protected by vWF or not.38,39 Over 30 anti-C2 

domain antibodies have been characterized today, binding to 5 different epitopes on the C2 domain 

(A, AB, B, BC, and C).40 Three anti-C2 domain inhibitors of interest are BO2C11, G99, and 3E6. 

(Figure 10). BO2C11 and 3E6 are functionally defined as classical antibodies, but structurally bind 

to epitopes AB and A, respectively.40 Although 3E6 and BO2C11 are both potent inhibitors in 

vitro for vWF (IC50 = 0.6 μg/mL and 0.007 μg/mL, respectively) and phospholipid binding (IC50 = 

0.4 μg/mL and 0.01 μg/mL, respectively), BO2C11 requires a significant dilution factor (20,000 

BU/mg) compared to 3E6 (41 BU/mg).40 G99 is a group BC antibody and is classified as non-

classical inhibitor, but is a powerful inhibitor in vitro (15,000 BU/mg).40  

  

C2 domain 

3E6 FAB 

B02C11 FAB 

G99 FAB 

Figure 10. Anti-C2 domain inhibitors bound to isolated fVIII C2 domain.  
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Recent publications have highlighted the significance of anti-C1 domain antibodies in patients 

with acquired and congenital hemophilia A.41 78% of patients with acquired hemophilia A (AHA) 

and 57% of patients with congenital hemophilia A (HA) in this population were found to have 

inhibitory antibodies targeting the C1 domain of fVIII.41 Type I inhibitory human antibodies 

targeting the C1 domain were found to disrupt fVIII cofactor activity and binding to vWF.42 Later, 

type II antibodies recognizing the C1 domain were connected to increased fVIII clearance due to 

disruption of the fVIII:vWF interaction.43 One such type II inhibitor is monoclonal antibody (mAb) 

2A9. Epitope mapping by HDX-MS detailed 2A9 as a group A inhibitor.44 The group A inhibitor 

epitope includes residues 2063-2071 and 2129-2136, resulting in a vWF IC50 of 1.1 μg/mL and 

phospholipid binding IC50 of 0.9 μg/mL.44 Within the same study, a group B inhibitor (B136) was 

isolated and determined to be more potent, with a 700 BU/mg of IgG versus 23 BU/mg for 2A9.44 

Moreover, the IC50 of vWF binding for B136 was 2.75-fold lower and 22.5-fold lower for 

phospholipid binding, requiring less inhibitor to reach 50% inhibition of fVIII function.44 The 

residues of interaction on the C1 epitope for B136 appear to consist of 2077-2084, and overlap 

with human derived group A/B antibody KM33 at residues 2036-2044, 2091-2092, and 2157-

2164.44 Structural characterization for these anti-C1 domain inhibitors is ongoing and may provide 

insight on fVIII phospholipid binding interactions within the C1 domain and may shed insight into 

the conserved nature between the two C domains. Although antibodies cause difficulties within 

replacement therapy, therapeutic induced antibodies offer invaluable insight into the 

structure/function relationship of regions of fVIII and have been the epicenter of C2 domain 

phospholipid binding models. 
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Inhibitor-based binding phospholipid binding models  

The C2 domain of fVIII has historically attracted the most interest due to the multitude of 

interactions including vWF, antibody inhibitors, and platelet surfaces. During activation, the acidic 

A3 region is cleaved, promoting fVIIIa dissociation from vWF. With vWF tethered to platelets 

through the A1 domain, dissociation of fVIII occurs in close proximity to activated platelet 

surfaces. The exact platelet surface binding motif for the fVIII C domains is currently controversial 

as there are two models proposed, but both current fVIII binding models rely exclusively on the 

biochemical interplay between the hydrophobic and electrostatic interactions of the C2 domain.14 

The first crystal structure of isolated fVIII 

C2 domain was published in 1999 and 

revealed two hydrophobic beta-hairpin 

loops. These loops were proposed to extend 

into the anhydrous interior of the 

phospholipid bilayer (M2199, F2200, 

V2223, L2251, and L2252) and are 

surrounded by basic residues (R2215, 

K2227, K2249) (Figure 11).45 Positioning 

the hydrophobic beta-hairpin loops into the 

anhydrous interior of a platelet bilayer 

oriented R2220 directly above the lipid 

surface, suggesting that this residue was the 

center of the phospholipid binding motif. In 

support of this binding model, a 2-

Figure 11. Initial activated platelet binding model of 

the fVIII C2 domain. Hydrophobic residues (red) 

comprise two hydrophobic loops that insert into the 

anhydrous leaflet of platelets. Basic residues (red) 

interact with negatively charged PS headgroups on 

activated platelet surfaces. The model was centered 

around R2220 (yellow) as the principal residue. 

PDB: 6MF0. 
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dimensional (2D) crystal structure of B-domain deleted fVIII (BDD-fVIII) bound to a negatively 

charged lipid bilayer was solved to 1.5 nm.46 Within this structure, the two previously described 

loops were corroborated and an additional loop was proposed for W2313-H2315.46 Mutagenesis 

studies targeting the hydrophobic loops demonstrate that M2199/F2200, L2251-L2255, W2313-

H2315 play a role in phospholipid binding. A crystallographic structure of classical inhibitory 

antibody BO2C11 further supports the model of C2 association to lipid surfaces via hydrophobic 

loops as both hydrophobic loops are sequestered in the BO2C11 paratope, completely blocking 

phospholipid binding. Although no isolated high resolution structure exists for the isolated C1 

domain, mutational data suggests that mutations to K2092 and F2093 contribute to a 3-fold 

reduction in affinity for membrane-binding sites.47 Residues L2092 and F2093 are synonymous to 

the L2252/2253 sequestered in the BO2C11 epitope on the C2 domain. Collectively, the 

preliminary model was based on the incorporation of both hydrophobic loops protruding into the 

anhydrous leaflet of platelets and complemented by a collection of basic residues surrounding the 

hydrophobic loops.  

This initial lipid binding model for the C2 domain of 

fVIII has since been challenged by structural epitope 

analysis of the crystal structure of isolated human C2 

domain ternary complex with two pathogenic antibody 

inhibitor fragments (G99 and 3E6) from the Spiegel 

Lab.48 3E6 is a classical inhibitor, completely disrupting 

the ability of C2 to bind to phospholipids, whereas G99 is 

a non-classical inhibitor and allows C2 to bind 

phospholipids (Figure 12).38,40,49 Epitope mapping of the 

Figure 12. ELISA of C2 lipid 

binding with non-classical and 

classical inhibitors. FVIII C2 domain 

immobilized to PS was able to bind 

to G99 and not 3E6, demonstrating 

that PS binding occurs at the 3E6:C2 

interface. Adapted from Brison et al.  
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G99 fragment of antigen binding (FAB) overlaps with K2227, which was postulated to be 

positioned towards the membrane in tandem with R2220 in the preliminary model.50 Since G99 

has little to no effect on the phospholipid binding capabilities, it seems implausible that K2227 is 

positioned towards the phospholipid membrane. Additionally, the porcine fVIII C2 domain 

consists of a glutamic acid at position 2227, which carries the opposite charge as a lysine, and 

further suggests that K2227 is not directly involved in phospholipid binding. The 3E6 FAB 

encompasses loops consisting of residues E2181-A2188 and T2202-R2215.48 Specifically, the 3E6 

FAB associates to K2183, D2187, R2209, H2211, Q2213, G2214, and R2215.48 Uniquely, the 3E6 

FAB completely disrupted phospholipid binding but the two previously proposed hydrophobic 

loops (Met2199/Phe2200 and Leu2251/Lue2252) were not within the 3E6 epitope, suggesting the 

C2 domain hydrophobic and electrostatic interactions function in a cooperative manner, rather than 

a complimentary role. Given the inhibition of phospholipid binding by blocking electrostatics and 

the fact that K2227 must not be involved in phospholipid binding, a new model was proposed 

utilizing all three anti-C2 epitopes (Figure 13). By overlaying the B02C11, 3E6 and G99 FAB with 

a high resolution of isolated C2 domain, the hydrophobic loops bound to B02C11, and basic 

residues involved in binding to 3E6 can be positioned at the interactive surface of lipid membranes 

while the G99 epitope is faced away. 
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Figure 13. Revised activated platelet binding model of the fVIII C2 domain. Hydrophobic residues 

(orange) comprise two hydrophobic loops that insert into the anhydrous leaflet of platelets. Basic 

residues (blue) interact with negatively charged PS headgroups on activated platelet surfaces. The 

model was centered on R2320 (yellow) as the principal residue. Surface maps of 3E6 and Bo2C11 

(blue and orange, respectively), represent the phospholipid surface. PDB: 6MF0.  
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Electrostatic interactions of fVIII C domains and lipid membranes. 

Mutational assays for the C2 domain based on hemophilia A mutations and proposed 

phospholipid binding models have demonstrated that mutations to hydrophobic residues 

M2199/F2200, L2251-L2255, and W2313-H2315 are required for optimal membrane binding and 

procoagulant activity. However, these studies barely touch on the important role of 

phosphatidylserine in platelet binding. During platelet activation, lipid composition of the lipid 

bilayer is perturbed, with an increase of negatively charged phospholipids redistributed to the 

extracellular environment.6,10 Without this charge distribution change, fVIII has negligible affinity 

to these phospholipid surfaces.51,52 Studies have shown that fVIII specifically binds to the L-isomer 

of phosphatidylserine (OPLS) and that >95% of fVIII activity is lost in the presence of the D-

isomer (OPDS).53 This implies that there is at least one essential binding motif for 

phosphatidylserine that exists within the light chain of fVIII. Given that the fVIII light chain has 

two C domains with very high sequence and structural homology, it is more plausible that a 

conserved motifs exist within each of the C domains. Previous literature of alanine scanning 

mutations on basic residues within the C2 domain have indicated that Q2213, N2217, and R2220 

had no effect on the relative specific activity of fVIII for lipid membranes.54 Inhibitor peptides 

spanning residues 2313-2323 results in >90% inhibition of the C2 domain to phospholipids, 

suggesting the lipid binding moiety resides in this region.55 Although the W2315-H2315 have 

since been reported to disrupt phospholipid binding in low (4%) PS containing lipid vesicles in 

vitro, but in vivo assays have demonstrated WT effector function, suggesting this region functions 

in a complementary fashion rather than essential and most likely forms interaction in the anhydrous 

interior rather than with the OPLS headgroups of phosphatydlserine.56 Homology modeling and 

membrane binding predictions have suggested that three arginine residues within the C1 and C2 
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domain may form mutually exclusive interactions with phospholipids.57 These residues, R2163 

(C1), R2220 (C2), and R2320 (C2) are buried within the hydrophobic core of the beta-barrel motif 

and extend towards the exterior of the molecule. R2220 has been previously shown to have no 

effect on lipid membrane binding and thus disagree with simulation data.54 With limited mutational 

data on the C1 domain, functional insights can only be inferenced from the C2 mutational data 

available. Characterization of hemophilia A-related missense mutations amongst the C2 domain 

revealed a 5% relative activity of a R2320T mutation compared to wild-type, insinuating the 

potential of R2320 as an essential residue for phospholipid membrane binding.58 Moreover, the 

conservation of this R2320 across species and between homologous clotting fV suggest that this 

residue might lie within a conserved binding motif. Electrostatic surface mapping of the R2320 

residue within the C2 domain demonstrates that this residue carries the most basic electrostatic 

potential and thus may make direct contact with the negatively charged phosphatidylserine 

containing lipid surfaces (Figure 14).  

Collectively, the fVIII binding mechanism to PS containing platelet membranes is proposed to 

orient around the facilitation of hydrophobic contacts between solvent exposed hydrophobic loops 

of the C domains and an undetermined number of basic residues positioned above these 

hydrophobic loops. The main goal of this study was to elucidate which of the basic residues 

surrounding the hydrophobic loops is essential of phospholipid binding. A detailed understanding 

of the phospholipid binding interactions would inform the advancement of hemophilia A 

therapeutics. 
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Figure 14.  FVIII C2 domain sequence and structural alignment A.) Sequence alignment of 

fVIII among various species and fV. Red columns indicate complete sequence conservation across 

species. R2320 and R2163, the sequence homolog of the C2 domain, are completely conserved 

across species and clotting factors (Arrows). B.) Ribbon diagram representation of the structural 

alignment o Lactadherin (PDB: 3BN6, blue), factor V C2 domain (PDB: 1CZS, cyan), human fVIII 

(PDB: 6MF2, red), porcine fVIII C2 domain (PDB: 4MO3, orange), and fVIII C1 domain (PDB: 

6MF2, purple). The conserved fVIII C2 R2320 residue is shown as sticks in yellow from all aligned 

C domain homologs. C.) Surface electrostatic mapping of the C2 domain positions R2320 in the 

most basic cleft of the C2 domain. The surface potential calculation were performed with APBS 

with surface potential value of ±5 kT/e, and were generate with PyMol (blue: positive charge, red: 

negative). 
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Chapter 2: Materials and Methods 

Site directed mutagenesis of human C2 domain:  

 The gene for wild type human C2 domain (residues 2171-2332) was prepared previously 

in a pET15b plasmid (Spiegel 2004). Human C2 mutations (R2320S, R2215A, K2183A, D2187A, 

A2201P, K2227A, and R2215A) were manufactured using the Agilent Technologies QuikChange 

Lightning Site-Directed Mutagenesis Kit with pEt32a (+)/6his-thioredoxin-S-fVIII C2 plasmid 

templates. DNA from the plasmids containing C2 domain mutations were extracted using 

QIAquick PCR purification kit from Qiagen and sequencing was performed at Nevada Genomics. 

Verified C2 mutant DNA was transformed into chemically competent SHuffle T7 B E. coli cells 

purchased from New England Biolabs Inc. Approximately 100 ng of mutant DNA was incubated 

with the competent cells and plated on Lysogeny Broth (LB) (1% tryptone (w/v), 1% NaCl (w/v), 

0.5% yeast extract (w/v)) ampicillin 50 mg/ml (LB50) agar plates. A single colony was selected for 

sell stock preparations and cell stocks were stored at -80 °C in 20% (v/v) glycerol. 

Over expression of C2 WT and Mutant proteins: 

 Overnight cultures were grown from single colony cell stocks in 10 mL LB50 while shaking 

at 30 °C and then added to 1 L of LB50 shaking at 180 rpm, 30 °C until the absorbance at 600 nm 

reached a value of 0.6-0.8. Protein growth was induced by the addition of isopropyl B-D-

thiogalactopyranoside (IPTG) to 500 µM and the temperature was adjusted to 15 °C and left 

overnight for 18-20 hours. Cells were pelleted by centrifugation at 6371x g for 10 min at 4 °C 

(FIBERLite F10-6x500y rotor, Thermo Fisher Scientific, Waltham, MA) and resuspended in Lysis 

buffer (300 mM NaCl, 20 mM Tris-HCl pH 7.5, 10 mM imidazole pH 8.0, 10.0% (v/v) glycerol, 

and 0.5% (v/v) Triton X-100) with addition of lysozyme and phenylmethylsulphonyl fluoride 
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(PMSF). Cells were mechanically lysed using a Branson Sonifier 450 probe at power output 5 and 

duty cycle 50% for 30 seconds repeated three times with 60 second pauses in-between cycles. Cell 

debris were removed by centrifugation at 16,000 rpm for 30 min at 4 °C (FIBERLite F21- 8x50y 

rotor, Thermo Fisher Scientific), followed by filtration with 0.45-um cellulose sterile syringe 

filters. TALON cobalt immobilized cobalt affinity resin (TAKARA Bio) was equilibrated in lysis 

buffer at 1 mL settled resin/ 2 L bacterial growth and incubated with filtered lysate for 30 minutes 

at 4 °C. Settled resin was rinsed with 30 CV of lysis buffer; with 30 CV of wash buffer (150 mM 

NaCl, 20 mM Tris-HCl pH 7.5, 10 mM imidazole pH 8.0, and 10% (v/v) glycerol); and eluted 

with elution buffer (150 mM NaCl, 20 mM Tris-HCl pH 8.0, 150 mM imidazole pH 8.0, and 10% 

(v/v) glycerol) following a 10-minute incubation time. Eluted protein was dialyzed in storage 

buffer containing 150 mM NaCl, 25 mM Tris-HCl pH 8.0, and 10% (v/v) glycerol at a 

concentration between 2-4 mg/mL.  

Transformation of FVIII C1 and C1C2 domain containing plasmids: 

 FVIII residues (2048-2332) were ordered from Genscript in a pET32a+ vector using 

BamH1 and Xho1 restriction sites. FVIII C1C2 residues were transformed into C3029J Shuffle 

K12 E. coli cells following New England Biolabs (NEB) protocol and additional mutations 

(R2320S, R2215A, A2201P, R2163S, and R2163S/R2320S) were transformed in an identical 

manner (Figure 15). Isolated fVIII C1 domain and corresponding mutations R2163S and R2163C 

were transformed as per above. Transformed cells were plated on ampicillin treated agar and left 

to grow at 30 °C overnight. Single colonies of transformed cells were further expanded in 10 mL’s 

of LB50 inside a New Brunswick Scientific Excella E25 at 30 °C, 225 rpm, for 16-18 hours. 

Expanded cultures were stored at -80 °C in 20 % (v/v) glycerol.  
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Growth and expression of FVIII C1C2 domain constructs: 

 LB media was prepared and autoclaved in-house. Overnight cultures with 10 mL of E. coli 

K12 cells containing fVIII C domain constructs were added to 1 L of LB and grown until an OD600 

of 0.3 was reached, where flasks were quickly cooled on ice. When cooled cells reached an O.D600 

of 0.4, 0.4 mL of 1M IPTG was added and protein was left at 180 rpm, 15 °C for 18 hours. 

Expressed cells were pelleted and resuspended in 30-35 ml of cold lysis buffer (20 mM N-(2-

Hydroxyethyl) piperazine-N'-2-ethanesulfonic Acid (HEPES) pH 7.4, 500 mM NaCl, 10 mM 

Imidazole, 10% (v/v) glycerol, 0.1% v/v triton, 10 mM MgCl2) with the addition of 350 µL of 100 

mM PMSF and 700 µL of 50 mg/ml lysozyme. Enzymatic lysis occurred for 30 minutes on ice 

with intermittent mixing. Cells were further lysed with mechanical sonication as described above. 

Cell debris and insoluble proteins were separated from soluble fraction through a 45-minute 

centrifugation at 17,000 rpm, 4 °C. High-speed cell supernatant was filtered through 5.0 µm and 

0.45 µm filters before batch binding for 30 minutes with 1 mL of TALON resin per 2 liters of LB 

Figure 15. Functionality of SHuffle cell lines. E. coli cytoplasm is a reducing environment and 

prevents the formation of disulfide bonds during protein folding. SHuffle cell lines are engineered 

to have enhanced folding and disulfide formation due to removal of reductive enzymes. Adapted 

from NEB protocol. 
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prep. Immobilized metal affinity chromatography (IMAC) was performed by collecting the batch 

flow through, a lysis buffer rinse, 20 CV Wash (20 mM HEPES pH 7.2, 500 mM NaCl, 15 mM 

Imidazole, 10% (v/v) glycerol ), and 20 CV Elution (20 mM HEPES pH 6.8, 300 mM NaCl, 150 

mM Imidazole, 10% (v/v) glycerol) steps. IMAC elution was diluted with HBS (50 mM HEPES 

pH 7.4, 300 mM NaCl) to a final imidazole concentration of 5 mM and loaded onto a Capto His-

Trap 5 mL column for subsequent purification. A 100 CV ATP wash in HBS supplemented with 

20 mM MgCl2 and 10 mM ATP was performed and rinsed with 1X HBS until absorbance flattened. 

Elution was achieved using an imidazole gradient from 0 mM Imidazole to 500 mM Imidazole 

and collected in 4 mL fractions. Eluent fractions containing >95% pure C1 or C1C2 (assed by 

SDS-PAGE) were buffer exchanged into low pH HBS (20 mM HEPES pH 6.8, 150 mM NaCl, 

10% (v/v) glycerol) and concentrated using a 30,000-cutoff concentrator to 0.3-0.4 mg/ml. 

Samples were stored at -80 °C. Protein purity and yield was verified via SDS-PAGE using 12.5% 

bis-acrylamide gels. Fractions containing expressed protein of interest were dialyzed in Dialysis 

buffer (20 mM HEPES pH 6.0, 150 mM NaCl, and 10% (v/v) glycerol. Precipitates were removed 

post-dialysis via centrifugation at 4000xg for 5 minutes. 

Cation Exchange chromatography: 

 Co-elutants from IMAC required subsequent purification via cation exchange. Due to the 

instability of C1 containing constructs, post-IMAC elution samples were diluted 1/6 to a final 

concentration of 150 NaCl and were injected into the Hi-trap Capto S 5 mL cation exchange 

column attached to a fast protein liquid chromatography (FPLC) device (AKTA prime Plus 

manufactured by GE Healthcare Life Sciences). Protein loading buffer contained 20 mM 2-(N-

morpholino) ethane sulfonic acid (MES) pH 6.0, 150 mM NaCl. Protein was eluted using a 30-40 

mL gradient elution to 100% B solution containing 20mM MES pH 6.0, 500 mM NaCl. Protein 
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peaks were collected in 0.5 mL Fractions and analyzed for purity on 12.5% SDS-PAGE gels. 

Eluted protein was concentrated with a 30,000 MWCO Amicon 15-mL spin filters. The column 

was cleaned with 1 M NaOH between subsequent runs and stored in 20% ethanol with 200 mM 

sodium acetate as per manufactures protocol. 

Enterokinase cleavage: 

 Plasmids ordered from Genscript contained an Enterokinase cleavage sequence up-stream 

of the N-terminus of the C1 or C1C2 constructs. Recombinant Enterokinase (rEK) was ordered 

from Sigma Aldrich (CAT: 69066-3) and optimized from the published protocol. Reactions 

occurred at room temp (RT) for 24 hours while rotating with the assumption that 1 U of rEK will 

cleave ~50 μg/day. Reactions were analyzed via SDS-PAGE before removal of rEK. Removal of 

rEK was accomplished with 0.22 μm spin filters and the resin was washed with 1X rEK Dilution 

buffer (200 mM NaCl, 20 mM Tris-HCl, 2 mM CaCl2, 50% (v/v) glycerol, pH 7.4).  

Size exclusion chromatography.  

 GE healthcare S75 was utilized to verify globular protein weight via size exclusion 

chromatography. The column was equilibrated in 50 mM MES pH 6.0, 150 mM NaCl at a flow 

rate of 0.3 mL/min and half milliliter injections of tagged and cleaved C1C2 or C1 constructs were 

performed. Peaks were collected in front and back half fractions and visualized on a 12.5% SDS 

page gel. The S75 column was stored in 20% ethanol and cleaned with 1M NaOH between runs. 

Mammalian cell culturing: 

In a sterile hood, 9 mL of Hybridoma Medium E (MedE) from STEM Cell technologies 

(CAT# 03805) was placed into a sterile 15-mL conical centrifuge tube. Hybridoma cells stored at 

~ 1 million cells/mL in MedE with 10% dimethyl sulfoxide (DMSO) were quickly thawed in a 37 

°C water bath for approximately 45 seconds until almost completely thawed. Cells were pipetted 
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into the 9 mL MedE aliquot, capped, and gently inverted to ensure dilution of DMSO. Hybridoma 

cells were pelleted by centrifugation at 1000 rpm at RT for 5 minutes. The MedE-DMSO 

containing supernatant was carefully discarded and the hybridoma cells were gently resuspended 

in 2 mL of MedE and transferred to a T-75 flask containing 15 mL’s of MedE. The T-75 flask was 

sealed with a vented cap and hybridoma cells were placed into a sterile water bath incubator at 5% 

Co2 and 37 ° C. Observations of cells were taken based on adherence to the T-75 flask, percent of 

confluence, and color of solution. Up to 25 mL’s of additional MedE was added to the T-75 flask 

48 hours after initial transfer. A hemocytometer was utilized to accurately assess cell density 

before cryopreservation. Hybridoma cells for cryopreservation or passaging were pelleted at 1000 

rpm for 2 minutes at RT and diluted with 10 mL of MedE. Serial dilutions of 1:10, 1:100, and 

1:1000 were made in 1 mL aliquots and 200 µL of each dilution was analyzed by counting across 

5 large hemocytometer squares and averaging and multiplying by the dilution factor to calculate 

the cell density. 

Expression of Antibodies in AOF Media: 

 Expression of anti-fVIII antibodies was completed in AOF media (Cat#: 03835).  

Hybridoma cells were grown in MedE until 50% confluent and sluffed off using 2 mL of Versene 

solution. Viable was confirmed via hemocytometer and a few drops of cells were added to a sterile 

T-75 flask for containing 25 mL of AOF media. AOF media containing hybridoma cells were left 

for 10 days, at which time media was spun at 1100 rpm for 10 minutes at RT and 20% sodium 

azide was added to a final concentration of 0.1%. Antibody containing media was stored for 3 days 

at 4 °C or stored at -80 °C for long term storage. 
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Antibody purification with Protein A resin 

 Collected antibodies were diluted at least 1:2 with HBS prior to purification. Diluted 

antibody media was run over 2-3 mL’s of Protein A resin in a disposable gravity column. Antibody 

FT was collected and washed with 5 CV of 1x HBS. Elution was achieved using 10 CV 0.2 M 

glycine pH 2.8-3.0 and collected in a 50 mL centrifuge tube containing 2 CV of 0.5 M HEPES pH 

7.4. Purity was analyzed via SDS-PAGE analysis using loading dye containing and in the absence 

of beta-mercaptoethanol (BME). 

Enzyme Linked Immunosorbent Assays:  

Nunc-Immuno MicroWell PolySorp 96 well solid plates were coated with 80% 1,2- 

dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 20% 1,2-dioleoyl-sn-glycero-3-phospho-L-

serine sodium salt (DOPS) (Avanti Polar Lipids Inc.) at 10 g/ml. Negative control wells were 

coated with 100% DOPC at 10 g/ml. The wells were then blocked for 45 minutes with a 1% (w/v) 

bovine serum albumin (BSA), 50 mM Tris-HCl pH 7.5, 100 mM NaCl solution. Protein samples 

were prepared with serial dilutions of 1:2 in a 1% (w/v) BSA, 50 mM Tris-HCl pH 7.5, 100 mM 

NaCl solution with initial protein concentrations of 2000 nM for 12 samples total. Subsequently, 

Ni-NTA•HRP diluted to 1:1500 (in 1% (w/v) BSA, 50 mM Tris-HCl pH 7.5, 100 mM NaCl 

solution was incubated for 30 minutes. Lastly, 2,2′-Azinobis (3-ethylbenzthiazoline-6-sulfonic 

acid) (ABTS) was used to detect binding at 405 nm. All incubation steps were shaken at 75 rpm 

in a 37°C incubator. Between each incubation, the wells were washed with a 1% (w/v) BSA, 50 

mM Tris-HCl pH 7.5 solution using an automated plate washer. Salt gradient ELISA’s were 

performed as above with blocking serial dilution steps being performed in 1:2 in 1% (w/v) BSA, 

50 mM Tris-HCl pH 7.5, 50 mM, 100 mM, 150 mM, or 225 mM NaCl solution with an initial 
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protein concentration of 1000 nM. Following data collection, binding curve were normalized, and 

approximate equilibrium binding affinities were analyzed in a 1:1 nonlinear region with Graph 

Pad Prism. 

Sedimentation assays: 

 Unilamellular vesicles were adapted from the Morrisey lab at University of Michigan. A 

total of 2.6 μmole of lipids in either 80:20 or 100:0 DOPC:DOPS molar ratios were dried under a 

stream of argon gas and resolubilized in 2.6 mL of 20 mM HEPES pH 7.4, 50 mM NaCl, 0.1% 

NaN3. Resolubilized lipids were allowed 1 hour to rehydrate with intermittent inverting. Post 

hydration, lipids were vigorously vortexed until a milky suspension was achieved. Lipids were 

submerged in liquid nitrogen and quickly thawed in a 37 °C water bath four times. Freeze-thawed 

lipids were subsequently extruded using Avantipolar lipids extruder 11 times. Lipids were stored 

for up to 2 months at 4 °C with a final concentration of 1 mM. 

 FVIII sedimentation assays were performed in 8x32mm microcentrifuge tubes in 300 µL 

reactions. ET3i and C1C2 domain assays were performed at 200 nM whereas C1 and C2 were 

performed at 5 µM. In an 8*32 mm tube, 125 μL of unilamellular vesicles were added to protein 

and buffer (20 mM HEPES pH 7.4, 50 mM NaCl) was added to final volume of 300 μL. Reactions 

were flicked to mix and allowed to sit at room temp for 5 minutes. Reactions were spun at 168,000 

g for 45 minutes at 4 °C. Protein supernatant was removed and precipitated in at least 5x volume 

of -20 °C acetone overnight. Gel samples were made of lipid sedimentation assay pellets and 

acetone precipitation pellets and were analyzed via SDS-PAGE gel. Controls were run as per above 

but with 100% PC vesicles. 
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Nanodisc Technology:  

 MSP1D1 plasmid was ordered from Genscript and expressed in BL21 (DE3) cells in LB50 

broth. Soluble MSP1D1 was purified using Ni2+-affinity resin and dialyzed into TBS, 

concentrated to 10 mg/mL, frozen in liquid N2, and stored at -80 °C. Typical yield was around 30 

mg per L of culture. 

 MSP1D1 cleaved nanodiscs (cND) were formed with 6 μmole of lipids at an 80:20 or 100:0 

DOPC:DOPS molar ratio. Lipids, stored in chloroform, were evaporated under a stream of argon 

gas and resolubilized with 140 µl of 1x TBS containing 100 mM sodium cholate. Lipids were 

solubilized by running warm tap water (~40-50 °C) and vortexing until a clear solution was 

obtained. TBS was added along with MSP1D1 at a final 1:200 molar ratio for untagged MSP1D1. 

The lipid:MSP1D1:sodium cholate solution was incubated for one hour at 37 °C. Biobeads were 

equilibrated in TBS and 0.5 mL was added to each 500 µL reaction and let sit overnight. Biobeads 

were removed using a 0.22 µM spin filter. Samples were purified using size exclusion 

chromatography (S200, GE Healthcare) with TBS as the equilibration buffer. For untagged ND, a 

single peak was obtained with an 8-9 mL retention time and concentrations was calculated from 

MSP1D1 extinction coefficient (assuming 2 molecules per ND).  

Crystallography: 

Crystals suitable for X-ray crystallographic structure determination were grown by hanging 

drop vapor diffusion in 0.1 M CHES (pH 10.4), 0.1 M magnesium acetate, and 10% (v/v) ethanol 

in a 2:1 ratio of crystallization buffer and 2 mg/mL porcine C2 (pC2) domain in storage buffer. 

Growth of crystals occurred overnight at 4 °C in the presences of 220 µL Al’s oil. Crystals were 

soaked in a 5 mM solution containing phosphatidylserine headgroup (OPLS) and cryoprotected 
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with a 1:1 addition of 0.1 M CHES (pH 10.4), 0.1 M magnesium acetate, and 30% (v/v) glycerol. 

X-ray diffraction data were collected to 1.3 Å resolution the Advanced Light Source (ALS) 

Berkeley Center for Structural Biology (BCSB) beamline 5.0.1 (Berkeley, CA). Data collection 

and processing were performed with Adxv, XDS and Aimless. Phasing of pC2 crystal was 

accomplished using PHASER-MR with the previously determined 1.7 Å pC2 structure (PDB ID: 

4MO3). Model building and refinement were performed with WinCoot and PHENIX, respectively. 

All structure figures and structural alignments were generated with PyMOL Molecular Graphics 

System, Version 2.0 (Schrödinger, LLC). 
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Chapter 3: Results 

FVIII C domain construct expression and purification. 

Expression and purification of soluble WT hC1C2 and hC1 fusion proteins were successful 

in SHuffle K12 E. coli cells and yielded no protein in traditional BL21(DE3) or SHuffle B cells 

(Figure 16 A-C). WT C2, which was previously published, expressed excellent in BL21(DE3) 

cells with an approximately 5 mg/L of culture (Table 3). Protein expression of isolated WT C1 

yielded similarly to WT C2, achieving 4 mg/L of culture. Post IMAC samples showed a 70 kD 

contaminant across K12 cell lines which could be removed using construct specific approaches. 

All C2 constructs were purified with a strong cation exchange resin (Capto S) while WT C1C2 

and WT C1 were purified with ATP washes, respectively, but both methods were generally 

unsuccessful for the C1 mutants (Figure 16 D-E).  Further purification of the C1C2 fusion 

constructs, including all mutants, were completed via IEC (Figure 16 F-G). C1C2 mutants 

(R2163S, R2320S, and R2163S/R2320S) were expressed and solubilized as mentioned previously, 

with yields ~3 fold lower, and needed to be purified on the FPLC to separate away contaminants 

(Figure 17).  

  Table 3. Approximate protein expression of fVIII C domain constructs per liter of 

expression. Values are based off 6 L growths in LB50.  
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Figure 16. Purification and analysis of C1, C2 and C1C2 constructs. A.) WT C2 domain following 

TALON IMAC purification. B) WT C1 domain following TALON IMAC. C.) WT C1C2 purification 

with the dominant band at ~ 50 kDa. D.) Purification of C1C2 R2163S utilizing an ATP wash to 

remove the 70 kDa contaminant. E.) Purification of C1C2 R2320S using an ATP wash approach 

similar to R2163S. F.) Secondary purification with a Capto S column for WT C1C2. G.) SDS-PAGE 

gel following S column purification of WT C1C2. The elution in lane three corresponds to the gradient 

elution peak from F. Arrows indicate respective protein of interest depending on purification. 
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Enterokinase cleavage of C1C2: 

To verify the protein of interest expressed, the N-terminal thioredoxin fusion tag and hexa-

histidine tag were removed from C1 and C1C2 using recombinant Enterokinase.  Recombinant 

Enterokinase was generally successful in removing the thioredoxin-6His tag from C1C2, however, 

typical post cleavage IMAC purifications were unsuccessful in separating the cleaved C domain 

from the free thioredoxin. In turn, strong cation exchange (S column) was successful in removing 

all contaminants, as the theoretical isoelectric point (pI) of Enterokinase and thioredixon-His6 

Figure 17. Purification of R2163S/R2320S C1C2 mutant via FPLC. A.) Post-lysis high speed 

supernatant was loaded onto a 5 mL Hi-trap Ni-NTA column and subjected to a 100 CV ATP wash 

(denoted by ★) and a gradient elution (indicated by the green dashed line). B.) SDS gel of FPLC 

purification. The arrow denotes the higher molecular weight contaminant and boxes denote fraction 

with >90% purity when pooled.  
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linker were lower than the MES pH 

6.5 buffer utilized. C1C2 has an 

abnormally basic theoretical pI of 9.8, 

so utilizing a pH buffer around 6.5, the 

C1C2 cleaved protein was able to be 

retained on the column. Although 

successful, rEK was most efficient at 

cleaving over a 24-hour time frame at 

RT, which had negative effects on the 

solubility of C1 and C1C2, which tend 

to precipitate when left at RT. Thus, 

C1C2, C1, and mutants were ordered 

with TEV cleavage sites to circumvent 

this problem. TEV optimizations were 

completed for both C1C2 and C1, with 

equal success as rEK cleavage 

reactions. Subsequent purifications on the S-column showed high retention of cleaved and tagged 

C1C2 whereas the Trx tag was solely in the FT (Figure 18). 
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Figure 18. Post Cleavage Purification and Analysis. Lane 

1-2 shows the emergence of a 35 and 17 kDa band from 

pre to post cleavage of C1C2. Post purification via S 

column retain both cleaved and uncleaved C1C2.  
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Antibody purification: 

Antibody production was attempted with anti-C1 mAbs 2A9, B136, and M6143. 

Hybridoma cells containing the murine IgG2αk “Group B” B136 and 

“Group A” 2A9 were successfully cultured and expressed. Murine 

hybridomas were cultured in Medium E, a fetal bovine serum (FBS) 

containing media, and passaged into a recombinantly derived AOF 

media which lacked antibody contamination from the FBS. Cells 

were retained in MedE until peak viability (>95%, 50-60% 

confluence) before being transferred to AOF. Expression was 

tracked by exhaustion of resources and production of acid 

byproduct, which turned the indicator from red/pink to a 

yellow/orange (Figure 19). Media was diluted with HBS to 

maintain ionic strength of media and purified with protein A resin, 

which binds to IgG2αk antibodies. 2A9, an inhibitory class II 

antibody, expressed extremely well, yielding around 5 mg per 45 

mL expression prep whereas B136 expressed 10-fold lower per 45-

mL prep. Purifications via ion exchange chromatography resulted 

in co-elution of impurities, whereas Protein A (or G) yielded 

highly pure antibodies (Figure 20).    

Figure 19. Pre and post 

AOF expression of B136 

anti-C1 inhibitor. 

Development of a yellow 

solution is an indication of 

proper growth and 

expression of hybridoma. 

cells. 
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ELISA measurements 

Membrane-binding ELISA measurements with WT C1, C2, and C1C2 were accomplished 

to assess PS phospholipid binding. Hydrophobic plates were coated with an 80:20 molar 

composition of DOPC:DOPS lipids to mimic the activated platelet environment and performed in 

triplicate. HRP chelated to Ni-NTA was used to bind to the hexa-histidine linker and ABTS was 

added as the colorimetric agent. Apparent equilibrium dissociation constants (KD) for WT C1C2, 

C1, and C2 were 80.91 ± 18.58 nM, 3447 ± 1330 nM, and 3327 ± 2036 nM, respectively, in HBS 

(R2: 0.96, 0.97, 0.92, respectively) (Figure 21, A). The importance of electrostatic interactions had 

been previously documented in Novakovic et al. from 2011, which show that the C2 domain of 

fVIII lipid binding properties was disrupted with the addition of high salt. ELISA’s of the C1 and 

C1C2 fusion constructs in increasing amounts of salt demonstrate a negative correlation between 

salt and KD, which concur with previous studies (Figure 21, B). 

Figure 20. Hybridoma cells and expression verification. A.) Hybridoma cells viewed at 10x zoom. B.) 

Hybridoma cells viewed at 200x zoom (95%) confluence. C.) Purification of B136 by Protein A. Two 

bands at 50 and 25 kDa in Lane 4 are characteristic of antibodies in reducing denaturing conditions. 
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Sedimentation assays 

 Preparation of unilamellular vesicles (UV’s) were properly formed following basic 

unilamellular extraction protocols. Initial tests of ET3i at 400 nM total protein concentration in 

HBS with 100 mM NaCl demonstrated complete retention in the pellet of 80:20 DOPC:DOPS 

Figure 21. ELISA results of fVIII C domain Trx-fusion constructs 

binding to phosphatidylserine coated plates.  A.) Comparison of 

hC1C2-Trx (closed circle), hC1-Trx (closed square), and hC2-Trx (closed 

triangle) to 20% PS/ 80% PC in TBS B.) Comparison of fVIII C1C2 

construct affinity to phospholipids in 50 mM (open circle), 100 mM (open 

square), 150 mM (open triangle), and 225 mM (open diamond) sodium 

chloride. Bound Trx-C domains were detected with Ni-NTA-HRP, and 

bound HRP was probed with ABTS with color development detection 

completed at 410 nm. 
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UV’s and zero retention with 100:0 DOPC:DOPS UV’s 

(Figure 22). In similar conditions, complete retention on the 

80:20 DOPC:DOPS UV was recorded for WT C1C2 construct 

with slight retention in the pellet of 100:0 DOPC:DOPS UV’s. 

Both C1 and C2 fusion constructs demonstrated ~60% 

retention in the 80:20 DOPC:DOPS UV’s at 5 µM total 

protein concentration, which is expected based on the KD of 

WT C1 and C2 ELISA data. 

The power of this assay was probed by pre-incubating 

WT C1 and ET3i with anti-C1 and anti-C2 inhibitors, 

respectively, to replicate ELISA data that has been previously 

published (Figure 23). As previously, WT C1 demonstrated 

~60% retention when incubated with DOPC:DOPS UVs 

compared to 100% retention of ET3i to DOPC:DOPS UVs. 

Pre-complexing C1 or ET3i with B136 led to complete loss of 

binding and 50% reduction in binding, respectively (Figure 22). This relationship was similarly 

observed for 3E6 and ET3i, which had been previously demonstrated to completely disrupt 

phospholipid binding properties of C2. Antibodies 2A9 and G99, both which are classified as non-

classical inhibitors, showed near identical sedimentation retention results as WT.  

 Mutational sedimentation assays were performed at 4 μM for C2 domain containing 

mutations at 100 mM NaCl to mimic physiological conditions. Residues of interest were based on 

the working binding model of C2 to platelets derived from the C2:G99:3E6 ternary complex and 

Figure 22. Sedimentation of 

fVIII and isolated C domain 

constructs. ET3i and C1, C2, 

and C1C2 were incubated with 

80:20 DOPC:DOPS lipid 

vesicles, sedimented, and 

separated into Supernatant (SN) 

and pellet (P) fractions. Total 

corresponds to the 100:0 

DOPC:DOPS control ran 

concurrently with each construct.  
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mutations correlated with hemophilia A from the 

CHAMP database. Namely, basic residues K2183, 

D2187, R2215, and R2320 are postulated to interact 

with the negatively charged PS head groups of activated 

platelet membranes, while residue K2227 was a control 

mutation made as K2227 does not interact with lipid 

membranes as it sits within the G99 epitope. A2201P 

has been reported to have a detrimental effect on lipid 

binding, and sedimentation assays compared to WT C2 

demonstrate a reduction in pellet retention from 70% to 

18% (Figure 24). Mutations to R2215 and R2320 

significantly reduced binding to 22.8% and 14%, 

respectively, with P-values of 0.001 and <0.001, 

respectively (α = 0.05). The D2187A mutation was 

significant in reducing binding compared to WT (P-

value: 0.041) whereas control mutation K2227A and K2183A showed similar retention as WT C2.  

  

Figure 23. Inhibitor disruption of 

phospholipid binding using isolated 

C1 and E3ti. Isolated C1 and ET3i 

were pre-incubated with classical 

(3E6 and B136) and non-classical 

(2A9 and G99) inhibitors and 

sedimented in the presence of 100:0 

and 80:20 DOPC:DOPS lipid 

vesicles. Total corresponds to the 

complete DOPC control.  
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Formation and Optimization of Lipid Nanodiscs 

Preparations of nanodiscs underwent numerous screening and optimizations. First, tagged-

MSP1D1 and tagged-MSP2N2 were attempted to be formed following a Stoilova, et al. protocol.59 

Post formation SEC of MSP1D1 nanodiscs was successful with retention time shift from a 15 mL 

retention time for native MSP1D1 protein to a 13 mL retention time shift for formed ND. 

Formation of ND with tagged-MSP2N2 were unsuccessful due to impurities and little to no 

formation of larger peaks post gel filtration. Thus, tagged-MSP1D1 was further optimized by 

Figure 24. C2 mutational sedimentation assay and analysis. A.) C2 domain point mutations 

binding to 100:0 and 80:20 DOPC:DOPS lipid vesicles. B.) Sedimentation assays of C2-Trx and 

various C2 domain point mutations with 80:20 DOPC:DOPS lipid vesicles. Total corresponds to 

the SN of 100% PC vesicles. C.) Quantitation of liposome binding assay from Panel B. SN denotes 

the supernatant and P the pellet. A two-way ANOVA comparing each mutant to WT C2 was 

performed using GraphPad Prism 9.1.2, with three or more independent trials, and Dunnett’s 

posttest. *p= <0.05, ***p = <0.001, ****p = <0.0001. 
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varying MSP:lipid molar ratios 

of 1:47, 1:100, 1:200, and 1:400 

(Figure 25). Single point binding 

of the 4 ratios was probed using 

anti-His5 BLI tips by loading 800 

nM ND and associating 800 nM 

ET3i (Table 4). The 1:200 molar 

ratio peak demonstrated the 

lowest KD at 83.5 nM and was 

utilized as the MSP1D1:lipid 

ratio for further optimizations.  

Further optimizations were investigated by changing the lipid composition to include 

various DOPS:DOPC:DOPE ratios. The 20:80:0 ratio reported the lowest single point KD when 

compared to 60:30:10 and 70:15:15 ratios (Table 5). After optimizations with tagged ND revealed 

that 1:200 and 80:20 DOPC:DOPS ratio was the optimal combination, MSP1D1 was cleaved by 

the addition of TEV and purified according to established methods. The cleaved MSP1D1 was 

formed and subjected to SEC purification, 

where a single, monodisperse peak of 9 mL 

retention time was observed. Large scale 

nanodiscs formation was attempted in 2 mL 

reactions compared to 0.5 mL reactions, but 

noticeable heterogeneity was observed (Figure 

26). 

Sample ka (1/M*s) kd (1/s) KD (nM) 

1:0 ND ND ND 

1:47 1.61 x 105 1.64 x 10-2 102 

1:100 2.53 x 105 4.62 x 10-2 183 

1:200 1.00 x 105 8.37x10-3 83.5 

1:400 1.04 x 105 ND ND 

Figure 25. MSP1D1 SEC chromatograms of nanodisc 

formation at varying MSP:lipid rations. MSP1D1 ND were 

injected in 0.5 mL samples volumes onto a S75 SEC at 0.3 

mL/min. Peaks before 8 mL are within the “dead volume” and 

are not separated. 

 

  

  

  

 

Table 4. Binding kinetics of ET3i to different 

MSP1D1 ND lipid ratios. All molar compositions 

were 80:20 DOPC:DOPS. 
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Sample ka (1/Ms) kd (1/s) KD (nM) 

20:80:0 
(Peak 1)  1.7 x 105 8.6 x 10-3 50 

20:80:0 
(Peak 2)  1.6 x 105 9.5 x 10-3 58 

15:70:15 
(Peak 1)  1.7 x 105 1.1 x 10-3 67 

15:70:15 
(Peak 2)  1.2 x 105 1.5 x 10-2 132 

30:60:10 
(Peak 1)  1.5 x 105 1.8 x 10-2 128 

30:60:10 
(Peak 2)  1.0 x 105 1.8 x 10-2 182 

A B 

1 

2 

Table 5. Binding kinetics of ET3i to 1:200 

MSP1D1 ND with varying phospholipid 

compositions. Peaks 1 and 2 refer to Figure 25. 

 

  

  

  

 

Figure 26. SEC chromatograms of Nanodiscs formation optimization. A.) SEC chromatograms of 

MSP1D1 ND formed at varying DOPS:DOPC:DOPE ratios. Peaks 1 and 2 correspond to fractions 

tested for optimal fVIII binding. B.) Volume trials for improving ND yield. Increasing the volume of 

ND preps lead to the emergence of numerous peaks. 
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Binding to cND was verified utilizing a mouse derived anti-human A2 domain mAb 1D4 

pre-complexed with ET3i. The A2 domain is the most distally positioned fVIII domain in relation 

to the C domains. Binding of ET3i to an anti-A2 domain inhibitor immobilized on a BLI sensor 

would position the C domains away from the biosensor tip, maximally exposing the two lipid 

binding domains. Anti-A2 inhibitor 1D4 and ET3i were pre-complexed, loaded onto anti-mouse 

antibody capture biosensors (AMC) and associated to cleaved ND at 800 nM. Binding extrapolated 

from a triplicate; single concentration trial yielded a KD of 50 nM (Figure 27). When 100% DOPC 

containing cND was tested against the ET3i:1D4 complex, no association was measured.   

Binding kinetics for WT 

C1C2, R2163S, R2320S, and 

R2163S_R2320S were calculated 

by loading 800 nM C1C2 complex 

onto an anti-His5 biosensor and 

associated against serially diluted 

cND from 4500 nM to 6.25 nM 

(Table 6). Association and 

dissociation rate constants for WT 

C1C2 were 1.5 x 105 ± 1.6 x 103 

min-1M-1 and 1.3 x 10-3 ± 5.6 x 10-4 

min-1, respectively, for a KD of 8.9 ± 7.2 nm. The KD for R2163S and R2320S were 1.4 ± 0.031 

μM and 2.9 ± 0.015 μM, respectively. The apparent affinity of both R2163S and R2320S was 160-

fold and 326-fold lower, largely in part to a faster dissociation rate (0.055 ± 0.0042 min-1 and 0.24 

Figure 27. Cleaved MSP1D1 binding verification via BLI. 

ET3i was pre-complexed with A2-inhibitor 1D4, bound to 

AMC tips, and incubated with cND at 800 nM. Triplicate 

association and dissociation trials were normalized and reveal 

minimal binding to 100% DOPC cND and nanomolar affinity 

to 80:20 DOPC:DOPS cND. 
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± 0.012 min-1, respectively). This indicated that mutations to R2163 or R2320 not only disrupted 

binding to cND compared to WT, but that single point mutations resulted in KD values identical to 

WT isolated C1 and C2 (3.4 ± 1.3 μM and 3.3 ± 2.0 μM, respectively). Point mutations at both 

R2163 and R2320 in the same construct were accomplished with minimal above background 

binding observed at the highest ND concentration attempted (Figure 28).  

  

  kon (x104 M-1s-1) koff (x10-3 s-1) KD (nM) 

WT  14.7 ± 0.16  1.31 ± 0.56  8.93 ± 7.2 
R2163S  3.81 ± 0.21 54.8 ± 4.2  1,440 ± 31 
R2320S 8.23 ± 0.38  241 ± 12 2,900 ± 15 
R2163S/R2320S  ND ND ND 

Table 6. Apparent binding kinetics and affinities of fVIII C1C2 

mutations with lipid nanodiscs. Data represents the average of three or 

more independent experiments with a 95% confidence interval. WT 

C1C2, R2163S, R2320S, and R2163S/R2320S double mutant were 

associated to an anti-His5 BLI sensor and associated to cleaved 

nanodiscs. kon- rate of association, koff- rate of dissociation, KD- 

dissociation constant (koff/kon). 
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Figure 28.) Bio-Layer interferometry binding measurements of fVIII C1C2 domain mutations to 

cleaved nanodiscs. A.) Average association binding for bound WT C1C2 (closed circle), R2163S C1C2 

(closed triangle), R2320S C1C2 (closed square), and R2163S/R2320S C1C2 (closed diamond) with 

cleaved 80:20 PC/PS 1:200 MSP1D1 ND and baseline was established from 100% PC 1:200 cleaved 

MSP1D1 ND. C domain loading onto the tips was step-corrected, normalized using Excel, and graphed 

on GraphPad Prism 9.1.2. Raw normalized binding curves for B.) WT C1C2, C.) R23163S, D.) R2320S, 

E.) R2163S/R2320S. 



 

52 
 

OPS:C2 crystal structure 

 The porcine fVIII C2 domain was crystallized, soaked with the headgroup of 

phosphatidylserine (OPLS), and X-ray diffraction data was collected at the ALS beamline by 

previous Spiegel lab members. The structure of pC2 bound to OPLS was phased and refined to 

1.3Å resolution, which provides high resolution insight into the basic residues that may interact 

with phosphatidylserine containing lipids on activated platelet membranes (Table 7). Alternate 

conformation modeling was done by modeling two hydrophobic loops separately and manually 

modifying the PDB file to incorporate two distinct conformations, which was then subjected to 

multiple rounds of refinement (Figure 29). OPLS was placed into the pC2 crystal using Ligand fit 

and refined in real space until the correlation coefficient could not be improved. Final refinements 

with water molecule, OPLS, and multiple conformations resulted in a final pC2 crystal with model 

refinement statistics of Rfactor (Rwork) and RFree of 0.1354 and 0.1570, respectively. Rfactor values 

below 0.2 confers a high-quality model (Brunger 1992) and a Rwork/Rfree ratio less than one 

indicates a non-biased model based on x-ray fitting. The C2:OPS structure was submitted and 

deposited into the protein data bank (PDB) under the code S70P. 
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X-ray data statistics   

    Wavelength (Å) 1.00 Å 

    Resolution range (Å) 44.53 - 1.3 (1.346 - 1.3) 

    Space group I 2 2 2 

    Unit cell (Å) a = 49.1, b = 68.3, c = 106.0 

    Total reflections 85226 (6517) 

    Unique reflections 42675 (3297) 

    Completeness (%) 96.54 (75.65) 

    Mean I/sigma (I) 18.77 (2.33) 

    Rpim 0.01354 (0.2791) 

Model refinement statistics   

    Rfactor 0.1354 (0.2106) 

    Rfree 0.1570 (0.2308) 

Number of Atoms 1544 

    Protein 1362 

    Water 182 

Protein residues 157 

RMS bonds (Å) 0.007 

RMS angles (°) 1.07 

Ramachandran favored (%) 93.55 

Ramachandran outliers (%) 0.00 

Rotamer outliers (%) 1.95 

Average B-factor (Å2) 21.53 

    Protein  20.25 

    Solvent 30.17 

 

 

 

 

Table 7. X-ray data collection and model refinement statistics. 
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The structure of C2 aligns with previously published structures of the C2 domain, 

containing 2 solvent exposed hydrophobic loops and a β-barrel motif. Previous literature mentions 

inherent flexibility of the solvent exposed hydrophobic loops on the basal surface of the C2 

domain.60 Within this data set, poor density was observed within the N-terminal, C-terminal, and 

two solvent exposed, hydrophobic loops of C2 (Figure 30, A). The loops pertain to S2197/T2202 

and L2251/L2252, which have both been corroborated as loops involved in phospholipid binding. 

Despite the poor density, two loop conformations were manually modeled for the S2197/T2202 

loop. Refinement placed equal weight between the two conformations, resulting in a 4.5 Å shift 

between both present F2200 sidechains (Figure 30, B-D).  

Figure 29. Porcine C2:OPS crystal structure. C2 crystals were grown via hanging drop vapor 

diffusion and soaked in 10 mM OPS. A.) Electrostatic surface map of the C2:OPS crystal structure. OPS 

is situated within the most basic cleft on the C2 domain. B.) Ribbon diagram of C2:OPS. PDB (S70P). 

A B 
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 Modeling of the OPLS residue was utilized to investigate basic residues involved in 

binding to PS head groups during clotting. Placement of OPLS into positive density positioned it 

within 3.2 Å of R2320, 3.3 Å of S2289, 3.1 Å of N2217, and 3.4 Å within Q2213 (Figure 31). In 

this structure, the R2320 and Q2213 residues contact the carboxylate of OPLS whereas N2217 

seems to bind to the phosphoric acid moiety. Placement of OPLS extends distally between 

protruding hydrophobic loops L2209-G2214 and S2250/S2253. This offers structural evidence to 

support the working binding based on the classical epitope. Along with mutational data, structural 

data suggests the R2320 resides makes an essential contact with PS headgroups and is critical to 

factor fVIII function. 

D C B 

4.5 Å  

A2201 

F2200 

I2199 

T2202 

N2198 

S2197 

T2202 

A2201 

F2200 I2199 

N2198 

S2197 

A 

Figure 30. Flexibility of fVIII C2 domain solvent exposed loop. A.) Density fit validation of the 

C2:OPS structure in WinCoot. Green indicates excellent fit of the structure into diffraction density and 

red indicates poor density fit B.) Alternate conformation 1 of the 2197-2202 loop. C.) Alternate 

conformation 2 of the 2197-2202 loop. D.) Overlay of the 2197-2202 loop conformations. 
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Q2213 
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3.4 Å  

3.0 Å  
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3.5 Å  

Figure 31. OPLS fitting and crystal contacts. A.) WinCoot density placement of OPLS within the C2 

crystal structure. Blue density represents accounted for density within the density map. B.) 

Intermolecular contact between OPS and C2. R2320, S2289, N2217, and Q2213 make ionic interactions 

with the OPS molecule.  

A B 
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Chapter 4: Discussion 

The C domains of fVIII facilitate membrane binding onto activated platelet surfaces during 

the formation of key coagulation complexes. Initial binding models proposed for the C domains to 

platelet membranes focused on the C2 domain due to the ample amount of structural information 

present. Within the C2 domain, two hydrophobic, solvent exposed loops imbed into the anhydrous 

interior of the platelet bilayer, anchoring C2 to the surface. This observation has been corroborated 

through mutational and structural studies from numerous labs.54,60–62 Although these interactions 

have been supported, hydrophobic fVIII membrane association is proposed to have a 

complementary role with basic residues surrounding the hydrophobic loops. Phosphatidylserine 

concentration is upregulated during platelet activation and studies have suggested that fVIII 

contains an OPLS specific binding region that mediates tight association.53 

C2 domain binding models collectively support the embedding of two hydrophobic loops 

into the anhydrous interior of lipid membrane, but models deviate on which basic residues interact 

with the platelet surface. The first detailed model proposed K2227 as an important basic residue 

contact for lipid binding.45,46 This complementary interaction, however, was brought into question 

after structural information placed the K2227 residue within the “non-classical” epitope, which 

disrupts Tenase complex formation by preventing the formation of the fVIIIa:fIXa interface but 

not phospholipid binding.63 This data suggested that the “non-classical” epitope must face away 

from the lipid surface and K2227 could not be involved in lipid binding. The “classical” epitope 

face was resolved within the same structure and subsequently utilized to modify the orientation of 

C2 within the binding model. Within this inhibitor informed model, the C2 domain was rotated 

~130 degrees around a central axis, placing the “classical” epitope within contact of the negatively 
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charged platelet surface. The 

updated binding model was 

centered upon C2 domain 

residue 2320, which is the 

most basic residue of the C2 

domain based on electrostatic 

surface calculations (Figure 

32). This updated model 

provided an avenue to 

structural and mutationally 

verify the binding model.  

The crystallization of C2 

with OPLS revealed a high-resolution snapshot of basic residues involved in lipid binding. The 

conserved R2320 residue made direct contact with OPLS at 3.0 and 3.2 Å, forming the main salt 

bridge interaction with the head group of phosphatidylserine. Based on the orientation of the OPLS 

moiety, interactions with Q2213 and N2217 appear to be involved but are hypothesized to play a 

stabilization role in binding to the PS headgroup. This binding of R2320 to OPLS provides direct 

structural confirmation of the inhibitor influenced model detailed in Brison et al. Compared to 

previous crystal structures of porcine C2 domain (PDB: 4MO3), there are minimal differences 

between structures with an RMSD of 0.052, with difference between structures present in highly 

flexible regions of C2: the N-terminus, C-terminus, and hydrophobic solvent exposed loops.  

Figure 32. Updated activated platelet binding model of the 

fVIII C2 domain. The model situates hydrophobic residues inside 

the anhydrous interior of the platelet bilayer and positions solvent 

exposed basic residues in proximity to phospholipid head groups. 

The model was centered around R2320 (yellow) as the principal 

residue. PDB: 6MF0. 
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Preliminary mutational data was 

completed for C2 residues R2320 and R2215, 

which both were proposed to make direct 

interactions with the phospholipid surface. 

ELISA assays completed for C2 R2320S 

inhibited binding to phospholipid coated plate 

compared to WT C2 with no detectable KD and 

1600 nM, respectively (Figure 33). Intrinsic 

fluorescence of the R2320S mutation was accomplished by a previous graduate student, which 

demonstrated a slight decrease (2.3 kJ/mol) in stability compared to WT. This ΔGH20, although 

different, is likely not significant and suggests that WT and R2320S may have similar tertiary 

structures. Even though this data suggested the relationship of R2320, it is difficult to completely 

presume the relationship as both C domains of fVIII have been postulated to have similar roles in 

phospholipid binding. Even so, models generated utilize the C2 domain alone. Expression of fVIII 

is troublesome because it contains three heavily glycosylated A domains that require mammalian 

cell vectors for proper folding and expression to occur. Thus, to circumvent this problem, the C1C2 

construct was pursued to obtain an E. coli expressible construct that mimics fVIII physiological 

binding affinities. 

Previous attempts at the expression of a C1C2 construct have been attempted by other 

labs.64 Published expression of C1C2 has exclusively occurred in the insoluble fraction during 

E.coli preparations. This data supports previous attempts to express the isolated C1 domain, which 

was unsuccessful to achieve outside of the insoluble fraction. Circumvention of this problem was 

achieved by expressing the C1C2 and C1 domains with a Trx solubility tag in a modified SHuffle 

Figure 33. ELISA of WT C2 and R2320S 

binding to phospholipid coated surfaces. Non-

linear fit was accomplished using GraphPad Pro. 
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T7 cell line optimized to promote slow expression and proper folding of disulfide containing 

proteins.65 Expression of C1C2 and C1 in SHuffle K12 cells allowed soluble expression of 50 kDa 

and 36 kDa proteins that bound to lipid membranes as expected, with KD’s similar to fVIII and 

C2, respectively. Affinity of C1C2 to phospholipid treated ELISA plates in physiological 

conditions was 10-fold higher than literature and of the same magnitude when measured with BLI 

and ND. ELISA assays utilizing treatment with lipids have high background and can possibly 

explain the difference between current and published values. Research focusing on C2 lipid 

binding have demonstrated a inversely correlated relationship between C2 domain lipid affinity 

and salt concentration.66 Utilizing the C1C2 domain, we were able to confirm this relationship 

with ELISA, further cementing the importance of electrostatic interactions between the C domains 

and PS containing surfaces. 

 Purification of the C1C2 and C1 domains proved to be problematic. During expression, a 

70-kD contaminant co-eluted during IMAC purification regardless of stringent washes of over 50 

CV. Based on the size and frequency of the 60-70 kD band, it was presumed that the impurity was 

most likely a chaperone. One of the most prevalent chaperones in E. coli is Hsp70, which is a 

heterodimer of 60 and 10 kDa bands. Hsp70 is presumed to bind via hydrophobic interactions, 

which may bind to the 1200 Å hydrophobic C1 domain interface normally sequestered by the A3 

domain of fVIII. Chaperone-C1C2 containing complexes were separated and purified by addition 

of ATP/MgCl2 or IEC at low ionic strength. Literature of the Hsp70 chaperone details how 

chaperone bound proteins can be released from the chaperone due to an ATP-induced 

conformational change within Hsp70 upon binding of ATP.67 Moreover, hydrophobic interactions 

have a correlated relationship with salinity of solution, where hydrophobic interactions are 

strengthened in high salt conditions. Thus, removal of salt by IEC may have reduced the strength 



 

61 
 

of chaperone binding in hydrophobic areas and allowed purification of C1 and C1C2 constructs. 

Furthermore, the presence of a 6-fold greater hydrophobic region on C1 compared to C2 might 

explain the amount of precipitation witnessed for C1 contain constructs versus C2.   

In support of the crystallographic finding that R2320 is the central residue involved in 

negatively charged phospholipid binding, mutational data of C1C2 R2320S, R2163S, and 

R2320S/R2163S demonstrate disruption of phospholipid binding. As previously mentioned, the 

C1 and C2 domain are believed to have a complimentary binding interaction, as WT isolated C1 

and C2 domains bind with ~100-1000 fold lower affinity compared to WT fVIII.66,68,69 Disruption 

of either R2163 or R2320 resulted in binding comparable to isolated C domain bindings, and 

mutation within the same C1C2 construct led to minimal binding above background. This 

interaction not only implicates the importance of this arginine at this position within each domain 

but also that hydrophobic loops alone cannot rescue binding. There appears to be no current 

publications that inquire about the stability and potential structural implications of mutations to 

different fVIII C2 domain residues. Although intrinsic fluorescence was completed for the isolated 

C2 R2320S mutation, no trials were completed for any C1 domain containing construct. Even so, 

the R2163 and R2320 residues are conserved between species and within the fV homolog, which 

implies the importance of these residues. In support of this OPLS interaction with both R2163 and 

R2320, membrane binding simulations predicted that C2 basic residues nonspecifically interact 

with the negatively charged lipid membrane with the exception of R2320 and R2220.57 This study 

postulated that although there are two interactions possible, they are mutually exclusive. For the 

interaction of R2320 to occur with OPLS, the interaction with R2220 cannot occur. A study with 

full length BDD-fVIII with a R2220A mutation demonstrated that the relative specific activity of 

this mutation was greater than that of WT fVIII.54 Moreover, simulation conducted on the C1 
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domain resulted with the only direct interaction corresponding to R2163. The residue in the same 

position of R2220 in the C1 domain is S2063, further supporting the robustness of the conserved 

nature of the R2320/R2163 binding interaction.  

Recent improvement in full length fVIII structures has provided improved atomic structural 

insight into how the C1 and C2 domains are positioned relative to another.33,70,71 Within one of 

these crystallographic data sets, two molecules of fVIII were resolved per unit cell.33 Interestingly, 

the C2 domain in model A was oriented as previously described in literature, but model B was 

rotated and tilted compared to previous structures. This contrast in C2 conformations suggested 

that the C2 domain has inter-domain conformational states as well as the previously described 

intradomain conformational movement of the solvent exposed, hydrophobic loops.60,72 Although 

suggested, no detailed model has been proposed utilizing this conformational state. Employing the 

6MF0 model A and B, alignment to the C1 and A domains results in a single C1 conformation and 

two C2 conformations. Given that mutations to R2163 and R2320 result in abrogation of binding, 

the platelet surface is hypothesized to sit within contact of both of the residues. By aligning the 

C2:OPS structure to both C2 domains, the OPLS headgroup was utilized to create a planar 

orientation of the C domains to lipids that extends perpendicular to the OPLS moiety. Since the 

C2 domain R2320 residue shifts 9.0 Å between model A and B, two different planar models were 

generated to account for the possible conformations (Figure 34). 
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To investigate the possibility of a “correct” membrane model, epitope mapping of 

inhibitory C2 antibodies were utilized to reveal regions of both domains that are involved in 

platelet binding as well as offer insight into regions that do not interfere with platelet binding.62–

64,73 Alignment of G99 and 3E6, which were used in generation of the current proposed membrane 

model, resulted in similar orientations for both models A and B (Figure 35). Within the B model, 

placement of 3E6 protrudes between the C domains and appears to make contacts with the C1 

domain, which has not been alluded to in literature. Regardless of the model, the G99 inhibitor 

extends away from the planar membrane which is expected of a “non-classical” C2 inhibitor. The 

3E6 epitope itself, comprised of K2183, D2187, R2209, H2211, Q2213, and R2215, is widely 

Figure 34. Planar modeling of the fVIII Model A and Model B C2 domain orientations. PyMOL 

script was used to generate a free-floating plane that passes 3.0 Å below R2320 and R2163. A.) 

Horizontal planar orientation of Model A. B.) Horizontal planar orientation of Model B. C.) Aligned 

Model A and B planar orientations. Surface coloration of fVIII domains (red: A domains, gray: C 

domains) and structurally defined epitopes G99, 3e6, and B02C11 (yellow, blue, dark red, respectively). 
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speculated to make direct contact with negatively charged lipid headgroups. Mutational data, 

however, indicates alanine mutations to these residues retains fVIII activity.54,74 Additional 

hypotheses surrounding 3E6 binding disruption revolve around charge neutralization during 

complex formation and spatial disruption.63 Within this newly prosed model, the 3E6 inhibitor 

extends deep into the planar membrane model, indicating that 3E6 might truly spatially displace 

fVIII from lipid membranes. Point mutations identified with disruption of PL binding were also 

3E6 

G99 

R2320 

B02C11 Epitope 

Figure 35. Structural modeling of anti-C2 inhibitors based on fVIII planar model. Structural 

depiction of Model A with anti-C2 antibodies 3E6 and G99 (blue and yellow, respectively). A domains 

of fVIII are shown in red, yellow: G99 FAB, blue: 3E6 FAB, orange: R2163/R2320, gray: C domains. The 

G99 non-classical inhibitor extends away from the surface while classical inhibitor protrudes well within 

the membrane surface. 
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highlighted within each model to validate the placement of the new model. (Figure 36). Residues 

W2313-H2315 are positioned at or slightly above the proposed planar membrane, justifying the 

proposed interaction given the high flexibility of the given region.60 The two hydrophobic loops 

containing M2199, F2200, L2251, and L2252 are positioned well below the surface. The 

synonymous C1 hydrophobic loop containing K2092 and F2093 are additionally positioned below 

the mock membrane surface. Basic residues of interest (Q2213 and R2215), which are main 

contacts within the 3E6 epitope, are positioned at and well below the membrane surface, 

respectively. Given the highly flexible nature of the C2 domain loops and multiple conformers of 

arginine, is seems plausible that the R2215 residue may undergo a local conformational change in 

the presence of lipid membranes. Mutations documented at the 2215 position are more 

hydrophobic in nature (S and T) and allude to this plausibility. 
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K2092 

F2093 

V2314 

Figure 36. Updated fVIII C domain lipid model based on mutational data. A) Superposition of the 

C2:OPS structure with the A model of ET3i. Hydrophobic residues and 3E6 residues shown to impact 

phospholipid binding are shown as red sticks and blue sticks, respectively. The 3E6 epitope (marine) is 

oriented towards the phospholipid bilayer.  
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The main structural deviations between model A and B are the orientation of A domains in 

relation to the C domains and the overall tilt of the molecule. Models of fVIII lipid binding portray 

fVIII as a vertically ascending molecule that has the A domains stacked directly above the two C 

domains. This model is demonstrated in papers from Wakabayashi et al 2013, Dalm et al 2015, 

and Lu et al 2010. Contrary to this orientation, Model A of fVIII has the A domains shifted and 

tilted away from a central axis at approximately 45°. Fluorescence resonance energy transfer 

(FRET) studies indicate that fVIII associated to membranes tilts with an angle of 36-46 degree in 

relation to the membrane surface.75 Based on this observation and that both C domains are oriented 

perpendicular to the lipid surface when modeled to interact with the two conserved R2320/R2163, 

the model A of fVIII seems to best portray how fVIII is oriented on lipid membranes. This model 

does deviate from previous models, where the C domains themselves are tilted in relation to the 

platelet membrane. Previous models do not take into consideration the collective placement of 

both C domains, as binding models are historically based on high-resolution structures of isolated 

C2.60,61,63,75,76. Additional, both models may provide insight into a conformational shift of the C2 

domain when associating to fIXa during hemostasis. Association of the fVIII C2 domain to the 

fIXa Gla domain is well established, occurring between residues 2228-2240 while interactions at 

484-509, 558-565, 1790-1798, and 1811-1818 have been predicted for A2 and A3 domains.77 

Model B rotates the C2 domain inwards, decreasing the distance between the 2228-2240 region 

and putative residues on the A domains (Figure 37). This suggests that although model A best 

corroborates previous findings for generalized lipid binding, both models may be informative 

when binding to fIXa, lipids, or both. 

 

 



 

67 
 

 

 

 

  

In this study, we used mutational and structural information to improve a full fVIII lipid 

binding model. Mainly, the orientation of the C domains revolves around a conserved R2320/2163 

motif at the classical epitope face. Specific interactions observed for the OPLS molecule occur 

with R2320 but observed interactions at Q2213 and N2217 appear to be non-essential as previously 

determined. Overall, it is hypothesized that two hydrophobic, solvent exposed feet protrude into 

lipid membranes, orienting the R2320/2163 motif at the lipid interface, and position other basic 

residues to be involved in complementary roles. Further research with fVIII and lipid nanodiscs 

could allow a higher resolution structure containing a full lipid surface to corroborate the 

electrostatic interactions that may take place.  

  

484-509 

558-565 

1790-1798 

2228-2240 
2228-2240 

558-565 484-509 

1790-1798 

Figure 37. fIXa epitope mapping on fVIII. A.) Epitope mapping of the putative fIXa binding region 

(purple) onto model A. C.) Model B epitope mapping of fIXa epitope. The C2 domain swings the C2 

interaction face towards the front of the structure.  

B A 
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Appendix 

Factor VIII C1C2_pET-32a(+): 

MSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAAT

KVGALSKGQLKEFLDANLAGSGSGHMHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAMADIGSENLYFQSNSNK

CQTPLGMASGHIRDFQITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYISQFIIMYSLDGKK
WQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLRMELMGCDLNSCSMPLGMESKAISDAQITASSYFTNMFAT

WSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQD

SFTPVVNSLDPPLLTRYLRIHPQSWVHQIALRMEVLGCEAQDLY 

Factor VIII C1C2_R2163S_pET-32a(+): 

MSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAAT

KVGALSKGQLKEFLDANLAGSGSGHMHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAMADIGSENLYFQSNSNK

CQTPLGMASGHIRDFQITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYISQFIIMYSLDGKK

WQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLSMELMGCDLNSCSMPLGMESKAISDAQITASSYFTNMFAT

WSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQD

SFTPVVNSLDPPLLTRYLRIHPQSWVHQIALRMEVLGCEAQDLY 

Factor VIII C1C2_R2320S_pET-32a(+): 

MSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAAT

KVGALSKGQLKEFLDANLAGSGSGHMHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAMADIGSENLYFQSNSNK

CQTPLGMASGHIRDFQITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYISQFIIMYSLDGKK

WQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLRMELMGCDLNSCSMPLGMESKAISDAQITASSYFTNMFAT

WSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQD

SFTPVVNSLDPPLLTRYLRIHPQSWVHQIALSMEVLGCEAQDLY 

Factor VIII C1C2_R2163S_R2320S_pET-32a(+): 

MSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAAT

KVGALSKGQLKEFLDANLAGSGSGHMHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAMADIGSENLYFQSNSNK

CQTPLGMASGHIRDFQITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYISQFIIMYSLDGKK

WQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLSMELMGCDLNSCSMPLGMESKAISDAQITASSYFTNMFAT

WSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQD

SFTPVVNSLDPPLLTRYLRIHPQSWVHQIALSMEVLGCEAQDLY 

Factor VIII C1_pET-32a(+): 

MSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAAT

KVGALSKGQLKEFLDANLAGSGSGHMHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAMADIGSENLYFQSNSNK

CQTPLGMASGHIRDFQITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYISQFIIMYSLDGKK

WQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLRMELMGCDLNS 

 

Appendix Figure 1. Complete Construct Sequences for factor VIII C1 and C1C2. Sequences 

were ordered from Genscript, verified, and translated to amino acid codes using Expasy through 

ProtParam. Factor VIII C domain sequences are highlighted in green, thioredoxin in yellow, 6x-His 

tag in cyan, and mutations in red. 
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