
Circular Coinduction with Special Contexts

Dorel Lucanu1 and Grigore Roşu2

1 Faculty of Computer Science
Alexandru Ioan Cuza University, Iaşi, Romania, dlucanu@info.uaic.ro

2 Department of Computer Science
University of Illinois at Urbana-Champaign, USA, grosu@cs.uiuc.edu

Abstract. Coinductive proofs of behavioral equivalence often require
human ingenuity, in that one is expected to provide a “good” relation
extending one’s goal with additional lemmas, making automation of coin-
duction a challenging problem. Since behavioral satisfaction is a Π0

2 -hard
problem, one can only expect techniques and methods that approximate
the behavioral equivalence. Circular coinduction is an automated tech-
nique to prove behavioral equivalence by systematically exploring the
behaviors of the property to prove: if all behaviors are circular then the
property holds. Empirical evidence shows that one of the major reasons
for which circular coinduction does not terminate in practice is that the
circular behaviors may be guarded by a context. However, not all con-
texts are safe. This paper proposes a large class of contexts which are safe
guards for circular behaviors, called special contexts, and extends circu-
lar coinduction appropriately. The resulting technique has been imple-
mented in the CIRC prover and experiments show that the new technique
can prove many interesting behavioral properties fully automatically.

1 Introduction

Coinduction allows us to prove properties about infinite objects, such as, for
example, streams of numbers. Since many system specifications manifest infinite
behaviors, coinduction is increasingly gaining interest among computer scien-
tists. There are many efforts to mechanize proofs by coinduction, e.g., [6, 14,
18, 10, 13] among many others. Circular coinduction [18] is an automated tech-
nique to prove behavioral equivalence by systematically exploring the behaviors
of the property to prove. More specifically, it derives the behavioral task until
one obtains, on every derived path, either a truth or a cycle. Variants of cir-
cular coinduction have been implemented in at least three systems so far: in
a behavioral extension of OBJ called BOBJ [18] (not maintained anymore), in
Isabelle/HOL for CoCasl [10], and in CIRC [11].

Circular coinduction can be formalized as a three-rule proof system deriving
pairs of the form H �	 G, where H (hypotheses) and G (goals) are sets of
equations [17]. Some hypotheses are frozen and written in a box (e.g., e), with
the intuition that those cannot be used in contextual reasoning. This can be
easily achieved by defining the box as a wrapper operator of a fresh sort result,
Frozen. The hypotheses H can contain both frozen and normal (or “unfrozen”)
equations. The goals G are frozen. The circular coinduction proof system in [17]
is the particular case of that in Fig. 1, when the set Γ of special contexts used in
the third rule is always empty. The first rule says that the derivation is finished

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

when there are no goals left. The second rule discards those goals which can be
proved using the base entailment system extended over frozen equations. The
third rule is the distinguished rule of circular coinduction that enables circular
reasoning and it essentially says that in order to prove behavioral property e,
assume it and prove its derivatives ∆[e] (∆ is a distinguished set of operations
called derivatives). Without freezing, the above would hold vacuously by the
congruence rule; freezing inhibits the applications of congruence.

·
H �	 ∅

H �	 G, H ` e

H �	 G ∪ { e }

H ∪ Γ [e] ∪ { e } �	 G ∪ ∆[e]

H �	 G ∪ { e },
e hidden equation
Γ special contexts

Fig. 1. Three-rule proof system for circu-
lar coinduction with special contexts

In this paper we extend the ba-
sic circular coinduction proof system
with the ability to use hypotheses
defined by special contexts. The re-
sult is a more powerful proof system,
presented in Figure 1, able to auto-
matically prove a larger class of be-
havioral properties. The techniques
presented in this paper have been
implemented and extensively evalu-
ated in CIRC [11], a behavioral extension of Full Maude [5] tuned and optimized
for automated and combined inductive and coinductive proving.

We exemplify the notions and techniques in this paper using the following
behavioral specification of infinite streams. The elements of streams belong to an
algebraic structure consisting of a commutative ring enriched with an additional
operation not, defined for example using the following equations: D + 0 = D,
D·1 = D, D+(−D) = 0, D·0 = 0, (−1)·D = −D, D·(D1+D2) = D·D1+D·D2,
not(0) = 1, not(1) = 0, not(not(D)) = D, We consider streams defined in
terms of head (hd) and tail (tl), as derivatives, together with several operations
behaviorally defined in Fig. 2. The operation [·] expresses the embedding of
data into streams, and the operations zero, + and × extend the corresponding
operations over data to streams. The stream morse is the famous Thue-Morse
sequence (see, e.g., [2]). An alternative definition for the Thue-Morse sequence
is given by altMorse, using an auxiliary function f . The Thue-Morse sequence is
a fixed point for f ; this can be proved by circular coinduction [17].

zip(odd(S), even(S)) = S
f (not(S)) = not(f (S))
f (S) = zip(S ,not(S))
f (morse) = morse
morse = altMorse ∗
S × zero = zero ∗
S1 × (S2 + S3) = S1 × S2 + S1 × S3 ∗
(S1 + S2) × S3 = S1 × S3 + S2 × S3 ∗

Having given the definition in Fig.
2, we can now prove automatically
several properties about streams using
the new CIRC system which imple-
ments the circular coinductive tech-
nique proposed in this paper. The ta-
ble to the right includes some of these
properties, tagging with a “*” those
that need the special contexts exten-
sion proposed in this paper (the tagged properties cannot be proved automat-
ically using the previous circular coinductive technique in [17]). Let us discuss
two of these properties, pointing out only the high level proof steps using the
circular coinduction proof system and not how CIRC works.

2

Opn. name Equations

zero hd(zero) = 0 tl(zero) = zero
[·] hd [S] = hd(S) tl [S] = zero
+ hd(S1 + S2) = hd(S1) + hd(S2) tl(S1 + S2) = tl(S1) + hd(S2)
× hd(S1 × S2) = hd(S1) · hd(S2)

tl(S1 × S2) = tl(S1) × S2 + [hd(S1)] × tl(S2)
odd hd(odd(S)) = hd(S) tl(odd(S)) = even(tl(S))
even even(S) = odd(tl(S))
zip hd(zip(S1, S2)) = hd(S1) tl(zip(S1, S2)) = zip(S2, tl(s1))
morse hd(morse) = 0 hd(tl(morse)) = 1

tl2(morse) = zip(tl(morse),not(tl(morse)))
f hd(f(S)) = hd(S) hd(tl(f(S))) = not(hd(S))

tl2(f(S)) = f(tl(S))
altMorse hd(altMorse) = 0 hd(tl(altMorse)) = 1

tl2(altMorse) = f (tl(altMorse))

Fig. 2. STREAM: A behavioral specification of streams and operations on them.

Consider property zip(odd(S), even(S)) = S . Start with H0 = STREAM and
G0 = { zip(odd(S), even(S)) = S }. Apply third derivation rule with e0 the equa-
tion zip(odd(S), even(S)) = S , and obtain H1 = H0 ∪{ e0 } and G1 = { e1 , e2 },
where e1 and e2 are the derivatives of e0, respectively: hd(zip(odd(S), even(S))) =
hd(S) and tl(zip(odd(S), even(S))) = tl(S). Apply second rule for e1 using the
stream equations, and obtain H2 = H1 and G2 = { e2 }. Apply second rule

for e2 , by first reducing it to zip(odd(tl(S)), even(tl(S))) = tl(S) and then
using the frozen hypothesis e0 at its top with substitution S 7→ tl(S), we ob-
tain H3 = H2 and G3 = ∅. It is easy to see now that the sequence Hi �	 Gi,
i = 3, 2, 1, 0, is a derivation of the proof system. Note that freezing is necessary,
otherwise the derivatives would always follow from the equational congruence
rule, no matter whether the task holds or not.

Consider now the property S × zero = zero. By the third rule, add the
frozen form of this goal S × zero = zero as hypothesis and thus generate

two new goals: hd(S × zero) = hd(zero) and tl(S × zero) = tl(zero) . The
former is eliminated by the second rule and the latter is reduced, using the
stream equations, to tl(S) × zero + [hd(S)] × zero = zero . Even if the sub-
terms tl(S) × zero and [hd(S)] × zero are instances of the added hypothesis,
this cannot be applied because the hypothesis is frozen. However, for this case it
is sound to apply the frozen hypothesis under the + operator, i.e., by adding “on
the fly” the special hypotheses S × zero + S ′ = zero + S ′ and S ′ + S × zero =

S ′ + zero . These hypotheses can be automatically generated by using the “spe-
cial contexts” γ1 = ∗ :Stream + S′ and γ2 = S ′ + ∗:Stream. The new special
hypotheses added are γ1[e] and γ2[e] , respectively, and are added to the hy-
potheses using the third proof rule of the system presented in Figure 1. Circular
coinduction and the two hypotheses succeeds to successfully finish the proof.

Note that some contexts cannot be special, for example, odd(∗:Stream). The
following example is inspired from [7]. Let a and b be specified by hd(a) =
hd(b), tl(a) = odd(a) and tl2 (b) = odd(b), and let odd(b) = a be the goal we

3

want to prove. Applying the third rule, this goal is added as frozen hypothesis
odd(b) = a and the following two new goals are generated: hd(odd(b)) = hd(a)
and tl(odd(b)) = tl(a). The former is eliminated by the second rule, and the
latter is reduced to odd(odd(b)) = odd(a). If we assume that odd(∗:Stream)
is special, and hence the hypothesis odd(odd(b)) = odd(a) is automatically
added, then we would wrongly deduce that odd(b) = a. A counter-example is
given by a = 0 : 0 : 1 : 2∞ and b = 0 : 1 : 0∞.

The rest of the paper is structured as follows. Section 2 introduces basic
notions and notations. Section 3 and Section 4 recall from [17] the proof theo-
retical approach for the behavioral satisfaction and coinduction and the circular
coinduction proof system, focusing on the role of the freezing operator. Section
5 introduces the concept of special hypotheses as a closure operator and extends
the coinductive circularity principle to the case when the special hypotheses are
used. Then the concept of special context is introduced and it is shown how
these yield a particular class of special hypotheses. Section 6 presents how the
CIRC theorem prover implements both the circular coinduction and the special
contexts. An algorithm for automatically computing of the special contexts is
briefly presented. The section ends with a result showing how sometimes the
infinite execution of the circular coinduction are in fact proofs.

2 Preliminaries

We assume the reader familiar with basics of many sorted algebraic specifica-
tions and only briefly recall our notation. An algebraic specification, or simply
a specification, is a triple (S, Σ, E), where S is a set of sorts, Σ is a (S∗ × S)-
signature and E is a set of Σ-equations of the form (∀X) t = t′ if ∧i∈I ui = vi

with t, t′, ui, and vi Σ-terms with variables in X , i = 0, . . . , n; the two terms
appearing in any equality in an equation, that is the terms t, t′ and each pair ui,
vi for each i ∈ I, have, respectively, the same sort. If the sort of t and t′ is s we
may say that the sort of the equation is also s. When i = 0 we call the equation
unconditional and omit the condition (i.e., write it (∀X) t = t′). When X = ∅
we drop the quantifier and call the equation ground.

If Σ is a many sorted signature, then a Σ-context C is a Σ-term which has
one occurrence of a distinguished variable ∗:s of sort s; to make this precise, we
may write C[∗:s] instead of just C. When Σ is understood, a Σ-context may be
called just a context. When the sort s of ∗ is important, we may call C[∗:s] a
context for sort s; also, when the sort of a context C (regarded as a term), say
s′, is important, C may be called a context of sort s′. If C[∗:s] is a context for
sort s of sort s′ and t is a term of sort s, then C[t] is the term of sort s′ obtained
by replacing t for ∗:s in C. If C is a context, |C| is the depth of C: | ∗ :s| = 0
and |C[σ[∗:s]]| = |C| + 1 when σ ∈ Σ. A Σ-context C[∗:s] induces a partially
defined equation transformer e 7→ C[e]: if e is an equation (∀X) t = t′ if c of
sort s, then C[e] is the equation (∀X ∪ Y)C[t] = C[t′] if c, where Y is the set
of non-star variables occurring in C[∗:s]. Moreover, if C is a set of contexts and
E a set of equations, then C[e] = {C[e] | C ∈ C}, C[E] = {C[e] | e ∈ E} and
C[E] =

⋃
e∈E C[e]. We extend notation C[e] to the cases when C is not a context

(it does not include ∗); in such cases, C[e] is the identity equation (∀X)C = C.

4

The theoretical results in this paper will be parametric in a given entailment
relation ` on many sorted equational specifications, which may, but is not en-
forced to, be the usual equational deduction relation [9]. For instance, it can also
be the “rewriting” entailment relation (E ` t = t′ iff t and t′ rewrite to the same
term using E as a rewrite system), or some behavioral entailment system, etc.
We need though some properties of `, which we axiomatize here by adapting to
our context the general definition of entailment system as given in [12]. Fix a sig-
nature Σ (in a broader setting, ` could be regarded as a set {`Σ| Σ signature}
indexed by the signature; however, since we work with only one signature in this
paper and that signature is understood, for simplicity we fix the signature).

Definition 1. If ∆ is a set of Σ-contexts, then a ∆-contextual entailment
system is an (infix) relation ` between sets of equations and equations, with:
(reflexivity) {e} ` e; (monotonicity) If E1 ⊇ E2 and E2 ` e then E1 ` e;
(transitivity) If E1 ` E2 and E2 ` e then E1 ` e; (∆-congruence) If E ` e

then E ` ∆[e]. In the above, E, E1, E2 range over sets of equations and e over
equations; also, we tacitly extended ` to relate two sets of equations: E1 ` E2 iff
E1 ` e for any e ∈ E2. We let E• denote the set of equations {e | E ` e}.

One can use the above to prove many properties of ` on sets of equations. Here
are some of them used later in the paper (their proofs are simple exercises):
E ` ∅, E ` E, if E1 ` E2 and E2 ` E3 then E1 ` E3, if E1 ` E2 then
E ∪ E1 ` E ∪ E2, if E1 ` E2 then E1 ` ∆[E2], if E1 ` E2 then E1 ` E1 ∪ E2, if
E1 ⊇ E2 then E1 ` E2, if E ` E1 and E ` E2 then E ` E1 ∪ E2.

We take the liberty to slightly abuse the syntax of entailment and allow one
to write a specification instead of a set of equations, with the obvious meaning:
if B = (S, Σ, E) is a specification and e is a Σ-equation, then B ` e iff E ` e.
Also, if B = (S, Σ, E) then we may write B• instead of E•.

3 Behavioral Specifications and Coinduction

A behavioral specification is a pair (B, ∆), where B = (S, Σ, E) is a many sorted
algebraic specification and ∆ is a set of Σ-contexts, called derivatives. We let
∆s denote all the derivatives of sort s in ∆. If δ[∗:h] ∈ ∆ is a derivative, then
the sort h is called a hidden sort ; we let H ⊆ S denote the set of all hidden sorts
of B. Remaining sorts are called data, or visible, sorts and we let V = S − H

denote their set. A data operator is an operator in Σ taking and returning only
visible sorts; a data term is a term built with only data operators and variables
of data sorts; a data equation is an equation built with only data terms.

Sorts are therefore split into hidden and visible, so that one can derive terms
of hidden sort until they possibly become visible. Formally, a ∆-experiment is
a ∆-context of visible sort, that is: (1) each δ[∗:h] ∈ ∆v with v ∈ V is an
experiment, and (2) if C[∗:h′] is an experiment and δ[∗:h] ∈ ∆h′ , then so is
C[δ[∗:h]]. An equation (∀X) t = t′ if c is called a hidden equation iff the common
sort of t and t′ is hidden, and it is called a data, or visible, equation iff the
common sort of t and t′ is visible. In this paper we consider only equations
whose conditions are conjunctions of visible equalities. If ∆ is understood, then

5

we may write experiment for ∆-experiment and context for ∆-context. If G is a
set of Σ-equations, we let visible(G) and hidden(G) denote the sets of G’s visible
and hidden equations, respectively.

Example 1. Here is a brief description of the behavioral specification of the
streams: S includes a hidden sort Stream, for streams, and a visible sort Data,
for data elements; Σ includes the signatures of the operations over data and
streams; E include the equations over the data and streams; and ∆ includes the
derivatives hd(∗:Stream) and tl(∗:Stream).

Definition 2. B behaviorally satisfies equation e, written B � e, iff: B ` e if
e is visible, and B ` C[e] for each appropriate experiment C if e is hidden. Let ≡
be the set of equations {e | B � e}, called the behavioral equivalence of B. A
set of equations G is behaviorally closed iff B ` visible(G) and ∆[G −B•] ⊆ G.

It can be shown that � is a ∆-contextual entailment system extending `
(see [17]); in other words, � satisfies the axioms in Definition 1 and if B ` e

then B � e. Our approach in this paper is proof-theoretical rather than model-
theoretical, so our notion of behavioral equivalence is defined proof-theoretically
rather than using models like in [8, 3, 1]; also, our ≡ can also contain conditional
equations (of visible conditions). A behaviorally closed set G of equations is one
whose visible equations are provable from B using the base entailment system
and whose equations not provable from B using the base system remain in G
when derived. Hence, the only way an equation can “escape” the derivation
process in a behaviorally closed set is to be proved using the base entailment
system `. The following result plays a central role in hidden logic:

Theorem 1. (Coinduction)[17] For any behavioral specification, the behav-
ioral equivalence ≡ is the largest behaviorally closed set of equations.

Theorem 1 is the foundation for the coinduction proving technique. An
entailment-based coinductive proving technique is presented in [17]. The main
idea is to find a set of equations G such that ∆(G) ⊆ G ∪ B•, where E denotes
the closure of E under substitution, symmetry, and transitivity.

Example 2. A proof by coinduction of the property S × zero = zero is given by
G = {S × zero = zero,S × zero + S ′ = S ′} and the following equations which
shows that ∆(G) ⊆ G = G ∪ STREAM•:

hd(S × zero) = hd(zero) (in STREAM•)
hd(S × zero + S ′) = hd(S ′) (in STREAM•)
tl(S × zero) = tl(S) × zero + [hd(S)] × zero (in STREAM•)
tl(S) × zero + [hd(S)] × zero = [hd(S)] × zero (substit.)
[hd(S)] × zero = zero (substitution)
tl(S) × zero + [hd(S)] × zero = zero (transitivity)
tl(S × zero) = zero (transitivity)
tl(S × zero + S ′) = tl(S) × zero + [hd(S)] × zero + tl(S ′) (in STREAM•)
tl(S) × zero + [hd(S)] × zero + tl(S ′) = [hd(S)] × zero + tl(S ′) (substitution)
[hd(S)] × zero + tl(S ′) = tl(S ′) (substitution)
tl(S × zero + S ′) = tl(S ′) (transitivity)

6

As seen in the examples above, coinductive proofs of behavioral equivalence
require human intervention, to provide an appropriate behaviorally closed set
of equations G, which can be thought of as “approximations” of ≡. It is worth
noting that it is virtually impossible to compute ≡ precisely, because, as shown
in [15], the problem of behavioral satisfaction is a Π0

2 hard problem even for
the particular specification of streams discussed in this paper. Therefore, ap-
proximating ≡ is perhaps the best we can do. Circular coinduction [16, 18, 17]
automates coinductive proving by dynamically (i.e., during the proving process)
inferring a suitable behaviorally closed set G including the property(ies) to prove.

4 Circular Coinduction

A key notion in our formalization and even implementation of circular coin-
duction is that of a “frozen” equation. The motivation underlying frozen equa-
tions is that they structurally inhibit their use underneath proper contexts; be-
cause of that, they will allow us to capture the above-mentioned informal notion
of “circular behavior” elegantly, rigorously, and generally (modulo a restricted
form of equational reasoning). Formally, let (B, ∆) be a behavioral specification
and let us extend its signature Σ with a new sort Frozen and a new operation
- : s → Frozen for each sort s. If t is a term, then we call t the frozen (form
of) t. Note that freezing only acts on the original sorts in Σ, so double freezing,

e.g., t , is not allowed. If e is an equation (∀X) t = t′ if c, then we let e be

the frozen equation (∀X) t = t′ if c; note that the condition c stays unfrozen,
but recall that we only assume visible conditions. By analogy, we may call the
equations over the original signature Σ unfrozen equations. If e is an (unfrozen)
visible equation then e is called a frozen visible equation; similarly when e is
hidden. If C is a context for e, then we take the freedom to write C[e] as a
shortcut for C[e] . It is important to note here is that if E ∪ F ` G for some
unfrozen equation set E and frozen equation sets F and G, it is not necessarily
the case that E ∪ F ` C[G] for a context C. Freezing therefore inhibits the free
application of the congruence deduction rule of equational reasoning.

Recall that, for generality, we work with an arbitrary entailment system
in this paper, which may or may not necessarily be the entailment relation of
equational deduction. We next add two more axioms:

Definition 3. A ∆-contextual entailment system with freezing is a ∆-
contextual entailment system extended as above such that:

(A1) E ∪ F ` e iff E ` e;
(A2) E ∪ F ` G implies E ∪ δ[F] ` δ[G] for each δ ∈ ∆, equivalent to

saying that for any ∆-context C, E∪F ` G implies E∪C[F] ` C[G].

Above, E ranges over unfrozen equations, e over visible unfrozen equations, and
F and G over frozen hidden equations.

Our working entailment system ` is now defined over both unfrozen and
frozen equations. It is easy to check these additional axioms for concrete entail-
ment relations and to see that they are conservative, that is, one cannot infer
any new entailment of unfrozen equations that were not possible before [17].

7

·
H �	 ∅

[Done]

H �	 G, H ` e

H �	 G ∪ { e }
,

if e visible
or hidden

[Reduce]

H ∪ { e } �	 G ∪ ∆[e]

H �	 G ∪ { e }
, if e hidden [Derive]

Fig. 3. Circular coinduction as a proof system:
If B �	 G is derivable then B � G

Figure 3 defines circular
coinduction as a proof sys-
tem for deriving pairs of the
form H �	 G, where H, the
hypotheses, can contain both
frozen and unfrozen equa-
tions, and where G, the goals,
contains only frozen equa-
tions. Initially, H is the orig-
inal behavioral specification B
and G is the frozen version
G of the original goals G to
prove. Circular coinduction iteratively attempts to complete the original set of
goals G to a behaviorally closed set of equations; freezing is necessary to inhibit
the application of the congruence rule of equational deduction because, other-
wise, the hypothesis of [Derive] would hold superfluously whenever H �	 G
derivable, so the proof system would be unsound.

Theorem 2. (soundness of circular coinduction)[17] If B is a behavioral
specification and G is a set of equations such that B �	 G is derivable using
the proof system in Figure 3, then B � G.

The interested reader can find the proof of Theorem 2 in [17], or consult the
next section where a more general result is proved.

Example 3. The table below summarizes the derivation steps followed to prove
zip(odd(S), even(S)) = S . Each row comprises a derived pair Hi �	 Gi, where
Hi = { e | e ∈ STREAM∪ F◦

i } and Gi = { e | e ∈ G◦
i }.

Rule G◦
i F◦

i

0 zip(odd(S), even(S)) = S

1 [Derive]
hd(zip(odd(S), even(S))) = hd(S)
tl(zip(odd(S), even(S))) = tl(S)

zip(odd(S), even(S)) = S

2 [Reduce] tl(zip(odd(S), even(S))) = tl(S) zip(odd(S), even(S)) = S

3 [Reduce] zip(odd(S), even(S)) = S

The reader is invited to see [17] for more examples of proofs by circular coin-
duction.

5 Special Hypotheses and Special Contexts

In this section we show that the circular coinduction can be extended by adding
“on the fly” new hypothesis which are sound provided the derivation process suc-
cessfully terminates. If that is the case, then the result is a better approximation
of the behavioral equivalence.

Definition 4. (special hypotheses) Let (B, ∆) be a behavioral specification
and F a set of hidden equations. Hidden equation e is a special hypothesis for
F iff B ` C[e] whenever B ` C≤[F], where C≤ is the set of ∆-experiments D

8

with |D| ≤ |C|. The set of special hypotheses for F is written F≤ and is called
the special-hypothesis closure of F .

Therefore, a special hypothesis for a set of hidden equations F is a hidden
equation e which holds under experiment C whenever the equations in F hold
under all the experiments smaller than or equal to C (in depth, not in size). The
intuition for special hypotheses, formalized in Theorem 3, is that they can be
soundly used in reasoning when checking the closure of F under derivatives.

It is easy to check that ·≤ is a closure operator on sets of equations, that is, it
is extensive (F ⊆ F≤), increasing (F1 ⊆ F2 implies F

≤
1 ⊆ F

≤
2), and idempotent

((F≤)≤ = F≤). Also, (≡�H)≤ = ≡�H and ≡�H ⊆ F≤ for any hidden equation
set F , where recall from Section 3 that H is the set of hidden sorts, so ≡�H is
the set of hidden equations e such that B � e; in particular, if F ⊆ ≡�H then
F≤ =≡�H . We next discuss some examples.

Example 4. If F consists of an equality of two streams a = b , then the fol-
lowing equations are in F≤: S + a = S + b , a + S = b + S , S × a = S × b ,

a × S = b × S , not(a) = not(b) , zip(S , a) = zip(S , b) , zip(a,S) = zip(b,S) ,

f(a) = f(b) , where S is a variable over streams. The equations odd(a) =

odd(b) and even(a) = even(b) are not in F≤. For instance, we cannot deduce
hd(tl(odd(a))) = hd(tl(odd(b))) knowing only hd(a) = hd(b) and hd(tl(a)) =
hd(tl(b)) since hd(tl(odd(a))) = hd(tl(tl(a))) and hd(tl(odd(b))) = hd(tl(tl(b))).

The coinductive circularity principle (Theorem 2 in [17]) states that if F is
a set of hidden equations such that B ∪ F ` ∆(F) then B � F . This coin-
ductive principle is the fundamental result underlying the soundness of circular
coinduction. We next extend it by allowing F≤ instead of F as hypotheses:

Theorem 3. (extended coinductive circularity principle) If F is a set of

hidden equations such that B∪ F≤ ` ∆[F] , then B � F≤ (in fact, F≤ = ≡�H).

Proof. We prove property (∀∆-experiment C)B ` C[F≤] by well-founded induc-

tion on experiments C. For the base case, note that hypothesis B∪ F≤ ` ∆[F]
and Definition 3 (A1) imply B ` D[F] for any visible D ∈ ∆, so Definition 4 im-
plies that B ` C[F≤] for any visible C ∈ ∆. For the inductive step, suppose that
C = C′[δ] for some ∆-experiment C′ and δ ∈ ∆, and suppose that B ` D′[F≤]
for all ∆-experiments D′ with |D′| < |C|; further, Definition 3 (A2) implies

B ∪ D′[F≤] ` D′[∆[F]] , so B ` D′[∆[F]] . Hence, we showed that B ` D[F]

for all ∆-experiments D with |D| ≤ |C|, so B ` C[F≤] by Definition 4.

In practice, one needs not add all the special hypotheses in F≤, but only those
that help to derive ∆[F] . Indeed, if SH is a subset of special hypotheses such

that one can derive B ∪ SH ∪ F ` ∆[F] , then Theorem 3 implies B � SH∪F .
In particular, if SH = ∅ then we obtain the coinductive circularity principle
(Theorem 2 in [17]) as a special case. It is worthwhile noticing that no proof
obligation is generated for the added special hypotheses; however, checking the

9

condition in Definition 4 may not be trivial. In what follows we give a more
effective approach to define useful special hypotheses, based on special contexts.

A first variant of special context was first introduced in [7]: a context γ[∗:h]
was called “special” in [7] iff for any experiment C for γ there is some experiment
D with |D| ≤ |C| and B ` C[γ[∗:h]] = D[∗:h]. The intuition for special contexts
is therefore that whenever they appear at the bottom of an experiment they can
be eliminated yielding a strictly smaller experiment. This way, again intuitively,
their application on top of goals to prove does not change the behavioral validity
status of those goals, so with our terminology above, their application on goals
to prove can be added as special hypotheses. In what follows we formalize and
prove this claim. Before we do so, motivated by practical needs, we first extend
the definition of a special context by allowing the right hand side of the equation
above, D[∗:h], to be replaced by any Σ-term whose occurrences of ∗:h appear
only in subterms of the form D[∗:h], where D is an experiment with |D| ≤ |C|.

Definition 5. (special contexts) Context γ[∗:h] is special iff for any exper-
iment C for γ there is some term t such that B ` C[γ[∗:h]] = t and each
occurrence of ∗:h in t appears only in a subterm in C≤ (see Definition 4).

Example 5. For the streams specified in Section 1, the following are special con-
texts: ∗:Stream+S :Stream, S :Stream+∗:Stream, ∗:Stream×S :Stream, S :Stream×
∗:Stream, not(∗:Stream), zip(∗:Stream,S :Stream), zip(S :Stream, ∗:Stream) and
f (∗:Stream). Moreover, any combination of these contexts (e.g., (∗:Stream ×
S :Stream)+S ′:Stream) is special, as well. In contrast, the contexts odd(∗:Stream)
and even(∗:Stream) are not special (e.g., STREAM ` hd(tl(odd(∗:Stream))) =
hd(tl(tl(∗:Stream))) and |hd(tl(tl(∗:Stream)))| > |hd(tl(∗:))|.

From now on, we assume that ` is also closed under substitution, that is, if
E ` e and θ is a substitution, then E ` θ(e). This requirement is reasonable and
satisfied by any entailment system that we aware of.

Theorem 4. If F is a hidden equation set and γ a special context, γ[F] ⊆ F≤.

Proof. We have to show B ` C[γ[F]] for any ∆-experiment C with B ` C≤[F].
Fix such a C. Since γ is special, by Definition 5 there is some term t such that
B ` C[γ[∗:h]] = t and each occurrence of ∗:h in t appears only in a subterm D

that is an experiment in C≤. Since B ` C≤[F], we deduce that B ` D[F] for any
such experiment D, so the congruence of ` implies B ` t[F]. Finally, the closure
of ` under substitution applied on equation C[γ[∗:h]] = t yields B ` C[γ[F]].

Therefore, special contexts automatically yield a distinguished set of special
hypotheses for any set of hidden equations. We empirically found that these dis-
tinguished special hypotheses are sufficient to prove all the behavioral properties
that we and other colleagues considered so far, so we next extend our circular
coinductive proof system with special contexts and then prove its soundness.

Let us replace the rule [Derive] in Figure 3 with the more general one below:

H ∪ Γ [e] ∪ { e } �	 G ∪ ∆[e]

H �	 G ∪ { e }
,

when e is hidden and
Γ set of special contexts

[Derivescx]

10

Theorem 5. (soundness of circular coinduction with special contexts)
If B is a behavioral specification and G is a set of equations such that B �	 G

is derivable using the extended proof system with rule [Derivescx], then B � G.

Proof. Any derivation of H �	 G using the extended proof system yields a
sequence of pairs H0 �	 G0, H1 �	 G2, . . .Hn �	 Gn, where H0 = B, G0 = G ,
Gn = ∅, and for every 0 ≤ i < n, there is some e ∈ Gi such that one of the
following holds: Hi ` e and Gi+1 = Gi − { e } and Hi+1 = Hi; or e is hidden
and Gi+1 = (Gi − { e }) ∪ ∆[e] and Hi+1 = Hi ∪ { e } ∪ Γi[e] for some set of

special contexts Γi. Let G =
⋃n

i=0
Gi, let G◦ = {e | e ∈ G}, let F = hidden(G◦)

and let Γ be the union of all the special contexts used in the derivation.
For each 0 ≤ i < n, Hi = B∪Fi ∪Ki for some set of frozen hidden equations

Fi and Ki with Fi ∪ ∆[Fi] ⊆ G and Ki ⊆ Γ [F] . If Hi ` e for some e ∈ G
(applying [Reduce]), then either B ` e by (A1) in Definition 3 when e is visible,
or B ∪ ∆[Ki] ∪ ∆[Fi] ` ∆[e] by (A2) in Definition 3 when e ∈ F .

If e ∈ G◦ visible, then there must be some 0 ≤ i < n such that Hi ` e , so
B ` e. Its is easy to see that if B ∪ Γ [F] ∪ F ` Gi+1, then B ∪ Γ [F] ∪ F ` Gi:
indeed, for the only equation e that is in Gi and not in Gi+1 we have either
Hi ` e or e ∈ Fi. Since Gn = ∅, we deduce B∪ Γ [F] ∪ F ` G. For each e ∈ Gi

with i < n, either B ∪ Γ [F] ∪ F ` ∆[e] (if Hi ` e) or ∆[e] ⊆ Gi+1. In either

case, B ∪ Γ [F] ∪ F ` ∆[F] . The equations in Γ [F] are special by Theorem 4.
We apply now Theorem 3 and we obtain B � F . Since F contains all the hidden
equations of G◦ and since we already proved that B ` e, i.e., B � e, for all e ∈ G◦

visible, we conclude that B � G◦. Since G ⊆ G◦, it follows that B � G.

Example 6. We next discuss the automated proving of S × zero = zero using the
extended proof system. The first use of [Derive]scx is at step 1: e is S×zero = zero
and Γ is {(∗:Stream+S ′)[e], (S ′+∗:Stream)[e]}. [Derive]scx is used at step 3 with
Γ = ∅. The new goal in step 2 is the effect of the use of the special hypotheses:

tl(S × zero) = tl(zero)
tl(S) × zero + [hd(S)] × zero = zero (using stream equations)
zero + [hd(S)] × zero = zero (using the first special hypothesis)
zero + zero = zero (using the second special hypothesis)

Rule G◦

i F◦

i

0 S × zero = zero

1 [Derive]scx
hd(S × zero) = hd(zero)
tl(S × zero) = tl(zero)

S × zero = zero, S × zero + S ′ = zero + S ′

S ′ + S × zero = S ′ + zero

2 [Reduce] zero + zero = zero
S × zero = zero, S × zero + S ′ = zero + S ′

S ′ + S × zero = S ′ + zero

3 [Derive]scx
hd(zero + zero) = hd(zero)
tl(zero + zero) = tl(zero)

S × zero = zero, S × zero + S ′ = zero + S ′

S ′ + S × zero = S ′ + zero

4 [Reduce] tl(zero + zero) = tl(zero)
S × zero = zero, S × zero + S ′ = zero + S ′

S ′ + S × zero = S ′ + zero

5 [Reduce]
S × zero = zero, S × zero + S ′ = zero + S ′

S ′ + S × zero = S ′ + zero

11

[EqRed] : 〈B, G ∪ { e }〉 ⇒ 〈B,G〉 if E `nf e
[Fail] : 〈B, G ∪ { e }〉 ⇒ fail if B 6`nf e and e is visible
[CCStep] : 〈B, G ∪ { e }〉 ⇒ 〈B ∪ { e }, G ∪ ∆[e]〉 if B 6`nf e and e is hidden.

Fig. 4. CIRC’s reduction rules implementing the circular coinduction

6 Implementation in CIRC

CIRC implements the circular coinduction proof system by the reduction rules
given in Fig. 4. The entailment relation used in CIRC is E `nf (∀X)t = t′ if ∧i

ui = vi if and only if nf(t) = nf(t′), where nf(t) is computed as follows:
– the variables of the equations are turned into fresh constants;
– the condition equalities are added as equations to the specification;
– the equations in the specification are oriented and used as rewrite rules.

[EqRed] implements the proof rule [Reduce]: if a goal is a `nf-consequence of
the current specification, then it is removed from the set of goals. [Fail] has no
correspondent in the proof system. A failure does not necessarily means that
the answer is false. The failure relation E 6`nf e says that the corresponding
normal forms are different. Since we do not impose any confluence conditions
on the specification, it is possible as the normal forms to be different even if the
equation is a `-consequence of the current specification. So, a failing ending of
the algorithm needs (human) analysis in order to know the source of the failure.
However, since CIRC includes an implementation of the circular induction (it
will be presented in a different paper), a technique similar to that in [4] can be
used to check if the failed visible equation or the disequality of the two normal
forms is an inductive theorem. [CCStep] implements the proof rule [Derive]. If
the current goal is hidden and it is not a `nf -consequence, then it is added to
the current specification and its derivatives are added as new goals.

The above discussion is summarized by the following result:

Theorem 6. (soundness of CIRC) Let (B, ∆) be a behavioral specification
and let G be a set of frozen equations. If (B, G) ⇒∗ (B′, ∅) applying the reduction
rules of the circular coinduction system in Figure 4, then B �nf G.

In order to make the rule [Derivescx] effective, we have to know which contexts
are special. A less efficient way is to manually prove that some contexts are
special and then include them in the behavioral specification. Though CIRC
include such a facility, it is more challenging and elegant to automatically detect
the special contexts. If the composition γ1[γ2] of two special contexts γ1 and γ2 is
a special context as well, then it is enough to find a maximal subset Γ of contexts
γ of minimal depth. An example of such Γ is given in Example 5. Knowing Γ ,
there is a very simple and efficient way to implement [Derivescx]: for each special
context γ[∗:h] in Γ , the following equation is added to the specification:

γ[x] = γ[y] if y := x

12

where the execution of the matching equation y := x instantiate y by matching
y against the normal form of x . However, we have to notice that this nice
implementation uses the matching mechanisms specific to the Maude system.
Let us explain how this mechanism works for γ = ∗:Stream + S′ and S × zero =
zero . If x 7→ S × zero, then y := x returns y 7→ zero. Replacing γ, x and y

γ[x] = γ[y] we obtain the desired result: S × zero + S ′ = zero + S ′.
The algorithm used by CIRC for computing a set Γ of special contexts

of minimal depth is quite complex. Here we briefly describe the intuition be-
hind this algorithm. The condition in the definition of the special contexts is
soundly replaced with a computable predicate Comp(C, t), defined for all ∆-
contexts C and which satisfies the following two conditions: 1) from Comp(C1, t)
and Comp(C2, t) we can deduce Comp(C1[C2], t), and 2) from Comp(C, t1) and
Comp(C, t2) we can deduce Comp(C, t1[t2]), provided the sort-compatibility con-
ditions hold. The algorithm has two steps: 1) compute the set Υ of all contexts
of depth one which can be generated from the non-derivative hidden operations
which have at least one hidden argument; 2) compute a maximal subset Γ ⊆ Υ

such that (∀δ ∈ ∆)(∀γ ∈ Γ)Comp(δ, γ). The algorithm can be specialized for
the cases when the contexts are defined with other contexts than derivatives,
as it is the case of the function f defined over streams. The special contexts in
Example 5 were computed with this algorithm.

Playing with the special contexts, we learned a very interesting lesson: the
fact that CIRC system does not terminate is not necessarily a bad news. We have
seen that the basic circular coinduction does not terminate for S × zero = zero.
However, we proved that this property holds using the special contexts. Hence
we may deduce that the infinite execution is in fact a proof. In the following we
identify a subclass of infinite executions which can be used as proofs. We first
give a behavioral version for the coinductive circularity principle.

Theorem 7. If (B, ∆) is a behavioral specification and F is a set of hidden
equations with B ∪ F � ∆[F] then B � F .

The proof of Theorem 7 is similar to that given in [17] for Theorem 2. Comparing
with Theorem 2 in [17] (coinductive circularity principle), Theorem 7 uses the
behavioral entailment relation to check that F is a fixed point. Since the initial
entailment relation is sound for the behavioral one, it follows that the coinductive
circularity principle is a particular case of Theorem 7. However, the latter one is
not very useful in practice because it express the behavioral entailment by means
of . . . the behavioral entailment. Even if this is a very nice circular feature, recall
that the efficiency of the circular coinduction system comes from the fact it proves
behaviorally satisfied properties using the basic entailment relation.

Definition 6. An infinite fair execution of CIRC system is an infinite exe-
cution (B0,G0) ⇒ (B1,G1) ⇒ · · · such that for all e ∈ Gi, i ≥ 0, there is j ≥ i

such that e is processed at step j.

Since the execution never fails, the equation e is processed at step j applying
either [EqRed] or [CCStep].

13

Theorem 8. Let (B, ∆) a behavioral specification and G is a set of hidden equa-
tions. If (B, G) = (B0,G0) ⇒ (B1,G1) ⇒ · · · is an infinite fair execution of CIRC
system, then B �nf G.

Proof. Let G =
⋃

i≥0
Gi, let G◦ = {e | e ∈ G}, and let F = hidden(G◦). Note

that for each i ≥ 0, Bi = B∪Fi for some set of frozen hidden equations Fi ⊆ F .
Let F =

⋃
i≥0

Fi. If e ∈ F , then ∆[e] ⊆ G◦ and, because the execution is fair,

each equation in ∆[e] is processed at some step i (normally, i is depending on
the equation, but we abusively omit to explicitly write this dependence). We
first show by induction on experiments C that B ∪ F `nf C[e] , for all e ∈ F .

If C ∈ ∆, then (B ∪ F) `nf C[e] because the execution does not fail; hence

(B ∪ F) `nf C[e] by the monotonicity of `nf . We assume that C = C′[δ] and

the property holds for C′[e′], for all e′ ∈ F . If (B ∪ Fi) `nf δ[e] ([EqRed] is

applied at the step i), then (B ∪ F) `nf δ[e] and hence (B ∪ F) �nf δ[e] ;

in particular (B ∪ F) `nf C′[δ[e]] . If [CCStep] is applied at the step i, then

δ[e] ∈ Fi+1 and we have (B ∪ F) `nf C′[δ[e]] by the induction hypothesis.

We show now that (B ∪ F) �nf F . If e ∈ F , then e ∈ Gi for some i ≥ 0. Since
the execution is fair, there is j ≥ i such that e is processed at the step j. If
[EqRed] is applied at the step j, then (B∪Fj) `nf e , which implies (B∪Fj) �nf e

and hence (B ∪ F) �nf e by the monotonicity of �nf . If [CCStep] is applied at
the step j, then e ∈ F and (B∪ F) �nf e by the property proved by induction
above. Since e is an arbitrary equation in F , it follows (B ∪ F) �nf F , which
implies (B ∪ F) �nf ∆[F] . The rest follows applying Theorem 7.

Theorem 8 is not practical, but it encourages us to search for new capabilities
which allow to give finite presentations for certain fixed points given by Theorem
8. Special contexts are such a capability.

7 Conclusion

The main contributions of this paper are: introduces special hypotheses as a
closure operator and uses it to extend the coinductive circularity principle; uses
special contexts as a means to obtain a distinguished class of special hypotheses,
and extends the circular coinductive proof system with special contexts; explains
how the circular coinductive proof system and its extension with special contexts
are implemented in CIRC; briefly describes an algorithm which automatically
finds special contexts in a given specification (the algorithm is already imple-
mented in CIRC); shows that fair infinite executions of CIRC are in fact proofs.
Acknowledgments. We are grateful to Hans Zantema for the fruitful discus-
sion regarding the special contexts and to Georgiana Caltais and Eugen Goriac
for implementing in a short time the algorithm computing the special contexts.

14

References

1. J. Adámek. Introduction to coalgebra. Theory and Applications of Categories,
14(8):157–199, 2005.

2. J.-P. Allouche and J. Shallit. The ubiquitous prouhet-thue-morse sequence. In
C. Ding, T. Helleseth, and H. Niederreiter, editors, Sequences and Their applica-
tions (Proc. SETA’98), pages 1–16. Springer-Verlag, 1999.

3. M. Bidoit, R. Hennicker, and A. Kurz. Observational logic, constructor-based logic,
and their duality. Theoretical Computer Science, 3(298):471–510, 2003.

4. A. Bouhoula and M. Rusinowitch. Observational proofs by rewriting. Theor.
Comput. Sci., 275(1-2):675–698, 2002.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L.
Talcott, editors. All About Maude - A High-Performance Logical Framework, How
to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture
Notes in Computer Science. Springer, 2007.

6. L. Dennis, A. Bundy, and I. Green. Using a generalisation critic to find bisim-
ulations for coinductive proofs. In W. McCune, editor, Proceedings of the 14th
Conference on Automated Deduction, volume 1249 of Lecture Notes in Artificial
Inteligence, pages 276–290. Springer, 1996.

7. J. Goguen, K. Lin, and G. Rosu. Conditional circular coinductive rewriting with
case analysis. In M. Wirsing, D. Pattinson, and R. Hennicker, editors, WADT,
volume 2755 of Lecture Notes in Computer Science, pages 216–232. Springer, 2002.

8. J. Goguen and G. Malcolm. A hidden agenda. J. of TCS, 245(1):55–101, 2000.
9. J. Goguen and J. Meseguer. Completeness of Many-Sorted Equational Logic. Hous-

ton Journal of Mathematics, 11(3):307–334, 1985.
10. D. Hausmann, T. Mossakowski, and L. Schröder. Iterative circular coinduction for

cocasl in isabelle/hol. In M. Cerioli, editor, FASE, volume 3442 of Lecture Notes
in Computer Science, pages 341–356. Springer, 2005.

11. D. Lucanu and G. Rosu. Circ : A circular coinductive prover. In T. Mossakowski,
U. Montanari, and M. Haveraaen, editors, CALCO, volume 4624 of Lecture Notes
in Computer Science, pages 372–378. Springer, 2007.

12. J. Meseguer. General logics. In H.-D. E. et al., editor, Logic Colloquium ’87, pages
275–329, North Holland, Amsterdam, 1989.

13. M. Niqui. Coinductive formal reasoning in exact real arithmetic. Logical Methods
in Computer Science, 4(3:6):1–40, Sept. 2008.

14. L. C. Paulson. Mechanizing coinduction and corecursion in higher-order logic. J.
Logic and Computation, 7:175204, 1997.

15. G. Roşu. Equality of streams is a pi02-complete problem. In Proceedings of the 11th
ACM SIGPLAN International Conference on Functional Programming (ICFP’06).
ACM, 2006.

16. G. Roşu and J. Goguen. Circular coinduction. 2001. Short paper at the Interna-
tional Joint Conference on Automated Reasoning (IJCAR’01).

17. G. Roşu and D. Lucanu. Circular Coinduction –A Proof Theoretical Founda-
tion. Technical Report UIUCDCS-R-2009-3037, University of Illinois at Urbana-
Champaign, 2009. Submitted.

18. G. Rosu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.

15

This appendix is for reviewers’ convenience, to see how the circular coin-
ductive proof system and its extension with special contexts presented in
the paper works in CIRC. If this paper is accepted then the appendix
will be removed and the reader will be referred to CIRC’s website at
http : //fsl.cs.uiuc.edu/circ, where these examples and many others
can be executed online.

A CIRC Proofs

Here we show the behavioral specification of streams discussed in Section 1
formalized in CIRC, the proof scripts of all the properties mentioned in the
paper, as well as CIRC’s output. The specification of the streams is included
into a file called stream.maude and consists of three theories: for data, the
equational specification of the streams and the behavioral specification of the
streams. The proof script is included into a file called stream.cmd and includes
commands for loading the specification, setting the parameters of the tool and
for proving the desired properties. The following CIRC commands are used:

loop init . – put CIRC in the initial state

set show details on . – instructs CIRC to output all the proof details

set auto contexts on/off – instructs CIRC either to compute (on) or to
not compute (off) the special contexts

coinduction . – CIRC attempts to prove all the existing goals

in 〈file-name〉 – loads the parameter file

load goal 〈property〉 – loads the the property to be proved

coinduction . – CIRC attempts to prove all the existing goals

quit proof . – resets the state before the last proofs; the previously proved
properties are discarded

set max no steps 〈number〉 – sets the maximum number of steps to the
number. The number of steps made by the CIRC tool is bigger than the
number of circularities (how many times the rule [Derive] or [Derivescx] is
applied), because the implementation includes some additional rules. In the
paper the maximum number is 50, in order to have a reasonable size for the
output.

The output file includes the output messages of CIRC together with some info
supplied by the Maude system. Note that the real run time is that written in
parentheses and NOT the CPU time.

The properties checked are split into three categories. The first two properties
show how the circular coinduction works. The next four properties show how the
circular coinduction extended with the special contexts is used. Finally, we show
that without the computed special contexts, the circular coinduction does not
terminate for these properties (this is exhibited only for two properties but it is
true for all four, in this case).

16

A.1 Input

(theory DATA is
sort Data .
ops 0 1 : -> Data .
op _+_ : Data Data -> Data [prec 33 assoc comm] .
op -_ : Data -> Data .
op _*_ : Data Data -> Data [prec 31 assoc comm] .
op not : Data -> Data .

vars D D1 D2 : Data .

eq not(0) = 1 . eq not(1) = 0 . eq not(not(D)) = D .
eq D + 0 = D . eq D * 1 = D .
eq D + (- D) = 0 . eq D * 0 = 0 .
eq (- 1) * D = - D . eq D * (D1 + D2) = D * D1 + D * D2 .

endtheory)

(theory EQ-STREAM is
including DATA .
sort Stream .
vars S S1 S2 : Stream . var M : Data .

--- these will be derivatives; here they are just ordinary operations
op hd : Stream -> Data . op tl : Stream -> Stream .

--- zero stream --- complements a stream
op zero : -> Stream . op not : Stream -> Stream .
eq hd(zero) = 0 . eq hd(not(S)) = not(hd(S)) .
eq tl(zero) = zero . eq tl(not(S)) = not(tl(S)) .

--- summing operator --- inclusion operation
op _+_ : Stream Stream -> Stream

[assoc comm] . op ‘[_‘] : Data -> Stream .
eq hd(S1 + S2) = hd(S1) + hd(S2) . eq hd([M]) = M .
eq tl(S1 + S2) = tl(S1) + tl(S2) . eq tl([M]) = zero .

--- convolution product
op _x_ : Stream Stream -> Stream [prec 31] .
eq hd(S1 x S2) = hd(S1) * hd(S2) .
eq tl(S1 x S2) = tl(S1) x S2 + [hd(S1)] x tl(S2) .

--- odd and even streams --- zip of streams
ops odd even : Stream -> Stream . op zip : Stream Stream -> Stream .
eq hd(odd(S)) = hd(S) . eq hd(zip(S1, S2)) = hd(S1) .
eq tl(odd(S)) = even(tl(S)) . eq tl(zip(S1, S2)) = zip(S2, tl(S1)) .
eq even(S) = odd(tl(S)) .

--- alternative function --- Thue-Morse sequence M = f(0:tail(M))
op f : Stream -> Stream . op altMorse : -> Stream .
eq hd(f(S)) = hd(S) . eq hd(altMorse) = 0 .
eq hd(tl(f(S))) = not(hd(S)) . eq hd(tl(altMorse)) = 1 .
eq tl(tl(f(S))) = f(tl(S)) . eq tl(tl(altMorse)) = f(tl(altMorse)) .

--- Thue-Morse sequence M = 0:zip(inv(M),tail(M))
op morse : -> Stream .
eq hd(morse) = 0 .
eq hd(tl(morse)) = 1 .
eq tl(tl(morse)) = zip(tl(morse), not(tl(morse))) .

endtheory)

17

(ctheory STREAM is
inc EQ-STREAM .
derivative hd(*:Stream) .
derivative tl(*:Stream) .

endctheory)

A.2 Proof Script

loop init .

(set show details on .)

(set auto contexts off .)

in stream .

---> STREAM |||- zip(odd(S), even(S)) = S

(add goal zip(odd(S:Stream), even(S:Stream)) = S:Stream .)

(coinduction .)

---> STREAM |||- { f(S) = zip(S, not(S)), f(morse) = morse }

(add goal f(S:Stream) = zip(S:Stream, not(S:Stream)) .)

(add goal f(morse) = morse .)

(coinduction .)

---> The proving of the following properties needs special contexts

(set auto contexts on .)

in stream .

---> STREAM |||- S x zero = zero

(add goal S:Stream x zero = zero .)

(coinduction .)

---> STREAM |||- S1 x (S2 + S3) = S1 x S2 + S1 x S3

(add goal S1:Stream x (S2:Stream + S3:Stream) =
S1:Stream x S2:Stream + S1:Stream x S3:Stream .)

(coinduction .)

---> STREAM |||- (S1 + S2) x S3 = S1 x S3 + S2 x S3

(add goal (S1:Stream + S2:Stream) x S3:Stream =
S1:Stream x S3:Stream + S2:Stream x S3:Stream .)

(coinduction .)

---> STREAM |||- morse = altMorse

---> needs the proved above lemma: f(S) = zip(S, not(S))
---> ... or we may prove the two properties together:

18

(add goal f(S:Stream) = zip(S:Stream, not(S:Stream)) .)

(add goal morse = altMorse .)

(coinduction .)

---> The proving of the following properties DOES NOT terminate
---> without special contexts

(set auto contexts off .)

(set max no steps 50 .)

in stream .

---> STREAM |||- S x zero = zero DOES NOT terminate
---> without special contexts

(add goal S:Stream x zero = zero .)

(coinduction .)

(quit proof .)

(set max no steps 100 .)

---> STREAM |||- morse = altMorse DOES NOT terminate
---> without special contexts

(add goal f(S:Stream) = zip(S:Stream, not(S:Stream)) .)

(add goal morse = altMorse .)

(coinduction .)

A.3 Output

> in stream-cmd.maude
rewrites: 6 in 783425647ms cpu (3ms real) (0 rewrites/second)

CIRC 1.4 (May 19th, 2008)

rewrites: 20 in 6094666579ms cpu (40ms real) (0 rewrites/second)

Details will be shown.

rewrites: 20 in 6094666579ms cpu (4ms real) (0 rewrites/second)

Contexts will not be automatically computed.

==
.
Reading in file: "stream.maude"
rewrites: 1955 in 6094666579ms cpu (36ms real) (0 rewrites/second)
Introduced theory DATA

rewrites: 5853 in 6094666579ms cpu (70ms real) (0 rewrites/second)
Introduced theory EQ-STREAM

rewrites: 921 in 6094666579ms cpu (12ms real) (0 rewrites/second)

19

..
__

Introduced ctheory STREAM

Done reading in file: "stream.maude"
==
---> STREAM |||- zip(odd(S), even(S)) = S
rewrites: 391 in 6094666579ms cpu (12ms real) (0 rewrites/second)

Goal added: zip(odd(S:Stream),even(S:Stream)) = S:Stream

rewrites: 2693 in 6094666579ms cpu (95ms real) (0 rewrites/second)
Goal zip(odd(S:Stream),even(S:Stream)) = S:Stream reduced to

zip(odd(S:Stream),odd(tl(S:Stream))) = S:Stream

Hypo zip(odd(S:Stream),odd(tl(S:Stream))) = S:Stream added and coexpanded to
1. hd(zip(odd(S:Stream),odd(tl(S:Stream)))) = hd(S:Stream)
2. tl(zip(odd(S:Stream),odd(tl(S:Stream)))) = tl(S:Stream)
Goal hd(zip(odd(S:Stream),odd(tl(S:Stream)))) = hd(S:Stream) reduced to

hd(S:Stream) = hd(S:Stream)
Goal hd(S:Stream) = hd(S:Stream) proved by reduction.
Goal tl(zip(odd(S:Stream),odd(tl(S:Stream)))) = tl(S:Stream) reduced to

tl(S:Stream) = tl(S:Stream)
Goal tl(S:Stream) = tl(S:Stream) proved by reduction.

Proof succeeded.

==
---> STREAM |||- { f(S) = zip(S, not(S)), f(morse) = morse }
rewrites: 397 in 6094666579ms cpu (11ms real) (0 rewrites/second)

Goal added: f(S:Stream) = zip(S:Stream,not(S:Stream))

rewrites: 293 in 6094666579ms cpu (9ms real) (0 rewrites/second)

Goal added: f(morse) = morse

rewrites: 7470 in 6094666579ms cpu (364ms real) (0 rewrites/second)

Hypo f(morse) = morse added and coexpanded to
1. hd(f(morse)) = hd(morse)
2. tl(f(morse)) = tl(morse)

Hypo f(S:Stream) = zip(S:Stream,not(S:Stream)) added and coexpanded to
1. hd(f(S:Stream)) = hd(zip(S:Stream,not(S:Stream)))
2. tl(f(S:Stream)) = tl(zip(S:Stream,not(S:Stream)))
Goal hd(f(morse)) = hd(morse) reduced to

0 = 0
Goal 0 = 0 proved by reduction.

Hypo tl(f(morse)) = tl(morse) added and coexpanded to
1. hd(tl(f(morse))) = hd(tl(morse))
2. tl(tl(f(morse))) = tl(tl(morse))
Goal hd(f(S:Stream)) = hd(zip(S:Stream,not(S:Stream))) reduced to

20

hd(S:Stream) = hd(S:Stream)
Goal hd(S:Stream) = hd(S:Stream) proved by reduction.
Goal tl(f(S:Stream)) = tl(zip(S:Stream,not(S:Stream))) reduced to

tl(f(S:Stream)) = zip(not(S:Stream),tl(S:Stream))

Hypo tl(f(S:Stream)) = zip(not(S:Stream),tl(S:Stream)) added and coexpanded to
1. hd(tl(f(S:Stream))) = hd(zip(not(S:Stream),tl(S:Stream)))
2. tl(tl(f(S:Stream))) = tl(zip(not(S:Stream),tl(S:Stream)))
Goal hd(tl(f(morse))) = hd(tl(morse)) reduced to

1 = 1
Goal 1 = 1 proved by reduction.
Goal tl(tl(f(morse))) = tl(tl(morse)) reduced to

f(tl(morse)) = f(tl(morse))
Goal f(tl(morse)) = f(tl(morse)) proved by reduction.
Goal hd(tl(f(S:Stream))) = hd(zip(not(S:Stream),tl(S:Stream))) reduced to

not(hd(S:Stream)) = not(hd(S:Stream))
Goal not(hd(S:Stream)) = not(hd(S:Stream)) proved by reduction.
Goal tl(tl(f(S:Stream))) = tl(zip(not(S:Stream),tl(S:Stream))) reduced to

f(tl(S:Stream)) = f(tl(S:Stream))
Goal f(tl(S:Stream)) = f(tl(S:Stream)) proved by reduction.

Proof succeeded.

==
---> The proving of the following properties needs special contexts
rewrites: 20 in 6094666579ms cpu (21ms real) (0 rewrites/second)

Contexts will be automatically computed.

==
.
Reading in file: "stream.maude"
rewrites: 1970 in 6094666579ms cpu (20ms real) (0 rewrites/second)
Introduced theory DATA
Advisory: Module DATA redefined.

rewrites: 5864 in 6094666579ms cpu (54ms real) (0 rewrites/second)
Introduced theory EQ-STREAM
Advisory: Module EQ-STREAM redefined.

rewrites: 16563 in 6094666579ms cpu (218ms real) (0 rewrites/second)

..
__

Introduced ctheory STREAM

The special contexts are:
*:Stream + V#2:Stream
V#1:Stream + *:Stream
*:Stream x V#2:Stream
V#1:Stream x *:Stream
not(*:Stream)
zip(*:Stream,V#2:Stream)
zip(V#1:Stream,*:Stream)

Advisory: Module STREAM redefined.

Done reading in file: "stream.maude"
==

21

---> STREAM |||- S x zero = zero
rewrites: 349 in 6094666579ms cpu (37ms real) (0 rewrites/second)

Goal added: S:Stream x zero = zero

rewrites: 3507 in 6094666579ms cpu (160ms real) (0 rewrites/second)

Hypo S:Stream x zero = zero added and coexpanded to
1. hd(S:Stream x zero) = hd(zero)
2. tl(S:Stream x zero) = tl(zero)
Goal hd(S:Stream x zero) = hd(zero) reduced to

0 = 0
Goal 0 = 0 proved by reduction.
Goal tl(S:Stream x zero) = tl(zero) reduced to

zero + zero = zero

Hypo zero + zero = zero added and coexpanded to
1. hd(zero + zero) = hd(zero)
2. tl(zero + zero) = tl(zero)
Goal hd(zero + zero) = hd(zero) reduced to

0 = 0
Goal 0 = 0 proved by reduction.
Goal tl(zero + zero) = tl(zero) reduced to

zero = zero
Goal zero = zero proved by reduction.

Proof succeeded.

==
---> STREAM |||- S1 x (S2 + S3) = S1 x S2 + S1 x S3
rewrites: 582 in 6094666579ms cpu (11ms real) (0 rewrites/second)

Goal added: S1:Stream x(S2:Stream + S3:Stream) =
S1:Stream x S2:Stream + S1:Stream x S3:Stream

rewrites: 5608 in 6094666579ms cpu (134ms real) (0 rewrites/second)

Hypo S1:Stream x(S2:Stream + S3:Stream) =
S1:Stream x S2:Stream + S1:Stream x S3:Stream

added and coexpanded to
1. hd(S1:Stream x(S2:Stream + S3:Stream)) =

hd(S1:Stream x S2:Stream + S1:Stream x S3:Stream)
2. tl(S1:Stream x(S2:Stream + S3:Stream)) =

tl(S1:Stream x S2:Stream + S1:Stream x S3:Stream)
Goal hd(S1:Stream x(S2:Stream + S3:Stream)) =

hd(S1:Stream x S2:Stream + S1:Stream x S3:Stream)
reduced to

hd(S1:Stream)* hd(S2:Stream)+ hd(S1:Stream)* hd(S3:Stream) =
hd(S1:Stream)* hd(S2:Stream)+ hd(S1:Stream)* hd(S3:Stream)

Goal hd(S1:Stream)* hd(S2:Stream)+ hd(S1:Stream)* hd(S3:Stream) =
hd(S1:Stream)* hd(S2:Stream)+ hd(S1:Stream)* hd(S3:Stream)

proved by reduction.
Goal tl(S1:Stream x(S2:Stream + S3:Stream)) =

tl(S1:Stream x S2:Stream + S1:Stream x S3:Stream)
reduced to

[hd(S1:Stream)]x(tl(S2:Stream)+ tl(S3:Stream))+
tl(S1:Stream)x(S2:Stream + S3:Stream) =
[hd(S1:Stream)]x(tl(S2:Stream)+ tl(S3:Stream))+

22

tl(S1:Stream)x(S2:Stream + S3:Stream)
Goal [hd(S1:Stream)]x(tl(S2:Stream)+ tl(S3:Stream))+

tl(S1:Stream)x(S2:Stream + S3:Stream) =
[hd(S1:Stream)]x(tl(S2:Stream)+ tl(S3:Stream))+
tl(S1:Stream)x(S2:Stream + S3:Stream)

proved by reduction.

Proof succeeded.

==
---> STREAM |||- (S1 + S2) x S3 = S1 x S3 + S2 x S3
rewrites: 597 in 6094666579ms cpu (11ms real) (0 rewrites/second)

Goal added: (S1:Stream + S2:Stream)x S3:Stream =
S1:Stream x S3:Stream + S2:Stream x S3:Stream

rewrites: 14547 in 6094666579ms cpu (345ms real) (0 rewrites/second)

Hypo (S1:Stream + S2:Stream)x S3:Stream =
S1:Stream x S3:Stream + S2:Stream x S3:Stream

added and coexpanded to
1. hd((S1:Stream + S2:Stream)x S3:Stream) =

hd(S1:Stream x S3:Stream + S2:Stream x S3:Stream)
2. tl((S1:Stream + S2:Stream)x S3:Stream) =

tl(S1:Stream x S3:Stream + S2:Stream x S3:Stream)
Goal hd((S1:Stream + S2:Stream)x S3:Stream) =

hd(S1:Stream x S3:Stream + S2:Stream x S3:Stream)
reduced to

hd(S1:Stream)* hd(S3:Stream)+ hd(S2:Stream)* hd(S3:Stream) =
hd(S1:Stream)* hd(S3:Stream)+ hd(S2:Stream)* hd(S3:Stream)

Goal hd(S1:Stream)* hd(S3:Stream)+ hd(S2:Stream)* hd(S3:Stream) =
hd(S1:Stream)* hd(S3:Stream)+ hd(S2:Stream)* hd(S3:Stream)

proved by reduction.
Goal tl((S1:Stream + S2:Stream)x S3:Stream) =

tl(S1:Stream x S3:Stream + S2:Stream x S3:Stream)
reduced to

[hd(S1:Stream)+ hd(S2:Stream)]x tl(S3:Stream)+
(tl(S1:Stream)+ tl(S2:Stream))x S3:Stream =
([hd(S1:Stream)]+[hd(S2:Stream)])x tl(S3:Stream)+
(tl(S1:Stream)+ tl(S2:Stream))x S3:Stream

Hypo [hd(S1:Stream)+ hd(S2:Stream)]x tl(S3:Stream)+
(tl(S1:Stream)+ tl(S2:Stream))x S3:Stream =
([hd(S1:Stream)]+[hd(S2:Stream)])x tl(S3:Stream)+
(tl(S1:Stream)+ tl(S2:Stream))x S3:Stream

added and coexpanded to
1. hd([hd(S1:Stream)+ hd(S2:Stream)]x tl(S3:Stream)+

(tl(S1:Stream)+ tl(S2:Stream))x S3:Stream) =
hd(([hd(S1:Stream)]+[hd(S2:Stream)])x tl(S3:Stream)+
(tl(S1:Stream)+ tl(S2:Stream))x S3:Stream)

2. tl([hd(S1:Stream)+ hd(S2:Stream)]x tl(S3:Stream)+
(tl(S1:Stream)+ tl(S2:Stream))x S3:Stream) =
tl(([hd(S1:Stream)]+[hd(S2:Stream)])x tl(S3:Stream)+
(tl(S1:Stream)+ tl(S2:Stream))x S3:Stream)

Goal hd([hd(S1:Stream)+ hd(S2:Stream)]x tl(S3:Stream)+
(tl(S1:Stream)+ tl(S2:Stream))x S3:Stream) =
hd(([hd(S1:Stream)]+[hd(S2:Stream)])x tl(S3:Stream)+
(tl(S1:Stream)+ tl(S2:Stream))x S3:Stream)

reduced to

23

hd(S1:Stream)* hd(tl(S3:Stream))+ hd(S2:Stream)*hd(tl(S3:Stream))+
hd(S3:Stream)* hd(tl(S1:Stream))+ hd(S3:Stream)*hd(tl(S2:Stream)) =
hd(S1:Stream)* hd(tl(S3:Stream))+ hd(S2:Stream)*hd(tl(S3:Stream))+
hd(S3:Stream)* hd(tl(S1:Stream))+ hd(S3:Stream)* hd(tl(S2:Stream))

Goal hd(S1:Stream)* hd(tl(S3:Stream))+ hd(S2:Stream)*hd(tl(S3:Stream))+
hd(S3:Stream)* hd(tl(S1:Stream))+ hd(S3:Stream)* hd(tl(S2:Stream)) =
hd(S1:Stream)* hd(tl(S3:Stream))+ hd(S2:Stream)* hd(tl(S3:Stream))+
hd(S3:Stream)* hd(tl(S1:Stream))+ hd(S3:Stream)* hd(tl(S2:Stream))

proved by reduction.
Goal tl([hd(S1:Stream)+ hd(S2:Stream)]x tl(S3:Stream)+(tl(S1:Stream)+

tl(S2:Stream))x S3:Stream) =
tl(([hd(S1:Stream)]+[hd(S2:Stream)])x tl(S3:Stream)+
(tl(S1:Stream)+ tl(S2:Stream))x S3:Stream)

reduced to
[hd(S1:Stream)+ hd(S2:Stream)]x tl(tl(S3:Stream))+
(zero +[hd(tl(S1:Stream))+ hd(tl(S2:Stream))])x tl(S3:Stream)+
(tl(tl(S1:Stream))+ tl(tl(S2:Stream)))x S3:Stream =
[hd(S1:Stream)+ hd(S2:Stream)]x tl(tl(S3:Stream))+
(zero +[hd(tl(S1:Stream))+ hd(tl(S2:Stream))])x tl(S3:Stream)+
(tl(tl(S1:Stream))+ tl(tl(S2:Stream)))x S3:Stream

Goal [hd(S1:Stream)+ hd(S2:Stream)]x tl(tl(S3:Stream))+
(zero +[hd(tl(S1:Stream))+ hd(tl(S2:Stream))])x tl(S3:Stream)+
(tl(tl(S1:Stream))+ tl(tl(S2:Stream)))x S3:Stream =
[hd(S1:Stream)+ hd(S2:Stream)]x tl(tl(S3:Stream))+
(zero +[hd(tl(S1:Stream))+ hd(tl(S2:Stream))])x tl(S3:Stream)+
(tl(tl(S1:Stream))+ tl(tl(S2:Stream)))x S3:Stream

proved by reduction.

Proof succeeded.

==
---> STREAM |||- morse = altMorse
==
---> needs the following lemma proved above: f(S) = zip(S, not(S))
==
---> ... or we may prove the two properties together:
rewrites: 409 in 6094666579ms cpu (12ms real) (0 rewrites/second)

Goal added: f(S:Stream) = zip(S:Stream,not(S:Stream))

rewrites: 301 in 6094666579ms cpu (11ms real) (0 rewrites/second)

Goal added: morse = altMorse

rewrites: 7759 in 6094666579ms cpu (453ms real) (0 rewrites/second)

Hypo morse = altMorse added and coexpanded to
1. hd(morse) = hd(altMorse)
2. tl(morse) = tl(altMorse)

Hypo f(S:Stream) = zip(S:Stream,not(S:Stream)) added and coexpanded to
1. hd(f(S:Stream)) = hd(zip(S:Stream,not(S:Stream)))
2. tl(f(S:Stream)) = tl(zip(S:Stream,not(S:Stream)))
Goal hd(morse) = hd(altMorse) reduced to

0 = 0
Goal 0 = 0 proved by reduction.

Hypo tl(morse) = tl(altMorse) added and coexpanded to

24

1. hd(tl(morse)) = hd(tl(altMorse))
2. tl(tl(morse)) = tl(tl(altMorse))
Goal hd(f(S:Stream)) = hd(zip(S:Stream,not(S:Stream))) reduced to

hd(S:Stream) = hd(S:Stream)
Goal hd(S:Stream) = hd(S:Stream) proved by reduction.
Goal tl(f(S:Stream)) = tl(zip(S:Stream,not(S:Stream))) reduced to

tl(f(S:Stream)) = zip(not(S:Stream),tl(S:Stream))

Hypo tl(f(S:Stream)) = zip(not(S:Stream),tl(S:Stream))
added and coexpanded to
1. hd(tl(f(S:Stream))) = hd(zip(not(S:Stream),tl(S:Stream)))
2. tl(tl(f(S:Stream))) = tl(zip(not(S:Stream),tl(S:Stream)))
Goal hd(tl(morse)) = hd(tl(altMorse)) reduced to

1 = 1
Goal 1 = 1 proved by reduction.
Goal tl(tl(morse)) = tl(tl(altMorse)) reduced to

f(tl(altMorse)) = f(tl(altMorse))
Goal f(tl(altMorse)) = f(tl(altMorse)) proved by reduction.
Goal hd(tl(f(S:Stream))) = hd(zip(not(S:Stream),tl(S:Stream)))
reduced to

not(hd(S:Stream)) = not(hd(S:Stream))
Goal not(hd(S:Stream)) = not(hd(S:Stream)) proved by reduction.
Goal tl(tl(f(S:Stream))) = tl(zip(not(S:Stream),tl(S:Stream)))
reduced to

f(tl(S:Stream)) = f(tl(S:Stream))
Goal f(tl(S:Stream)) = f(tl(S:Stream)) proved by reduction.

Proof succeeded.

==
---> The proving of the following properties DOES NOT terminate
==
---> without special contexts
rewrites: 20 in 6094666579ms cpu (21ms real) (0 rewrites/second)

Contexts will not be automatically computed.

rewrites: 42 in 6094666579ms cpu (8ms real) (0 rewrites/second)

The maximum number of proving steps was set to 50 .

==
.
Reading in file: "stream.maude"
rewrites: 1970 in 6094666579ms cpu (19ms real) (0 rewrites/second)
Introduced theory DATA
Advisory: Module DATA redefined.

rewrites: 5864 in 6094666579ms cpu (54ms real) (0 rewrites/second)
Introduced theory EQ-STREAM
Advisory: Module EQ-STREAM redefined.

rewrites: 934 in 6094666579ms cpu (14ms real) (0 rewrites/second)

..
__

Introduced ctheory STREAM

Advisory: Module STREAM redefined.

25

Done reading in file: "stream.maude"
==
---> STREAM |||- S x zero = zero DOES NOT terminate
==
---> without special contexts
rewrites: 349 in 6094666579ms cpu (11ms real) (0 rewrites/second)

Goal added: S:Stream x zero = zero

rewrites: 10172 in 6094666579ms cpu (318ms real) (0 rewrites/second)

Hypo S:Stream x zero = zero added and coexpanded to
1. hd(S:Stream x zero) = hd(zero)
2. tl(S:Stream x zero) = tl(zero)
Goal hd(S:Stream x zero) = hd(zero) reduced to

0 = 0
Goal 0 = 0 proved by reduction.
Goal tl(S:Stream x zero) = tl(zero) reduced to

[hd(S:Stream)]x zero + tl(S:Stream)x zero = zero

Hypo [hd(S:Stream)]x zero + tl(S:Stream)x zero = zero
added and coexpanded to
1. hd([hd(S:Stream)]x zero + tl(S:Stream)x zero) = hd(zero)
2. tl([hd(S:Stream)]x zero + tl(S:Stream)x zero) = tl(zero)
Goal hd([hd(S:Stream)]x zero + tl(S:Stream)x zero) = hd(zero) reduced to

0 = 0
Goal 0 = 0 proved by reduction.
Goal tl([hd(S:Stream)]x zero + tl(S:Stream)x zero) = tl(zero) reduced to

zero x zero +[hd(S:Stream)]x zero +[hd(tl(S:Stream))]x zero +
tl(tl(S:Stream))x zero =
zero

Hypo zero x zero +[hd(S:Stream)]x zero +[hd(tl(S:Stream))]x zero +
tl(tl(S:Stream))x zero = zero

added and coexpanded to
1. hd(zero x zero +[hd(S:Stream)]x zero +[hd(tl(S:Stream))]x zero +

tl(tl(S:Stream))x zero) = hd(zero)
2. tl(zero x zero +[hd(S:Stream)]x zero +[hd(tl(S:Stream))]x zero +

tl(tl(S:Stream))x zero) = tl(zero)
Goal hd(zero x zero +[hd(S:Stream)]x zero +[hd(tl(S:Stream))]x zero +

tl(tl(S:Stream))x zero) = hd(zero)
reduced to

0 = 0
Goal 0 = 0 proved by reduction.
Goal tl(zero x zero +[hd(S:Stream)]x zero +[hd(tl(S:Stream))]x zero +

tl(tl(S:Stream))x zero) = tl(zero)
reduced to

zero x zero + zero x zero + zero x zero +[0]x zero +
[hd(S:Stream)]x zero + [hd(tl(S:Stream))]x zero +
[hd(tl(tl(S:Stream)))]x zero + tl(tl(tl(S:Stream)))x zero = zero

Hypo zero x zero + zero x zero + zero x zero +[0]x zero +
[hd(S:Stream)]x zero + [hd(tl(S:Stream))]x zero +
[hd(tl(tl(S:Stream)))]x zero + tl(tl(tl(S:Stream)))x zero = zero

added and coexpanded to
1. hd(zero x zero + zero x zero + zero x zero +[0]x zero +

[hd(S:Stream)]x zero + [hd(tl(S:Stream))]x zero +
[hd(tl(tl(S:Stream)))]x zero + tl(tl(tl(S:Stream)))x zero) =

26

hd(zero)
2. tl(zero x zero + zero x zero + zero x zero +[0]x zero +

[hd(S:Stream)]x zero + [hd(tl(S:Stream))]x zero +
[hd(tl(tl(S:Stream)))]x zero + tl(tl(tl(S:Stream)))x zero) =

tl(zero)
Goal hd(zero x zero + zero x zero + zero x zero +[0]x zero +

[hd(S:Stream)]xzero + [hd(tl(S:Stream))]x zero +
[hd(tl(tl(S:Stream)))]x zero + tl(tl(tl(S:Stream)))x zero) =

hd(zero)
reduced to

0 = 0
Goal 0 = 0 proved by reduction.
Stopped: the number of prover steps was exceeded.
rewrites: 227 in 6094666579ms cpu (23ms real) (0 rewrites/second)
All hypotheses and lemmas gathered during previous proofs have been removed.

rewrites: 42 in 6094666579ms cpu (10ms real) (0 rewrites/second)

The maximum number of proving steps was set to 100 .

==
---> STREAM |||- morse = altMorse DOES NOT terminate
==
---> without special contexts
rewrites: 401 in 6094666579ms cpu (13ms real) (0 rewrites/second)

Goal added: f(S:Stream) = zip(S:Stream,not(S:Stream))

rewrites: 293 in 6094666579ms cpu (6ms real) (0 rewrites/second)

Goal added: morse = altMorse

rewrites: 12925 in 6094666579ms cpu (596ms real) (0 rewrites/second)

Hypo morse = altMorse added and coexpanded to
1. hd(morse) = hd(altMorse)
2. tl(morse) = tl(altMorse)

Hypo f(S:Stream) = zip(S:Stream,not(S:Stream)) added and coexpanded to
1. hd(f(S:Stream)) = hd(zip(S:Stream,not(S:Stream)))
2. tl(f(S:Stream)) = tl(zip(S:Stream,not(S:Stream)))
Goal hd(morse) = hd(altMorse) reduced to

0 = 0
Goal 0 = 0 proved by reduction.

Hypo tl(morse) = tl(altMorse) added and coexpanded to
1. hd(tl(morse)) = hd(tl(altMorse))
2. tl(tl(morse)) = tl(tl(altMorse))
Goal hd(f(S:Stream)) = hd(zip(S:Stream,not(S:Stream))) reduced to

hd(S:Stream) = hd(S:Stream)
Goal hd(S:Stream) = hd(S:Stream) proved by reduction.
Goal tl(f(S:Stream)) = tl(zip(S:Stream,not(S:Stream))) reduced to

tl(f(S:Stream)) = zip(not(S:Stream),tl(S:Stream))

Hypo tl(f(S:Stream)) = zip(not(S:Stream),tl(S:Stream))
added and coexpanded to
1. hd(tl(f(S:Stream))) = hd(zip(not(S:Stream),tl(S:Stream)))
2. tl(tl(f(S:Stream))) = tl(zip(not(S:Stream),tl(S:Stream)))

27

Goal hd(tl(morse)) = hd(tl(altMorse)) reduced to
1 = 1

Goal 1 = 1 proved by reduction.
Goal tl(tl(morse)) = tl(tl(altMorse)) reduced to

f(tl(morse)) = f(tl(altMorse))

Hypo f(tl(morse)) = f(tl(altMorse)) added and coexpanded to
1. hd(f(tl(morse))) = hd(f(tl(altMorse)))
2. tl(f(tl(morse))) = tl(f(tl(altMorse)))
Goal hd(tl(f(S:Stream))) = hd(zip(not(S:Stream),tl(S:Stream))) reduced to

not(hd(S:Stream)) = not(hd(S:Stream))
Goal not(hd(S:Stream)) = not(hd(S:Stream)) proved by reduction.
Goal tl(tl(f(S:Stream))) = tl(zip(not(S:Stream),tl(S:Stream))) reduced to

f(tl(S:Stream)) = f(tl(S:Stream))
Goal f(tl(S:Stream)) = f(tl(S:Stream)) proved by reduction.
Goal hd(f(tl(morse))) = hd(f(tl(altMorse))) reduced to

1 = 1
Goal 1 = 1 proved by reduction.

Hypo tl(f(tl(morse))) = tl(f(tl(altMorse))) added and coexpanded to
1. hd(tl(f(tl(morse)))) = hd(tl(f(tl(altMorse))))
2. tl(tl(f(tl(morse)))) = tl(tl(f(tl(altMorse))))
Goal hd(tl(f(tl(morse)))) = hd(tl(f(tl(altMorse)))) reduced to

0 = 0
Goal 0 = 0 proved by reduction.
Goal tl(tl(f(tl(morse)))) = tl(tl(f(tl(altMorse)))) reduced to

f(zip(tl(morse),not(tl(morse)))) = f(f(tl(altMorse)))

Hypo f(zip(tl(morse),not(tl(morse)))) = f(f(tl(altMorse)))
added and coexpanded to
1. hd(f(zip(tl(morse),not(tl(morse))))) = hd(f(f(tl(altMorse))))
2. tl(f(zip(tl(morse),not(tl(morse))))) = tl(f(f(tl(altMorse))))
Goal hd(f(zip(tl(morse),not(tl(morse))))) = hd(f(f(tl(altMorse))))
reduced to

1 = 1
Goal 1 = 1 proved by reduction.

Hypo tl(f(zip(tl(morse),not(tl(morse))))) = tl(f(f(tl(altMorse))))
added and coexpanded to
1. hd(tl(f(zip(tl(morse),not(tl(morse)))))) = hd(tl(f(f(tl(altMorse)))))
2. tl(tl(f(zip(tl(morse),not(tl(morse)))))) = tl(tl(f(f(tl(altMorse)))))
Goal hd(tl(f(zip(tl(morse),not(tl(morse)))))) = hd(tl(f(f(tl(altMorse)))))

reduced to
0 = 0

Goal 0 = 0 proved by reduction.
Stopped: the number of prover steps was exceeded.

28

