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The paper aims to study the dynamic behavior of a triple diffusive system subjected to sinusoidal (trigonometric cosine) and 

non-sinusoidal wave forms (square, sawtooth and triangular) of internal heat source modulation. The configuration of the 

system is such that a layer of viscoelastic liquid is heated and salted with two solutes from below. An Oldroyd-B type model is 

made use for viscoelastic liquids. In order to regulate the convection onset, internal heat source modulation is applied. This 

investigation is modelled using a linear stability analysis where a stationary convection is preferred. Venezian approach 

facilitates a solution by finding the eigen values of the problem. The influence of pertinent parameters which are varied for a 

wide range of values have been reported. It is captured via graphs that for small values of frequency of modulation, square wave 

form is more stable while sawtooth wave form is more stable for an increment in the values of frequency of modulation. 

Further, liquids such as Newtonian, Maxwell and Rivlin-Ericksen are analysed as the limiting cases of the problem. It seems 

worthwhile to discuss the results of the present study as it is the first work on linear theory of different wave forms of internal 

heat source modulation and thus paves a way for new theoretical and experimental endeavors.  
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1 Introduction 

Over the years, convective processes have been 

gaining quite a lot of applications, since it is one of the 

ways heat transfer can take place. Bénard
1
 initialized 

the study on thermal convection experimentally and 

Rayleigh
2
 concluded that convection onset is 

dependent on a non-dimensional number that 

characterizes the stability of the system. The process in 

which convection takes place due to two stratifying 

agents having different diffusivities is the double 

diffusive convection. The beginning of the concept of 

salting while heating is done by Stommel et al.
3
. Due to 

the fact that double diffusive convection could not 

overcome its major drawback of the number of 

diffusing components, this is when Triple Diffusive 

Convection (TDC) began to gain its importance. In a 

TDC, the existence of three stratifying agents such that 

all these three factors have different rate of diffusivities 

makes more relevance to the study. In the 19th century 

convection by adding a third diffusing component is 

initially carried out by Griffiths
4
, Poulikakos

5
 and 

Pearlstein et al.
6 

Studies pertaining to the concept of 

TDC is studied by researchers Sameena
7,8

, Raghunatha 

and Shivakumara
9
, Pranesh et al.

10
, Sameena and 

Pranesh
11

. TDC has an enormous number of 

applications which includes in the field of 

oceanography where there are tons of solutes that are 

present at the ocean bed. In order to study the behavior 

of these solutes towards the other influencing factors, 

study of multicomponent system shows its prime 

importance and relevance. Understanding the related 

changes that take place due to temperature and 

different levels of concentration in chemical studies, 

the current study shows its great necessity. Research on 

flora and fauna will serve a purpose in discoveries 

about medicines and their reaction to certain factors 

that have an influence on them.  

On broadly classifying the liquids into newtonian 

and non-newtonian liquids, on the basis of whether or 

not the liquids obey the newtonian law, we come 

across a major category of liquids called the 

viscoelastic liquids. These liquids display the 

properties of viscosity and elasticity when they 

undergo some deformation. Examples of such liquids 

are polymers, oils and oil paints. Comprehensive 

review on viscoelastic liquids is carried out by 

researchers Chand
12

, Siddheshwar
13

, Yadav and 

—————— 
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Maqhusi
14

, Park
15

 and Vanishree and Anjana
16

. 

Viscoelastic liquids can further be classified into 

Oldroyd-B, Maxwell and Rivlin-Ericksen liquids 

depending upon their values of viscoelastic 

parameters. The wide usage of viscoelastic liquids  

in the industries and its importance in the field of 

DNA replication wherein the DNA suspensions are 

considered as viscoelastic liquid is a very expensive 

and a time taking procedure. In optics, viscoelastic 

liquids are very useful to print regular patterns on 

desired surfaces. An elaborate study on the 

applications of viscoelastic liquids is well explained by 

Pérez et al.
17

. Modulation being an external regulating 

factor can fluctuate the periodic wave types which 

generate the entire process of modulation. Modulation 

is subjected to amplitude and frequency associated with 

the wave form. Venezian
18

 has initialized the study of a 

sinusoidal perturbation, termed as modulation. An 

extensive study on temperature modulation, gravity 

modulation, rotation modulation is carried out by 

Bhadauriaand Kiran
19

, Bhadauria et al.
20

, Siddheshwar 

et al.
21

, Sun et al.
22

, Manjula and Kiran
23

, Kanchana  

et al.
24

 and Kumar et al.
25

. Wave forms of modulation 

can be characterized as sinusoidal and non-sinusoidal 

wave types. Non-sinusoidal wave types includes 

square, sawtooth and triangular wave form which is 

studied by Siddheshwar and Kanchana
26

 and Aanam et 

al.
27

 on a Rayleigh–B́enard convection. The generation 

of heat in systems is a very important external 

regulating factor for problems involving convection. 

In some cases, the material itself offers its own source 

of heat leading to another way of convective motion. 

Internal heat source can generate a lot of amount of 

energy while the internal heat sink is an absorber of 

excessive heat. However, it is to be noted that internal 

heat sink is a negative heat source. Related studies on 

internal heat source are presented by Straughan and 

Tracey
28

, Tasaka and Takeda
29

, Tritton and Zarraga
30

, 

Storesletten and Rees
31

, Mahajan and Nandal
32

, 

Nandal and Mahajan
33

, Miquel
34

 and Shankar et al.
35

. 

Bazylak et al.
36

 studied internal heat source 

modulation in a natural convection such that a layer of 

fluid is distributed with heat sources. It is observed 

that there is a good amount of heat transfer when 

there is decrease in the temperature due to flux 

modulation. Processing and sterilization of eatables 

take place through internal heating. In several natural 

processes, internal heating gives rise to convection in 

the atmosphere. Its wide range of usage comprises of 

electronic appliances such as heaters, microwave ovens 

and refrigerators. Microwave heating is essential in 

order to get rid of the moisture from ceramics which is 

analyzed by Itaya et al.
37

. Though the applications of 

internal heat source are enormous, there is no literature 

on internal heat source modulation in a TDC, which 

leads to the motivation for research on this concept. 

Thus the main aim of this paper is to investigate the 

influence of sinusoidal and non-sinusoidal wave forms 

of internal heat source modulation on a TDC in 

viscoelastic liquids using a linear theory. 
 

 

2 Materials and Methods  

The problem considered was solved theoretically 

where Venezian approach was used to find the eigen 

value of the problem. 
 

2.1 Mathematical Formulation 

Consider a layer of viscoelastic liquid confined 

between two infinite parallel surfaces that are at a 

separation of distance d . This layer of viscoelastic 

liquid of thickness d  is subjected to gravitational 

force g


which is time dependent and acting vertically 

downwards. The density of the fluid depends upon 

three stratifying agents namely, temperature T and 

solute concentrations 
1S

 
and 

2S  such that they have 

different diffusivities. T , 
1S  and 

2S
 
represents 

the temperature and solute concentration difference 

between the upper and lower surfaces. The lower 

surface is maintained at a higher temperature 

0T T
 

and higher solute concentration

0i i i S = S  + S (i = 1, 2)  at  z = 0
 
when compared to the 

upper boundary which is maintained at a temperature 

T0 and solute concentration 
0
( 1,2)iS i  (see Fig. 1).  

 
 

Fig. 1 — Schematic of a triple diffusive setup in a viscoelastic 

liquid. 
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The configuration that described the viscoelastic  

flow under Boussinesq approximation are governed 

by the following equations:  

0,q 


     
            … (1) 

( ) . ,o

q
q q p g

t
  

 
       


  

 

              … (2) 

'

1 1 1   1  ,
t t

trq q   
    

             

 

 

    … (3) 

2

0( . ) Q (1 +  f( , t))(T - T ),
T

q T T
t

  


    


        … (4)
 

1

21
1 1( . ) ,S

S
q S S

t



   





 
                             … (5) 

2

22
2 2( . ) ,S

S
q S S

t



   




                            … (6) 

1 0

2 0

0 1 1

0

2 2

1 ( ) ( )
.

( )

t S

S

T T S S

S S

 
 



    
  

   

          … (7) 

where, q


 
is the velocity, t  is the time, tr  is 

transpose, ( , , )x y z  are the Cartesian coordinates, p  

is the hydrodynamic pressure, T  is the temperature, 

Q  is the heat source, 
iS  is the solute concentration of 

the ith component ( 1,2)i  , 
1  is the stress 

relaxation time, 
2  is the strain retardation time, f is 

the wave form, f( , t) is the time dependent internal 

heating modulation, p  is the pressure gradient, µ  

is the viscosity,   is the density,   is the amplitude 

of modulation,  is the frequency of modulation, 
t  

is the coefficient of thermal expansion, 
iS is the 

coefficient of solutal expansion of the ith component 

( 1,2)i  ,   is the thermal diffusivity, 
iS  is the 

solutal diffusivity of the ith component ( 1,2)i  .The 

governing equations are solved subject to the 

following boundary conditions.  

The thermal boundary conditions are: 

0T = T + T  at  z = 0; 0T = T  at z = d;
.
  … (8) 

The solutal boundary conditions are:  

0i i i S = S  + S (i = 1, 2)  at  z = 0;

0i iS = S  (i = 1, 2)  at  z = d;  

… (9) 

Combining the Eqs 2 and 3 into a single equation 

by using the divergence operator on Eq. 3 we get, 

 

1

2

2

1 ( )

1 .

o

q
q q p g

t t

q
t

  

 

     
        

     

 
   

 


  



 … (10) 

 

In the basic state, the fluids were assumed to be in 

a motionless state and the transfer of heat takes place 

through conduction described by:  

0, ( ), ( ), ( ),

( )( 1,2),
i

b b b b

i b

q p p z T T z z

S S z i

    

 



 
… (11) 

where, the subscript in the Eq. 11 represented the 

basic state of the fluid and these equations satisfy, 

0,b
b

dp
g

dz
   

… (12) 

2

02
( ) 0,bd T

Q T T
dz

     
… (13) 

2

2
0bi

d S

dz
 ( 1,2),i   

… (14) 

1 0

2 0

0 1 1

0

2 2

1 ( ) ( )
,

( )

b

b

t b S

b

S

T T S S

S S

 
 



    
  

   

 
… (15) 

which give rise to the steady state solution of the 

Eqs 13 and 14 subject to the boundary condition in 

Eqs 8 and 9, 

2

0
2

Sin 1

,

Sin

b

Qd z

d
T T T

Qd





  
  

    
 
 
  

 
… (16) 

0
1

bi i i

z
S S S

d

 
    

 
( 1,2),i 

 

… (17) 

On applying disturbance to the basic state by using 

the perturbations given in the form: 

, , ,

, ( 1, 2),
b

b b b

b i i i

q q q p p p T T T

S S S i  

       

    

  

 … (18) 

where, b is the basic state value and the  

prime quantities represented the perturbation.  

Using the perturbed expressions in the governing 
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equations and non-dimensionalizing using the 

following definition 

* * * * *

2

2 '
* '

1

1 '
( , , ) ( , , ), , ,

, , ( 1, 2),
i

i
S

i

d
x y z x y z q q t t

d d

Sd T
p p i

T S





 
 

  

   
 

 

 … (19) 

we get the following dimensionless equations after 

eliminating p  and   by usual procedure and 

introducing the stream function ( , , )x z t such that 

,0,q
z x

   
  

  

 , by restricting ourselves to 2-

Dimensions we get, 

 

1 2

1 2

2

2

1

4

1

1

Pr
1 ( , )

1 ,

S s

S S

Rat
x

J
t

R R
x x

t

 

 

 



  
                

  
  

  
  

 
    

 

 
… (20) 

 

2( )

1 ( , ) ( , ),

g z Ri
t x

f t J

 
 

  

 
   

 

    

… (21) 

1

1 1

2

1 ( , ),
S

S SJ
t x

 
   

 
   

   
… (22) 

2

2 2

2

2 ( , ),
S

S SJ
t x

 
   

 
   

   
… (23) 

Where 
2d 


   is the dimensionless modulation 

frequency, 
3

0 t gd T
Ra

 








 

is the thermal Rayleigh 

number, 
3

0 i

i

S i

S

gd S
R

 








 is the solutal Rayleigh 

number of the ith component ( 1,2),i   

2Qd
Ri


  is 

the internal Rayleigh number, 1
1 2d


   is the stress 

relaxation parameter, 2
2 2d


 

 
is the strain 

retardation parameter, iS

i





  is the ratio of 

diffusivity of ith component ( 1,2),i    is the 

dimensionless temperature, 
iS - Dimensionless 

solute of the ith component ( 1,2),i   
0

Pr


 


 

is the 

Prandtl number and (.,.)J is the Jacobian with  

respect to x and z. To obtain the condition  

for the onset of convection, we neglected the  

Jacobian terms and on writing the equations in  

terms of   we get: 

1 2

2

4 3 2 1 1

2
4 3

2
4 2 3 2

1

0.
( )

S S

X X X X
t

RaX X g z

R X X R X X x



  
     

   
   
  
     

 
… (24) 

 

where, 
 

2

1 1 1

1
1 1 ,

Pr
X

t t t

       
           

       

 2

2 1 ( , ) ,X Ri f t
t

 
 

      

2

3 1 ,X
t


 

    

2

4 2 .X
t


 

    
 

 

The boundary conditions for solving the Eq. (24) is 

given by, 
 

2 4 6 8

2 4 6 8
0

z z z z

   


   
    
   

 at 0,1.z   … (25) 

 

2.2 Method of Solution 

The solution of the Eq. 24 is obtained by 

expanding the eigen value Ra and eigen function   

in the form: 

       2

0 1 1 2 2, , , , ...,Ra Ra Ra Ra          … (26) 

where, 
0Ra  is the Rayleigh number for the 

unmodulated case and 
iRa  1, 2,...i  are the 

corrections for 
0Ra . Substituting the expression in 

Eq. 24 and equating the coefficients of like powers of 
 , yields: 

 

0 0,L   … (27)  
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1
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2

4 3 1

1 4 3 2
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1 4 2
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X X X Rif t

Ra X X g z
L

R X Rif t
t x

R X Rif t

 

  
 

  
     

               

 

… (28) 
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1
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0
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2
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1

( , )

1 ( ) ,

( , ) ,

S

S

Ra X X g z R X Rif t

R X Rif tt x

L Ra X X g z
t x

X X X Rif t




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

    
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  

     
   

  




 

… (29) 

where, the operator L  is given as, 
 

1

2

2

5 4 3 1 1

2
0 4 3 5 4

2

5 3

1

( )
,

S

S

L X X X X
t

Ra X X g z R X X

R X X x

 
    

 

  
 
     

2

5 .X Ri
t

 
      

 

… (30) 

The stability of the system was examined by 

introducing velocity perturbation 
0 , expressed as: 

0 Sin( )Sin( ).x    … (31) 

Substituting the velocity perturbation 0  in the  

Eq. 27, we arrived at an expression for Rayleigh 

number corresponding to the unmodulated case  

in the form: 

1

2

0 2

1

4 2

2 2 2

2

1
( )

( )
1 ,
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S

S

R Ri
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g z k
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

 

 
  

 

 
   

 

 … (32) 

 

where,
2 2 2(1 )k a   and  

 Cos (1 )
( )

Sin( )

Ri Ri z
g z

Ri


  such that 

1

0
( ) 1.g z dz   

(See Table 1)
 

 

Eq. (28) now can be written as: 

1 2 3

1 0

4

2 2 4

1 1 2

( , ) ( , ) ( , )

( , ) ( , )

( ).

vA f t A f t A f t
L

A f t Af t

Ra a k g z

 

  

       
   

    



 … (33) 

Equation 33 has a solution provided that the RHS 

of the equation must be orthogonal to the null space 

operator L . Therefore the only steady term in the Eq. 

33 is 
2 2 4

1 1 2 ( )Ra a k g z   , which implies that 

1 0Ra   and all odd coefficients are zero, i.e., 

1 3 ... 0Ra Ra   . Furthermore we found that,   

Sin( )Sin( )

( )Sin( )Sin( ) ,

i t

i t

L z x e

L z x e

 

 

 

 

 
 

 
 … (34) 

 

where, 

1 2( ) ,L Y iY  
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Table 1 — Limiting cases of the present study 

Limiting cases Expression reduces to References 

0,0,0
21

 RiRR SS
 Classical Rayleigh Bénard problem Rayleigh2 

0,0,0
21

 RiRR SS
 Rayleigh Bénard convection with internal heat Tasaka and Takeda29, Tritton and Zarraga30, Kanchana 

and Zhao38 

0,0,0
21

 RiRR SS
 Two component convection without internal heat Schmitt39 and Stern40 

0,0,0
21

 RiRR SS
 Two component convection with internal heat Zhao et al.41 

0,0,0
21

 RiRR SS
 Three component convection without internal heat Sameenaand Pranesh42 

0,0,0
21

 RiRR SS
 Three component convection with internal heat Melathilet al.43 and Awasthiet al.44 
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Hence we arrived at a particular solution of the  

Eq. 33, 
 

1 2

1 1 3 4 02

( , ) ( , )
1

( , ) ( , ) .
( )

( , )

vA f t A f t

Y A f t A f t
L

Af t

 

    
 

       
    

 
… (35) 

 

where, 
 

2

1
1 ,

Pr

Rik
A

 
  
   

4 2
41

2 2 1 2( ) ,
Pr Pr

Rik Rik
A Rik 

 
    
   

1 2

2 2 6

1 2 2 1

66
3

42 1 1
2 1

( ) ( )

,
( )

Pr Pr

S SRi a R R Rik

A RikRik
Rik

  

 
 

    
 

  
     

 

1 2

2 2 2 2 2

2 1

2 6

4 1 1 2 1

6
8 2 1

2 1 2
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S SR Ri a k R Ri a

A k Rik
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Rik
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  

 
 

 
   

 
     
 
   
  

1 2

2 2 2 8

5 2 1 1 2( ) ,S SA Ri a k R R Rik          
 

On simplifying Eq. (29), the equation for 2  takes 

the form: 
 

1 2

2 1 3 4

2 2 4

0 2 1 2

( , ) ( , )

( , ) ( , )

( , )

( ) .

vA f t A f t

L A f t A f t

Af t

Ra a k g z

 

   

    
 

       
   

   

 … (36) 

 

The Eq. 36 is not completely solved, rather it is 

used to arrive at an expression for the correction 

Rayleigh number. If the equation for 
2L is to have a 

solution, then the RHS of Eq. 36 must be orthogonal 

to Sin( )z , or equivalently, 

1 2

1
3 4

10

2 2 4

2 1 2 0

( ( , ) ( , )

( , ) ( , )
Sin( ) 0

( , ))

( )

vA f t A f t

A f t A f t
z dz

Af t

Ra a k g z




   

    
 

     


   
 
 
 

  … (37) 

Finally taking the time average we arrived at an 

expression for correction Rayleigh number, 

1
2 2 3 2 4

1 2

,
2 ( )

C

Y A
R

L a k  





 … (38) 

 

 

where, 

2
2

1 2

3 4

0

( , ) ( , )

( , ) ( , ) .

( , )

vA f t A f t

A A f t A f t dt

Af t




    

 
      

   

  

 

In this research paper, four types of wave forms of 

internal heat source modulation were considered (one 

sinusoidal and three non-sinusoidal). Mathematically 

these wave forms are defined as: 

1. Sinusoidal wave form 
( , ) Cos( ),f t t    

 

2. Non-Sinusoidal wave forms 

(i) Square wave form 

1,3,5,...

4 Sin( )
( , ) ,

n

n t
f t

n






    

(ii) Triangular wave form 
1

2

2
1,3,5,...

8 ( 1)
( , ) Sin( ),

n

n

f t n t
n








    

(iii) Sawtooth wave form 
 

2 2
1

1 Cos( ) Cos( )4
( , ) .

n

n n t
f t

n









 
  

 
 

3 Results and Discussion 
In this section we discuss the results with respect to 

the correction Rayleigh number obtained in Eq. 38 for 

triple diffusive convection with internal heat 

modulation in a viscoelastic liquid modeled by 

Oldroyd–B type model. The purpose of this study is 

to consider the internal heating modulation to  

regulate the onset of convection. One sinusoidal 

(Trigonometric Cosine TR) and three non-sinusoidal 

(Square SQ, Sawtooth SA and Triangular TR)  

wave forms were considered. From Eq. 38 it is  

clear that CR2 depends on the viscoelastic parameters 

1  
and 

2 , solute Rayleigh number 
iSR ),2,1( i

diffusivity ratio i ),2,1( i internal Rayleigh number 

Ri , Prandtl number Pr , frequency of modulation   

and amplitude of modulation  . The results obtained 

depend on the value of frequency of internal heating 

modulation  . When the values of  is such that 
<< 1, the modulation becomes large which in turn 

grows the disturbance. When the value of  , 

CR2  
approaches zero thereby reduced the modulation 

effect. Therefore, moderate values of were taken 

under consideration in the present study.  
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From the figures in this section, it was observed 

that TR wave form overlaps with SA wave form. We 

also observed that an increase in values of   

decreased
CR2

 indicating that the frequency of 

modulation destabilized the system and reaches 

subcritical motion and further increase in  , 

increased
CR2

which made the system stabilizing. Let 

C (around 2) be the frequency of modulation that 

changes the system from destabilizing to stabilizing. 

For 
C , the modulating frequency   obtained 

its maximum destabilizing effect. Also we observed 

that 
2 0CR  for 

C and 
2 0CR  for 

C . 
 

3.1 Effect of viscoelastic parameters on the onset of convection 

The influence of 
1  and 

2  on triply diffusive 

convection is shown in Figs 2 and 3 respectively, i.e., 

increasing the values of 1 , it was found that the 

system becomes unstable since the magnitude of CR2

decreased. This happens due to the fact that the 

elasticity in 
1 indicates the relaxation of stress in the 

viscoelastic liquid. When 
2 increased, the magnitude 

of CR2  also increased which made the system stable. 

This is due to the fact that 
2 responds to the applied 

stress in the liquid. It was observed that, 
 

(i) When 
1 12 0.4 2 0.6

,  C C C
R R

   
  and 

,
1.0205.02 22 


CC

RR  

(ii) When 
1 12 0.4 2 0.6

,  C C C
R R

   
   and 

.
1.0205.02 22 


CC

RR  

 

3.2 Effect of solutes on the onset of convection 

The influence of 
1SR and 

2SR on triply diffusive 

convection is shown in Figs 4 and 5 respectively. The 

solutes 
1S  and 

2S  are both added from the bottom of 

the triply diffusive layer. On increasing 
iSR ),2,1( i  

increased the magnitude of 
CR2

. The reason being 

 
 

Fig. 2 — Variation of 
CR2

with  for different values of 
1  for 

TC, SQ, TR and SA wave forms. 

 
 
Fig. 3 — Variation of 

CR2
with  for different values of 

2 for 

TC, SQ, TR and SA wave forms. 
 

 
 

Fig. 4 — Variation of CR2 with  for different values of 1SR for 

TC, SQ, TR and SA wave forms. 
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that, when the solutes are added from below, it settles 

at the bottom of the system without causing any 

disturbance in the system. As a result, it decelerated 

the convection onset. Further we observed that, 

(i) When 
1 1

2 25 2 32
,  

S S
C C R C R

R R
 

   
 

and 

,
1002502

22



SS

RCRC
RR

 (ii) When 
1 1

2 25 2 32
,  

S S
C C R C R

R R
 

     and

1002502
22



SS

RCRC
RR

  

3.3 Effect of ratio of diffusivities on the onset of convection 

The influence of 1 and 2 on triply diffusive 

convection is shown in Figs 6 and 7 respectively. On 

increasing the values 1 and 2 , it was found that the 

magnitude of CR2 decreased. This is due to the evident 

fact that the diffusivity of heat is greater than that of 

the solutes, thus accelerated the convection onset. We 

also observed that, 

(i) When 
1 12 0.3 2 0.6

,  C C C
R R

  
 

 
and 

,5.024.02 22 


 CC
RR

 

(ii) When 
1 12 0.3 2 0.6

,  C C C
R R

  
   and

.
5.024.02 22 


 CC

RR
 

 

3.4 Effect of internal heat on the onset of convection 

The influence of Ri on triply diffusive convection 

is shown in the Fig. 8. As the values of Ri  increases,  

 
 

Fig. 6 — Variation of 
CR2

with  for different values of 1 for 

TC, SQ, TR and SA wave forms. 

 

 
 

Fig. 7 — Variation of CR2 with  for different values of 2 for 

TC, SQ, TR and SA wave forms. 
 

the magnitude of CR2 decreased. As Ri is increased, 

more and more heat is generated in the system  

making the system unstable and thereby accelerated 

the onset of convection. We also observed that, 

(i) When 
2 3 2 2

,  ,C C Ri C Ri
R R

 
   

(ii) When
2 3 2 2

,  .C C Ri C Ri
R R

 
   

 

3.5 Effect of Prandtl number on the onset of convection 

The influence of Pr on triply diffusive convection 

is  shown  in  the  Fig. 9.  As  Pr   is  increased, the  

 
 

Fig. 5 — Variation of CR2 with  for different values of 
2SR

for TC, SQ, TR and SA wave forms. 
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magnitude of 
CR2  

also increased, indicating that Pr

stabilizes the system. Further we observed that, 

(i) When 
2 Pr 5 2 Pr 10

,  ,C C C
R R

 
   

(ii) When 
2 Pr 5 2 Pr 10

,  .C C C
R R

 
   

It was noticed that for all parameters involved in 

the study, the following result holds true: 

(i) For ,C
2 2 2 2( ) ( ) ( ) ( ) ,TR SA TC SQ

C C C CR R R R    

(ii) For ,C
2 2 2 2( ) ( ) ( ) ( ) .SQ TC TR SA

C C C CR R R R    

 
3.6 Individual effect of four types of internal heating 

modulations on the limiting cases of viscoelastic liquids 

The values of 
CR2

for Newtonian, Oldroyd-B, 

Maxwell and Rivlin-Ericksen liquids for TC, SQ,  

SA and TR wave forms were tabulated in Table 2, 

Table 3, Table 4 and Table 5. The following were  

the results obtained: 

(i) On comparison of CR2 for each of the fluids we 

observed that: 
2 Revlin-Ericksen 2

2 2 .

( ) ( )

( ) ( )

C C Newtonian

C Maxwell C Oldroyd B

R R

R R 

 


 

(ii) On comparison of the magnitude of CR2  for each 

of the fluids corresponding to each wave form: 

TC, SQ, SA and TR wave forms we observed 

that: 

 
2 Revlin-Ericksen 2

2 2

( ) ( )

( ) ( ) ,

TC TC

C C Newtonian

TC TC

C Maxwell C Oldroyd B

R R

R R 



 
 

 
2 Revlin-Ericksen 2

2 2

( ) ( )

( ) ( ) ,

SQ SQ

C C Newtonian

SQ SQ

C Maxwell C Oldroyd B

R R

R R 



 
 

 
2 Revlin-Ericksen 2

2 2

( ) ( )

( ) ( ) ,

SA SA

C C Newtonian

SA SA

C Maxwell C Oldroyd B

R R

R R 



 
 

 
 

Fig. 8 — Variation of CR2 with  for different values of Ri for 

TC, SQ, TR and SA wave forms. 

 

 
 

Fig. 9 — Variation of CR2 with  for different values of Pr for 

TC, SQ, TR and SA wave forms. 

 

Table 2 — Values of correction Rayleigh number 
CR2  

for Newtonian, Oldroyd-B, Maxwell and Rivlin-Ericksen liquids for trigonometric 

cosine wave form 

1SR  
2SR  ( CR2 ) for Newtonian 

4.0,4.0 21   

( CR2 ) for Maxwell 

0,4.0 21   

( CR2 ) for Oldroyd-B 

1.0,4.0 21   

( CR2 ) for Rivlin-Ericksen 

05.0,001.0 21   

50 100 -0.0017 -0.0016 -0.0010 -0.0104 

150 -0.0028 -0.0024 -0.0016 -0.0180 

250 -0.0041 -0.0034 -0.0022 -0.0275 

50 150 -0.0020 -0.0018 -0.0012 -0.0125 

200 -0.0023 -0.0021 -0.0014 -0.0147 

250 -0.0027 -0.0024 -0.0016 -0.0172 
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 
2 Revlin-Ericksen 2

2 2

( ) ( )

( ) ( ) .

TR TR

C C Newtonian

TR TR

C Maxwell C Oldroyd B

R R

R R 



 
 

 

(iii) It was observed that: 2 2( ) ( ) ,SA TR

C CR R

holds true for Newtonian, Oldroyd-B, 

Maxwell and Rivlin-Ericksen fluids. 
 

4 Conclusion 

A linear stability analysis for a triply diffusive 

convection in viscoelastic liquids heated as well as 

salted from below is analyzed. Additionally, the 

influence of sinusoidal (trigonometric cosine) and 

non-sinusoidal (square, sawtooth and triangular) wave 

forms of internal heat source modulation has shown a 

great impact on the system. In order to observe the 

stability of the system, the parameters influencing the 

onset of convection are analyzed and plotted 

graphically. The following conclusions are drawn 

from this research study: 

(i) The parameters that influence the system in order 

to destabilize are 1 , ,1 ,2 ,Ri  

(ii) The parameters that influence the system in order 

to stabilize are 
2 , 

1SR , 
2SR , Pr,  

(iii) For small values of  , the system destabilizes 

and reaches a subcritical motion, 

(iv) Internal heat source modulation can either have a 

stabilizing effect or a destabilizing effect 

depending on the chosen value of frequency of 

internal heating modulation and appropriate 

wave forms, 

(v) Square wave form is found to be more stable for 

lesser values of frequency of modulation  and 

sawtooth waveform is more stable for larger 

values of frequency of modulation   on 

Table 3 — Values of correction Rayleigh number 
CR2  

for Newtonian, Oldroyd-B, Maxwell and Rivlin-Ericksen liquids for square  

wave form 

1SR  
2SR  (

CR2
) for Newtonian 

4.0,4.0 21   

(
CR2

) for Maxwell 

0,4.0 21   

(
CR2

) for Oldroyd-B 

1.0,4.0 21   

(
CR2

) for Rivlin-Ericksen 

05.0,001.0 21   

50 100 -0.0033 -0.0030 -0.0020 -0.0200 

150 -0.0054 -0.0047 -0.0032 -0.0346 

250 -0.0080 -0.0065 -0.0044 -0.0529 

50 150 -0.0039 -0.0036 -0.0024 -0.0240 

200 -0.0046 -0.0041 -0.0027 -0.0283 

250 -0.0053 -0.0047 -0.0031 -0.0330 
 

Table 4 — Values of correction Rayleigh number CR2  
for Newtonian, Oldroyd-B, Maxwell and Rivlin-Ericksen liquids for sawtooth 

wave form 

1SR  
2SR  (

CR2
) for Newtonian 

4.0,4.0 21   

(
CR2

) for Maxwell 

0,4.0 21   

(
CR2

) for Oldroyd-B 

1.0,4.0 21   

(
CR2

) for Rivlin-Ericksen 

05.0,001.0 21   

50 100 -0.0011 -0.0010 -0.0007 -0.0069 

150 -0.0019 -0.0016 -0.0011 -0.0120 

250 -0.0027 -0.0022 -0.0015 -0.0183 

50 150 -0.0013 -0.0012 -0.0008 -0.0083 

200 -0.0015 -0.0014 -0.0009 -0.0098 

250 -0.0018 -0.0016 -0.0011 -0.0114 
[ 

Table 5 — Values of correction Rayleigh number 
CR2  

for Newtonian, Oldroyd-B, Maxwell and Rivlin-Ericksen liquids for Triangular 

wave form 

1SR  
2SR  ( CR2 ) for Newtonian 

4.0,4.0 21   

( CR2 ) for Maxwell 

0,4.0 21   

( CR2 ) for Oldroyd-B 

1.0,4.0 21   

( CR2 ) for  Rivlin-Ericksen 

05.0,001.0 21   

50 100 -0.0011 -0.0010 -0.0007 -0.0069 

150 -0.0019 -0.0016 -0.0011 -0.0120 

250 -0.0027 -0.0022 -0.0015 -0.0183 

50 150 -0.0013 -0.0012 -0.0008 -0.0083 

200 -0.0015 -0.0014 -0.0009 -0.0098 

250 -0.0018 -0.0016 -0.0011 -0.0114 
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comparison with other wave forms involved in 

the study, 

(vi) The magnitude of correction Rayleigh number 

that determines the onset of convection is least 

due to sawtooth wave form and highest due 

square wave form, 

(vii) From the magnitude of 
CR2  

it is observed that, 

2 Revlin-Ericksen 2

2 2 .

( ) ( )

( ) ( )

C C Newtonian

C Maxwell C Oldroyd B

R R

R R 



 
 

which holds true for each of the wave forms, 

(viii) 
2 2 2( ) ( ) ( ) ,SQ TC SA

C C CR R R   is true for 

each of the fluids involved in the study, 

(ix) It is found that the result 
2 2( ) ( ) ,SA TR

C CR R

holds true for  Newtonian, Oldroyd-B,  

Rivlin-Ericksen and Maxwell liquid, 

(x) It has been observed that triangular wave  

form overlaps with sawtooth wave form. 
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