
Parallel Programming Must Be Deterministic By Default
Robert Bocchino, Vikram Adve, Sarita Adve and Marc Snir

University of Illinois at Urbana-Champaign

{bocchino,vadve,sadve,snir}@illinois.edu

1. Motivation
The general-purpose computing industry is at a major cross-
roads. Power constraints and design complexity have pushed
microprocessor designers to use multiple execution cores
on a single die, with 4-16 cores being commonplace today,
many tens of cores expected in the next 3-5 years, and some
projections claiming hundreds of cores on a chip within a
decade. Increases in application performance will depend on
their ability to harness this parallelism. In the past, new soft-
ware capabilities and technologies have been strongly driven
by increases in processor performance (keeping up with in-
creasing memory capacity and network bandwidth). In the
future, such advances in mainstream applications will only
occur if software developers are able to harness parallelism
for higher performance.

Mainstream applications today primarily use threads pro-
gramming for parallelism, whether through libraries like
pthreads and Intel’s Threading Building Blocks (TBB),
or multithreaded languages like Java and C#. There is
broad consensus, however, that programs written in current
threads-based programming models can be extremely diffi-
cult to understand and debug. A root cause of the problem is
that the execution of a shared-memory program can follow
one of a large number of interleavings of dependent mem-
ory accesses, and some of these interleavings can potentially
produce different results.

In contrast, a large class of computations is inherently
deterministic; i.e., a given input for such a (correct) com-
putation always produces the same output. Specifically, con-
currency is used for broadly two purposes. For “reactive”
computations like servers, interactive games, and embed-
ded systems, concurrency is part of the problem specifica-
tion; e.g., serving multiple external requests. This concur-
rency is usually necessary forcorrectness; e.g., to ensure
bounded response times. On the other hand, for “transfor-
mative” computations, concurrency is not part of the prob-
lem specification and is not required for correctness. Here,
concurrency is used solely for performance – to produce
the output faster. Reactive computations may internally in-
clude transformative computations; e.g., a physics simula-
tion in a game. Many, though not all, transformative algo-
rithms are deterministic (a given input always produces the
same output), and programming them with a fundamentally
non-deterministic model unnecessarily introduces extraordi-
nary complexity.

There is a rich literature discussing the merits of deter-
minism and proposing deterministic models and languages.
In a recent article [10], Lee eloquently argues that if we are
to have any hope of simplifying parallel programming for
the vast majority of mainstream programmers and applica-
tions, then parallel programming models must greatly con-
strain the possible interleavings of program executions. In
particular, deterministic algorithms must be expressiblein
a style thatguaranteesdeterminism, and non-deterministic
behaviors, where desired, must be requested explicitly.

Much of the prior work on determinism, however, has
been in a context that is not general enough (e.g., regu-
lar data parallel operators [14]) and/or requires significant
departure from mainstream programming styles (e.g., pure
functional [12], dataflow [7], and actor [10] styles). In con-
trast, a large fraction of modern applications are developed
in an object-oriented style with expressive use of features
such as aliasing through references, imperative updates, dy-
namic method dispatch, and extensive reuse of sophisticated
libraries and frameworks. Programmers are already familiar
with this style, and there is a large existing code base written
in languages such as Java, C++ and C#. Much of this code
will need to be ported to multicore, as it is simply not fea-
sible to rewrite it all from scratch in a new language. Thus,
we believe it is crucial for parallel languages to support an
object-oriented style, including the use of O-O libraries and
frameworks.1 In this paper, we argue that to simplify parallel
programming, determinism must be brought tomainstream
object-oriented programming languages. A broad research
agenda will be required to achieve this goal:

How to guarantee determinism in a modern object-
oriented language?Our philosophy is to provide static
guarantees through a combination of a type system and
(straightforward) compiler analysis when possible, and to
fall back on runtime checks (that result in exceptions) only
when compile time guarantees are infeasible. The key is to
determine when concurrent tasks make conflicting accesses.

1 A potential alternative to language mechanisms is automatic paralleliza-
tion of sequential programs, either via a parallelizing compiler [8], or
hardware-supported thread-level speculation (TLS) [6, 11], or both. Auto-
matic parallelization can work well in some cases (especially very regular
parallelism, such as SIMD), but it is not a complete solution. Automati-
cally parallelized codes often havefragile performance (small changes can
cause parallelization to fail); they are hard to tune for performance; express-
ing parallel algorithms in sequential notation is likely tobe frustrating; and
such codes do not document the available parallelism for future developers.

1 2008/10/20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The language can enable this by restricting parallel control
flow (and hence which tasks can execute concurrently) and
by providing type system mechanisms to convey explicitly
how a specific task or method shares data. These techniques
are discussed in Section 3.2.

How to provide sound guarantees when parts of the
program either cannot be proved deterministic or have
“harmless” non-determinism? Libraries and frameworks
are often written by expert programmers and widely reused.
Such code will include components that cannot be proven
deterministic but is often well designed and thoroughly
tested. For example, commutative inserts to a concurrent
search tree may be safe within a parallel loop as long as no
other operation (e.g., a find) is interleaved between those
inserts. Languages should enable such libraries to express
enforceable contracts that can be checked by the compiler
to ensure that a client application using the library is de-
terministic (so long as the library implementation meets its
specification). These goals are discussed in Section 3.3.

How to specify explicit non-determinism when needed?
There are transformational computations that may provide
higher performance by permitting more than one accept-
able answer (e.g., branch and bound search or graph clus-
tering [3]). In these cases, the language must achieve three
goals. First, any non-deterministic computations must be de-
clared explicitly; hence the term “deterministic by default.”
Second, any such code must be guaranteed free of data races
(ignoring any “trusted” code in low-level libraries of frame-
works). Finally, such code must be encapsulated in a way
that allows checking the deterministic properties of the rest
of the application. These goals are discussed in Section 4.

How to make it easier to port programs to a deterministic-
by-default language?The up-front cost of porting or de-
veloping code using new language features has substantial,
long-term productivity benefits that are often not recognized.
Furthermore, the up-front cost can be reduced using both
language design techniques and sophisticated interactive
porting tools. These opportunities are discussed in Section 5.

The following sections first elaborate on the benefits of
determinism; we then discuss the above research issues, in-
cluding alternative solutions, current approaches we are in-
vestigating, and problems that remain open for future work.

2. Benefits of Determinism
A parallel program is deterministic if, for a given input, ev-
ery execution of the program produces identical,externally
visible output. Although this is an idealization for reasons
explained in Section 4, many transformativealgorithmsdo
have this basic property. A parallel programming language
is deterministic if every legal program in that language is
deterministic.

Consider a parallel program whose only parallel construct
is a parallel loop, where the iterations are required to be

independent. The outcome of such a program is the same
as if the loop were executed sequentially; the parallel loop
construct does not change the semantics of the program. We
say that such a program hassequential semanticsand a
parallel performance model: a program that completes will
have computed the same results that a sequential program
would have computed; and its performance will be what
one would expect by assuming that parallel loop iterates do
execute in parallel. In effect, both the semantic model and
the performance model for such a program can be defined
using obvious composition rules [4].

Well-structured deterministic parallel constructs need
not be limited to parallel loops: one can add data paral-
lel operators, reduction operations, barrier synchronization,
producer-consumer synchronization such as futures, etc. As
Section 3 observes, one can even add imperative updates of
more complex shared data structures like sets and trees.

More generally, a deterministic parallel programming
model has significant advantages:

• A deterministic program can be understood without con-
cern for execution interleavings, data races, or complex
memory consistency models: the program behavior is
completely defined by its sequential equivalent.

• Programmers canreasonabout programs,debug them
during development, anddiagnoseerror reports after de-
ployment using the development patterns and tools cur-
rently used for sequential programs.

• ISVs cantestcodes as they do now, without being con-
cerned about the need to cover multiple possible execu-
tions for each input.

• Programmers can use an incremental parallelization strat-
egy, progressively replacing sequential constructs with
parallel constructs, while preserving program behavior.

• Two separately developed but deterministic parallel com-
ponents should be far easier to compose than more gen-
eral parallel code (even if they share the same low-level
parallel run-time system): with a well-defined program-
ming language, a deterministic component should have
the same behavior regardless of the external context
within which it is executed (with some constraints on
the behavior of that external context, as in Section 4).

3. Providing Deterministic Semantics
We next discuss our vision for providing deterministic paral-
lel programming semantics using a combination of language
mechanisms, compiler analysis, and runtime checks.

3.1 State of the Art

As discussed in Section 1, we need practical alternatives to
pthreads or Java threads that work for object oriented lan-
guages. Some of these techniques are starting to emerge.
Regular data parallel patterns on arrays (update, filter, map,
reduce) can be expressed elegantly and customized using

2 2008/10/20



emerging libraries and frameworks such as Parallel Array for
Java [1], Microsoft’s PLINQ for .NET, and Intel’s Thread-
ing Building Blocks (TBB) for C++ [16]. For “task-parallel”
computations such as divide and conquer recursion on arrays
and trees, libraries such as FJTask for Java [1] and TBB for
C++ [16] provide lightweight tasks that support these com-
putations. However, where these templates do not “fit,” pro-
grammers must still use low-level tasks. More frameworks,
and perhaps even first-class language features, are needed to
support a greater range of patterns.

3.2 The Need for Sharing Controls

While emerging data- or task-parallel libraries or frame-
works are a valuable step, they lack any guaranteed mech-
anisms to prevent non-deterministic sharing or even data
races. The host language needs to provide much stronger
controls on sharing of data between parts of the program,
to make sure that the contracts implied by the patterns are
observed. It also needs to enable more flexible concurrency
patterns, and to empower application teams to create new
customized patterns. The fundamental challenge in check-
ing contracts for all such patterns is that the compiler or run-
time system needs to be able to “see” and check the dataflow
interactions between different parallel computations in the
program. In an imperative object-oriented language with
aliasing through references and virtual function calls, iden-
tifying and analyzing such dataflow is generally extremely
difficult. Therefore, we need to control or annotate sharing
to make the dataflow more visible, eliminating hidden shar-
ing that can cause surprises and races.

We believe that an important part of the solution is an
object orientedeffect system[13, 5] providing annotations
that partition the heap and declare which parts of the heap are
read and written by each task. An effect system could easily
show, for example, that two distinct objects are being created
at every recursive call of a divide and conquer pattern, so the
subproblem computations do not interfere.

In the Deterministic Parallel Java (DPJ) project [2], we
are developing a sophisticated effect system that can disam-
biguate accesses to distinct parts of the same object, as well
as distinct objects referred to through data structures such
as sets, arrays, and trees. This capability allows a straight-
forward,local type-checker to check if two concurrent tasks
might make conflicting accesses to overlapping memory lo-
cations. More precisely, it ensures that any two tasks making
such conflicting accesses must be ordered explicitly with in-
tervening synchronization. In a correct DPJ program, nonde-
terminism cannot happen “by accident”: any such behavior
must be explicitly requested by the user, and a DPJ program
with no such request has an “obvious” sequential equivalent.

When static checks do not work, either because the anal-
ysis is not possible or the annotation burden is not justified
by the performance gains, we must fall back on runtime
techniques. We believe that some form of software specu-
lation [20] is the right solution here. Hardware support for

speculation [15] can reduce overhead if it is available. If
the overhead becomes unacceptable, we can move to a fail-
stop model that aborts the program if a deterministic vio-
lation is found [17]. This approach gives a weaker guar-
antee, but it avoids the overhead of logging and rollback.
Even in such cases, support for speculation will still be valu-
able, for two reasons: it can simplify initial porting of pro-
grams (see Section 5) and it can be used to express algo-
rithms that areinherently speculative, where new tasks must
be launched speculatively or the entire algorithm would be-
come serial [9].

3.3 Encapsulation

In realistic programs, the guarantee of determinism may
have to be weakened for parts of the program, even if the
overall program behaves deterministically. However, if we
can encapsulate the nondeterministic part behind an inter-
face, and guarantee that the interface specification is met,
then we can still provide sound guarantees for the rest of
the program. This approach is attractive because parallel li-
braries and frameworks are usually written by expert pro-
grammers skilled in low-level parallel programming and per-
formance issues, while application code is likely to be writ-
ten by a much larger class of programmers with typically
less skill in parallel computing.

3.3.1 Encapsulating Nondeterminism

Algorithms that are deterministicoverall may benefit from
“locally non-deterministic” behaviors for higher perfor-
mance. Operations like associative reductions have deter-
ministic final results but in a high performance implemen-
tation, the internal order of operations can be schedule-
dependent. Similarly, there are higher-level sequences of
commutative operations that produce deterministic final be-
havior as seen by an external observer, but that may have
schedule-dependent internal representations (i.e., memory
state). Examples include a sequence of insert operations (or
a sequence of remove operations) on a set or on a splay tree,
or computing the connected components of a graph.

Programmers should be allowed to specify parts or all of
these operations, though implementation and tuning of the
most complex and nondeterministic parts should be left to
experienced library programmers. All users should be able
to definepure, associativeoperators, as in languages like
Fortress [18], which can then be used by a generic reduction
or parallel prefix algorithm. The “pure and associative” re-
quirement is a contract that can be checked by the compiler,
possibly relying on effect annotations.

3.3.2 Encapsulating Unsoundness

In realistic applications, some parts of the program may be
deterministic in fact yet perform operations that cannot fea-
sibly be proved sound by the type system or runtime checks.
One example is a tree rebalancing. If the type system can
guarantee that a data structure is a tree, then this guarantee

3 2008/10/20



can support sound parallel operations, such as a divide and
conquer traversal that updates each subtree in parallel. How-
ever, rebalancing the tree in a way that retains the guarantee
may be difficult, without imposing severe alias restrictions
such as unique pointers. It is also difficult for a runtime to
efficiently check that the tree structure is maintained after a
rebalancing.

We believe a practical solution in such cases is to al-
low unsound operations, i.e., operations that may break the
determinism guarantee, but to encapsulate those operations
inside well-defined data structures and frameworks using
traditional object oriented encapsulation techniques (private
and protected fields and inner classes) supplemented by ef-
fect analysis and/or alias control. The effect and alias restric-
tions can help keep track of what is happening when refer-
ences in the rest of the code point to data inside an encapsu-
lated structure [5]. Then the compiler can use the guarantees
provided by the data structure or framework interface to pro-
vide sound guarantees for the rest of the program.

4. Supporting Non-deterministic Behaviors
For some algorithms, non-deterministic behavior is consid-
ered acceptable, e.g., branch-and-bound search, Delaunay
mesh triangulation [9], and graph clustering. In all these ex-
amples, the final result must meet some acceptance criterion
but multiple solutions that meet the criterion are permissible.
Such behavior can be exploited to yield higher performance
than a deterministic parallel algorithm.

There are two constraints that must (and can) be enforced
on such code. First, the code should be guaranteed to be free
of data races, i.e., non-determinism should strictly be due
to timing variations, not incorrect synchronization. For ex-
ample,enforcingatomicity on all shared variable accesses
can provide such a guarantee. Second, and more challenging,
non-deterministic code in an application should not compro-
mise the ability to reason with determinism for the rest of
the application, even though the overall observable behavior
will obviously not be deterministic in general.

In DPJ, we are investigating how the latter constraint can
be enforced when mixing non-deterministic with determinis-
tic code. For example, suppose we have two parallel iteration
constructs, one for iterating over independent objects (fore-
ach), and another for iterating over objects that may overlap
(foreachsd, where “sd” stands for “schedule dependent.”)
The foreachconstruct guarantees determinism (because the
iterations are independent), while theforeachsd construct
does not guarantee determinism but does guarantee that the
iterations are atomic with respect to one another.

Now note the following regardingforeachsd:

• Non-deterministic operations are explicitly markedsd.

• Because of the atomicity requirement, the non-deterministic
computations can produce timing-dependent results, but
cannot have data races.

• The sharing controls ensure that we can still reason de-
terministically aboutforeachloops that do not enclose a
foreachsd. In particular, for a fixed initial memory state
before entry into such aforeach, the behavior of thefore-
ach is deterministic: there are no non-deterministic in-
teractions between writes inside anyforeachsd and this
foreach. If we do nest aforeachsd inside a foreach,
atomicity of the loop body in the former still guarantees
that each of the outerforeachiterations is independent —
though all behave non-deterministically.

This is an example of controlled nondeterminism: we allow
explicit nondeterminism for performance, but we ensure that
(1) it must be explicitly requested; and (2) the programmer
can split the program syntactically into deterministic and
nondeterministic parts, and reason about them separately.

5. A Case for a Language-Based Solution
One common concern with language-based solutions is that
the programmer effort required can be onerous, whether to
port large existing applications or to develop new ones. We
believe that (a) with appropriate design, the benefits more
than outweigh these costs in both situations; and (b) strong
technical solutions can simplify both tasks. We discuss these
briefly in turn.

Although significant initial effort is usually required to
use an explicitly parallel language (or library), the benefits
can outweigh the costs for several reasons, some of which
are often widely missed:

(1) Perhaps most important, the extra effort to learn and
use an explicitly parallel languageor an explicitly parallel
library or framework is likely to be dwarfed by the effort
required to design or restructure data structures, controlflow,
and algorithms, and to test and tune the parallel code. A
well-designed language that simplifies the latter tasks can
more than justify the learning curve, e.g., as with generic
programming in sequential programs.

(2) Although O-O effect systems may be conceptually
more difficult for programmers to learn and use than APIs
for an explicitly parallel library, this extra effort is not
wasted. The reasoning required to introduce partitions and
effects is exactly the reasoning required to understand the
sharing patterns in the code. In fact, the partition and effect
mechanisms give programmers a concrete guide for how to
carry out such reasoning.

(3) Non-trivial real-world applications are long-lived and
initial development or porting costs are usually a small frac-
tion of long-term maintenance and enhancement costs. By
investing the one-time effort to use explicitly parallel con-
structs (from a language or library), concurrency decisions
and sharing patterns are documented explicitly in the code,
which simplifies the task of future generations of developers.

(4) Finally, we note that current threads-based languages
have woefully inadequate memory models. The only mem-
ory model accepted today guarantees sequential consistency

4 2008/10/20



for data-race-free programs, as for Java and (soon) C++. The
difficulty lies in semantics for data races. C++ does not pro-
vide any, which is untenable for a safe language. Java pro-
vides semantics that are complex and fragile. If we are to
move towards safe parallel languages with tractable mem-
ory models, wemust prohibit data races for all allowed pro-
grams. A type and effect system would allow this – but de-
terminism for such a language does not require much addi-
tional programmer burden, and would be far simpler to rea-
son about.

Some technical solutionscan further simplify porting
existing code and writing new code in a parallel language:

• Compatibility with a base language: Adding type exten-
sions to, and maintaining compatibility with, a base lan-
guage (as DPJ does for Java) greatly simplifies adopting
new language mechanisms, for several obvious reasons.

• Effect inference: In many cases, the programmer should
only need to insert a subset of the partition and effect an-
notations, and have the rest inferred by the compiler [19].

• Initial speculation: The language should provide specula-
tive parallel execution mechanisms, as described in Sec-
tion 3.2 so that large programs can be initially ported us-
ing speculation, without all the effect annotations needed
for compile-time checking. The overheads of speculation
can then be incrementally tuned away by introducing ef-
fect annotations where the benefits justify the effort.

• Interactive development environment (IDE): An IDE for
the language can use sophisticatedinteractivecompiler
parallelization technology, combined with modern refac-
toring technology, to assist the initial porting process.
Making porting a one-time effort allows such an envi-
ronment to use powerful, interprocedural parallelization
techniques (the strengths of compilers) while making it
interactive allows programmers to influence the process
and avoid the problems of poor or unstable performance
(the weaknesses).

6. Summary
Parallel computing is not going to be easier than sequen-
tial computing. It is going to be important to apply to this
domain the best language design ideas that have been de-
veloped in the last decades, in order to increase program-
mer productivity. In particular, it is essential to use safelan-
guages, and to extend safety to include suitable constraints
on interaction between threads: languages that tolerate races
must be banned. Additional constraints (regions, effects,in-
terface contracts, etc.) will not only make parallel program-
ming easier, but will also benefit software engineering, in
general, by providing more analyzability, and hence facili-
tating testing and maintenance.

We agree with [10] that unrestricted use of threads in
shared memory programming is not a good choice. We have
argued in this paper that appropriate language design can

bring determinism in a much more flexible way to shared
memory parallel computing, even in rich, imperative, object-
oriented languages. The inevitable residuum of low-level
shared memory code written by experts can be encapsulated
into libraries and used by general programmers working
within a safe, productive parallel programming environment.
The up-front cost of using new language features can be
more than outweighed by the benefits over the life of an
application, and reduced through careful language design
and appropriate interactive development tools.

References
[1] http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/jsr166y/

forkjoin/package-summary.html.

[2] http://dpj.cs.uiuc.edu.

[3] D. A. Bader and K. Madduri. Design and implementation
of the HPCS graph analysis benchmark on symmetric
multiprocessors. Technical report, GA Tech., 2005.

[4] G. E. Blelloch. Programming parallel algorithms.CACM,
1996.

[5] N. R. Cameron et al. Multiple ownership.OOPSLA, 2007.

[6] M. Cintra et al. Architectural support for scalable speculative
parallelization in shared-memory multiprocessors. InISCA,
2000.

[7] W. M. Johnston et al. Advances in dataflow programming
languages.ACM Comp. Survs., 2004.

[8] K. Kennedy and J. R. Allen.Optimizing Compilers for
Modern Architectures: A Dependence-Based Approach.
Morgan Kaufmann Publishers Inc., 2002.

[9] M. Kulkarni et al. Optimistic parallelism requires abstrac-
tions. InPLDI, 2007.

[10] E. A. Lee. The problem with threads.Computer, 2006.

[11] W. Liu et al. POSH: a TLS compiler that exploits program
structure. InPPOPP, 2006.

[12] H.-W. Loidl et al. Comparing parallel functional languages:
Programming and performance.Higher Order Symbol.
Comput., 2003.

[13] J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. InPOPL, 1988.

[14] M. Metcalf and J. Reid. Fortran 90 Explained. Oxford
University Press, New York, 1992.

[15] M. K. Prabhu and K. Olukotun. Using thread-level specula-
tion to simplify manual parallelization. InPPOPP, 2003.

[16] J. Reinders.Intel Threading Building Blocks: Outfitting C++
for Multi-core Processor Parallelism. O’Reilly Media, 2007.

[17] M. C. Rinard and M. S. Lam. The design, implementation,
and evaluation of Jade.TOPLAS, 1998.

[18] Sun Microsystems, Inc. The Fortress language specification,
version 1.0. Technical report, Sun Microsystems, Inc., 2008.

[19] J.-P. Talpin and P. Jouvelot. Polymorphic type, regionand
effect inference.J. Funct. Programming, 1992.

[20] A. Welc et al. Safe futures for Java. InOOPSLA, 2005.

5 2008/10/20


	Motivation
	Benefits of Determinism
	Providing Deterministic Semantics
	State of the Art
	The Need for Sharing Controls
	Encapsulation
	Encapsulating Nondeterminism
	Encapsulating Unsoundness


	Supporting Non-deterministic Behaviors
	A Case for a Language-Based Solution
	Summary

