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An assessment of prognostic immunity markers in breast
cancer
Benlong Yang1,2,3, Jeff Chou4, Yaozhong Tao5, Dengbin Wu6, Xinhong Wu7, Xueqing Li8, Yan Li5, Yiwei Chu9, Feng Tang10, Yanxia Shi11,
Linlin Ma12, Tong Zhou12, William Kaufmann13, Lisa A Carey5,14,15, Jiong Wu1,2,3 and Zhiyuan Hu 5

Tumor-infiltrating lymphocytes (TIL) and immunity gene signatures have been reported to be significantly prognostic in breast cancer
but have not yet been applied for calculation of risk of recurrence in clinical assays. A compact set of 17 immunity genes was derived
herein from an Affymetrix-derived gene expression dataset including 1951 patients (AFFY1951). The 17 immunity genes demonstrated
significant prognostic stratification of estrogen receptor (ER)-negative breast cancer patients with high proliferation gene expression.
Further analysis of blood and breast cancer single-cell RNA-seq datasets revealed that the 17 immunity genes were derived from TIL
that were inactive in the blood and became active in tumor tissue. Expression of the 17 immunity genes was significantly (p < 2.2E-16, n
= 91) correlated with TILs percentage on H&E in triple negative breast cancer. To demonstrate the impact of tumor immunity genes on
prognosis, we built a Cox model to incorporate breast cancer subtypes, proliferation score and immunity score (72 gene panel) with
significant prediction of outcomes (p < 0.0001, n= 1951). The 72 gene panel and its risk evaluation model were validated in two other
published gene expression datasets including Illumina beads array data METABRIC (p < 0.0001, n= 1997) and whole transcriptomic
mRNA-seq data TCGA (p= 0.00019, n= 996) and in our own targeted RNA-seq data TARGETSEQ (p < 0.0001, n= 303). Further
examination of the 72 gene panel in single cell RNA-seq of tumors demonstrated tumor heterogeneity with more than two subtypes
observed in each tumor. In conclusion, immunity gene expression was an important parameter for prognosis and should be
incorporated into current multi-gene assays to improve assessment of risk of distant metastasis in breast cancer.

npj Breast Cancer            (2018) 4:35 ; doi:10.1038/s41523-018-0088-0

INTRODUCTION
Metastasis is the main cause of mortality for breast cancer
patients. Factors such as cell cycle deregulation, stromal micro-
environment, proteases, endothelial cells, myoepithelial cells and
immunity status within a tumor can drive metastasis.1 Targeted
inhibition of immune checkpoint function by antibodies against
PD-1,2,3 PD-L14,5 and CTLA46 has revealed active anti-tumor, T cell-
mediated immunity. Tumor-infiltrating lymphocytes (TIL) have
been well-reported to play critical roles in response to
chemotherapy and prognosis in breast cancer, specifically in
triple-negative and HER2-positive breast cancers, with a survival
benefit being seen in patients having >50% lymphocyte-
predominant tumors.7–9 Immunity-related gene classifiers have
also been reported to stratify prognosis in immune-benefit-
enabled tumors comprised mostly of Basal-like, HER2-enhanced
(HER2E), and Luminal B tumors.10 Quantitative assessment of anti-
tumor immunity and responsiveness to immunotherapy repre-
sents an important new avenue of breast cancer research.
Gene expression profiles of primary tumors are highly predictive

of distant metastasis11–15 in breast cancer and the genomic

portrait is maintained between the primary tumor and its
metastases.1,16,17 As the genetic and epigenetic properties of a
primary tumor define its fate and capability to develop metastasis,
the expression signatures of the primary tumor are prognostic and
predict a patient’s outcome. Three multi-gene expression assays,
PCR-based Oncotype DX (Genomic Health Inc., Redwood City, CA,
USA),15,18 microarray-based MammaPrint (Agendia Inc., Amster-
dam, Netherlands),13,19 and nanostring-based PAM50 Prosigna
Assay (NanoString Technologies Inc., Seattle, WA, USA),20–23 have
been widely used in clinical practice to determine the risk of
recurrence in patients with breast cancer. Genes monitored in
these assays mainly include drivers of cell proliferation, hormone
receptors, HER2 and basal cytokeratins. The PAM50 expression
assay with integration of breast cancer subtype and proliferation
score in risk assessment was shown to provide better prognostic
information in ER-positive, node-negative patients than Oncotype
DX.24 Agreement between risk classifications based on Oncotype
DX and PAM50 was as low as 54%, demonstrating substantial
differences between the molecular classifiers in patient risk
stratification.25 However, none of the current multi-gene
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expression assays have included the very important and
prognosis-related immunity genes. To improve accuracy in
evaluating risk of distant metastasis of breast cancer we created
a new model that added immunity genes based on gene
expression profiling.

RESULTS
Prognostic immunity and proliferation genes in breast cancer
We analyzed 1951 Affymetrics gene expression profiles
(AFFY1951) from 14 breast cancer cohorts with median follow-
up of 7.12 years, median time-to-distant metastasis (DM) of 2.7
years and 481 DM events. There were 20% ER-negative, 69% ER-
positive, and 11% unknown ER status in the AFFY1951 training
data set. HER2 status for the 14 published cohorts was not
provided (Supplementary Table 1). Two highly significant biolo-
gical categories, immune response (p < 0.001) and cell cycle (p <
0.001) were identified with 119 and 71 genes in each category
respectively (Supplementary Table 2). The Cox coefficient and the
magnitude of change associated with distant metastasis-free
survival (DMFS) were used for selection of immunity and cell cycle
genes for further analysis. The top-ranked 17 immunity genes and
19 cell cycle genes were used for calculation of immunity and
proliferation scores.
Single cell RNA-seq analysis of peripheral blood mononuclear

cells (PBMC) using a publicly available dataset26 indicated that 15
of the 17 immunity genes, excepting CCR2 and CXCL9, were
expressed in at least one of eight different types of immune cells.
However, none of the 19 cell cycle genes were expressed,
indicating that the immune cells are not proliferating in the blood
(Fig. 1a). We further analyzed gene expression in single cells
including both immune cells and tumor cells isolated from solid
breast tumor tissues.27 The results showed that expression of the

17 immunity genes was evident in the two immune cell groups
but sporadically or not in the five tumor carcinoma cell groups
(Fig. 1b). A portion of the total immune cells in the 11 tumors
(about 20% T cell group and 60% B cells) highly expressed the 19
proliferation genes while less than 20%, on average, of the
carcinoma cells expressed the proliferation genes in this single cell
RNA-seq data27 (Fig. 1b).
We next compared the 17 immunity genes with other immunity

signature modules. The 17 immunity genes were representatives
of 119 immunity genes with high correlation (Pearson’s correla-
tion= 0.87, 95%CI: 0.86-0.88, p < 0.0001, n= 1951) derived by
EPIG in the AFFY1951 dataset (Supplementary Figure 1A). We
compared the 17-gene immunity signature with 500 other
published immunity signatures (data not shown). The most highly
correlated published immunity signatures were shown, as an
example, in the TCGA breast cancer RNA-seq dataset (Supple-
mentary Figure 1B). Correlation analysis revealed CD4 and CD8 T
cell signatures, B cell signature, LCK signature, NK cell signature,
Miller’s immune signature, the UNC immune signature, and
Cluadin-low upregulated gene signature were all significantly
positively correlated with the 17-gene immunity signature with
correlations from 0.77 to 0.94, but negatively (lowest −0.51)
correlated with the Claudin-low down-regulated gene signature
(Supplementary Figure 1B). We also noticed that the 17-gene
immunity signature was the most compact significant gene
signature and therefore suitable for further analysis for clinical
application.
Patients were first divided into two groups based on either

immunity scores or proliferation scores. In general, patients who
were in the immunity-strong group (istrong) had better prognosis
(DMFS) than those in the immunity-weak group (iweak), and
patients who were in the high proliferation group had worse
prognosis than those in the low proliferation group in AFFY1951
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Fig. 1 RNA-seq gene expression of 17 immunity genes and 19 proliferation genes in published PBMC single-cell dataset (Macosko et al. Cell
2015)26 and breast cancer solid tumor single cells (Chung et al. Nature Communications 2017).27 (A) Expression of immunity and proliferation
genes in different PBMC cell types including B cells, CD4 T cells, CD8 T cells, NK cells, Monocytes and dendritic cells. (B) Expression of immunity
and proliferation genes of single cells including breast tumors’ immune single cells labeled as T_cell+Mac+M & B_cell (Mac=macrophages,
M=monocytes) and carcinoma single cells groups 1 to 3 (mixed carcinoma single cells from different tumors), BC02 and BC05 (carcinoma
single cells from each individual tumor)
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(Supplementary Figure 2). However, further analysis of the training
dataset AFFY1951 showed that immunity score was prognostic of
DMFS only in patients who were proliferation-high and ER-
negative, and patients in the istrong group displayed a
significantly better outcome (Fig. 2a, p < 0.0001). Immunity score
had no significant effect on DMFS in all other patients who were
either proliferation-high & ER-positive (Fig. 2b) or proliferation-low
regardless of ER status (Supplementary Figure 3A and B). The same
results were replicated in two independent validation datasets,
the publicly available gene expression dataset “METABRIC”28 of
fresh-frozen breast tissues and our targeted RNA-seq dataset
“TARGETSEQ” of breast cancer FFPE tissues, in proliferation-high
and ER-negative (Fig. 2c,e) or ER-positive groups (Fig. 2d,f), and
proliferation-low groups (Supplementary Figure 3C, D and E).
Proliferation gene expression and ER status demonstrated
significant impact on the prognostic value of immunity genes in
breast cancer.

The “Immunity-enhanced” group and immunity score in
evaluation of risk of distant metastasis
To further evaluate the significance of immunity genes and
proliferation genes in prognosis, a 72-gene test panel, including
the 17 immunity genes, 19 proliferation genes, 11 Basal genes, 14
ER genes, 3 HER2 genes, 2 invasion genes, and 6 housekeeper
genes (Supplementary Table 3) was applied for subtype and
immunity-adjusted risk of distant metastasis (iRDM) analysis. The
five PAM50 breast cancer subtypes Luminal A (LumA), Luminal B
(LumB), Basal-like (Basal), HER2-Enriched (HER2E) and Normal-like
(Normal)16,29,30 were recaptured by the iRDM analysis. Interest-
ingly, an additional group termed “Immunity-enhanced” (Immuno)
was identified (Supplementary Figure 4A. The new group
accounting for about 18% of tumors (Table 1) demonstrated high
expression of the 17 immunity genes and low or sporadic
expression of the other breast cancer biomarker genes. Compar-
ison of heatmaps sorted by expression of immunity genes in both

257 istrong
210 iweak

205 istrong
380 iweak

A B

206 istrong
192 iweak

168 istrong
435 iweak

27 istrong
38 iweak

38 istrong
59 iweak

C D

E F

Fig. 2 Survival plots of Immunity Score in different patient groups identified by proliferation and ER status in the AFFY1951 training dataset,
two test datasets METABRIC and TARGETSEQ. Immunity Score demonstrated strongest outcome prediction in patients who were ER-negative
and proliferation high in AFFY1951 (A) (p < 0.0001, n= 467), METABRIC (C) (p= 0.00018, n= 398) and TARGETSEQ (E) (p= 0.044, n= 65), but
was insignificant in ER-positive and proliferation high patients in AFFY1951 (B) (p= 0.079, n= 585), METABRIC (D) (p= 0.22, n= 603) and
TARGETSEQ (F) (p= 0.46, n= 97). High proliferation groups had proliferation scores no less than 50 and low proliferation groups had
proliferation scores less than 50. Survival analysis of ER-negative or ER-positive and low proliferation patients were demonstrated in
Supplementary Figure 1
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iRDM and PAM50 subtypes (Supplementary Figure 4A and B)
using the AFFY1951 dataset showed that high immunity gene
expression was present within each molecular subtype but not
well-correlated with any of the other molecular markers. Excluding
Normal-like and Mixed samples, iRDM subtypes demonstrated
significant outcome prediction in the AFFY1951 dataset (Fig. 3a),

very similar to the result of the PAM50 analysis (Fig. 3b) except for
an additional Immunity-enhanced group that represented an
intermediate outcome (Fig. 3a), worse than LumA but better than
LumB, Basal and HER2E subtypes.
The samples in the iRDM Immunity-enhanced group were

further classified using the PAM50 algorithm. In the AFFY1951

Table 1. Comparison of subtype classification between iRDM and PAM50 in four breast cancer datasets

Method Subtypes Basal HER2E Immuno Lum A Lum B Normal Mixed* Total

AFFY1951 iRDM counts 310 211 342 441 351 209 87 1951

percent 16% 11% 18% 23% 18% 11% 4% 100%

PAM50 counts 361 244 NA 490 368 232 256 1951

percent 19% 13% NA 25% 19% 12% 13% 100%

METABRIC iRDM counts 298 208 383 425 387 199 97 1997

percent 15% 10% 19% 21% 19% 10% 5% 100%

PAM50 counts 339 255 NA 428 410 253 312 1997

percent 17% 13% NA 21% 21% 13% 16% 100%

TCGA iRDM counts 187 113 171 194 244 181 50 1140

percent 16% 10% 15% 17% 21% 16% 4% 100%

PAM50 counts 207 140 NA 262 256 171 104 1140

percent 18% 12% NA 23% 22% 15% 9% 100%

TARGETSEQ iRDM counts 112 49 80 120 55 41 26 483

percent 23% 10% 16% 25% 11% 9% 5% 100%

PAM50 counts 128 64 NA 134 67 33 57 483

percent 26% 13% NA 28% 14% 7% 12% 100%

310 Basal
211 HER2E
342 Immuno
441 LumA
351 LumB

A

699 high
709 low
543 med

C

B

D

868 high
588 low
495 med

361 Basal
244 HER2E
490 LumA
368 LumB

Fig. 3 Comparison of survival analysis of iRDM and PAM50 in AFFY1951 breast cancer training dataset. Subtypes and risk groups are color-
coded: Basal-like (Red), HER2E (Hot Pink), Immuno (Yellow), Luminal A (Dark Blue), Luminal B (Sky Blue), Normal-like (Green); low (Green), med
(Dark Blue), and high (Red) risks. Kaplan-Meier plots were used to show Distant Metastasis-Free Survival (DMFS) by subtypes for iRDM (A) (p <
0.0001, n= 1655) and PAM50 (B) (p < 0.0001, n= 1463) and risk groups for iRDM (C) (p < 0.0001, n= 1951) and PAM50 (D) (p < 0.0001, n= 1951)
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training dataset there were 342 high-immunity tumors which were
further separated into 14% Basal, 14% HER2E, 15% LumA, 27%
LumB, 3% Normal, and 27% Mixed (Supplementary Table 4).
Samples classified as Mixed displayed <95% confidence for
assignment to a subtype. As shown in the heatmap (Supplemen-
tary Figure 5), expression of the 17 immunity genes was high in
the Immunity-enhanced group compared to other
PAM50 subtyping genes which were expressed at lower levels if
expressed at all.
Similar to the calculated risk of recurrence (ROR) score using

PAM50, the iRDM score was calculated using an immunity score in
addition to subtype and proliferation scores to adjust the risk of
distant metastasis. The iRDM score was calculated by two
equations depending on ER and proliferation status, as described
in the Materials and Methods section. As seen with the PAM50

assay (Fig. 3d), iRDM also divided patients into three risk groups
with low, intermediate (med) and high risk of distant metastasis.
The three risk groups demonstrated significant (p < 0.0001, n=
1951) outcome prediction in the training dataset AFFY1951 (Fig.
3c). Considering the impact of immunity genes on DMFS, iRDM
significantly adjusted more patients into the lower risk category
(Fig. 3c,d).
In both PAM50 and iRDM algorithms in this study, samples with

low confidence (confidence < 0.95) were classified into a “Mixed”
group (Table 1). A Mixed sample was not treated as a subtype as
its gene expression pattern did not correlate well with any defined
subtype. The percentage of Mixed samples was significantly
reduced using the iRDM assay when compared with PAM50 (Table
1). The Immunity-enhanced group accounted for about 40% of the
Mixed group defined by PAM50 (Data not shown).

298 Basal
208 HER2E
383 Immuno
425 LumA
387 LumB

A

177 Basal
112 HER2E
153 Immuno
1891 LumA
239 LumB

C

84 Basal
30 HER2E
46 Immuno
65 LumA
31 LumB

E

832 high
667 low
498 med

B

394 high
329 low
273 med

D

133 high
96 low
74 med

F

Fig. 4 Validation of iRDM subtype and risk survival analysis in three independent test datasets. Survival plots of iRDM subtypes in METABRIC
(A) (p < 0.0001, n= 1997), TCGA (C) (p= 0.022, n= 996), TARGETSEQ (E) (p= 0.00021, n= 303) and survival plots of risk groups (high, low, med)
in METABRIC (B) (p < 0.0001, n= 1997), TCGA (D) (p= 0.00019, n= 996), TARGETSEQ (E) (p < 0.0001, n= 303) were shown. Subtypes and risk
groups are color-coded: Basal-like (Red), HER2E (Hot Pink), Immuno (Yellow), Luminal A (Dark Blue), Luminal B (Sky Blue), Normal-like (Green);
low (Green), med (Dark Blue), and high (Red) risks
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The same results were observed in the three validation datasets,
METABRIC, TCGA and TARGETSEQ (Fig. 4, Supplementary Figure 4)
(Table 1). Overall survival (OS) was used as the outcome endpoint
for the TCGA dataset and the results were slightly less significant
in survival analysis compared to the other two datasets where
DMFS was used.
One of the characteristics of the Claudin-low subtype (CLOW) of

triple-negative breast cancers is high expression of immunity
genes.31 To see if Immunity-enhanced and CLOW subtypes were
the same, we monitored CLOW subtype tumors using expression
of the top 80 CLOW signature genes.31 Less than 30% of the
Immunity-enhanced tumors were classified as CLOW in the
AFFY1951 dataset (Supplementary Figure 6A) although expression
profiles of CLOW and Not-CLOW subgroups were very similar with
a Pearson correlation of 0.97 (95% CI: 0.95–0.98, p < 0.00001).
There was no prognostic difference between the CLOW and Not-
CLOW subgroups (Supplementary Figure 6D) within the iRDM-
defined Immunity-enhanced group. Similar results were observed
in the METABRIC data with a Pearson correlation of 0.82 (95% CI:
0.74–0.88, p < 0.00001) and the TCGA data with a Pearson
correlation of 0.92 (95% CI: 0.88–0.95, p < 0.00001) (Supplementary
Figure 6) as two validation datasets. As the pattern of immunity
gene expression in the CLOW tumors was the same as in the Not-
CLOW tumors but of increased intensity, the CLOW subtype
tumors appear to represent Immunity-enhanced tumors with the
greatest level of immunity gene expression.
The immunity gene signature included B and T lymphocyte

transcripts (Fig. 1) indicating a population of lymphocytes was
present within breast cancers. To compare the gene expression-
based immunity score with pathologist-assessed TIL, we retrieved
91H&E slides from triple-negative tumors with corresponding
immunity scores (Supplementary Table 5). The average percentages
of TIL in each tumor were determined by an experienced, licensed
pathologist using an internationally recommended method8 (see
also: www.tilsinbreastcancer.org). TIL percentages and immunity
scores were significantly correlated (Pearson’s correlation= 0.75,
95%CI: 0.64 to 0.83, p value < 2.2E-16). As expected both TIL and

immunity score predicted DMFS in the 91 patients (Supplementary
Figure 7A & B). Patients with high TIL (>50% infiltrating lymphocytes)
and high immunity scores had the best DMFS (Supplementary
Figure 7C). Only two patients had high TIL and a low immunity
score, and these patients are not shown. Among patients with low
TIL ( < 50% infiltrating lymphocytes), the immunity score influenced
outcome, with a high immunity score portending better DMFS than
a low immunity score (Supplementary Figure 7C).

Tumor heterogeneity within breast cancer subtype
Single-cell expression of the 72 genes was also analyzed in 11 tumor
samples containing 12 to 78 single cells.27 The subtype of each bulk
tumor was defined by immunohistochemistry (IHC) in the original
paper, identifying 2 LumA, 1 LumB, 4 HER2E and 4 triple-negative
breast cancers (TNBC). We used iRDM algorithm to identify each cell’s
subtype (Supplementary Figure 8). Single cell analysis indicated that
tumor cells in each tumor displayed expression of at least two
subtypes detected by iRDM (Fig. 5), showing heterogeneity of gene
expression within a tumor. The correlation between the percentage
of TIL estimated in the tumor and immunity gene expression was of
intermediate strength. In most cases, tumors with a high percentage
of TIL had higher expression of immunity genes and tumors with a
low percentage of TIL had lower or no expression of immunity genes.
However, there was a tumor with high TIL and low immunity gene
expression (BC08) and a tumor with low TIL and high immunity gene
expression (BC06). Immunity gene expression did not appear to
coincide with expression of basal cytokeratins or signals from HER2
(ERBB2) and steroid receptors, implying that the expression
of immunity genes was not correlated with breast cancer subtypes
(Fig. 5).

DISCUSSION
Recent studies have identified genes that influence anti-tumor
immunity.3–6,10,32,33 In this paper, we identified 17 co-expressed
immunity genes that, as a group in gene ontology analysis, play an
important role in immune response and its regulation. The
Immunity-enhanced group identified in this analysis consisted in
part of previously unclassified tumors with relatively low expression
of the PAM50 intrinsic subtype marker genes. It also included the
Claudin-low subtype of triple-negative breast cancers. We defined
Immunity-enhanced patients as a new prognostic group instead of a
subtype due to subsequent data analysis in single cells showing that
the majority of immunity gene expression was contributed by
infiltrating immune cells in tumors. The iRDM algorithm improved
the accuracy for breast cancer classification by significantly reducing
the frequency of unclassified Mixed tumors in four independent
datasets. Overexpression of the 17 immunity genes was found to be
predictive of a good or better prognosis, meaning a lower risk of
cancer recurrence, metastasis or death. This observation supports
others’ prognostic analyses of breast cancer and ovarian cancer.10,34

In the current study, one important finding was immunity genes play
a significant role in breast cancer prognosis only in patients whose
tumors are estrogen-negative and highly proliferative, accounting for
about 24% of all patients in our training dataset. This was
corroborated by gene expression analysis of tumor single cells
showing that expression of proliferation genes can sometimes be
contributed by active TIL instead of carcinoma cells. To estimate
more precisely the risk of distant metastasis for these patients, it is
necessary to incorporate an immunity score, besides the intrinsic
subtype and proliferation scores as used in the PAM50 assay, into the
equation for calculation of risk.
The Immunity-enhanced group in breast cancer was identified

by adding a set of 17 co-expressed immunity genes into the
PAM50 marker genes. Interestingly, Immunity-enhanced group
tumors had high expression of genes that were up-regulated in
Claudin-low subtype tumors. We considered whether the Claudin-

Sub LumA LumB HER2E TNBC
Cell 28 57 38 60 78 26 52 24 61 17 12
TIL 1% 2% 40%30% 1% 2% 40% 45%35% 2% 60%
BC 01 02 03+LN 04 05 06 07+LN 08 09 10 11

Subtypes

1.5

0

-1.5

Fig. 5 Heatmap of iRDM subtypes analyzed in 549 single cells from
11 primary breast tumors and two lymph node metastases. All
tumors showed two or more iRDM subtypes. Sub, subtype; Cell,
single cell number; TIL, percentage of tumor-infiltrating lympho-
cytes. Color-coded individual cell subtypes: Basal-like (Red), HER2E
(Hot Pink), Immuno (Yellow), Luminal A (Dark Blue), Luminal B (Sky
Blue), Normal-like (Green), Mixed (Black)
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low subtype was similar to the Immunity-enhanced group as both
have high immunity gene expression and low or no intrinsic
subtyping gene expression. Only one third of tumors in the
Immunity-enhanced group expressed the Claudin-low signature
genes above the cutoff threshold for the Claudin-low subtyping
algorithm.31 However, the Claudin-low and not-Claudin-low
subtypes within the Immunity-enhanced group were highly
correlated and had the same prognosis. Thus, we conclude that
Claudin-low subtype tumors represent Immunity-enhanced group
tumors with the greatest levels of immunity gene expression. It is
notable that anti-tumor immunity within CLOW tumors appears to
include immune-suppressive T lymphocytes.35

For tumors with high TIL and low expression of HER2 (ERBB2),
ER, PR, basal keratins and proliferation genes, the PAM50
classification spreads them across five subtypes but predomi-
nantly in the uncertain Mixed category. The presence of the
immune cells does not appear to affect expression of the other
PAM50 markers as, for the most part, there was no correlation
between high immunity gene expression and any of the other
marker genes (Fig. 1B and Supplementary Figure 4). When the
PAM50 algorithm was used to cluster genes including the 17
immunity genes, there was a clear gradation of immunity in all
subtypes and generally without gradation of the other markers
within each subtype. This suggests that Immunity-enhanced
tumors are not a subtype within a PAM50-defined subtype, but
a distinct group of breast cancers, similar to the Immunity-
enhanced groups in melanoma and ovarian cancer.36

The lack of a strong correlation between immunity gene
expression and the other molecular markers indicates that the low
expression of PAM50 markers in the Immunity-enhanced group
was not due to dilution of tumor mRNA with infiltrating
lymphocytes. The major reason why immunity genes were not
observed in the intrinsic subtype analysis is the algorithm filters
out variable genes, such as the highly variable immunity genes,
within a subtype. There appears to be a distinct subset of breast
cancers with low expression of the PAM50 markers and high
expression of immunity genes.
The Immunity-enhanced group of breast cancer with relative

low expression of ER, PR, HER2, basal cytokeratins and proliferation
drivers might be less responsive to treatments with anti-estrogen,
Herceptin and general chemotherapies, but may benefit more
from the immunotherapies. The immunity score could be a
companion diagnostic maker in addition to PDL-1 expression for
immune-checkpoint inhibitors. A clinical trial that stratifies patients
based on subtypes including the Immunity-enhanced group may
distinguish patients with high anti-tumor immunity from those
with low anti-tumor immunity and provide more precise design of
trials testing the efficacy of immune-checkpoint inhibitors.
Several clinical trials have demonstrated that number of TIL are

prognostic in breast cancers.8,9,37,38 Pathologic TIL on H&E slides
were significantly correlated with immunity scores based on our
analysis of 91 triple-negative breast cancers. Our analysis of single-
cell RNA-seq data indicated that expression of the immunity genes
was contributed mainly by immune cells, not carcinoma cells,
suggesting that expression levels of immunity genes may reflect
the number of TIL. Single-cell analysis also indicated that only a
portion of immune cells, not all TIL, were proliferative in some
solid tumors. We speculate that only the proliferative TIL are active
in anti-tumor immunity and this may explain why some patients
having high TIL had poor prognosis in clinical studies.33,34

Tumor heterogeneity was also studied by analyzing expression
of the 72 genes in single tumor cells. Of the 11 tumors analyzed in
the current study, each tumor had at least two intrinsic subtypes.
This observation needs further validation by conducting large-
scale single-cell RNA-seq of solid tumors using advanced
technologies such as 10x Genomics to evaluate its value in clinical
design of adjuvant therapies for breast cancer patients.

In summary, a set of immunity genes was extracted through
analysis of a large dataset of breast cancers. High expression of the
immunity genes identified an Immunity-enhanced group and
indicated a better prognosis in ER-negative and high-proliferation
breast cancers. Single-cell sequencing provides a useful tool for
mechanistic studies of tumor immunity and heterogeneity with
more studies needed to evaluate its clinical value.

METHODS
Patients
This study included 225 anonymous patients from a multi-center study in
Shanghai and 250 patients from the University of North Carolina at Chapel
Hill (UNC-CH). 225 breast tumor FFPE blocks were obtained from patients
hospitalized and receiving modified radical mastectomy or lumpectomy in
Shanghai Cancer Hospital. The patient-anonymous 250 FFPE tissues were
obtained from UNC Hospital and were part of a molecular epidemiology
study, LCCC-9830. The study was approved by the two independent
institutional review boards (IRB) at the Shanghai Tumor Institute at Fudan
University and UNC at Chapel Hill.

Microarray data mining and analysis
Affymetrix microarray data sets for 2034 patients from fourteen breast
cancer cohort studies were retrieved from GEO: GSE1112, GSE12093,
GSE1456, GSE2034, GSE2603, GSE3494, GSE4922, GSE5327, GSE6532,
GSE7378, GSE7390, GSE8193, GSE9195, and ArrayExpress|E-TABM-
158.39,40 The downloaded individual CEL files were first processed by
Robust Multi-chip Average41 and then merged into one dataset of 2034
expression profiles which were further batch-corrected using Combat42

with subtype as covariate. An unsupervised analysis of the 2034 expression
profiles using the pattern-recognition algorithm EPIG43,44 was performed
to identify sets of co-expressed genes. Two co-expressed gene clusters
with significant enrichment of gene ontology categories “Immune
Response” and “Cell Cycle” were identified (Supplementary Table 2). 119
immunity and 71 cell cycle genes were consistently selected in 1000
iterations by EPIG, in which 80% of the 2034 expression profiles were
randomly selected in each iteration. Gene numbers were subsequently
reduced by selecting the top-weighted EPIG values, by correlation with the
119 immunity genes (R > 0.87, Figure 8), and by using gene ontology to
eliminate duplicate functional genes. A compact 17 immunity gene
signature was generated containing APOBEC3G, CCL5, CCR2, CD2, CD27,
CD3D, CD52, CORO1A, CXCL9, GZMA, GZMK, HLA-DMA, IL2RG, LCK, PRKCB,
PTPRC, and SH2D1A. We used the same methods to identify 19 proliferation
genes including AURKA, BIRC5, CCNB1, CCNE1, CDC20, CDC6, CENPF, CEP55,
EXO1, MKI67, KIF2C, MELK, MYBL2, NDC80, ORC6, PTTG1, RRM2, TYMS, and
UBE2C. 1951 patients of the 2034 patients had follow-up and clinical data
which were combined using the same established method as described45

and this group was named “AFFY1951”.
In addition to the AFFY1951 training dataset, we also assembled three

test datasets on different platforms including Illumina beads arrays of 1997
fresh-frozen breast tumors (METABRIC),28 RNA-seq of 1140 fresh-frozen
breast tumors (TCGA)46 and targeted RNA-seq of breast cancer FFPE tissues
from 225 samples from Shanghai Cancer Hospital and 258 samples (250
patients with 8 duplicate samples) from UNC-CH (TARGETSEQ, GSE113863).

Calculation of Proliferation and Immunity Scores
A proliferation score was calculated by averaging expression levels of the
afore-mentioned 19 proliferation genes as “unscaled proliferation score” in
a sample and then scaled between 0 and 100 using the formula: 38 ×
(unscaled proliferation score+ 1.35). Proliferation-high were those samples
with proliferation score larger or equal to 50 while proliferation-low were
the others with score less than 50.
An Immunity score was calculated by averaging gene expression values

of the above 17 immunity genes as “unscaled immunity score” and then
scaled between 0 and 100 for each sample using the formula: 30 ×
(unscaled immunity score+ 1.4). For Immunity score group classification,
the patients were divided into two groups, “iweak” and “istrong”, based on
their Immunity score values using the cut-off value of 42 that was derived
from the combined data using X-tile.47
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Breast Cancer Molecular Subtyping
A panel of 72 genes, consisting of the 17 immunity genes, 19 proliferation
genes, 11 Basal genes, 14 ER genes, 3 HER2E genes, 2 invasion genes, and 6
housekeeper genes was formed for analysis of breast cancer subtypes
(Supplementary Table 3). Ten-fold CV included different statistical predictors
including PAM,48 a k-Nearest Neighbor Classifier (KNN) with either Euclidean
distance or one-minus-Spearman-correlation as the distance function and a
Class Nearest Centroid (CNC) metric with either Euclidean distance or one-
minus Spearman-correlation as the distance function. A sample was assigned
the subtype corresponding to the highest one-minus Spearman-correlation
value among the six values versus centroids for iRDM subtypes: Basal, HER2E,
Immuno, LumA, LumB, and Normal based on Single Sample Predictor
algorithms for subtyping breast cancer.23,29,49

Confidence intervals for each subtype identification were calculated50

and a subtype with confidence lower than 95% was called “Mixed”. The
formula for confidence calculation is: Subtyping “confidence”= 1 -
Spearman’s test p value.
Survival plots were done using R package Survminer (downloaded from

Bioconductor “RTCGA”) which provided censored survival curves. In
addition, Univariate Kaplan-Meier survival analysis was performed for
validation using WINSTAT for EXCEL® (R. Fitch Software, Lehigh Valley, Pa.).

The iRDM prediction model
Factors included in the model to optimize an outcome predictor were
molecular subtype, proliferation score and immunity score that were
calculated based on expression profiles of the 72-gene panel. We slightly
modified established algorithm23 for iRDM and used Cox models for iRDM
score calculation in which Distant Metastasis-Free Survival Time (DMFS) was
used with patient follow-up for up to 10 years. A subset of 404 patients was
selected as a training dataset through ranking of correlation to the centroids
with a cutoff at 0.7. Coefficients for each subtype were calculated using this
Cox model and used as constant factors for subtype Spearman correlations,
proliferation score, and immunity score. The immunity-stratified Risk of
Distance Metastasis (iRDM) was calculated using two formulas:

A. For the proliferation-high and ER-negative group only:

Unscaled iRDMscore¼ �ð0:02 ´BasalÞ þ 0:16 ´HER2Eþ ð�0:34 ´ ImmunoÞ
þ0:07 ´ LumAþ 0:08 ´ LumBþ 0:09 ´ Proliferation Score
þð�0:40 ´ Immunity ScoreÞ

B. For all other groups except A:

Unscaled iRDM score¼ 0:40 ´Basalþ 0:48 ´HER2Eþ �0:06 ´ Immunoð Þ
þ �0:46 ´ LumAð Þ þ 0:19 ´ LumBþ 0:24

´ Proliferation Scoreþ �0:08 ´ Immunity Scoreð Þ
The unscaled iRDM score was further scaled to values spanning 0 to 100

by the formula:

iRDMscore ¼ 90 ´Unscaled iRDMscoreþ 50

Patients were categorized into three groups, low, intermediate (med)
and high risk, according to iRDM scores (range 0–100) with cutoffs at 33
and 50 optimized by X tile.47

Targeted RNA Expression by RNA-seq
For breast tumor FFPE tissues RNA extraction was routinely performed
using Roche FFPE RNA extraction kit according to the manufacturer’s
protocol. The Illumina TruSeq Targeted RNA expression kit was used to
build libraries of the targeted 72-genes. To synthesize cDNA, 200 to 800
nanograms of purified FFPE RNA in a total volume of 3 µl was mixed with
4.0 µl RCS1, 2.0 µl ProtoScrip II Reverse Transcriptase, 1.0 µl 10 mM DTT at
42 °C for 30min and 94 °C for 10min. The cDNA was hybridized with
custom oligo pools in a thermal cycler programed to gradually decrease
temperature from 70 °C to 30 °C in 30min. The RNA/Oligo hybrid products
were washed, extended and ligated. The ligated DNA was amplified by
DNA polymerase on the thermal cycler with 35 PCR cycles of 98 °C for 30 s,
62 °C for 30 s and 72 °C for 60 s. The PCR products were purified with
AMPure XP beads and eluted in 15 µl of buffer, measured using Agilent
Bioanalyzer2100 and DNA1000 chips, pooled with equal amounts of DNA
from each sample’s library, and finally diluted to 4 nM, denatured, and
loaded to NextSeq 500 according to the manufacturer’s protocol. Illumina
Casava1.7 software was used for basecalling and sequencing data were
demultiplexed with Illumina bcl2fastq2 software to generate one fastq file
per sample. To ensure sequencing data integrity of libraries derived from

FFPE RNA tissues, only samples with total reads larger than 10000 and
missing genes less than 30% of all 72 genes were further processed in the
validation study. Single read 1 sequence in each fastq file were mapped to
known targeted regions of human genomes to generate raw counts using
R package ShortRead. Raw counts of all samples were normalized by the
size of the transcripts and by the size of the library and then calculated for
CPM per sample as a gene expression matrix using R package edgeR from
Bioconductor and finally log based 2 transformed and imputed by KNN
method. Gene expression data were further median-centered and column-
standardized. We also used Distance Weighted Discrimination DWD51 to
combine 225 Targeted RNA samples from Shanghai Cancer Hospital and
258 Targeted RNA samples including 8 technical repeats from UNC-CH to
create a test dataset denoted “TARGETSEQ” (GSE113863) in which 303
patients had DMFS time and event (Supplementary Table 4).

Histopathological TIL-assessment
The TILs were evaluated by a trained pathologist using an internally
recommended method.8 See also www.tilsinbreastcancer.org for a freely
available training tool for the assessment of TILs by pathologists on HE-slides.

Study approval and consent to participate
All studies were carried out according to institutional guidelines, and with
appropriate informed consent from participants. Institutional ethics commit-
tees of the clinical centers where samples were collected reviewed and
approved all protocols. The Institutional Review Board of the Shanghai Cancer
Center at Fudan University and University of North Carolina separately
approved procurement and handling of the human materials. All data were
analyzed anonymously.

DATA AVAILABILITY
Original primary sequencing data and processed data for Targeted RNA-seq data
TARGETSEQ created in this study were submitted to GEO sequencing data
(GSE113863) at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113863.
Published data for generating training data AFFFY1951 were retrieved from GEO:
GSE1112, GSE12093, GSE1456, GSE2034, GSE2603, GSE3494, GSE4922, GSE5327,
GSE6532, GSE7378, GSE7390, GSE8193, GSE9195, and ArrayExpress|E-TABM-15839,40.
METABRIC gene expression data are available at the European Genome-Phenome
Archive http://www.ebi.ac.uk/ega/ which is hosted by the European Bioinformatics
Institute, under accession number EGAS00000000083. TCGA breast cancer sequen-
cing data are available in CGHub (https://cghub.ucsc.edu/) and sample lists, data
matrices and supporting data can be found at (http://tcga-data.nci.nih.gov/docs/
publications/brca_2012/). A RNA-seq dataset of 2,700 Peripheral Blood Mononuclear
Cells (PBMC) single cells is freely available from 10X Genomics that were sequenced
on the Illumina NextSeq 500 and the raw data can be found on http://satijalab.org/
seurat/pbmc3k_tutorial.html. TPM counts of eleven solid breast tumors’ single cell
RNA-seq can be downloaded from GEO (GSE75688) https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE75688.
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