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Abstract

patient-matched breast tumour samples.

quality, availability and cost.

Background: High-throughput transcriptomics has matured into a very well established and widely utilised
research tool over the last two decades. Clinical datasets generated on a range of different platforms continue to
be deposited in public repositories provide an ever-growing, valuable resource for reanalysis. Cost and tissue
availability normally preclude processing samples across multiple technologies, making it challenging to directly
evaluate performance and whether data from different platforms can be reliably compared or integrated.

Methods: This study describes our experiences of nine new and established mRNA profiling techniques including
Lexogen QuantSeq, Qiagen QiaSeq, BioSpyder TempO-Seq, lon AmpliSeq, Nanostring, Affymetrix Clariom S or
U133A, lllumina BeadChip and RNA-seq of formalin-fixed paraffin embedded (FFPE) and fresh frozen (FF) sequential

Results: The number of genes represented and reliability varied between the platforms, but overall all methods
provided data which were largely comparable. Crucially we found that it is possible to integrate data for combined
analyses across FFPE/FF and platforms using established batch correction methods as required to increase cohort
sizes. However, some platforms appear to be better suited to FFPE samples, particularly archival material.

Conclusions: Overall, we illustrate that technology selection is a balance between required resolution, sample
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Background

Since their inception microarrays have been adopted as
a major tool for the study of clinical samples to improve
our understanding of diseases, development of molecular
subtyping and prognostic signatures for clinical
decision-making [1]. A crucial consideration for many
clinical studies is whether new data generated can be
directly compared or integrated with pre-existing data-
sets for robust classification and response prediction.
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RNA sequencing (RNAseq) has somewhat supplanted
microarrays for transcriptome analysis. However, in
translational research when the focus is often restricted
to identifying differentially expressed genes and path-
ways, rather than detecting specific isoforms and splice
variants, decisions on which platform to use are often
based upon cost, rather than resolution, particularly if
this means more samples can be examined to maximise
statistical power for a fixed budget. Indeed, RNAseq is
not without its limitations, Robert and Watson recently
demonstrated that RNAseq is unable to accurately meas-
ure expression of hundreds of genes in the human
genome [2].
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Many high-throughput profiling studies rely on sample
availability and cost rather than statistical power [1].
Direct integration of datasets enables meta-analysis and
has the potential to improve statistical power and the
generalisability of results for robust classification and re-
sponse prediction. However, non-trivial systematic bias
or ‘batch effects’ can occur within and between micro-
array platforms [3-6]. Contrary to The MicroArray
Quality Control guidelines [7], gene expression data can
be directly integrated and robust results can be pro-
duced from fundamentally different technologies such as
Affymetrix GeneChips and Illumina BeadChips [3]. This
finding has since been supported by other studies [8, 9].

Early microarray studies involving clinical samples were
dependent on relatively large amounts of high quality RNA
and thus relied heavily on the availability of fresh frozen
(FF) tissue. However, collection and storage of FF tissue is
costly and can be logistically prohibitive. Protocols and
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technologies capable of generating high quality whole-
genome transcriptomic data from archival formalin fixed
paraffin embedded (FFPE) tissues are in demand [10]. FFPE
tissues are available routinely in the clinical setting and can
be stored at ambient temperature for many years, allowing
easy transportation. A large number of studies have com-
pared matched FF and FFPE samples, with some reporting
reduced efficacy or numbers of detected transcripts and
batch effects similar to those reported for different profiling
technologies (recently reviewed [11]). Most studies conclude
that the data can be compared to some extent, subject to
certain considerations, accepting that RNA from FFPE sam-
ples is often degraded and continues to degrade with age
[10]. Whilst earlier microarray technologies performed
poorly with degraded RNA, newer kits and platforms have
emerged using targeted sequencing such as Ion AmpliSeq
Transcriptome and BioSpyder TempO-Seq or 3’ sequen-
cing from Lexogen QuantSeq. Other technologies such as

Table 1 Comparison of traditional and new microarray platforms with sequencing approaches

Technology Technology/  Biochemistry Approx. Max. No. of Read  Input  Approx. Success Success
Platform Throughput no. mapped Depths FFPE cost per rate of  rate of
probes/ ENSG RNA sample  FF FFPE
primer  IDs (ng)* (£)** samples samples
pairs (n) (n)
3" RNA Lexogen RNA — RT, oligodT priming from 3" 96 samples 55,765 25,610 10M 500 90 N/A 98%
sequencing QuantSeq end, random priming towards 3' per 5 days (318)
end — amplification and barcoding
— sequencing
QiaSeq UPX  RNA — RT, oligodT priming for 96 samples 42,553 20,000 15M 10 50 N/A 94% (48)
3’ cDNA synthesis —template per 5 days
Transcriptome  switching for 2nd strand synthesis
priming — fragmentation — end
repair addition, adapter ligation —
PCR to add indices — sequencing
Specific BioSpyder RNA — annealed 50 bp detector 192 19,300 19,300 12M 20um 160 N/A 95% (38)
Targeted TempO-Seq oligos are ligated then amplified samples FFPE
Sequencing and barcoded — sequencing per 4 days Section
lon Ampliseq  RNA — RT, multiplex PCR — 96 samples 20,802 19,059 8M 10 160 100% 76% (76)
Transcriptome  sequence barcoding — emulsion per 5 days (108)
PCR — sequencing of ~ 150 bp
targets
Targeted Nanostring RNA — hybridisation to fluorescent 12 samples 800 800 N/A 50 250 N/A 100%
Probes barcoded probes in solution — per day (12)
immobilised in nCounter cartridge (800 genes)
— scan
Newer Affymetrix RNA — cRNA amplification — 192 211,300 >20,000 N/A 50 100 100% (3) 100% (8)
Microarray ~ Clariom S hybridisation to GeneChip — scan  samples
per 4 days
Traditional  Affymetrix 192 per 250,833 11,827 N/A 50 360 100% 100%
Microarray ~ U133A day (178) (286)
lllumina RNA — RT, ampilification, 96 samples 47,323 22,571 N/A 1500 195 91% 21%
BeadChip HT-  biotinylation (NUGEN WT Ovation per 1.5 days (348) (206)
12v3/v4 kit) — hybridisation to 50 bp probes
on chip — scan
Full RNA RNA-seq RNA — fragmentation — RT — 8 samples 20,025 1857s1  136M 2000  250-500 100% 100%
Sequencing barcoded library construction — per 5 days paired (52) (87)
genome-wide full RNA sequencing reads

*Input RNA reflects quantities used in this study - for input ranges refer to the manufacturer’s guidelines
**Estimated costs (£, UK December 2019) include library preparation and sequencing. Costs can vary by sample numbers and sequencing infrastructure
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Fig. 1 Comparison of gene expression profiling approaches (a) Schematic of probe/primer designs for each technology. A table showing which
samples were processed on each technology is provided in Additional file 1: Table S1. b Number of overlapping Ensembl gene identifiers
detected in each dataset (Nanostring and Affymetix U133 were omitted as they do not represent the whole transcriptome and the Clariom S was
excluded as only three samples were processed). ¢ Summary of FFPE sample processing success rates by sample age using

whole-transcriptome platforms

NanoString are promising, but are limited to panels of genes
rather than whole genome transcriptome. In this study, a
number of gene expression profiling platforms were
compared.

Methods

Clinical samples

All patients gave informed consent and the study was ap-
proved by the local ethics committee (LREC; 2001/8/80
and 2001/8/81). RNA was extracted from primary human
breast cancer samples collected over 15 years at the Edin-
burgh Breast Unit from post-menopausal women with es-
trogen receptor positive disease, treated with 3-months of
neoadjuvant endocrine therapy. Sequential biopsies were
taken pre-treatment, early (14-days) on-treatment and at
surgery 3—6 months later (late on-treatment) from each
patient. Part of the biopsy material collected was snap-
frozen in liquid nitrogen and part was fixed in formalin
and embedded in paraffin. RNA was extracted from fresh
frozen tissue using the Qiagen miRNeasy kit and from 2 x
20 um FFPE tissue sections using the RNeasy FFPE kit
using the manufacturer’s standard protocols for each kit.
Agilent RIN values for fresh frozen tissue were > 7 and for
FFPE tissue were < 3.

Transcriptomics

Building upon large scale clinical studies to investigate
the effects of endocrine therapy on breast cancer using
Affymetrix U133A arrays [12] and [lumina HT12-V4
BeadChips [13], this study, utilised patient-matched sets
of samples across a range of transcriptomic technologies:
Affymetrix Clariom S, NanoString, Ion AmpliSeq Tran-
scriptome, BioSpyder TempO-seq [14] Lexogen Quant-
Seq and RNA-seq (Table 1). Microarray samples were
processed as directed by the manufacturer’s instructions.
Nanostring profiling was performed using nCounter
technology as per the manufacturer’s instructions. Se-
quencing was performed as described: Ion Ampliseq
samples were processed using an Ion a PI™ Chip Kit v3
and sequenced using an lon Proton™ System. QiaSeq
samples were sequenced using the NextSeq 500/550
High-Output v2 (150 cycle) Kit on the NextSeq 550 plat-
form. For TempoSeq samples, single read (1x75bp) se-
quencing was performed using the NextSeq 500/550
High-Output v2 (75 cycle) Kit on the NextSeq 550 plat-
form. For QuantSeq samples were either processed via

single read (1x75bp) sequencing performed using the
NextSeq 500/550 High-Output v2 (75 cycle) Kit on the
NextSeq 550 platform or via Ion a PI™ Chip Kit v3 and
sequenced using an Ion Proton™ System. For RNASeq
samples the TruSeq Stranded Total RNA Library Prep
Kit with Ribo-Zero Gold (Illumina) was used and se-
quencing was performed on an Illumina HiSeq 2500
using a 2x50bp configuration with an average of 136
million read pairs per sample. All data is publicly avail-
able from NCBI GEO (www.ncbi.nlm.nih.gov/geo/)
under super-series accession GSE130645.

Data analysis

[lumina and Affymetrix data were pre-processed and nor-
malised as described previously [3]. NanoString data were
generated using the nSolver 3.0 software. Ion AmpliSeq
Transcriptome data were generated using the AmpliSeq
RNA plugin in the Torrent Suite Software and normalised
using RPM (reads assigned per million mapped reads)
method. QiaSeq FASTQ files were uploaded to the Gene-
Globe Data Analysis Center, an online platform provided
by QIAGEN. The primary analysis module for the UPX 3’
Transcriptome Kit was used to generate UMI-based gene
expression estimates from the reads for all samples. Quant-
Seq raw data in .bcl format was transferred from the Next-
Seq instrument to a Linux system, where demultiplexed
FASTQ files were generated using Bcl2fastq2 v2.17.1.14
software provided by Illumina. The lane-splitting feature
was disabled to create a single FASTQ file for each library.
FASTQ files were then uploaded to the BlueBee genomics
platform (https://www.bluebee.com) and read-trimming
and alignment was performed using the QuantSeq plugin.
TempoSeq FASTQ files were sent to BioCalvis (the manu-
facturer of BioSpyder), who performed the alignment and
then generated the raw (un-normalised) gene counts file
using their proprietary software. For RNAseq, alignment
was performed using STAR74. Transcript abundance esti-
mates for each sample were performed using Salmon, an
expectation-maximization algorithm using the UCSC gene
definitions. Raw read counts for all RNAseq samples were
normalized to a fixed upper quartile.

All sequence data were aligned to the human reference
hgl9 genome. For all data, probes or genes were then
mapped to Ensembl gene annotations: Affymetrix datasets
were mapped using a chip definition file (CDF) [15] and
all other datasets were mapped using BioMart. All data
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Fig. 2 Batch correction allows robust direct integration of transcriptomic data across platforms. a Dissimilarity heatmaps based upon Pearson
correlations ranging from 0.4 (red) through shades of orange and yellow to 1.0 (white). Left triangle shows the combined dataset of 6844 genes
across 7 gene expression platforms. Right triangle shows the same data following batch correction with Combat. Coloured bars below
dendrograms denote the platform. b Enlargement of the dendrogram to demonstrate that the majority of the same time-point patient samples
processed on different platforms cluster together following batch correction. ¢ Scatter plots before (grey) and after batch correction (pink) of the
same sample, either FF or FFPE processed across different platforms. In each case the Pearson correlations increase substantially following batch
correction. Patient samples are denoted — 1 for pre-treatment, — 2 for early on-treatment

were Log2 transformed and filtered for those expressed in
70% of samples using the cluster 3.0 software then quan-
tile normalised using the R/Bioconductor software and
packages [16]. Following data integration, correction of
systematic bias was performed using ComBat as described
previously [3].

Results

Performance and cost comparison of platforms for FF and
FFPE tissue

Each of the nine technologies evaluated here have different
mRNA input requirements, probe designs (Fig. la) and
protocols (summarised in Table 1). Although the total
number and position of probes/primers/counts varies
widely among the transcriptome-wide approaches (Table 1,
Fig. 1a), a common set of 7365 Ensembl transcripts were
represented across the six whole transcriptome platforms
(Fig. 1b). Nanostring and Affymetrix U133 were omitted as
they do not represent the whole transcriptome and the
Clariom S was excluded as only three samples were proc-
essed). RNAseq may have the highest resolution, but also
the highest RNA input requirement (100-4000 ng) and it is
the most expensive whole transcriptome technology at two
to five times the cost of other approaches (Table 1). The
NanoString platform could be cost-effective for a small
number of genes, but compares poorly on price for large
numbers of genes (costed for maximum coverage in a sin-
gle experiment: 770 genes). The newest and least expensive
technologies are Affymetrix Clariom S array with WT Pico
kit and Lexogen QuantSeq. Success rate is an important
consideration for clinical studies, particularly with before
and on-treatment matched samples considered in this
study. Looking at the numbers of samples which have failed
using different technologies based on the respective manu-
facturers quality control criteria we found that success rates
for generating robust expression profiles from FFPE tissues
were excellent (>95%) for the latest Lexogen QuantSeq,
Qiagen Qiaseq, BioSpyder TempO-Seq methods. This is
despite the RNA integrity number (RIN) values for fresh
frozen tissue normally being above 7, but for FFPE tissues
were generally less than 3. However, success rate was mod-
erate for the Ampliseq RNA Transcriptome (83%) and poor
for the older Illumina BeadChip (22%). By comparison
RNA from FF tissue had a high success rate (91-100%)

with several hundred samples processed on the Illumina
BeadChip, Affymetrix U133A chips and RNAseq (Table 1).
As shown previously [10], older FFPE samples were found
to perform very poorly with the more established technolo-
gies (Fig. 1c) whereas NanoString, Lexogen QuantSeq and
RNA-seq were found to work well with old FFPE tissue-
derived RNA.

Integration of datasets across platforms while preserving
biological variability

To evaluate how newer technologies with desirable features
such as lower costs or RNA input requirements compared
to the more established methodologies, we profiled the
same RNA from a subset of samples to directly compare
gene expression measurements across the platforms (Addi-
tonal file 1: Table S1). These comparisons have two pur-
poses; firstly to determine whether the new technology
provides similar quality results to the established method.
Secondly, to evaluate whether it will be possible to directly
integrate datasets generated on the new platform with
existing local or publicly available data from another plat-
form, as we have done previously [3, 4, 6]. Indeed, while it
is altruistic to minimise measurement error by using the
same platforms, with constantly evolving technologies and
lower associated costs this is not often realistic. Therefore,
the ability to implement approaches to increase validity
across platforms is of great importance.

Not surprisingly, when all samples were integrated to-
gether low correlations (r = 0.4—0.6) were observed between
pairs of samples processed on different technologies. Hier-
archical clustering showed clearly that gene expression
values group by technology and technical artefacts, rather
than by genuine biology (Fig. 2a, left). Following batch cor-
rection using the well-established and highly cited ComBat
method [17], correlations were much higher and the major-
ity of ‘paired’ samples clustered together, indicating greater
variation between biological samples than between gene ex-
pression measurement platforms (Fig. 2a, right). Looking
more closely, instances of the same time-point processed
on different platforms clustered closely (if not together) and
different time points from the same patients showed vari-
ation (due to treatment), whilst also often clustering with
other time points from the same patient (Fig. 2b), as has
been previously shown for sequential patient-matched
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are Red = High, Green =low

Fig. 3 Robust gene expression measurement across platforms following batch correction. Correction of systematic platform bias and integration
of data from fresh frozen and FFPE tissues. a 3D multi-dimensional scaling (MDS) before (left) and after (right) batch correction of 6844 common
genes. Samples coloured by platform and shapes indicates time point. b MDS plot of the batch corrected data with samples coloured by time-
point clearly demonstrates a consistent treatment effect seen across sequential patient-matched samples. ¢ Ultrasound measurements of the
eleven breast tumours which relate to the sequential patient-matched samples indicating consistent reductions in tumour volume over time
across the patients. d Ranking patient samples by the expression of 42 common proliferation genes (listed in Additional file 2: Table S2) illustrates
consistent changes resulting from endocrine therapy, which appears to be independent from profiling platform. Pre-treatment samples tend to
have relatively high proliferation, whilst as expected early, and particularly late on-treatment samples have lower proliferation. Heatmap colours

samples [13]. These results are consistent with our previous
results showing a reduction in technical artifacts, without
loss of biological variation [3].

Clear batch effects were evident when comparing mRNA
extracted from FF samples across Illumina HT12, Ion
Ampliseq Transcriptome and Affymetrix Clariom S, with
low Pearson correlations (r = 0.4—0.58). However standard
batch correction approaches such as ComBat [17] mini-
mised technical bias effect and increased correlation to r >
0.9 for paired samples. Similar low correlations and im-
proved correlations following batch correction were
observed for different technologies with FFPE samples and
for comparisons of matched FF and FFPE or for the same
sample across different platforms (Fig. 2c). Comparison of
measurements of the 56 overlapping genes assayed using
NanoString, whole-genome (Illumina HT12) and part-
genome (Affymetrix U133A) expression microarrays were
also significantly improved following batch correction.

Looking at the samples more closely by multi-
dimensional scaling it is clear that whilst they cluster by
platform before batch correction (Fig. 3a), afterwards
they do not (Fig. 3b) and more importantly, instead they
cluster by time point (Fig. 3c). Pre-treatment samples
are most clearly separated from late on-treatment sam-
ples, with early on treatment samples in-between, as
would be expected.

For further confirmation of the validity of the batch-
corrected data, we ranked samples by expression of 42
proliferation genes, previously reported by us [12] that
change with endocrine therapy (list of gene provided in
Additional file 2: Table S2). Molecular changes in the tu-
mours reflect the ultrasound measurements across the
eleven breast tumours, concordant with consistent reduc-
tions in tumour volume over time across the patients (Fig.
3c). Ranked by proliferation genes the samples are ordered
by time point, consistent with our previous results [12],
and not by platform or preservation method (Fig. 3b).
These results suggest that comparable gene expression
profiles can be generated across the platforms using FFPE
material and FFPE is a reliable alternative to FF (Fig. 3d).

Discussion
Overall we find that gene expression data from the newer
technologies is largely concordant with that from the more

established methods. The newer 3’ sequencing approaches
from Lexogen and Qiagen appear highly reliable and cost
effective for old FFPE samples, this potentially allows valu-
able data to be generated from clinical samples that would
not have been previously possible. The TempO-Seq
method [14] from BioSpyder is an interesting approach as
you can analyse expression without pre-amplification dir-
ectly from a micro-dissected area of interest taken from a
single FFPE section, maximizing utilization of precious or
limited samples. Full RNAseq analysis is often considered
the gold standard, however when tissue samples are par-
ticularly small or there is a desire to perform a range of as-
says or multi-omic approaches, the newer targeted
sequencing approaches with many fold smaller input re-
quirements may be a much more attractive proposition. A
number of previous studies have conducted comparisons of
the same samples generated from fresh and archived tissues
[18, 19]. The numbers of detected genes from FFPE sam-
ples has previously been shown to be lower than from fresh
tissue [19], however protocols have continued to improve
[10]. It is important to remember that in all pairwise tissue
comparisons where RNA is extracted separately that they
cannot represent exactly the same material and are only
ever adjacent, leading to inevitable potential minor varia-
tions in tissue composition. Despite this, the well-
established Combat method for batch correction [17] was
again found to perform well to integrate data from different
sample types or technologies, this approach has been found
to be superior in a many of previous studies [20].

A general finding of most platform comparison ap-
proaches is that although the correlation values between dif-
ferent microarray or sequencing approaches may be poor to
moderate, which may relate to differences in dynamic range
of the technologies, there is generally very high concordance
when considering differentially expressed genes [3, 6, 21]. A
comprehensive study of TCGA data found only 1.2% of
genes were inconsistent by fold change [21]. A wider issue
with transcriptomic studies that there is no optimal analysis
pipeline for every single analysis [22].

This single study perhaps considers the widest range
of gene expression technologies using FF and FFPE tis-
sues published to date, but we acknowledge that this
study documents a translational research group’s experi-
ences, rather than being a definitive, comparison study.
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Not every sample was tested on every platform and
some leading technologies remain to be tested, including
Agilent, TagMan and Fluidigm - due to local availability
and opportunities.

Conclusion

This study highlights the relative merits and limitations of
a range of new and established gene expression profiling
platforms and demonstrates that transcriptomic data from
FFPE archival samples can be reliably integrated with data
from FF samples, even if different measurement platforms
are used. Ultimately, the choice of technology will depend
upon the required resolution and coverage, throughput,
sample quality, availability and budget.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-020-3365-5.

Additional file 1 : Table S1. Table demonstrating the directly
overlapping samples across the nine gene expression platforms coloured
by sample type, Pink = FFPE, yellow = fresh frozen.

Additional file 2 : Table S2. List of the 42 proliferation-related genes
showing reduction on endocrine treatment [12].
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