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A major challenge in evaluating the contribution of rare variants to
complex disease is identifying enough copies of the rare alleles to
permit informative statistical analysis. To investigate the contribu-
tion of rare variants to the risk of type 2 diabetes (T2D) and related
traits,we performeddeepwhole-genome analysis of 1,034members
of 20 large Mexican-American families with high prevalence of T2D.
If rare variants of large effect accounted for much of the diabetes
risk in these families, our experiment was powered to detect asso-
ciation. Using gene expression data on 21,677 transcripts for 643
pedigree members, we identified evidence for large-effect rare-
variant cis-expression quantitative trait loci that could not be de-
tected in population studies, validating our approach. However, we
did not identify any rare variants of large effect associated with
T2D, or the related traits of fasting glucose and insulin, suggesting
that large-effect rare variants account for only a modest fraction of
the genetic risk of these traits in this sample of families. Reliable
identification of large-effect rare variants will require larger samples
of extended pedigrees or different study designs that further enrich
for such variants.
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Type 2 diabetes (T2D) is a common complex disease affect-
ing >340 million individuals worldwide. Genomewide as-

sociation studies (GWASs) have identified ∼88 common loci
contributing to T2D (1). The role of rare variants in T2D is largely
unknown, because large samples are required to have high power
for the rarest variants and, until recently, strategies for genotyping
rare variants in large samples have been prohibitively expensive.
Rare variants typically have recent origins, and may therefore have
large deleterious effects that have not yet been removed from the
population by natural selection. If many large-effect rare variants
underlie T2D, they could jointly explain a large fraction of trait
heritability and their discovery could accelerate the transition from
genetic association signals to biological understanding (2, 3).
Although we can now discover and genotype rare genetic var-

iants in large study cohorts, the majority of these variants will be
present in only a few individuals—in population-based genetic
studies, >50% of variants are seen in a single individual—making
it difficult to establish evidence of association. Increased associa-
tion power can be achieved by increasing the number of copies of
each rare allele—for example, by sequencing very large numbers
of unrelated individuals (4)—but even these studies have little
power to detect association with variants with minor allele fre-
quency (MAF) <0.1%. Here we describe an alternate strategy
for testing rare variants, with a focus on private, family-specific

variants, combining the classical genetic approach of large, well-
characterized families with modern whole-genome sequencing
technology. The rationale for the experiment is to increase allele
counts for private variants by tracking Mendelian segregation
among related individuals within pedigrees. By chance, some
private variants will segregate to multiple related individuals,
providing a sufficient number of observed alleles to allow associ-
ation testing, which would be nearly impossible in even large
studies of unrelated samples (Fig. 1).

Significance

Contributions of rare variants to common and complex traits
such as type 2 diabetes (T2D) are difficult to measure. This
paper describes our results from deep whole-genome analysis
of large Mexican-American pedigrees to understand the role of
rare-sequence variations in T2D and related traits through
enriched allele counts in pedigrees. Our study design was well-
powered to detect association of rare variants if rare variants
with large effects collectively accounted for large portions of
risk variability, but our results did not identify such variants in
this sample. We further quantified the contributions of com-
mon and rare variants in gene expression profiles and con-
cluded that rare expression quantitative trait loci explain a
substantive, but minor, portion of expression heritability.
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Results
To determine the extent to which private and rare variants
contribute to T2D and related quantitative phenotypes, we ex-
amined 20 large Mexican-American pedigrees drawn from the
San Antonio Family Heart Study (5, 6) and San Antonio Family
Diabetes/Gallbladder Study (7, 8). Pedigrees contained 22 to
86 individuals distributed across 3 to 5 generations, for a total of
1,034 individuals; 305 (∼30%) had T2D (Table 1). In addition to
T2D, we tested diabetes-related quantitative traits reflecting
glycemic control (fasting/2-h glucose and insulin levels) for as-
sociation in the 729 nondiabetic individuals and lipid traits (total
cholesterol, HDL, LDL, and triglycerides) in all samples. The
high prevalence of T2D in these families is consistent with the
possible segregation of large-effect, private risk variants, making
them ideally suited for this experimental study design.
Power to detect the effect of a single rare variant on disease

risk is a function of pedigree size, pedigree structure, and the
effect size of the variant. Together, these determine the number
of copies that can be observed for each private variant. In our 20
Mexican-American pedigrees, the 413 founders have varying
numbers of descendants and potential transmitted copies for a
private variant (Fig. 2C); >40 founders can transmit ≥25 copies
of the rare variants they carry. Using gene-dropping simulation
and averaging over all contributing founders, there is probability
16, 4.5, and 1.3% of capturing ≥5, ≥10, and ≥15 copies of any
variant present only in a single founder, respectively; the average
number of copies is 2.5.
In our study, a T2D variant with 80% penetrance and ob-

served ≥25 times within a single pedigree had 50% power of de-
tection at genomewide significance (α = 5 × 10−8) (SI Appendix,
Fig. S1A). Although power to detect a single private variant is low,
this study had 60% power to detect at least one such variant if at
least 500 variants with MAF 0.1% existed in the population (SI
Appendix, Fig. S1B) for T2D and 100% power for quantitative
traits (Fig. 2B). The existence of large numbers of rare variants
with large effect is compatible with current understanding of
complex diseases, for which only a minority of heritability is typ-
ically explained by common variants (9–11). For example, given
the 30% prevalence of type 2 diabetes, if fully penetrant rare
variants with MAF ∼0.1% explain >20% of diabetes cases, at least
60 such variants must exist in the population; if causal variants
have frequency 0.01%, at least 600 must exist in the population.
We had greater power to detect variants influencing quantitative

traits, even though for analysis of these traits we excluded indi-
viduals with T2D. For example, we had 80% power to detect a rare
variant that modifies a quantitative trait by 2.0 SDs provided it was
transmitted to 16 individuals. Supposing that variants modifying
traits with an effect size of 2.0 SDs have MAF ∼0.1% and jointly
account for 33% of the heritability of a quantitative trait, there
must be at least 400 such variants in the population. If most causal
variants have lower frequency, then there must be even more of
them. In any situation where variants with frequency <0.01% and
effect sizes of ≥2.0 SDs jointly explain >33% of the heritability of a
diabetes-relevant quantitative trait, our pedigrees provided ∼80%
power to detect genomewide significant association (α = 5 × 10−8)
with at least one of these variants. In contrast, sequencing a similar
number of unrelated samples would be a hopeless strategy—any
variants sampled would be present in only one or two individuals,
and power would be <0.001% (Fig. 2B).
We strategically sequenced 586 individuals from the 20 pedi-

grees at >40× coverage using Complete Genomics services. Se-
quenced individuals were specifically chosen to maximize the
capture of genetic variation in each pedigree and, by sequencing
of parent–offspring pairs, to facilitate estimation of haplotypes.
Sequencing identified 23.4 million (M) variants: 21.6M single-
nucleotide variants (SNVs) and 1.9M more complex genetic
variants including insertions, deletions, and copy-number variants

(Fig. 3). As expected, most variants were rare: 15.1M had maximum-
likelihood estimation (MLE) MAF <1% by SOLAR-estimated
MAF; 7.2M are private, family-specific variants that enter our
pedigrees through a single founder and do not appear in the 1000
Genomes Project data (12).
We genotyped 448 additional pedigree members using Illu-

mina HumanHap550v3, Human1M-Duov3, Human1Mv1, and
Human660W-Quad_v1 GWAS arrays. SNVs not present in one
platform were imputed and a comprehensive set of 1 million SNVs
was defined. These data allow us to track haplotypes through each
family and identify additional carriers of variants identified in the
sequenced samples (13). We evaluated the accuracy of the geno-
types (sequenced or imputed) by comparing our genotypes with
rare variants genotyped using the Illumina HumanExome-12 v1
exome array. For variants with MLE MAF <1%, nonreference
genotypes called by sequencing and by haplotype imputation were
accurate 99.9 and 96.7% of the time, respectively. Many novel,
private variants were transmitted to multiple descendants; 514K
such variants were transmitted to >10 individuals. We observed
1.74M variants inherited from a single founder having enriched
allele counts with ≥5 copies in pedigree members; these variants
are likely to be singletons in the same number of samples of
unrelated individuals.
Analysis of 1,000 simulated null phenotypes shows that a P value

of 7.1 × 10−8 is required to achieve genomewide significance in this
experiment (versus ∼1 × 10−9 using Bonferroni adjustment) (SI
Appendix). This reflects the large linkage disequilibrium blocks
observed in the Mexican-American pedigrees and the restricted
number of segregating founder haplotypes.
We did not observe significant evidence of association between

individual rare variants and T2D, glucose, or insulin levels (Fig. 4).

Fig. 1. Large pedigrees are a valuable tool for investigating the role of rare
variants in complex disease.
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These results suggest that large-effect rare variants (those with
near-complete penetrance for T2D or with an effect size >2 SDs
for quantitative traits) are very unlikely to explain ≥20% of T2D
risk or ≥33% heritability of quantitative traits in this sample; as
noted previously, situations where this occurs would require large
numbers of such variants and, in that case, we expect to detect a
few. In the analyses of additional quantitative traits, we reidenti-
fied several previously known common variants associated with
lipid traits but did not observe significant signals from individual
rare variants (SI Appendix, section 4.2).
We carried out gene-based analyses that grouped functional

rare variants within each gene (Methods). Using each of four
grouping strategies, test statistics fit the null hypothesis and no
gene reached exomewide significance (α = 2.5 × 10−6) for T2D.
We observed exomewide significant association between the
CYP3A4 gene and fasting glucose levels (P = 9.2 × 10−7) and
between the OR2T11 gene and 2-h insulin levels (P = 1.9 × 10−6).
We also observed that the LDLR gene is associated with LDL
cholesterol levels (P = 8.3 × 10−7). We investigated evidence of
rare variants with large effect sizes enriched in these gene-based
results but did not find evidence of such variants. More details
about gene-based results are provided in SI Appendix, section
4.3. We next examined single-variant and gene-level association
results in regions linked to our traits by our prior linkage re-
sults. A linkage peak was considered significant if present with a
logarithm of the odds (LOD) score above 3, and we set the re-
spective boundaries by the peak LOD value minus 1 unit. We also
investigated regions identified by GWAS as harboring trait-
associated common genetic variants, regions harboring genes im-
plicated in monogenic forms of diabetes, and single-gene disorders
that affect fasting blood glucose and insulin levels. Each of these

more focused analyses offered us the opportunity to prioritize
strong signals that did not reach genomewide significance. Again,
we did not observe association with T2D, fasting insulin, or fasting
glucose even with appropriately relaxed stringency.
To allow investigation of rare-variant effects over a wider range

of traits, we took advantage of array-based lymphocyte gene ex-
pression available for 643 individuals in 17 of the 20 pedigrees (14).
cis-eQTL (expression quantitative trait locus) analysis of 21,677
transcripts identified 4,307 independent variant–expression associ-
ations at familywise error rate (FWER) <5% (α = 7.0 × 10−6);
3,144 expression traits had at least one associated variant. The av-
erage effect size across all 4,307 cis-eQTLs was 0.81 SD unit but, as
expected, varied dramatically according to variant MAF: The
785 associated variants with MLEMAF <1% had an average effect
size of 2.0 SD units, and the 3,522 associated variants with MLE
MAF >1% had an average effect size of 0.55 SD unit. We observed
92 instances in which both rare and common eQTLs contributed to
the same expression trait. Recently, the Genotype-Tissue Expres-
sion Consortium reported rare variants with large expression effects
in genes with outlier expression levels in multitissue samples (15),
while we have power to assess overall effects of rare variations over
a wider spectrum of expression-level changes with the pedigrees.
To formally test whether rare eQTLs have larger average effect

sizes than common eQTLs, we compared the full distributions of
standardized quantitative trait effect sizes regardless of whether a
variant was significantly associated with expression traits (Fig. 5).
We reasoned that evaluating the full distribution of rare-variant
effect sizes would avoid the winner’s curse (16), given the as-
ymptotic unbiasedness of the effect size estimates, and would help
evaluate whether, overall, there is evidence that rare-variant effect
sizes are larger in magnitude (and, thus, have higher variance)
than those for common variants. The observed variance of effects
estimated for rare variants is 5.65 times greater than that observed
for common variants, suggesting that there are rare variants with
substantially larger effects overall. After correcting for the esti-
mated sampling error, which is greater for rare variants, the ratio
of effect size variance of rare and common variants was 4.18. This
is remarkably consistent with the ratio of effect sizes observed for
statistically significant rare and common eQTLs (2.0 SDs com-
pared with 0.55 SD), despite the fact that the winner’s curse results
in inflated estimated effect sizes when a statistical threshold is
applied. Finally, we randomly sampled from these empirical effect
sizes and overall minor-allele frequency spectrum to estimate that
as much as 25% of genetic variation in quantitative gene expres-
sion in these families may be due to rare variants with MLE
MAF <1%. Overall, these results suggest that an average rare

A B C

Fig. 2. Enrichment of allele counts within pedigrees and the effect on analysis power. (A) Power to detect private risk variants conditional on the number of
observed allele counts. Effect sizes are expressed in SD units for normalized traits. (B) Power to detect at least one of N private risk alleles with an effect size of
2 phenotype SDs in our pedigree samples (black) and in 1,034 unrelated samples (blue). Blue curves for MAF 0.01% and MAF 0.001% are shown overlapped in
one line at power 0. (C) Distribution of the maximum possible and expected numbers of minor alleles for 413 pedigree founders, where maximum numbers
are the numbers of all descendent haploids and expected numbers are averaged over 1,000 gene-drop simulations.

Table 1. Sample distributions and phenotype statistics at the
most recent examination

Family T2D cases Unaffected

No. of individuals sequenced (% female) 186 (60.8) 400 (59.6)
No. of individuals imputed (% female) 119 (55.4) 329 (58.0)
Age, y 62.9 ± 12.7 46.8 ± 15.7
BMI, kg/m2 32.0 ± 7.23 31.5 ± 7.28
Fasting glucose, mmol/L 9.29 ± 4.08 5.71 ± 2.18
Fasting insulin, mU/L 29.3 ± 40.9 14.7 ± 13.3
No. of individuals with expression data 215 416

Mean ± SDs.
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eQTL has a substantially greater biological effect than an average
common eQTL—although we cannot rule out an unexpected ar-
tifact (such as an unmodeled population structure) that would

increase rare-variant effect size variance beyond what we expected
based on sampling error.
Many rare eQTLs were undetected in this study because

causal variants were not present in the 413 founders or were
present in a founder but in too few of their descendants. Based
on the numbers of detected associations, the allele frequency
spectrum, and statistical power, we estimate that ∼23,000 com-
mon eQTLs with effect sizes of ∼0.5 SD unit are required to
explain our observation of 3,522 detected common eQTLs with
an average effect size of 0.55 SD unit. If we assume that rare
variants have an average effect size of 1 SD unit (twofold higher
than that of common variants), the detection of 765 rare eQTLs
suggests that a total of ∼220,000 true rare eQTLs exist. With a
larger true effect size of 2.0 SD units (fourfold that of common
variants), ∼20,000 true rare eQTLs would be required to explain
our 765 observed rare eQTLs. Overall, with ∼20,000 common
eQTLs with effect sizes averaging 0.5 SD unit and 20,000 to
200,000 rare eQTLs with effect sizes averaging 1 to 2 SD units,
rare variants would explain 5 to 20% of eQTL heritability. This
estimate is smaller than the 25% observed in the simulation
experiment due to the restriction to the distribution of observed
significant effects. Taken together, our results suggest the exis-
tence of very large numbers of rare eQTLs with larger biological
effects than those of common variants but a minority contribu-
tion to overall expression heritability.

Discussion
Genetic association studies have identified >88 common T2D-
associated loci, most with small biological effect sizes (1, 17, 18).
It has been hypothesized that many rare variants of large effect
may exist and, that taken together, such variants could explain a
considerable proportion of the variance in T2D risk (19). This
hypothesis has not been well-tested before, because of the dif-
ficulty and cost involved in assessing very rare variants in large
samples, while recently Fuchsberger et al. (4) showed that
common-variant GWAS signals are not the results of clustered

Fig. 4. Single-variant association results for type
2 diabetes and glycemic traits. QQ and Manhattan
plots for (A) T2D, (B) fasting glucose (adjusted for
BMI), and (C) fasting insulin (adjusted for BMI). Only
variants with MAF ≤1% in the 1000 Genomes phase I
dataset are plotted. Variants that are only seen in
one pedigree (that would be private in an unrelated
sample) are highlighted in purple. The “step” in the
T2D QQ plot is due to a group of variants shared by a
nuclear family in one pedigree in which five mem-
bers have T2D. No variant achieved a P value ex-
ceeding the experimentwide significance threshold
of 7.1 × 10−8 for any of these three traits.

Fig. 3. Catalog of variants identified by whole-genome sequencing. MAC,
minor allele count; SV, structural variation.
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rare-variant signals residing on common haplotypes. Here, using
a combination of deep whole-genome sequencing and analysis of
large families, we designed an experiment specifically powered to
identify variants with effect sizes >2.0 SDs and population fre-
quency <0.01%. In models where these variants cumulatively
explain ∼33% of the variation in risk for a diabetes-related trait,
our experiment would have identified at least one such variant for
each trait examined. We did not identify any rare variants associ-
ated with T2D, glycemic, or lipid traits, suggesting that large-effect,
extremely rare variants are unlikely to explain a large portion of the
variability in type 2 diabetes risk in this sample of pedigrees.
Our results are sensitive to stochastic effects. Most founder

lineages are simply not large enough to identify private functional
variants, because there is a limit on the number of copies of rare-
variant alleles that can be transmitted. Thus, we expect an exper-
iment such as ours to miss most such rare variants. However, our
experiment will sample many copies (≥15) of a proportion of the
variants that would be private in similar-sized samples of unrelated
individuals. If larger numbers of rare, large-effect, T2D-associated
variants were to exist, we would be uniquely well-placed to detect
these. Some evidence for the likely importance of rare variants in
quantitative phenotypic variation was observed for available gene
expression data. For this larger set of phenotypes relatively close to
gene action, rare variants exhibited demonstrably larger biological
effects sizes and are estimated to account for as much as 25% of
observed transcript-level genetic variance in these pedigrees.
Our analyses show that large families can be used to identify

many copies of rare variants—which we expect will be especially
important for genetic studies outside coding regions, where
burden-based tests aggregating the effects of many variants re-
main challenging because of a lack of annotation strategies. Our
results suggest that while rare variants might be plentiful enough
to help understand causality and may be biologically important
for specific individuals/lineages, they are unlikely to account for
much heritability in diabetes and related traits in this sample.
Our analyses further suggest that the identification of robust as-
sociations between variants private to single large families and
diabetes-related traits will require larger numbers of extended
pedigrees and/or different study designs that further increase

the probability of functional rare-variant segregation. Alternative
strategies that maximize the number of observed rare-variant
alleles include focusing on population “isolates,” as recently il-
lustrated by the identification of a variant with an increased allele
frequency only in this specific population predisposing to type
2 diabetes in Greenland (20). Such isolates represent extended
kindreds with large lineages.

Methods
We selected 1,034 individuals from 20 pedigrees who are part of the San
Antonio Family Heart Study (SAFHS) (2, 5) and San Antonio Family Diabetes/
Gallbladder Study (SAFDGS) projects (7, 8). Written informed consent was
obtained from all participants. This study was approved by the Institutional
Review Boards of the University of Texas Health Science Center at San Antonio
and the University of Texas Rio Grande Valley. We then selected 600 samples to
be sequenced to gain maximal genetic information about the remaining
samples in the pedigrees using ExomePick software (ExomePicks, https://
genome.sph.umich.edu/wiki/ExomePicks); EPACTS (including EMMAX), https://
genome.sph.umich.edu/wiki/EPACTS; Famrvtest, https://genome.sph.umich.edu/
wiki/Famrvtest; GotCloud, https://genome.sph.umich.edu/wiki/GotCloud) (21).
Whole-genome sequencing for 600 samples was done by Complete Genomics
(CGI). After stringent sample-level quality control, we analyzed 586 individuals
with sequence data. Variant calls generated by the CGI pipeline were filtered
based on multisample statistics using support vector machine filtering of the
GotCloud pipeline (22). Merlin (13) was used to obtain sequence-scale geno-
type information for the remaining GWAS samples using sequenced family
members. Variants were grouped into several functional categories using five
prediction algorithms (LRT, Mutation Tester, PolyPhen2-HumDiv, PolyPhen2-
HumVar, SIFT) assisted by extensive external information (23–26). We used
EMMAX (27) to generate empirical kinship coefficients between samples to
account for known and hidden family structures. Details on study design and
data generation are described in SI Appendix, section 1.

We analyzed T2D-related metabolic traits: fasting glucose, fasting insulin,
2-h glucose, 2-h insulin, LDL cholesterol, HDL cholesterol, and triglyceride levels.
Trait values were measured at up to five examinations. Regressions were
performed at each examination adjusting for covariates as appropriate, pro-
ducing examination-specific residuals. The examination-specific residuals were
then averaged over multiple measurements and an inverse-normal trans-
formation was applied to averaged residuals. Covariates were chosen to align
with strategies taken by consortia participating in the metaanalysis of GWASs
of the given traits, as well as the T2D-GENES and GoT2D consortia’s trait
transformation strategy (4) and included age, age2, sex, and BMI (body mass
index). T2D samples were excluded from glycemic trait analyses, and choles-
terol levels were preadjusted by a fixed amount per lipid medication status.

Two different variance componentmodels, SOLAR (28) and Famrvtest (29),
were used for association analyses with the empirical kinship coefficients.
More details on each of the analysis steps are described in SI Appendix,
Methods. All software tools used in this project are publicly available.

To estimate overall contributions of common and rare variants to overall ex-
pression levels, we used the number of common and rare eQTLs from our asso-
ciation results together with the externally supplied allele frequency spectrum.
Since sample allele frequencies in these pedigrees have a lower bound of 1/the
number of founder chromosomes (1/816 = 0.12%), we simulated each possible
founder allele count and used the allele frequency spectrum from 2,000 unrelated
Mexican-American samples to obtain more accurate power estimates.

We restrictedgene-based rare variant tests to variantswithMLEMAF<1%by
maximum-likelihood MAF estimation, and applied four different variant masks
based on functional annotations: (i) protein-truncating variants (PTVs) only,
(ii) PTVs + missense variants, (iii) PTVs + variants predicted to be deleterious by
five different functional prediction algorithms, and (iv) PTVs + variants pre-
dicted to be deleterious by at least one functional prediction algorithm.

All data used in this paper are publicly available through the database of
Genotypes and Phenotypes (accession no. phs000462.v2.p1).
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