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8, Laura J. ScottID
3, Yun LiID

1,9,

Francis S. CollinsID
4, Michael BoehnkeID

3, Markku Laakso7, Karen L. MohlkeID
1*

1 Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of

America, 2 Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst,

Massachusetts, United States of America, 3 Department of Biostatistics and Center for Statistical Genetics,

School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America, 4 National

Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of

America, 5 Center for Biomedicine, European Academy of Bolzano/Bozen, University of Lübeck, Bolzano/
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Abstract

Loci identified in genome-wide association studies (GWAS) can include multiple distinct

association signals. We sought to identify the molecular basis of multiple association signals

for adiponectin, a hormone involved in glucose regulation secreted almost exclusively from

adipose tissue, identified in the Metabolic Syndrome in Men (METSIM) study. With GWAS

data for 9,262 men, four loci were significantly associated with adiponectin: ADIPOQ,

CDH13, IRS1, and PBRM1. We performed stepwise conditional analyses to identify distinct

association signals, a subset of which are also nearly independent (lead variant pairwise

r2<0.01). Two loci exhibited allelic heterogeneity, ADIPOQ and CDH13. Of seven associa-

tion signals at the ADIPOQ locus, two signals colocalized with adipose tissue expression

quantitative trait loci (eQTLs) for three transcripts: trait-increasing alleles at one signal were

associated with increased ADIPOQ and LINC02043, while trait-increasing alleles at the

other signal were associated with decreased ADIPOQ-AS1. In reporter assays, adiponec-

tin-increasing alleles at two signals showed corresponding directions of effect on transcrip-

tional activity. Putative mechanisms for the seven ADIPOQ signals include a missense

variant (ADIPOQ G90S), a splice variant, a promoter variant, and four enhancer variants. Of

two association signals at the CDH13 locus, the first signal consisted of promoter variants,

including the lead adipose tissue eQTL variant for CDH13, while a second signal included a

distal intron 1 enhancer variant that showed ~2-fold allelic differences in transcriptional

reporter activity. Fine-mapping and experimental validation demonstrated that multiple,
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distinct association signals at these loci can influence multiple transcripts through multiple

molecular mechanisms.

Author summary

Many DNA variants affect common human traits, and distinct variants can have different

effects on the function or expression level of the same gene. We identified variants associ-

ated with levels of adiponectin, a hormone involved in glucose regulation. Among these

variants, we specifically studied the sets of variants located near two genes, ADIPOQ and

CDH13, to determine how the variants affect gene expression or function. We focused on

sets of variants that can be inherited together but are not always inherited together. Of the

variants associated with adiponectin and located near ADIPOQ, one set were also associ-

ated with higher expression levels of the protein-coding ADIPOQ gene and a nearby non-

coding gene, a second set of variants were associated with lower levels of the ADIPOQ-
AS1 antisense gene, and additional variants changed the amino acid sequence or size of

the adiponectin protein. Our examples show the benefits of identifying multiple sets of

trait-associated variants in the same DNA region. These variants explain more trait varia-

tion, help identify genes that affect the trait, and guide studies of gene regulation and bio-

logical processes.

Introduction

Genome-wide association studies (GWAS) have identified thousands of associations between

genomic loci and complex traits[1, 2]. However, identification of mechanisms underlying the

association signals is often complicated by numerous potential target genes and patterns of

linkage disequilibrium (LD)[3]. The complexity of GWAS loci also includes the consequences

of allelic heterogeneity[4]. At loci harboring allelic heterogeneity, multiple functional variants

can result in multiple distinct association signals. Depending on the haplotype on which each

new functional variant allele arose[5], lead variants at these signals may exhibit moderate pair-

wise LD or may be nearly independent (r2<0.01). Allelic heterogeneity can include both cis-
regulatory and coding variants that may act alone or in combination to affect the phenotype

[6]. With increasing sample sizes and use of larger imputation reference panels in array- and

sequence-based GWAS, the extent of allelic heterogeneity at complex trait loci is becoming

more apparent[7]. This heterogeneity creates challenges in identifying causal variants and tar-

get genes, but also leads to more comprehensive characterization of mechanisms by which

GWAS variants influence the associated trait(s).

Interpretation of GWAS results includes elucidating the molecular mechanisms by which

genetic variants affect gene expression or function. Early candidate gene and genome-wide

association studies identified multiple coding variants associated with a complex trait within

the same gene[8–10]. Other studies have reported loci where multiple regulatory variants in

strong LD with each other likely affect one gene[11, 12], loci where multiple regulatory vari-

ants may affect different genes[13], and loci for which both coding and noncoding variants in

the same region are independently associated with a phenotype[5, 14]. Examples of the dissec-

tion and characterization of multiple, distinct, cis-regulatory association signals at one locus

remain few[11, 15, 16], especially when the signals are not statistically independent of each

other.
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To detect and characterize the molecular mechanisms at GWAS loci harboring allelic het-

erogeneity, we tested genetic associations with circulating plasma adiponectin levels in the

Metabolic Syndrome in Men (METSIM) study. Adiponectin, encoded by the ADIPOQ gene, is

a hormone involved in glucose regulation and secreted almost exclusively by adipose tissue

[17]. We identified additional association signals within 1 Mb of significant lead GWAS

variants (P<5x10-8) using stepwise conditional analyses. To identify candidate functional

variant(s) and gene(s) at these association signals, we used coding annotations, colocalized adi-

pose expression quantitative trait locus (eQTL) signals, chromatin accessibility, and epige-

nomic marks of transcriptional regulation, and demonstrated allelic effects of variants on

regulatory activity in functional assays. Taken together, this study demonstrates that indepen-

dent and distinct association signals within one locus may affect different transcripts and act

via multiple distinct molecular mechanisms.

Results

Genetic variants associated with adiponectin levels

We conducted a genome-wide association study (GWAS) for adiponectin levels in 9,262 non-

diabetic men from the METSIM study[18]. We assumed an additive genetic model and tested

for association with ~16.6 million variants with MAF� 0.08% (minor allele count� 15). We

confirmed (P<0.05) twelve adiponectin loci previously identified in European and East Asian

individuals (S1 Table), four of which achieved genome-wide significance (rs12051272 within

CDH13 intron 1, P = 1.8 x 10−68; rs199938283 near ADIPOQ, P = 8.2 x 10−55; rs149689033, 630

kb upstream of IRS1, P = 3.0 x 10−9; and rs2276824 within an intron of PBRM1, P = 3.5 x 10−8;

Table 1; S2 Table; S1–S5 Figs). One previously unreported locus, located 454 kb downstream

of EPHA3 (rs139269730, P = 4.1 x 10−8; S6 Fig) showed nominal genome-wide significance,

although the single lead variant exhibited only moderate imputation quality (r2 = 0.74) and

may represent a false positive. Assuming the fifth signal is a false positive, the four other lead

GWAS signals explained 7.0% of variation in adiponectin levels.

Table 1. Loci with two or more distinct signals of adiponectin association detected using stepwise conditional analysis (locus-wide significance, P<1x10-5).

Lead variant Chr:Position (hg19) EA/NEA EAF EA count LD (r2/D’)a Unconditioned GWAS Conditioned GWAS

Effect (SE) P Effect (SE) P
ADIPOQ
rs199938283 (A) 3:186,552,469 C/CAAAT 0.03 596 - -0.653 (0.042) 8.2x10-55 - -

rs4632532 (B) 3:186,551,682 C/T 0.40 11,090 0.04/0.95 -0.130 (0.015) 1.5x10-17 -0.193 (0.015) 1.3x10-35

rs16861209 (C) 3:186,563,114 A/C 0.03 532 0.00/1.00 0.435 (0.045) 2.2x10-22 0.311 (0.045) 4.9x10-12

rs73187787 (D) 3:186,701,595 T/C 0.18 3,340 0.01/0.88 0.126 (0.020) 1.9x10-10 0.115 (0.019) 3.8x10-9

rs17366653 (E) 3:186,570,816 C/T 0.002 29 0.00/1.00 -0.848 (0.195) 1.4x10-5 -0.983 (0.190) 2.4x10-7

rs17846866 (F) 3:186,570,746 G/T 0.09 1,647 0.31/0.95 -0.373 (0.026) 4.5x10-45 -0.161 (0.031) 2.8x10-7

rs62625753 (G) 3:186,572,026 A/G 0.0008 15 0.00/1.00 -0.766 (0.258) 3.0x10-3 -0.856 (0.251) 6.5x10-4

CDH13
rs12051272 (A) 16:82,663,288 T/G 0.11 1,979 - -0.430 (0.024) 1.8x10-68 - -

rs4782722 (B) 16:82,672,165 T/G 0.46 10,047 0.02/0.41 0.119 (0.015) 6.8x10-15 0.084 (0.015) 3.2x10-8

Chr, chromosome; EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; GT, genotyped; LD, linkage disequilibrium; SE, standard error
a LD (r2/D’) with variant showing the strongest evidence of association at each locus.

Effect size from an additive model and corresponding to the effect allele for inverse-normal transformed adiponectin levels. P values of stepwise conditional analyses, in

which we included the variant(s) with the strongest evidence of association into the regression model as a covariate(s) and continued to test for the next strongest

variant until the strongest variant showed a conditional P value >1x10-5 or had been reported as a functional variant (ADIPOQ signal G, rs62625753; Gly90Ser).

https://doi.org/10.1371/journal.pgen.1009019.t001
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At these four loci, we identified additional association signals by performing stepwise con-

ditional analyses and, for comparison, an approximate conditional analysis. We defined “dis-

tinct” as an association signal that met a locus-wide significance threshold of Pcond<1x10-5

within 1 Mb of an initial lead GWAS variant after conditioning. When the pairwise linkage

disequilibrium (LD) between the signal’s lead variant and all other identified lead variants at

the locus was low (r2<0.01), we defined the signal more specifically as “independent”. Only

one association signal was identified at the IRS1 and PBRM1 loci (S2 Table and S4–S6 Figs).

We identified additional association signals at both the ADIPOQ (seven total signals) and

CDH13 (two total signals) loci, described in more detail below. After adding the seven addi-

tional signals identified at the ADIPOQ and CDH13 loci, the four loci explained 10.3% of the

variation in adiponectin levels.

Four independent and three distinct association signals at ADIPOQ
ADIPOQ encodes the adiponectin protein measured in GWAS and is expressed almost exclu-

sively in mature adipocytes[19]. At the ADIPOQ locus, stepwise conditional analysis revealed

seven distinct signals associated with adiponectin levels (Table 1; S2 and S3 Tables; Fig 1; S3

and S7 Figs). After conditioning on the lead GWAS variant (rs199938283; signal ‘A’), the next

strongest adiponectin-associated variant was rs4632532 (Pcond = 1.3x10-35; signal ‘B’). Variants

at signal ‘B’ were previously reported by the ADIPOGen GWAS meta-analysis to have the

strongest association with adiponectin levels. However, studies contributing to that analysis

were imputed to the HapMap2 reference panel, which did not include any variants represent-

ing signal ‘A’[20]. Our subsequent conditional analyses identified four additional association

signals (lead variants rs16861209, signal ‘C’; rs73187787, signal ‘D’; rs17366653, signal ‘E’; and

rs17846866, signal ‘F’; Table 1) that each reached locus-wide significance (P<1x10-5). The next

strongest signal (rs62625753, signal ‘G’) did not meet the significance threshold but is a known

missense variant in exon 3 of ADIPOQ (G90S; Table 1) shown previously to influence adipo-

nectin multimerization[21]. No additional coding variants within the ADIPOQ gene reached

the locus-wide significance threshold for association with adiponectin levels (S4 Table). Alter-

ing the order by which variants were entered into the model as covariates did not alter the lead

variants at any association signal, nor did selection of a different variant to represent a particu-

lar association signal or use of a different initial imputation reference panel (S5 Table).

Together, the seven signals explained 5.8% of the phenotypic variance compared to 2.7% for

the lead ADIPOQ signal alone.

To characterize the distinct signals, we examined the LD between lead variants at pairs of

signals. We found the pairwise LD to be low (r2�0.01) for all signal pairs except for signals ‘A’

and ‘B’ (r2 = 0.05) and signals ‘A’ and ‘F’ (r2 = 0.33), suggesting that signals ‘C’, ‘D’, ‘E’, and ‘G’

are statistically near-independent, while signals ‘A’, ‘B’, and ‘F’ are distinct, yet the trait-raising

alleles are sometimes present on shared haplotypes. To determine the extent to which the three

signals act independently of each other, we next performed haplotype association analyses

with adiponectin levels in METSIM using the lead variants from signals ‘A’, ‘B’, and ‘F’ (S8

Fig). Compared to a reference haplotype containing the adiponectin-increasing alleles at both

signals ‘A’ and ‘B’ (rs199938283-Ins and rs4632532-T), haplotypes containing at least one adi-

ponectin-decreasing allele exhibited lower adiponectin levels (e.g. Ins-C, β = -0.193; CT, β =

-0.779; S8A Fig). A similar pattern of association was observed between signals ‘A’ and ‘F’ (S8B

Fig). These results confirm that within haplotypes with the same allele at signal ‘A’, variants at

both signals ‘B’ and ‘F’ still contribute to variation in adiponectin levels.

We extended the haplotype association analyses with adiponectin levels to use the lead vari-

ants for all seven signals (S9 and S10 Figs). Compared to a reference haplotype containing the
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Fig 1. Locus with seven adiponectin GWAS signals and subcutaneous adipose eQTL signals for three transcripts. (A) Seven signals near

ADIPOQ (labeled ‘A’-‘G’) were identified through stepwise conditional analyses for association with adiponectin levels (n = 9,262). The signals are

labeled in the order in which they were identified in the stepwise process and are distinguished by both color and shape. Variants are shaded based

on LD with the lead variants, shown as diamonds. (B) Two variants in perfect LD (r2 = 1.00) with adiponectin GWAS signal ‘A’ (rs76786086 and

rs115527175) show the strongest association with expression levels of ADIPOQ and LINC02043 in subcutaneous adipose tissue in 434 METSIM

participants. The strongest adiponectin-associated variant from signal ‘F’ (rs17846866) also shows the strongest association with expression levels of

ADIPOQ-AS1 in subcutaneous adipose tissue in 434 METSIM participants.

https://doi.org/10.1371/journal.pgen.1009019.g001
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adiponectin-increasing alleles at each signal (rs199938283-Ins, rs4632532-T, rs16861209-A,

rs73187787-T, rs17366653-T, rs17846866-T, and rs62625753-G), haplotypes containing at

least one adiponectin-decreasing allele exhibited lower adiponectin levels (e.g. Ins-TACTTG,

β = -0.043; Ins-TCTTTG, β = -0.278). Haplotypes containing the largest number of adiponec-

tin-decreasing alleles exhibited the lowest levels of adiponectin when compared to the baseline

haplotype. To account for potential errors in chromosome phasing, we repeated haplotype

analyses using only the 2,637 METSIM participants homozygous for all seven signals; esti-

mated effect sizes were consistent with those based on the full set of participants (S10 Fig), pro-

viding support that our estimated effect size estimates are not influenced by haplotyping

errors.

Multiple candidate transcripts at ADIPOQ
We next examined molecular mechanisms at the ADIPOQ locus, including variants in ADI-
POQ predicted to affect the adiponectin protein (Table 2). Signals ‘E’ and ‘G’ showed the larg-

est effects on adiponectin levels (Table 1), and both have been shown previously to alter

ADIPOQ protein sequence. rs62625753 at signal ‘G’ encodes Gly90Ser, which decreases adipo-

nectin multimerization[21]. Because we measured total adiponectin, we do not have data on

Table 2. Proposed molecular consequences at multi-signal loci.

Signal Lead variant and

adiponectin-decreasing

allele

Number of

candidate variants

(r2�0.80)

Candidate functional variant(s)

based on allelic differences in

experimental assays

Candidate transcript and

direction based on

colocalized eQTL

Putative molecular consequence

ADIPOQ
A rs199938283-C 15 rs76071583 # ADIPOQ, # LINC02043 Decreased ADIPOQ and LINC02043

enhancer activity; decreased

transcriptional activity (Fig 2)

B rs4632532-C 14 - - Assumed decreased ADIPOQ enhancer

activity

C rs16861209-C 12 - - Assumed decreased ADIPOQ enhancer

activity

D rs73187787-C 7 rs13322149, rs55958900 - Increased distal enhancer ADIPOQ-AS1
activity; increased transcriptional activity

(Fig 2)

E rs17366653-C 1 rs17366653 - ADIPOQ splice variant; reported to

increase the proportion of ADIPOQ
isoform lacking exon 2 and 3 [22]

F rs17846866-G 2 - " ADIPOQ-AS1 Assumed increased ADIPOQ-AS1
enhancer activity

G rs62625753-A 1 rs62625753 (Gly90Ser) - ADIPOQ missense variant (G90S);

reported to decrease adiponectin

multimerization[21]

CDH13
A rs12051272-T 8 rs12051272 " CDH13 Decreased CDH13 proximal intron 1

promoter activity (Fig 4, S17 Fig)

B rs4782722-G 6 rs4782722 - CDH13 distal intron 1 enhancer activity;

increased transcriptional activity (Fig 4,

S17 Fig)

For candidate transcripts and putative molecular consequences, the directions of effect are based on the allele associated with decreased adiponectin levels in the

METSIM GWAS. The putative molecular consequence column includes allele-specific functional evidence from this work and other cited publications. When no direct

evidence exists for molecular consequences of a variant (CDH13 signal ‘A’ and ADIPOQ signals ‘B’, ‘C’, and ‘F’), we proposed molecular functions and candidate

transcript based on candidate variant locations.

https://doi.org/10.1371/journal.pgen.1009019.t002
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multimers to validate the functional consequences shown previously. rs17366653 at signal ‘E’

was reported to increase the proportion of ADIPOQ isoform that splices out exons 2 and 3 (50

bp), leading to nonsense-mediated decay[22]. We did not have a sufficient number of study

participants in the RNA-seq data that expressed the ADIPOQ isoform without exons 2 and 3

to examine the association between rs17366653 and expression level of the isoform.

To aid in the identification of candidate genes, we examined whether the association signals

for adiponectin are colocalized (see Methods) with association signals for expression levels of

nearby (<1 Mb) transcripts in subcutaneous adipose tissue from a subset of 434 METSIM par-

ticipants (S6 Table)[23]. Adiponectin association signal ‘A’ colocalized with eQTL signals for

ADIPOQ (rs76786086-T; β = -1.69; P = 1.0x10-9) and LINC02043 (rs115527175-T; β = -1.19;

P = 1.9x10-5), an adjacent long non-coding RNA expressed primarily in brain, adipose, testis,

arterial, and splenic tissues (Table 2; S6 and S7 Tables; Fig 1B; S11 Fig). Additionally, adipo-

nectin association signal ‘F’ colocalized with an eQTL signal for ADIPOQ-AS1 (β = 0.77;

P = 7.7x10-10), an antisense transcript overlapping portions of two distal exons of ADIPOQ
that has been shown to post-transcriptionally regulate ADIPOQ (S6 and S7 Tables; Fig 1B; S11

Fig)[24]. No additional eQTL signals were detected for these three transcripts, and no other

colocalized cis-eQTL associations were identified for these variants (S7 Table). Variants associ-

ated with lower plasma adiponectin level at signal ‘A’ were associated with lower expression

levels of both ADIPOQ and LINC02043, while variants associated with lower plasma adiponec-

tin level at signal ‘F’ were associated with higher expression level of ADIPOQ-AS1 (S12 Fig).

Expression levels of ADIPOQ and ADIPOQ-AS1 are only weakly positively correlated, poten-

tially reflecting the very low relative expression level of ADIPOQ-AS1 and the wide distribution

of expression level of ADIPOQ. In comparison, data from GTEx v8[25] showed different lead

variants associated with expression level of ADIPOQ that correspond to GWAS signal ‘F’ and

of ADIPOQ-AS1 that correspond to GWAS signal ‘E’; these results may be influenced by dif-

ferences in cell type composition, sex, sampling variability, and/or expression measurement/

analysis (S8 Table).

We further investigated signals ‘A’ and ‘F’ at the ADIPOQ locus to evaluate their statistically

distinct contributions to gene expression. Within the METSIM adipose eQTL data, we used

further conditional analyses to investigate whether the associations between signals ‘A’ and ‘F’

and expression levels of ADIPOQ and ADIPOQ-AS1 may have different molecular effects

(S9 Table). The association between signal ‘A’ variant rs143784260 (LD r2 = 1.00 with lead sig-

nal ‘A’ variant rs199938283) and ADIPOQ expression level persists after conditioning on signal

‘F’ variant rs17846866 (Pinitial = 1.0x10-9; Pcond = 1.3x10-6). Similarly, the association between

signal ‘F’ variant rs17846866 and ADIPOQ-AS1 expression level persists after conditioning on

signal ‘A’ variant rs143784260 (Pinitial = 7.6x10-10; Pcond = 5.6x10-12). The distinct contributions

of each signal on transcript expression were confirmed using haplotype association analyses

(S13 Fig). Compared to the reference haplotypes containing the transcript expression-increas-

ing alleles at both ADIPOQ (rs143784260-C, rs17846866-T) and ADIPOQ-AS1 (rs143784260-

C, rs17846866-G), haplotypes containing at least one transcript expression-decreasing allele

exhibited lower expression levels, providing further support that these two association signals

have molecularly distinct effects.

Candidate regulatory variants at ADIPOQ
Based on the position of signal ‘A’ and ‘B’ candidate variants in accessible chromatin and chro-

matin marks of active enhancers in adipocytes/adipose tissue, we tested variants for allelic

effects on transcriptional activity (Fig 2; S14 Fig). Of 14 candidate variants at signal ‘A’ (lead

GWAS variant and variants in LD r2�0.80), rs76071583, in a 462-base pair element located
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~2.5 kb upstream from the ADIPOQ transcription start site (Fig 2A), showed the strongest

allelic differences in transcriptional activity. In differentiated 3T3-L1 adipocytes, the element

containing the adiponectin-increasing allele rs76071583-A showed 2.5-fold increased

enhancer activity compared to the element containing the rs76071583-G allele (forward,

P<0.0001; reverse, P = 0.0003; Fig 2B), suggesting that the alleles alter function of a cis-regula-

tory enhancer element. The sequence containing rs76071583-A is predicted to include a con-

sensus core-binding motif for CEBP-α, and a ChIP-seq peak for CEBP-α also overlaps this

region. In electrophoretic mobility shift assays (EMSA) using CEBP-α protein, we observed an

allele-specific band for rs76071583-A (S15 Fig), suggesting that CEBP-α binds to rs76071583

to increase enhancer activity at this locus. Additional variants tested representing signals ‘A’

and ‘B’ did not exhibit allelic differences in transcriptional activity (S14 Fig). These and other

variants representing signals ‘B’ and ‘C’ are interspersed in chromosomal position with

Fig 2. ADIPOQ signals ‘A’ and ‘D’ exhibit allelic differences in transcriptional activity. (A) rs199938283 and thirteen candidate variants in high pairwise LD

(r2�0.80) span a 25 kb region upstream of the ADIPOQ transcription start site and within ADIPOQ intron 1. (B) rs76071583-A, associated with higher adiponectin

levels, showed greater transcriptional activity in both forward and reverse orientation with respect to ADIPOQ in 3T3L1 differentiated adipocytes compared to

rs76071583-G and an “empty vector” containing a minimal promoter. (C) rs73187787 and six candidate variants in high pairwise LD (r2�0.80) span a 10 kb region

within ST6GAL1 intron 2. (D) A haplotype of variant alleles rs13322149-G and rs55958900-A, associated with lower adiponectin levels, showed greater

transcriptional activity in both forward and reverse orientation in 3T3L1 differentiated adipocytes compared to the TC haplotype and an “empty vector”

containing a minimal promoter.

https://doi.org/10.1371/journal.pgen.1009019.g002
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variants from signal ‘A’. However, we did not observe any strong annotations of regulatory ele-

ments (S7 Fig) and the functional consequences of signals ‘B’ and ‘C’ remain to be detected.

Of candidate variants at ADIPOQ signal ‘D’, we examined transcriptional activity in

reporter assays for a 445-base pair region spanning rs13322149 and rs55958900 located 135 kb

distal to the ADIPOQ promoter within the first intron of ST6GAL1 (Fig 2C). In differentiated

3T3-L1 cells, the haplotype containing both alleles associated with lower adiponectin

(rs13322149-G and rs55958900-A) exhibited� 2.4-fold higher enhancer activity (forward,

P = 0.012; reverse, P = 0.009) compared to the haplotype containing the alleles associated with

higher adiponectin (Fig 2D), suggesting that one or both variants within this haplotype alter a

distal cis-regulatory element. While we do not have direct mechanistic evidence of a link to

any transcript, the direction of effect of adiponectin decreasing alleles on transcriptional activ-

ity is consistent with an effect on ADIPOQ-AS1, not ADIPOQ or LINC02043. The allelic effects

on transcriptional activity, distance (>100 kb) from the other signals, and direction of effect

consistent with ADIPOQ-AS1 all provide support for functional consequences molecularly dis-

tinct from the other signals.

Two association signals at CDH13
Expressed in multiple cell types throughout the cardiovascular system, CDH13 encodes the

cadherin-13 receptor, a cell surface receptor for hexameric and high-molecular weight adipo-

nectin known to influence levels of circulating adiponectin[26]. Positive feedback exists

between adiponectin and the cadherin-13 receptor[27]. At the CDH13 locus, we identified two

distinct adiponectin association signals. Conditioning on the lead GWAS variant (rs12051272,

signal ‘A’) revealed a second distinct signal (rs4782722, Pcond = 3.2x10-8, signal ‘B’) (Table 1; S2

Table; Fig 3A; S2 Fig). Pairwise LD between the lead variants at the two signals was low (r2 =

0.04). No CDH13 coding variants reached locus-wide significance with adiponectin levels after

conditioning on rs12051272 and rs4782722 (S10 Table). Compared to a reference haplotype

containing the adiponectin-increasing allele at both variants (rs12051272-G and rs4782722-T),

haplotypes containing at least one adiponectin-decreasing allele exhibited lower adiponectin

levels (GG, β = -0.072; TT, β = -0.381; Fig 3D). Haplotypes containing both adiponectin-

decreasing alleles exhibited the lowest levels of adiponectin (TG, β = -0.494) when compared

to the baseline haplotype. Together, the two signals explained 3.8% of the variance in adipo-

nectin levels compared to 3.5% for the lead CDH13 signal alone.

Function of candidate regulatory variants at CDH13
We next tested the CDH13 signals for colocalization with subcutaneous adipose eQTL signals

for nearby transcripts. The adiponectin-decreasing allele rs2239857-G, a variant in perfect LD

(r2 = 1.0) with the lead adiponectin GWAS variant of signal ‘A’ (rs12051272; r2 = 1.00), is most

strongly associated with increased CDH13 expression level (β = 1.00; P = 4.35x10-26; Table 2;

S6 Table; Fig 3E). While we did not find significant evidence of a second signal associated with

expression level of CDH13 or colocalizations with expression level of any other transcripts,

larger eQTL studies would have more power to detect additional signals.

To investigate whether the two statistically distinct adiponectin-association signals at

CDH13 have distinguishable consequences, we investigated potential molecular mechanisms.

At both signals, no candidate variants (LD r2�0.80 with rs12051272 or rs4782722) are located

in coding regions. The lead signal ‘A’ variant rs12051272, is located in intron 1, ~3 kb from the

CDH13 transcription start site, in an accessible chromatin region with chromatin marks of

active enhancers in multiple cell types including HeLa (Fig 4A and 4B; S16 Fig). We used

HeLa cells to examine transcriptional activity in reporter assays for a 775-bp region spanning
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Fig 3. Locus with two adiponectin GWAS signals and one subcutaneous adipose eQTL signal for CDH13. (A) The first signal with lead

variant rs12051272 (red circles, denoted as ‘A’) shows the strongest association in the adiponectin GWAS (n = 9,262). After conditioning on

rs12051272, a second signal with lead variant rs4782722 (blue triangles, denoted as ‘B’) remained significant (P<5x10-8). Variants are shaded

based on LD with the lead variants, shown as diamonds. (B) rs12051272 (purple diamond; signal ‘A’) shows the strongest association with

adiponectin. (C) rs4782722 (purple diamond; signal ‘B’) shows the strongest association with adiponectin after conditioning on rs12051272

(signal ‘A’). (D) Haplotypes of rs12051272 and rs4782722 estimated from 9,262 METSIM participants. Alleles associated with higher adiponectin

levels in single variant analyses are shown in green, alleles associated with lower adiponectin are shown in purple. Haplotype association was

performed with adiponectin inverse normalized residuals after adjusting for age, age2, and BMI using the most frequent haplotype as the

reference. (E) Variant rs2239857, in perfect LD (r2 = 1.00) with rs12051272, shows the strongest association with expression level of CDH13 in

subcutaneous adipose tissue in 434 METSIM participants.

https://doi.org/10.1371/journal.pgen.1009019.g003
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rs12051272 (Fig 4A and 4B). The adiponectin-increasing allele rs12051272-G showed an aver-

age of 1.7-fold increased enhancer activity compared to the rs12051272-T (P = 0.004), suggest-

ing that rs12051272-G may be responsible for increased transcriptional activity of a target gene

leading to higher adiponectin levels. The rs12051272-G allele that showed increased enhancer

activity in HeLa cells was unexpectedly associated with decreased CDH13 adipose tissue

expression levels, suggesting that the effect observed in HeLa cells does not fully represent the

adipose tissue signal, that CDH13 expression level reflects feedback[27, 28], or that CDH13 is

not the target gene.

At CDH13 signal ‘B’, we investigated three intronic variants located ~12 kb distal to the

CDH13 transcription start site in accessible chromatin regions with marks of active enhancers

(rs4782722, rs12444113, and rs3910232; Fig 4C and 4D; S17 and S18 Figs). In HeLa cells, a

Fig 4. Both GWAS signals at CDH13 (signals ‘A’ and ‘B’) exhibit allelic differences in transcriptional activity. (A) rs12051272 is located within CDH13 intron

1. (B) rs12051272-G associated with lower adiponectin showed greater transcriptional activity in the forward orientation with respect to CDH13 in HeLa cells

compared to rs12051272-G and an “empty vector” containing a minimal promoter. (C) rs4782722 and all five candidate variants in high pairwise LD (r2�0.80)

span a 2.5 kb region in CDH13 introns 1 and 2. (D) A haplotype of variant alleles rs4782722-G and rs12444113-G associated with lower adiponectin showed greater

transcriptional activity in both forward and reverse orientation with respect to CDH13 in HeLa cells compared to the TC haplotype and an “empty vector”

containing a minimal promoter. Transcriptional activity results for rs3910232 are shown in S18 Fig.

https://doi.org/10.1371/journal.pgen.1009019.g004
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398-bp region containing the adiponectin-decreasing alleles of two variants (rs4782722-G and

rs12444113-G) showed 1.7-fold increased enhancer activity compared to the haplotype con-

taining the non-risk alleles (P = 0.0001). Additional haplotype constructs containing

rs4782722-G showed a 1.4-fold increase in enhancer activity compared to haplotype constructs

containing rs4782722-T (S17 Fig), suggesting that rs4782722-G is responsible for increased

transcriptional activity of a target gene leading to lower adiponectin levels. Taken together,

these data show that rs4782722 at CDH13 signal ‘B’ exhibits allelic differences in transcrip-

tional enhancer activity and suggest it functions within a distal intron 1 cis-regulatory element,

distinct from the proximal intron 1 variants at CDH13 signal ‘A’.

Discussion

Here we described statistically distinct and independent complex trait association signals that

act through molecularly distinct mechanisms. At the ADIPOQ GWAS locus, which harbors

extensive allelic heterogeneity, seven association signals appear to act through two different

coding mechanisms (missense variant altering protein multimerization and splice variant lead-

ing to a nonfunctional transcript) and multiple transcriptional regulatory mechanisms acting

on three target transcripts, ADIPOQ and two long non-coding RNAs. At the CDH13 GWAS

locus, two signals associated with decreased plasma adiponectin levels likely act via proximal

intron 1 promoter (signal ‘A’) and distal intron 1 enhancer (signal ‘B’) variants to affect expres-

sion levels of CDH13. Using molecular-based assays, we demonstrated variants at several asso-

ciation signals at both the ADIPOQ and CDH13 loci are located in regulatory elements and

exhibit significant allelic effects on transcription. Identification and molecular dissection of

multiple association signals at a GWAS locus provides a more accurate measure of the

explained trait variability, enabling additional molecular mechanisms and target genes to be

identified, furthering our understanding of target gene regulation and the biology underlying

complex traits.

Allelic heterogeneity is a common characteristic of complex traits[29], and identifying mul-

tiple signals at GWAS loci serves several purposes. First, each signal can help identify which

genes influence the trait[13]. Even at loci for which an effector gene is obvious, such as ADI-
POQ for adiponectin levels, each signal can help elucidate gene function and/or a regulatory

mechanism. In addition, each association signal can account for additional trait variation and

explain more trait heritability[5]. Finally, the prediction accuracy of polygenic risk scores relies

on the full set of variants that affect a trait, and including variants from multiple association

signals at a locus can improve prediction accuracy[30].

As GWAS sample sizes increase and more signals are identified, the intricacies of how to

characterize, annotate, and/or dissect multiple signals at individual loci are becoming more

apparent[4]. eQTL sample sizes are also increasing, gaining sufficient statistical power to iden-

tify and differentiate multiple signals[25]. Several methods exist for identifying multiple signals

at a GWAS locus[31, 32]. We had individual-level genotype and trait data available; therefore,

we performed exact stepwise conditional analyses. This method proved robust to different

modifications in consistently identifying the same lead variants and order in which the signals

appeared. When only summary association data are available, such as from GWAS meta-anal-

yses, distinct signals can be detected using approximate conditional analysis with GCTA with

estimated LD from a provided reference sample[32]. When we applied GCTA using the geno-

type information from the GWAS study samples and METSIM as a reference for LD, GCTA

and stepwise conditional analyses yielded nearly identical results across all loci, with the excep-

tion of one very rare signal (ADIPOQ signal ‘G’). While all methods for identification of multi-

ple association signals have limitations (e.g. computationally intensive, data availability,
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accurate representation for LD), identifying potentially novel additional signals can better cap-

ture the genetic architecture of GWAS loci.

Adiponectin is an adipose-tissue derived hormone that plays a central role in energy

homeostasis[17]. Higher levels of adiponectin can protect from obesity, type 2 diabetes, ath-

erosclerosis, and cardiovascular disease[33]. Interaction of adiponectin with its receptors acti-

vates signaling pathways that affect insulin signaling, nitric oxide production, adipogenesis,

glucose uptake, fatty acid oxidation, lipogenesis, glycolysis, and gluconeogenesis[34]. Many

loci associated with adiponectin levels are shared with other insulin resistance traits and risk of

type 2 diabetes, including loci near IRS1, LYPAL1, ARL15/FST, VEGFA, CMIP, and PEPD[7].

The insulin-sensitizing, anti-diabetic, anti-atherogenic, and anti-inflammatory properties of

adiponectin suggest its potential relevance as a therapeutic target for diabetes and metabolic

syndrome[34].

Given the obvious biological link between the ADIPOQ gene and circulating plasma adipo-

nectin levels, both candidate gene studies and GWAS have previously identified pronounced

associations between variants in and near ADIPOQ and adiponectin levels[35–37]. Previous

GWAS meta-analyses have consistently reported the strongest associations for variants in high

LD (r2�0.80) with signal ‘B’ from this study[20, 38]. However, these meta-analyses used geno-

type data imputed to the relatively sparse HapMap2 reference panel that does not include rep-

resentative variants from signals ‘A’, ‘D’, ‘E’, ‘F’, or ‘G’. Similar to our observation, another

study using the denser UK10K reference panel identified stronger adiponectin association for

variants within signal ‘A’[39]. Experimental studies have also identified variants that function-

ally affect adiponectin levels, including rs17366653 (signal ‘E’) and rs62625753 (signal ‘G’) and

other coding variants not polymorphic or available in this study[22, 40, 41]. Our results suggest

that many statistically independent (signals ‘C’, ‘D’, ‘E’, ‘G’) and distinct (signals ‘A’, ‘B’, and

‘F’) association signals exist that act via distinct molecular mechanisms to affect adiponectin

levels. Association analyses in larger studies will likely detect additional signals and may reveal

additional potential molecular mechanisms.

ADIPOQ association signal ‘A’ was colocalized with eQTL signals for ADIPOQ and

LINC02043, while ADIPOQ association signal ‘F’ was colocalized with an eQTL for ADIPO-
Q-AS1, suggesting that the functional variant(s) at each signal may regulate expression of a

non-coding transcript. Very little is known about LINC02043, which was very lowly expressed,

but long non-coding RNAs can regulate nearby genes in cis through mechanisms such as tran-

scriptional initiation, splicing, mRNA stability, translation, and the regulation of epigenetic

modifications[42, 43]. The alleles associated with decreased plasma adiponectin levels at ADI-
POQ signal ‘A’ are associated with decreased expression of both ADIPOQ and LINC02043,

suggesting that LINC02043 may play a role in coordinating the regulatory activity of ADIPOQ,

although LINC02043 may simply be affected by nearby enhancers but not influence adiponec-

tin levels. Previous work has suggested that ADIPOQ-AS1 plays a post-transcriptional role in

the regulation of ADIPOQ, inhibiting adipogenesis through the formation of an ADIPO-
Q-AS1/ADIPOQ mRNA complex to suppress the translation of ADIPOQ mRNA[24, 44]. In

addition, overexpression of ADIPOQ-AS1 was shown to inhibit the differentiation of preadi-

pocytes, suggesting ADIPOQ-AS1 plays a crucial role in adipogenesis[24]. The directions of

association we observe between variants at ADIPOQ signal ‘F’ with both decreased plasma adi-

ponectin levels and increased expression level of ADIPOQ-AS1 are consistent with this role.

Complex loci can include multiple association signals that are located close in physical posi-

tion yet are independent or distinct. Some GWAS loci are relatively straightforward, with a

single association signal, functional variant, and mechanism. We demonstrate that multiple

signals within a locus may also be functionally examined separately from each other, even

when they are not statistically independent, and that multiple signals can exhibit distinct
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effects through multiple mechanisms and multiple transcripts. Full characterization of GWAS

loci with regards to signal identification, fine-mapping, and functional annotation can provide

insight into the genetic architecture of the loci and the corresponding traits.

Methods

Ethics statement

The METSIM study was approved by the Ethics Committee of the University of Eastern Fin-

land and Kuopio University Hospital in Kuopio, Finland and carried out in accordance with

the Helsinki Declaration. Written informed consent was obtained from all participants.

Study participants

The study included 9,262 non-diabetic men from the population-based METSIM study (mean

age 57±7 SD years and BMI 26.8±3.8 kg/m2)[18].

Adiponectin measurements

All METSIM participants participated in a one-day outpatient visit to the Clinical Research

Unit at the University of Eastern Finland for data collection, which included an interview for

their medical history and a blood sample following a 12-hour fast. Plasma adiponectin was

measured using the Human Adiponectin ELISA kit (LINCO Research, St. Charles, MO, USA).

Genotyping and imputation

We genotyped the METSIM participants using the HumanOmniExpress-12v1_C BeadChip

and Infinium HumanExome-12 v1.0 BeadChip[45]. Genotypes were imputed using the HRC

reference panel[46], and separately using the GoT2D reference panel[45], a dense reference

panel of>19 million variants (SNPs, in-dels, and large deletions) based on the whole genome

sequencing of 2,657 Europeans individuals from Germany, Sweden, Finland, and Britain. Fol-

lowing quality control[45], we tested 16,607,452 variants for association with adiponectin.

Single-variant analysis

We tested for adiponectin association using the imputed dosages for all variants with summed

minor allele count dosage >1 assuming an additive model of inheritance and accounting for

cryptic relatedness using the EMMAX linear mixed model approach implemented in EPACTS

[47]. Circulating adiponectin levels were adjusted for BMI, age, and age2, and then residuals

were inverse normalized. Sensitivity analyses were also performed adjusting for age, age2, and

fat mass percentage; results were similar (S5 Table).

Conditional analyses

At loci that exhibited genome-wide evidence of association (P<5x10-8), we performed a series

of stepwise conditional analyses by adding the most strongly associated variant into the regres-

sion model as a covariate and testing for association with all remaining variants within 1 Mb

of the initial lead GWAS variant at each locus. At loci with genome-wide evidence of associa-

tion, we set a less stringent, locus-wide significance threshold of P<1x10-5 to define additional

signals based on an approximate 5,000 tests performed at a locus.[7] We performed stepwise

conditional analyses until the strongest association variant showed a conditional P-value>

1x10-5 or had no annotation evidence that suggested a functional role. Sensitivity analyses

were also performed altering the order at which signals were included in the stepwise
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conditional analysis and altering which variant was selected as the representative for each asso-

ciation signal; results were similar.

We also used Genome-wide Complex Trait Analysis[32] (GCTA) approximate regression

models to identify multiple association signals at locus-wide significance (P<1x10-5) using

genotype data from 10,197 METSIM participants as the LD reference panel. Haplotype analy-

ses were performed using Haplostats in R (https://cran.r-project.org/web/packages/haplo.

stats/index.html). We created regional association plots using LocusZoom[48]. Unless other-

wise noted, all LD estimates were calculated based on the METSIM data from 10,197 individu-

als; reported allele frequencies were calculated based on the 9,262 individuals included in this

analysis.

We evaluated the proportion of variance explained by a single variant or any given locus by

including the variant or a set of variants into a linear regression model with all covariates used

in association analysis and calculating the R2 for the full model. We performed these analyses

using SAS version 9.4 (SAS Institute, Cary, NC, USA).

Subcutaneous adipose eQTLs

To aid in the identification of candidate genes at the most strongly associated signals, we exam-

ined whether any of the variants associated with adiponectin were also associated with expres-

sion of nearby transcripts in subcutaneous adipose tissue. The expression quantitative trait

locus (eQTL) data were generated from a subset of 434 METSIM participants with RNA-

sequencing data[23]. A false discovery rate (FDR) <1% was used to identify cis-eQTLs. We

also performed stepwise conditional analyses at each colocalized locus, conditioning stepwise

on the variant most strongly associated with gene expression, to identify additional eQTL sig-

nals for each transcript. GWAS and eQTL signals were considered to be colocalized when (a)

the GWAS variant and the variant most strongly associated with expression level of the corre-

sponding transcript exhibit high pairwise LD (r2�0.80), and (b) the association of the eQTL

signal became insignificant (FDR>1%) after conditioning on the GWAS variant. For colocali-

zation analyses with ADIPOQ signal ‘A’, we used proxy variant rs143784260 to represent

rs199938283 (r2 = 1.00; calculated in METSIM), which was not available in the cis-eQTL

dataset.

Variant annotation

To establish a set of candidate functional variants at the ADIPOQ and CDH13 loci, we used

transcriptional regulatory chromatin marks (accessible chromatin and histone modification

states) to predict which variants may affect the transcription of the nearby genes. We compiled

regulatory elements from ENCODE[49], ChromHMM[50], Roadmap Epigenomics Project

[51] data available through the UCSC Genome Browser[52], and accessible chromatin data

from adipose tissue, preadipocytes, and adipocytes[53, 54]. We defined candidate variants as

those located within accessible chromatin peaks, Roadmap ChromHMM chromatin states of

enhancers and promoters, and chromatin-immunoprecipitation sequencing (ChIP-seq) peaks

of histone modifications H3K4me1, H3K4me3, and H3K27ac, and transcription factor bind-

ing sites in adipose-derived mesenchymal stem cells and adipocyte nuclei (ADIPOQ locus)

and HeLa cells (CDH13 locus only).

Cell culture

Cell lines were selected based on expression patterns of nearby genes. Because ADIPOQ is

expressed almost exclusively in mature adipocytes[25], we used 3T3-L1 cells differentiated

into mature adipocytes for experiments with variants at the ADIPOQ locus. CDH13 is
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expressed throughout most of the tissues in the body, including vascular cells and adipose tis-

sue[25]. Because variants at the CDH13 locus were observed to be located in accessible chro-

matin regions in HeLa cells, we performed experiments with these variants in HeLa cells.

3T3-L1 cells (ATCC, CL-173) were cultured and differentiated as described in the ATCC pro-

tocol. HeLa cervical cancer cells (ATCC CCL-2) were cultured in DMEM/Ham’s F-12 (Corn-

ing) supplemented with 10% FBS. All cell lines were maintained at 37˚C with 5% CO2.

Transcriptional reporter assays

We designed oligonucleotide primers (S11 Table) with KpnI and XhoI restriction sites. Using

Q5 High-Fidelity DNA Polymerase (New England BioLabs), we PCR-amplified fragments sur-

rounding each variant from DNA of individuals homozygous for each allele and cloned the

PCR product into the multiple cloning site of a minimal promoter firefly luciferase reporter

vector (pGL4.23, Promega) in both orientations with respect to the reporter gene. For CDH13
signal ‘B’, rs4782722 in the 398 bp construct was altered to create missing haplotypes using the

QuikChange II Site Directed Mutagenesis Kit (Agilent Technologies). Three to five isolated

clones for each allele for each orientation were sequenced to verify genotype. Cells were seeded

with approximately 2×105 (3T3-L1) or 6×105 (HeLa) cells per well in 24-well plates. Each

clone was co-transfected with Renilla luciferase vector (phRL-TK, Promega) in duplicate

(HeLa) or triplicate (differentiated 3T3-L1) using Lipofectamine 2000 (Life Technologies)

according to manufacturer’s recommendations. After 48 hours transfection, we lysed cells

with passive lysis buffer (Promega) and measured luciferase activity using the Dual-Luciferase

Reporter Assay System (Promega). We normalized firefly luciferase readings to Renilla lucifer-

ase readings and normalized all readings to the average of two empty pGL4.23 vector transfec-

tions. We used 2-sided Student’s t-tests to compare allelic differences in firefly luciferase

activity. All transfections were repeated independently and yielded comparable results.

Electrophoretic mobility shift assay (EMSA)

We designed 17-bp biotin-labeled and unlabeled complementary oligonucleotide probes for

both rs76071583 alleles (S11 Table). As previously described[55], using the LightShift Chemi-

luminescent EMSA Kit (Thermo Fisher Scientific), 300 femtomole of biotin-labeled double-

stranded oligos were incubated with 450 ng recombinant CEBP-a protein (Creative Biomart

CEBPA-153H). To test the specificity of the protein complexes to the allele, 50x excess unla-

beled probes were added to the binding reactions. We repeated EMSA experiments on inde-

pendent days and obtained consistent results.

Supporting information

S1 Fig. Manhattan plot for the genome-wide association study of plasma adiponectin levels

from 9,262 participants in the Metabolic Syndrome in Men (METSIM) study. Plasma adi-

ponectin levels were inverse normal transformed following adjustment for age, age2, and BMI.

-log10(P-values) of association results are plotted against hg19 genomic coordinates. Loci

achieving genome-wide significance are labeled and include IRS1, PBRM1, ADIPOQ, and

CDH13. A potentially novel adiponectin locus on chromosome 3, EPHA3, was also identified,

but the only genome-wide significant variant, rs139269730, had moderate imputation quality

(r2 = 0.74) and may represent a false positive (see S6 Fig), thus, this locus was excluded from

further analyses.

(TIF)
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S2 Fig. Adiponectin locus near CDH13 exhibits two association signals. (A) The purple dia-

mond represents rs12051272, the strongest associated variant in the initial unconditioned

analysis of plasma adiponectin. Other variants are colored based on LD with the lead variant

within the METSIM subjects. (B) After conditioning on rs12051272, an additional signal,

rs4782722, persisted. (C) No additional association signals persisted after conditioning on

rs12051272 and rs4782722.

(TIF)

S3 Fig. Adiponectin locus near ADIPOQ exhibits seven association signals. (A) The purple

diamond represents rs199938283, the strongest associated variant in the initial unconditioned

analysis of plasma adiponectin at this locus. Other variants are colored based on LD with the

lead variant within the METSIM subjects. (B) After conditioning on rs199938283, the lead

adiponectin-associated variant is rs4632532. (C) After conditioning on rs199938283 and

rs4632532, an additional signal with lead variant rs16861209, persisted. (D) After condition-

ing on rs199938283, rs4632532, and rs16861209, an additional signal with lead variant

rs73187787, persisted. (E) After conditioning on rs199938283, rs4632532, rs16861209, and

rs73187787, an additional signal with lead variant rs17366653, persisted. (F) After condition-

ing on rs199938283, rs4632532, rs16861209, rs73187787, and rs17366653, an additional signal

with lead variant rs17846866, persisted. (G) After conditioning on rs199938283, rs4632532,

rs16861209, rs73187787, rs17366653, and 17846866, an additional signal, rs62625753, per-

sisted. (H) No additional association signals persisted after conditioning on rs199938283,

rs4632532, rs16861209, rs73187787, rs17366653, rs17846866, and rs62625753. Y-axis scale

varies between panels to best show the results of each analysis.

(TIF)

S4 Fig. Adiponectin locus near IRS1 exhibits one association signal. (A) The purple dia-

mond represents rs149689033, the strongest associated variant at this locus. Other variants are

colored based on LD with the lead variant within the METSIM subjects. (B) After conditioning

on rs149689033, no additional association signals persisted.

(TIF)

S5 Fig. Adiponectin locus near PBRM1 exhibits one association signal. (A) The purple dia-

mond represents rs2276824, the strongest associated variant at this locus. Other variants are

colored based on LD with the lead variant within the METSIM subjects. (B) After conditioning

on rs2276824, no additional association signals persisted.

(TIF)

S6 Fig. Adiponectin locus near EPHA3 exhibits one association signal. (A) The purple dia-

mond represents rs139269730, the strongest associated variant at this locus (rs139269730-T:

β = -0.243, SE = 0.044, P = 4.1x10-8, effect allele frequency = 0.74). Other variants are colored

based on LD with the lead variant within the METSIM subjects. (B) After conditioning on

rs139269730, no additional association signals persisted. The ~3 Mb gap in variants observed

in the plots represents the centromere of chromosome 3. The only genome-wide significant

variant had moderate imputation quality (r2 = 0.74) and may represent a false positive, thus,

this locus was excluded from further analyses.

(TIF)

S7 Fig. Location of candidate variants at ADIPOQ. The lead adiponectin-associated variants

at ADIPOQ signals A-G (excluding signal ‘D’) and variants in high LD (r2�0.80) are shown.

Variants representing signal ‘A’ are shown in red, signal ‘B’ in magenta, signal ‘C’ in green,
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signal ‘E’ in navy, signal ‘F’ in brown, and signal ‘G’ in dark purple.

(TIF)

S8 Fig. Adiponectin haplotype association analysis for ADIPOQ lead variants that are not

independent (LD r2>.01). Haplotypes were constructed in 9,262 participants from the MET-

SIM study using the lead variant of each association signal using HaploStats. ‘Count’ indicates

the number of estimated haplotypes. (A) Haplotypes for association signals ‘A’ and ‘B’. (B)

Haplotypes for association signals ‘A’ and ‘F’. Haplotypes with the same allele for any given sig-

nal (e.g. signal ‘A’) show different effect sizes (betas) consistent with their single variant results

for alleles at the other signals (e.g. B, F). Alleles associated with lower adiponectin are shown in

purple while alleles associated with higher adiponectin are shown in green. Haplotype associa-

tion was performed with adiponectin inverse normalized residuals after adjusting for age, age2,

and BMI using the haplotype containing the adiponectin-increasing alleles at all seven signals

as the reference.

(TIF)

S9 Fig. Adiponectin haplotype association analysis at ADIPOQ in the 9,262 participants

from the METSIM study. A) Haplotype of all adiponectin-increasing alleles used as the base-

line reference. B) Haplotype with the largest sample size used as the baseline reference (same

as the baseline reference haplotype used in S10 Fig). Haplotypes with the same allele for any

given signal (e.g. signal ‘A’) show different effect sizes (betas) consistent with their single vari-

ant results for alleles at the other signals (e.g. B, C, etc). Haplotypes were constructed with the

lead variant of each association signal using HaploStats. ‘Count’ indicates the number of esti-

mated haplotypes. Alleles associated with lower adiponectin are shown in purple while alleles

associated with higher adiponectin are shown in green. Haplotype association was performed

with adiponectin inverse normalized residuals after adjusting for age, age2, and BMI using the

haplotype containing the adiponectin-increasing alleles at all seven signals as the reference.

The dashed line divides common haplotypes from rare (haplotype frequency <0.001.

(TIF)

S10 Fig. Adiponectin haplotype association analysis in the 5,274 participants from the

METSIM study who are homozygous for all seven ADIPOQ association signals. Haplotypes

were constructed with the lead variant of each association signal using HaploStats. ‘Count’

indicates the number of estimated haplotypes. Alleles associated with lower adiponectin are

shown in purple while alleles associated with higher adiponectin are shown in green. Haplo-

type association was performed with adiponectin inverse normalized residuals after adjusting

for age, age2, and BMI using the most prevalent haplotype as the reference. The order of haplo-

type effect sizes is consistent with the order of haplotype effect sizes for all 9,262 study partici-

pants shown in S9 Fig.

(TIF)

S11 Fig. Distribution of expression levels for ADIPOQ (A), ADIPOQ-AS1 (B), and

LNC02043 (C) in subcutaneous adipose tissue from 434 males from the METSIM study.

Expression levels are stratified by genotype for the variant most strongly associated with each

transcript (eQTL): rs143784260 (A and C) and rs17846866 (B). The lead adiponectin GWAS

variant for signal ‘A’, rs199938283, was not available in the eQTL dataset; however, the lead

eQTL variant rs143784260 is in perfect LD (r2 = 1.00). For each transcript, expression levels

are presented in transcript per million (TPMs) on the left and normalized TPMs after PEER

correction on the right.

(TIF)
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S12 Fig. Comparison of expression levels of ADIPOQ, ADIPOQ-AS1, and LNC02043. Cor-

relations between expression levels of ADIPOQ and ADIPOQ-AS1 (A) or ADIPOQ and

LNC02043 (B) are shown using transcripts per million (TPM) values in the left plot and nor-

malized TPMs after correction for PEER factors on the right. Pearson correlation (R2) values

and corresponding P-values are displayed for each plot. (C) Before normalization, the distribu-

tion of TPM values is much wider for ADIPOQ (approximate range 0–2500) than for either

ADIPOQ-AS1 (approximate range 0–27) or LNC02043 (0–3.5). The upper right plot in (C) is a

zoomed-in version of the plot on the left. Following PEER factor correction and inverse nor-

mal transformation, TPM values are evenly distributed between the three transcripts (bottom

right plot); these values were used in eQTL analyses.

(TIF)

S13 Fig. Haplotype association analysis for expression levels of three transcripts in 434

participants from the METSIM study. Haplotypes are shown for expression of (A) ADIPOQ,

(B) ADIPOQ-AS1, and (C) LNC02043. Expression levels are shown in transcripts per million

(TPMs) for plots on the left and normalized TPMs after PEER correction on the right. Haplo-

types with the same allele for any given signal (e.g. signal ‘A’) show different effect sizes (betas)

consistent with their single variant results for alleles at the other signals (i.e. ‘F’). Haplotypes

were constructed with the lead variant of each association signal using HaploStats. ‘Count’

indicates the number of estimated haplotypes. Alleles associated with lower expression are

shown in purple, while alleles associated with higher expression are shown in green.

(TIF)

S14 Fig. Additional candidate variants from ADIPOQ signals ‘A’ and ‘B’ did not exhibit

allelic differences in transcriptional activity in differentiated 3T3L1 adipocytes. (A)

rs150411458 for signal ‘A’. (B) A haplotype of four variants rs1648705 (signal ‘B’), rs4632532

(signal ‘B’), rs1648707 (signal ‘B’), and rs143257534 (signal ‘A’). (C) A haplotype of two vari-

ants rs4632532 (signal ‘B’) and rs1648707 (signal ‘B’).

(TIF)

S15 Fig. CEBP-α binds to rs76071583 to increase enhancer activity. Electromobility shift

assay (EMSA) with biotin-labeled probes containing the A or G allele of rs76071583 and

purified CEBPA protein show an allele-specific band (lane 6 versus lane 2) that is competed

away more effectively by 50-fold excess of unlabeled probe containing the A allele (lane 7)

than the G allele (lane 8). An arrow points to an allele-specific protein complex binding to

the A allele.

(TIF)

S16 Fig. CDH13 signal A candidate variants and replicated experiments. (A) Positions of

the lead adiponectin-associated GWAS variant in this study, rs12051272, and seven proxy vari-

ants (r2�0.80; “EUR Candidates”) are shown. (B) Adiponectin genome-wide association

results from the METSIM study shown with East Asian LD (1000 Genomes Phase 3) and

METSIM LD. The reported lead variant associated with adiponectin in East Asians is

rs4783244 is in strong LD with rs12051272 in East Asian populations (r2 = 0.92) but not in

Finns(r2 = 0.05). (C) Results from replicated transcriptional activity experiments of CDH13
signal ‘A’ show rs12051272-G is consistently associated with greater transcriptional activity in

both the forward and reverse orientations with respect to CDH13 in HeLa cells compared to

rs12051272-T and an “empty vector” containing a minimal promoter. Using a linear regres-

sion model to analyze data from all three transcriptional activity experiments provides further

support that rs12051272-G is associated with greater transcriptional activity in both the
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forward (P = 0.02) and reverse (P = 0.004) directions.

(TIF)

S17 Fig. The second signal at CDH13 (signal ‘B’) exhibits allelic differences in transcrip-

tional activity. (A) rs4782722 and all five candidate variants in high pairwise LD (r2�0.80)

span a 2.5 kb region in CDH13 introns 1 and 2. (B) At CDH13 signal ‘B’, additional haplotypes

of rs4782722 and rs12444113 created by site-directed mutagenesis of rs4782722 implicate

rs4782722 as a regulatory variant. Transcriptional reporter assays of a regulatory region span-

ning rs4782722 and rs12444113 in HeLa cells show that haplotypes containing rs4782722-G

(GG and GC) exhibited greater transcriptional activity than haplotypes containing

rs4782722-T (TG and TC) in the forward and reverse orientations. Each dot represents tran-

scriptional activity of an independent experimental clone.

(TIF)

S18 Fig. rs3910232 at CDH13 signal ‘B’ does not exhibit allelic differences in transcrip-

tional activity in HeLa cells. rs3910232 is a proxy of rs4782722 but does not appear to contrib-

ute to transcriptional activity differences at this locus.

(TIF)

S1 Table. METSIM association results (P<0.05) for previously reported adiponectin-asso-

ciated variants.

(XLSX)

S2 Table. GWAS signals of adiponectin association at locus-wide significance using

sequential conditional analysis.

(XLSX)

S3 Table. METSIM linkage disequilibrium values between identified signals at ADIPOQ.

(XLSX)

S4 Table. Adiponectin-association results in METSIM at ADIPOQ coding variants.

(XLSX)

S5 Table. Sensitivity analysis comparing adiponectin-associated GWAS loci across refer-

ence panels and adjustments at locus-wide significance using sequential conditional analy-

sis.

(XLSX)

S6 Table. Colocalization of adiponectin GWAS signals and subcutaneous adipose cis-
eQTLs (RNA-seq, n = 434).

(XLSX)

S7 Table. ADIPOQ GWAS variant eQTL associations in METSIM subcutaneous adipose

(n = 434) for transcripts surrounding ADIPOQ.

(XLSX)

S8 Table. Interrogation of subcutaneous adipose eQTLs for adiponectin-associated vari-

ants at the ADIPOQ locus in GTEx (July 2, 2019).

(XLSX)

S9 Table. Reciprocal conditional analysis of adiponectin GWAS signals ‘A’ and ‘F’ at ADI-
POQ and cis-eQTLs for ADIPOQ and ADIPOQ-AS1 (RNA-seq, n = 434).

(XLSX)
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S10 Table. Adiponectin association results in METSIM at CDH13 coding variants.

(XLSX)

S11 Table. Primer sequences used in functional assays.

(XLSX)
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