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Abstract

Expression quantitative trait locus (eQTL) studies in human liver are crucial for elucidating how 

genetic variation influences variability in disease risk and therapeutic outcomes and may help 

guide strategies to obtain maximal efficacy and safety of clinical interventions. Associations 

between expression microarray and genome-wide genotype data from four human liver eQTL 

studies (n = 1,183) were analyzed. More than 2.3 million cis-eQTLs for 15,668 genes were 
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identified. When eQTLs were filtered against a list of 1,496 drug response genes, 187,829 cis-

eQTLs for 1,191 genes were identified. Additionally, 1,683 sex-biased cis-eQTLs were identified, 

as well as 49 and 73 cis-eQTLs that colocalized with genome-wide association study signals for 

blood metabolite or lipid levels, respectively. Translational relevance of these results is evidenced 

by linking DPYD eQTLs to differences in safety of chemotherapy, linking the sex-biased 

regulation of PCSK9 expression to anti-lipid therapy, and identifying the G-protein coupled 

receptor GPR180 as a novel drug target for hypertriglyceridemia.

An expression quantitative trait locus (eQTL)1 is a genetic variant that can affect gene 

expression through mechanisms including alterations in gene transcription and transcript 

stability. Gene expression represents a mechanism underlying variation in drug response and 

susceptibility to disease.2,3 Approximately 90% of variants associated with complex traits 

are located in noncoding regions of the genome,1 suggesting the effects of these variants 

may be mediated through gene expression.

The liver is critical to the maintenance of homeostasis and health. Estimates indicate that 

75% of the 200 most widely prescribed drugs are eliminated through liver metabolism or 

biliary excretion.4 While it is widely accepted that genetic and environmental variation 

influences drug efficacy and adverse events, the majority of variation in drug response 

remains unexplained. Increased knowledge of the contribution of genetic variation to the 

variability in liver gene expression, especially the identification of novel regulatory variants 

in genes of drug response, can provide the basis for translating genetic variations into 

clinically relevant tools.

Sexual dimorphism has also been shown to contribute to differences in disease susceptibility 

and drug efficacy and toxicity.5,6 For example, a lower incidence of coronary artery disease 

(CAD) in women has been linked to sex-biased differences in lipoprotein pathophysiology 

and is consistent with reports of sex-biased gene enrichment in studies of dyslipidemia and 

CAD.5 Lipid-lowering therapy has been reported to exhibit reduced efficacy in women,7,8, 

suggesting that sex-biased differences in the expression of drug metabolizing enzymes 

and/or therapeutic targets may contribute to sex-biased clinical outcomes. Thus, a systematic 

understanding of the role of liver eQTLs in sex-biased traits is of great clinical relevance.

Circulating metabolite levels serve as direct readouts of cellular processes and represent 

intermediate phenotypes. As such, metabolic profiles are used for clinical risk assessment, 

diagnosis, prognosis, and evaluation of treatment efficacy. Disruption in metabolic processes 

is associated with many chronic diseases, such as type 2 diabetes, and genome-wide 

association studies (GWAS) have identified numerous loci associated with serum 

concentrations of metabolites such as glucose and lipids. Identification of genetic variants 

that are associated with alterations in the homeostasis of key metabolites will be the basis for 

explaining the genetics of chronic diseases. For example, the identification of novel liver 

eQTLs associated with serum lipoprotein levels could lead to insights into the mechanisms 

by which genetic variants drive the risk of dyslipidemia and cardiovascular disease, leading 

to novel drug targets.
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In eQTL mapping, sample size has been reported to greatly affect the probability of 

discovering novel eQTLs, in particular ones with smaller effect sizes.9,10 The most 

comprehensive eQTL work published to date, the Genotype-Tissue Expression (GTEx) 

project,10 included only 153 liver specimens. We aim to overcome these limitations by 

performing an analysis of four human liver eQTL data sets, totaling 1,183 livers. We present 

discoveries on genes of drug response, metabolism, and sex-biased regulation of gene 

expression. As has been demonstrated by many examples of the genetics of complex traits, 

genetic variation is one of many factors that can influence translation into medicine.11 We 

show evidence of the translational impact of novel eQTLs, including DPYD (related to the 

risk of severe toxicity from cancer chemotherapy), PCSK9 (related to anti-lipid therapy), 

and GPR180 (related to triglyceride levels).

RESULTS

Identification of liver cis-eQTLs

Four data sets which included genome-wide DNA genotyping and RNA transcriptome 

analysis from nondiseased human liver tissues were combined (Table 1). After quality 

control (Supplementary Methods and Results, Figures S1 and S2), the data sets included 

145–555 unrelated samples, totaling 1,183 livers from individuals of genetic European 

ancestry. False discovery rate Q values < 0.05 were considered statistically significant. 

Unless otherwise stated, the number of eQTLs reported has not been pruned for linkage 

disequilibrium (LD). In the four individual data sets, 156,182–1,872,669 cis-eQTLs were 

identified (Table 2), and our combined analysis increased the number of cis-eQTLs by more 

than 20% to 2,391,948 cis-eQTLs for 15,668 genes (Figure 1, Table 2). Approximately 75% 

of genes included in our analysis were associated with at least one cis-eQTL, consistent with 

previous reports suggesting that expression of nearly all genes is influenced by genetic 

variation.10

Identification of cis-eQTLs in genes of drug response

The cis-eQTLs identified above were filtered against a list of 1,496 genes of drug response 

(Table S1). In the four individual data sets, there were 9,072-149,712 cis-eQTLs (Table S2), 

and our analysis increased the number of cis-eQTLs by more than 20% to 187,829 cis-

eQTLs for 1,191 genes (Table S2, Figure 2). Table S3 lists the cis-eQTLs with the lowest P 
value for each of 300 drug response genes with the most significant eQTL associations.

Translational evidence of cis-eQTLs for drug response: the example of DPYD

The dihydropyrimidine dehydrogenase (DPD) gene (DPYD) codes for the enzyme that 

inactivates fluoropyrimidines, including 5-fluorouracil (5-FU) and capecitabine. In our 

study, rs59353118 was the most significant cis-eQTL in a haplotype block associated with 

DPYD expression (Q value = 1.00 E-10, T statistic = −7.26), with the minor allele 

associated with reduced expression (Figure 3a, Figure S3A, Figure S4). When rs75017182, a 

splice variant in the HapB3 haplotype reducing DPYD expression,12 was included as a 

covariate in a conditional analysis, the effect of rs59353118 was independent and even 

stronger (Q value = 4.08 E-17, T statistic = −8.88). Two variants in high LD with 

rs59353118 (r2 > 0.94), rs72728438 and rs12022243, have been associated with decreased 
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DPD activity in mononuclear cells13 and increased risk of capecitabine toxicity,14 

respectively. No study has shown how these variants affect the expression of DPD in the 

liver where the inactivation of fluoropyrimidines occurs.

Identification of sex-biased cis-eQTLs

In the four individual data sets, there were 58–38,508 sex-biased cis-eQTLs (Table S4), and 

our combined analysis resulted in 1,683 sex-biased cis-eQTLs for 460 genes (Table S4, 

Figure 4a). Substantially more sex-biased cis-eQTLs were identified in data set 2 than in any 

of the other individual data sets or in our combined analysis. Data set 2 consisted of nearly 

twice as many males as females and this unbalanced sex ratio combined with the small 

sample size possibly contributed to more false positives in this data set. Filtering for the list 

of 1,496 genes of drug response, 116 sex-biased cis-eQTLs were identified for 42 genes 

(Figure 4b). Table S5 lists the sex-biased cis-eQTLs with the lowest P value for each of 300 

genes with the most significant eQTL associations.

Translational evidence of sex-biased cis-eQTLs: the example of PCSK9

PCSK9 codes for proprotein convertase subtilisin/kexin type 9, a key regulator of circulating 

low density lipoprotein cholesterol (LDL-C). PCSK9 is produced in the liver, and sex-biased 

differences in its regulation and function have been demonstrated.15,16 Estrogens have been 

shown to attenuate the effects of PCSK9 on LDL-C, while androgens augment the effects.
17–19 Our analysis has shown two sex-biased cis-eQTLs in PCSK9 (Figure 3b): rs114525994 

(Q value = 6.74 E-6, T statistic = 6.55) and rs12145732 (Q value = 2.82 E-5, T statistic = 

6.32, Figure S3B) are in moderately high LD (r2 = 0.74) and associated with higher PCSK9 
expression in males but not in females. Sex-biased differences in PCSK9 expression may 

help explain a decreased response to PCSK9 inhibitors and inability to reach optimal plasma 

LDL levels observed in some women (Figure S5).

Colocalization analysis of cis-eQTLs and GWAS variants associated with lipid traits

Cis-eQTLs were compared with variants associated with individual variability in lipid traits 

(triglycerides, LDL-C, high-density lipoprotein cholesterol (HDL-C), and total cholesterol) 

reported in a GWAS by the Million Veteran Program (MVP).20 Based on MVP GWAS lead 

variant LD (r2 > 0.8) with the most significant cis-eQTL, 73 MVP GWAS variants 

colocalized with eQTLs for 84 genes (some liver eQTLs associated with more than one 

gene, Table S6). Figure 5 shows the cis-eQTL association of the GWAS effect allele with 

liver gene expression of the 84 genes. Of the 73 MVP GWAS variants that colocalized with 

a cis-eQTL, 23 were novel associations with lipid traits identified by the MVP GWAS and 

represent novel candidate genes at these loci.

Translational evidence of cis-eQTLs for metabolic traits: the example of GPR180

GPR180, one of the 84 genes identified in the colocalization analysis of MVP GWAS 

variants, codes for a G protein-coupled receptor with an unknown endogenous ligand that 

has been proposed to play a role in vascular remodeling.21 However, its role in lipid 

metabolism is unknown. The minor allele of rs2298058 was associated with increased 

triglyceride levels in the MVP GWAS and colocalized with rs9561643 (r2 = 0.95, Table S6), 
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the most significant cis-eQTL (Q value = 4.60 E-69, T statistic = 18.01) for GPR180 (Figure 

3c), which associated with increased expression (Figure S3C, Figure S6). In our liver 

analysis, rs2298058 was also associated with increased GPR180 expression (Q value = 4.07 

E-65, T statistic = 17.50). Development of treatments aimed at reducing GPR180 levels 

could represent a therapeutic target for the reduction of triglycerides in patients.

DISCUSSION

This is the largest liver eQTL study reported to date. The increased statistical power 

resulting from inclusion of 1,183 individuals resulted in the ability to detect novel eQTLs, 

providing greater understanding of variation of gene expression and its genetic regulation. 

By performing a combined analysis, 1.4–15.5-fold more cis-eQTLs were identified when 

compared with the individual data sets alone. A recently reported analysis including 588 

livers22 mapped liver cis-eQTLs for variants with a minor allele frequency (MAF) ≥ 0.05 

and focused on loci for age-related macular degeneration. Our analysis has focused on three 

important liver-related phenotypes: drug response, metabolic traits, and sex dimorphism in 

liver-related traits. The implications of obtaining a new, comprehensive map of liver eQTLs 

are vast, due to the central role of the liver in homeostasis, and this large analysis of liver 

eQTLs provides a resource to make new discoveries pertaining to the genetic basis of liver-

related traits.

Canonical pathway analysis demonstrated significant enrichment of cis-eQTLs associated 

with genes in pathways highly relevant in liver phase I-II metabolic processes, including 

cytochrome P450 enzymes, hepatic transporters, uridine 5′-diphospho-glucuronosyl-

transferases, and glutathione S-transferases. There was an enrichment of cis-eQTLs in 

pathways associated with detoxification of reactive intermediates of oxidative stress, which 

is involved in diseases such as atherosclerosis,23 and in genes associated with retinoic × 

receptor down regulation in liver acute phase response to inflammation, a key feature of 

metabolic disorders such as dyslipidemia and diabetes.24

It has been reported that GWAS loci associated with complex traits are more likely to be 

eQTLs.25 Analysis of liver cis-eQTLs in loci associated with any phenotype in the GWAS 

catalog demonstrated a more than threefold enrichment. Similar enrichment was seen when 

GWAS loci were restricted to drug response traits. When enrichment of cis-eQTLs 

associated with the expression of 1,496 drug response genes was investigated in GWAS loci 

of drug response, there was an 11-fold enrichment of the most highly significant cis-eQTLs 

(P value < 1 E-50). This supports the notion that noncoding variation is particularly relevant 

to interindividual variation in drug response.

Investigation of eQTLs of drug response, using preliminary results obtained from this 

analysis, have identified new genetic variants affecting clinically relevant response in 

patients. We have demonstrated a link between rs8192675, a cis-eQTL regulating expression 

of the glucose transporter gene SLC2A2, and metformin efficacy26 and identified ATM as a 

target gene for variants within an enhancer region associated with metformin efficacy.27
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Here, we report the identification of novel genetic variants that might identify patients at risk 

of severe 5-FU toxicity. Despite 5-FU being among the most commonly prescribed 

chemotherapeutic agents, up to 34% of patients treated with 5-FU and other 

fluoropyrimidines develop severe toxicity. Up to 85% of administered 5-FU is metabolized 

by DPD, making DPD a crucial detoxifying enzyme. Our analysis identified a haplotype 

block of eQTLs which associated with decreased DPYD expression. The most significant 

cis-eQTL in this haplotype block, rs59353118, is in high LD with variants associated with 

decreased DPD activity in Europeans, rs72728438 (r2 = 0.97),13 and toxicity of capecitabine 

(a 5-FU prodrug), rs12022243 (r2 = 0.94).14 A variant in high LD with rs59353118 and 

rs72728438 (r2 > 0.97), rs72728443, is located in an open chromatin region enriched for 

histone modifications associated with enhancer activity (Table S7). A p53 binding motif 

(Figure 3a) also spans rs72728443. Altered binding of the DPYD repressor, p53, to the 

variant allele of rs72728443 suggests a mechanism by which cis-eQTLs identified in this 

analysis might alter liver DPYD expression, leading to toxic effects of fluoropyrimidines. 

After 30 years of research on DPYD genetics and 5-FU, new genetic variants of the risk of 

5-FU severe toxicity should be discovered to improve the limited predictive power of DPYD 
genetic testing.12

Zhang et al.5 have reported that 3.7% of genes in human liver demonstrate sex-biased 

expression, while Dimas et al.28 found that ~ 12%–15% of eQTLs expressed in 

lymphoblastoid cell lines are sex biased. Sex-biased differences in energy storage and 

metabolism have been shown to result in variability in response to pharmacologic agents as 

well as the onset and manifestation of diseases, including dyslipidemia, diabetes, and CAD. 

Therefore, a better understanding of the mechanisms involved in sex-biased differential 

regulation of gene expression in human liver could be of substantial biological and clinical 

importance. Plasma levels of LDL-C have been shown to be sex-biased, with concentrations 

higher in men than women, and regulated, in part, by PCSK9.15 Liver overexpression of 

PCSK9 leads to increased liver and plasma PCSK9 levels, reduced liver LDL receptor levels, 

and reduced plasma LDL-C clearance.29 PCSK9 has also been associated with the severity 

of coronary atherosclerosis resulting from the inability to achieve optimal reductions in 

plasma LDL levels.30 The PCSK9 inhibitors alirocumab and evolocumab are recently 

approved monoclonal antibodies that target and inactivate PCSK9. A sex-biased response to 

PCSK9 antibody therapy has been observed, with men experiencing greater reductions in 

plasma LDL-C levels than women.7 Our analysis has identified sex-biased cis-eQTLs 

associated with increased liver PCSK9 expression in men. Specifically, rs114525994 is 

predicted to affect binding of transcription factors, while rs12145732 is associated with 

chromatin marks indicating an active enhancer region and is predicted to alter binding motifs 

of forkhead box protein A (FOXA) transcription factors (Table S8). Variants at FOXA 

binding sites have been shown to decrease binding of both FOXA transcription factors and 

estrogen receptor alpha to their targets in human liver.19 Liver cis-eQTLs that alter FOXA 

binding sites could modulate the effect of sex hormones on gene expression, suggesting a 

mechanism by which sex-biased liver cis-eQTLs might differentially regulate liver 

expression of PCSK9.

Changes in levels of metabolites are important biomarkers for many diseases, and 

integration of liver eQTLs with metabolic traits has the potential to identify novel genetic 
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loci associated with perturbations in metabolic homeostasis. Dysregulation of blood lipid 

levels has been associated with metabolic disorders, including type 2 diabetes, obesity, and 

metabolic syndrome. This analysis identified 23 novel cis-eQTLs that colocalized with 

GWAS variants associated with blood lipid traits, suggesting that alterations in liver gene 

expression may provide an explanation for the effect of these variants on blood lipid levels. 

For example, rs9561643 is a cis-eQTL that increased expression of GPR180 and colocalized 

with rs2298058, a GWAS variant associated with higher plasma triglycerides. Bioinformatic 

analyses of these two variants and variants in strong LD (r2 > 0.8) indicated the strongest 

evidence for functional effects for rs2298058 and rs9561643. Both rs2298058 and 

rs9561643 are predicted to be in regions of open chromatin and associated with chromatin 

marks for active regulatory regions. Activating transcription factor 3 (ATF3) and nuclear 

respiratory factor 1 (NRF1) have been shown to bind in the region of rs2298058 in liver cells 

(Table S9). Decreased expression of ATF3 has been shown to increase serum triglyceride 

levels,31 while binding of both homodimers of ATF3 and heterodimers of ATF3 with NRF1 

have been shown to repress gene transcription.32 These results suggest that cis-eQTLs that 

decrease the binding of either ATF3 or NRF1 may lead to increased GPR180 expression and 

serum triglyceride levels. A GWAS variant in GPR180 has been associated with the 

circulating mass of lipoprotein-associated phospholipase A2, a proinflammatory enzyme that 

binds to LDL-C.33 When this analysis was adjusted for baseline LDL-C, HDL-C, and 

triglycerides, however, the association was no longer significant, suggesting a link between 

GPR180 and lipid levels. To date, there are no definitive studies linking GPR180 function 

and lipid metabolism. GPR180 represents a druggable target and the development of 

GPR180 antagonists could represent an effective therapeutic intervention for 

hypertriglyceridemia. G-coupled protein receptors have been commonly used as therapeutic 

targets, particularly in the treatment of obesity and dyslipidemia,34 and using this liver 

analysis, we have identified GPR180 as a potential new target of drug development.

A limitation of our study is that tissue samples for each data set were collected using 

different sample collection and storage protocols, and patient populations differed in health 

status and exposure to clinical interventions prior to tissue collection. We have controlled for 

this variability by adjusting our expression analysis for hidden biological and technical 

variation that might affect gene expression. We have also utilized a fixed effect model which 

has been shown to increase power of detection in the presence of heterogeneity among data 

sets. This statistical approach allows for greater discovery of eQTLs. However, the cis-

eQTLs with the strongest signals were those that were common across data sets, indicating 

the robustness of these signals to heterogeneity among the data sets. Since these common 

cis-eQTLs were also utilized for the pathway analysis, the results of this analysis are also 

refractory to the heterogeneity among data sets.

This study was performed in individuals of European ancestry. Care should be taken when 

applying results for eQTLs generated in Europeans to other ethnic populations, in particular 

when MAFs or haplotype structure differ markedly. Our study poses the first basis for 

testing the most significant cis-eQTLs in samples and data sets of subjects with different 

ethnicity.
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In conclusion, as a result of the increased statistical power resulting from the large sample 

size of 1,183 individuals, this analysis has identified novel cis-eQTLs associated with 

interindividual variability in drug response and metabolic profiles, including sex-biased 

differences in risk and severity of disease and response to drug therapy. This comprehensive 

liver eQTL analysis represents an invaluable foundational resource to expand our biological 

knowledge of liver-related diseases and can serve as a guide to the discovery of genetic 

markers and novel targets of drug development. Among the many possible applications of 

this data set to drive future investigations, our study can inform the biological basis of 

previously annotated large GWAS. These discoveries can be used to identify and guide 

development of new drug targets. They can also enrich existing or new genotyping platforms 

with new noncoding, regulatory genetic biomarkers. We also envision a role for these results 

in improving transcriptome-wide association studies.

MATERIALS AND METHODS

Data sets

This analysis utilized deidentified genotype and gene expression data, including data from 

the database of Genotypes and Phenotypes (dbGaP) and Gene Expression Omnibus (GEO) 

repositories, and has been determined to be nonhuman subject research by the University of 

North Carolina at Chapel Hill Institutional Review Board (study number 10–2253). Our 

analysis included four human liver data sets of genotype and gene expression microarray 

data (see Table 1, for demographics, details of platforms used, and GEO accession 

numbers). Schroder et al. (data set 1) profiled 149 samples from normal noncancerous liver 

tissue resected from patients with liver cancer.35 All tissue samples were examined by a 

pathologist, and only histologically noncancerous tissues were used for analysis. Innocenti et 
al. (data set 2) profiled 205 normal (nondiseased) postmortem liver samples from organ 

donors.2 Schadt et al. (data set 3) profiled 427 postmortem and surgical resection liver 

samples from organ donors,36 and similar to data set 2, tissue samples came from donor 

livers that were not used for whole organ transplants or from tissue that remained following 

a partial graft into a smaller recipient. Greenawalt et al. profiled 960 liver samples (data set 

4) collected at the time of Roux-en-Y gastric bypass surgery.37

Cis-eQTL analysis

To test for associations between genotype and gene expression, an additive (codominant) 

linear model was employed in the Matrix eQTL software package (http://www.bios.unc.edu/

research/genomic_software/Matrix_eQTL/).38 A 1 megabase window flanking the 

transcriptional start/stop sites was used to identify cis-eQTLs. For each data set, minor allele 

dosage, filtered to exclude variants with MAF < 0.01, was used to examine genotype 

association with rank inverse quantile normalized gene expression. Covariates included sex 

and age, the first 1 (data sets 1–3) or 5 (data set 4) principal components from genetic 

ancestry analysis, and 15–35 hidden factors identified using PEER (https://

www.sanger.ac.uk/science/tools/PEER).39

Following identification of cis-eQTLs in each individual data set, cis-eQTLs identified in at 

least two data sets were included in the combined analysis. The T statistics from the additive 
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linear model for each cis-eQTL within each data set were used to generate a meta-T-statistic 

as follows:

tmeta = witi wi2 , where wi = sample size− # of covariates − 1

For each data set i in this equation the T statistic generated by Matrix eQTL (ti) is weighted 

by wi, and the sum of these weighted T statistics is calculated. The rationale for the use of 

these weights follows a principle that the variance of regression coefficients is inversely 

proportional to sample size. The true accuracy of each platform is unknown, and expression 

on the platforms is only measured in a relative sense. As the collective sample size was 

large, this meta-T-statistic was assumed to be normally distributed under the null and was 

used as a measure of the effect size of eQTLs and also to calculate the associated P value. 

Cis-eQTLs with a false discovery rate Q value < 0.05 were considered statistically 

significant.

Cis-eQTLs in genes of drug response

A list of 1,496 genes of drug response was compiled from the Pharmacogenomics 

Knowledge Base (PharmGKB) (http://www.pharmgkb.org/), a comprehensive database that 

curates information about the impact of genetic variation on drug response; the 

PharmaADME Working group list of absorption, distribution, metabolism, and excretion 

genes; the US Food and Drug Administration (FDA) Pharmacogenomics Biomarkers, the 

Nuclear Receptor Signaling Atlas (NURSA) Consortium; the DrugBank catalog (https://

www.drugbank.ca/), a comprehensive database containing information on drug targets; and 

the literature35,40 (Table S1). This list was used to filter eQTLs for association with genes of 

drug response.

Identification of sex-biased cis-eQTLs

The interaction model of Matrix eQTL was used to test for sex-biased eQTLs. This model 

tests for equality of effect sizes between males and females by adding a genotype-by-sex 

interaction term to the linear regression analysis. Following determination of sex-biased cis-

eQTLs within each data set, the resulting T statistics for each cis-eQTL from each data set 

were used to generate a meta-T-statistic as described above. False discovery rate Q values < 

0.05 were considered statistically significant.

Colocalization analysis of cis-eQTLs and GWAS variants of blood metabolite levels

To investigate whether liver gene regulation might influence blood metabolite levels, the 

colocalization of cis-eQTLs with GWAS loci for blood metabolites reported by Shin et al.41 

was investigated. PLINK (http://zzz.bwh.harvard.edu/plink/download.shtml) was used to 

estimate the LD between the metabolite GWAS variants reported by Shin et al.41 and, for 

any variants with LD r2 > 0.8, one of the variants was pruned from the analysis. 

Colocalization was defined as metabolite GWAS variants in strong LD (r2 > 0.8 in European 

samples from the 1,000 Genomes Project Phase 3) with the most significant liver cis-eQTL 

for the same gene. A similar analysis was performed to determine the colocalization of liver 

cis-eQTLs and blood lipid trait (triglycerides, HDL-C, LDL-C, and total cholesterol) 
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variants reported by the Million Veteran Program (MVP).20 The MVP lipid GWAS included 

European, black, and Hispanic participants and, in order to assess the maximum number of 

lipid-associated variants, our colocalization analysis included GWAS lipid variants that were 

significant in any population. Using the bioinformatics tool swiss (github.com/statgen/

swiss), representative MVP GWAS variants associated with one or more lipid traits and 

present in the 1,000 Genomes Project Phase 3 were selected and clumped such that the 

pairwise LD of the representative MVP GWAS variants have r2 < 0.8 with all other 

representative MVP GWAS variants. Colocalization analysis between MVP GWAS variants 

and liver cis-eQTLs was then performed using European samples from the 1,000 Genomes 

Project Phase 3 as the reference panel for determination of LD between GWAS variants and 

cis-eQTLs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

☑ In expression quantitative trait locus (eQTL) mapping, sample size greatly affects the 

probability of discovering novel eQTLs. This is the largest liver eQTL study reported to 

date, resulting in increased statistical power to detect novel eQTLs, thus providing a 

greater understanding of variation of liver gene expression and its genetic regulation.

WHAT QUESTION DID THIS STUDY ADDRESS?

☑ This analysis has identified novel cis-eQTLs associated with interindividual variability 

in drug response, metabolic profiles, and sex-biased differences in risk and severity of 

disease and response to therapy.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?

☑ This comprehensive liver eQTL analysis represents an invaluable foundational 

resource to expand our biological knowledge of liver-related diseases and can serve as a 

guide to the discovery of genetic markers and novel targets of drug development.

HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 

TRANSLATIONAL SCIENCE?

☑ Increased knowledge of genetic variants responsible for variability in liver gene 

expression, especially the identification of novel regulatory variants in genes of drug 

response, will provide the basis for translating genetic variations into clinically relevant 

tools.
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Figure 1. 
Manhattan plot of cis-eQTL (expression quantitative trait locus) associations in the liver. 

Each point on the graph represents a variant–gene pair. Gene names are shown for 

representative cis-eQTLs with a Q value < 1 E-300.
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Figure 2. 
Manhattan plot of cis-eQTLs (expression quantitative trait loci) in 1,496 genes of drug 

response. The most significant cis-eQTL association in each drug response gene is plotted. 

Gene names are shown for cis-eQTLs with a Q value ≤ 1 E-75.
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Figure 3. 
LocusZoom plots of cis-eQTLs (expression quantitative trait loci) in DPYD, PCSK9, and 

GPR180. (a) DPYD: rs59353118 (located in DPYD intron 14), rs75017182 (a splice variant 

in the HapB3 haplotype), and p53 transcription factor binding motif. (b) Two sex-biased cis-

eQTLs in PCSK9: rs12145732 (r2 = 0.8 with rs114525994) is located ~ 450 kb 5′ of PCSK9 
and predicted to alter FOXA transcription factor binding; FOXA transcription factor binding 

motif. (c) GPR180: rs9561643 is located ~ 1 kb 5′ of GPR180 and colocalized with 

rs2298058, a MVP (Million Veteran Program) GWAS (genome-wide association study) 

variant associated with blood triglyceride levels. chr, chromosome; FOXA, forkhead box 

protein A; Mb, megabase.
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Figure 4. 
Manhattan plots of (a) sex-biased cis-eQTLs and (b) sex-biased cis-eQTLs (expression 

quantitative trait loci) in 1,496 genes of drug response. Genotype-by-sex interaction Q 
values for the most significant cis-eQTL (expression quantitative trait locus) associations in 

each gene are plotted. Gene names are shown for cis-eQTLs with a Q value ≤ 1 E-5.
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Figure 5. 
Lipid GWAS (genome-wide association study) loci that have a colocalized liver cis-eQTL 

(expression quantitative trait locus). Symbols represent the lead variant from the MVP 

(Million Veteran Program) GWAS20 colocalized with an eQTL for the named gene. The x-

axis shows chromosomal positions of the lead GWAS variants, and the y-axis shows the 

−log10 P values of the GWAS variant’s association with gene expression levels in liver. 

Increased (red) or decreased (blue) expression corresponds to the direction of association of 

the risk allele with the MVP GWAS lipid trait, where risk is defined as increased total 

cholesterol, LDL (low density lipoprotein), or triglycerides, or decreased HDL (high density 

lipoprotein). Triangles: GWAS variants that were colocalized with a cis-eQTL for more than 

one gene. Circles: variants that were colocalized with a single gene. Only the associations 

with false discovery rate < 0.01 are shown; full results can be found in Table S6.
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