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Abstract

Hi-C and chromatin immunoprecipitation (ChIP) have been combined to identify long-range

chromatin interactions genome-wide at reduced cost and enhanced resolution, but extract-

ing information from the resulting datasets has been challenging. Here we describe a

computational method, MAPS, Model-based Analysis of PLAC-seq and HiChIP, to process

the data from such experiments and identify long-range chromatin interactions. MAPS

adopts a zero-truncated Poisson regression framework to explicitly remove systematic

biases in the PLAC-seq and HiChIP datasets, and then uses the normalized chromatin con-

tact frequencies to identify significant chromatin interactions anchored at genomic regions

bound by the protein of interest. MAPS shows superior performance over existing software

tools in the analysis of chromatin interactions from multiple PLAC-seq and HiChIP datasets

centered on different transcriptional factors and histone marks. MAPS is freely available at

https://github.com/ijuric/MAPS.

Author summary

Chromatin spatial organization plays an important role in genome function. The recently

developed PLAC-seq and HiChIP technologies have become powerful tools to study long-

range chromatin interactions. However, the biases introduced by the ChIP procedure

have added substantial difficulty in data analysis. Existing methods all suffer from subopti-

mal performance. Here we present a new method, named MAPS, to explicitly remove

biases in PLAC-seq and HiChIP data and identify long-range chromatin interactions with

high reproducibility and accuracy. We benchmark the performance of MAPS using two

public datasets and two in-house datasets, and demonstrate that MAPS is superior to
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existing methods. More importantly, MAPS can identify a large number of biologically

relevant chromatin interactions that are missed by state-of-the-art mapping tools.

Introduction

While millions of candidate enhancers have been predicted in the human genome, annotation

of their target genes remains challenging, because enhancers do not always regulate the closest

gene in the linear genome sequence [1]. Recognizing that distal enhancers frequently form

chromatin loops with the target gene promoters to regulate their expression, evidence of long-

range chromatin interactions between enhancers and promoters has been increasingly used to

predict the target genes of enhancers and dissect gene regulatory networks [2]. Chromosome

conformation capture (3C) [3] based methods, such as in situ Hi-C [4], have been used to

detect long-range chromatin interactions in mammalian cells. However, billions of reads are

typically needed to achieve kilobase (Kb) resolution, limiting their applications. PLAC-seq [5]

and HiChIP [6] technologies combine in situ Hi-C and chromatin immunoprecipitation

(ChIP) to efficiently capture chromatin interactions anchored at genomic regions bound by

specific proteins or histone modifications, achieving Kb resolution with fewer sequencing

reads and much reduced sequencing cost [7] (Note 1 in S1 Text).

Several software tools, including Fit-Hi-C [8], HiCCUPS [4], Mango [9] and hichipper [10]

have been used to identify long-range chromatin interactions from PLAC-seq and HiChIP

data. However, most of these methods are not optimal since they do not take into account

PLAC-seq/HiChIP-specific biases. PLAC-seq/HiChIP datasets not only suffer from the biases

introduced by differential effective fragment length, GC content and sequence uniqueness that

are common to all 3C based methods [11], but also contain the biases introduced during the

ChIP procedure (i.e., ChIP enrichment level). For example, Fit-Hi-C and HiCCUPS, devel-

oped mainly for Hi-C datasets, utilize the matrix-balancing-based normalization approaches

(ICE, VC or KR) [4, 8] to correct the biases in Hi-C data. However, the underlying assumption

of these normalization approaches that all genomic regions have equal visibility is invalid for

PLAC-seq/HiChIP data since not all the genomic regions are bound by the protein of interest

and can be enriched by ChIP. Moreover, the protein-binding regions may be enriched at dif-

ferent levels and such bias in ChIP enrichment level must be taken into consideration. Mango

is designed for ChIA-PET which only detects long-range interactions between two genomic

regions both bound by the protein of interest. In Mango, MACS2 [12] is first used to call pro-

tein binding sites from the data and these 1D peaks are defined as anchor regions to identity

long-range interactions (only interactions between two anchor regions are considered).

Although Mango considers the ChIP-introduced biases, application of Mango to PLAC-seq/

HiChIP data is still problematic for two reasons: 1) PLAC-seq/HiChIP enables detection of

valid chromatin interactions between protein-bound regions and non-binding regions, which

are not considered by Mango; 2) even for the detection of long-range interactions between two

protein-bound regions, Mango is suboptimal since the anchor regions defined by MACS2 suf-

fer from high false positive rate due to PLAC-seq/HiChIP-specific bias. To solve the second

problem of Mango, hichipper [10] introduces a bias-corrected peak calling algorithm. How-

ever, hichipper still relies on the statistical model in Mango to identify long-range interactions

and thus is not designed to call interactions between protein binding regions and non-binding

regions (more discussions in Note 2 in S1 Text).

To address the aforementioned limitations, we introduce MAPS as a PLAC-seq/HiChIP-

specific analysis pipeline. MAPS models the expected contact frequency of pairs of loci
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accounting for common biases of 3C methods, the PLAC-seq/HiChIP-specific biases and

genomic distance effects, and uses this model to determine statistically significant long-range

chromatin interactions. In addition, MAPS is able to identify the long-range interactions with

both ends bound by the protein of interest as well as the interactions with only one end bound

by the protein of interest.

Results

Framework of MAPS

MAPS workflow contains three major components: pre-processing, normalization and long-

range interaction determination (Fig 1). In pre-processing, MAPS first takes raw fastq files as

input and maps them to the reference genome. Low mapping quality reads, invalid pairs of

alignments and PCR duplicates are then removed sequentially to keep valid read pairs. These

valid read pairs can be divided into two groups: short-range reads (< = 1Kb) and long-range

reads (>1Kb). Since the insert size of PLAC-seq/HiChIP libraries are often less than 1Kb, the

majority of short-range reads are dangling ends or self-ligation products of undigested DNA,

therefore are free of noise introduced by proximity ligation and can be used to measure ChIP

enrichment level for later bias correction (for details see Methods and S1 Fig). Each long-

range read is further assigned into the “NOT”, “XOR” or “AND” set of bin pairs in the contact

matrix. As illustrated in Fig 1, the “NOT” set refers to bin pairs with neither ends overlapping

protein binding peaks; the “XOR” set refers to bin pairs with only one end overlapping protein

binding peaks; whereas the “AND” set refers to bin pairs with both ends overlapping protein

binding peaks. In this step, MAPS requires a list of protein binding sites as input to define the

“NOT”, “XOR” or “AND” set of bin pairs. For the best result, we recommend using the ChIP-

seq peak list of the same protein assessed in PLAC-seq/HiChIP experiment from the same cell

type. If such list is not available, hichipper can be applied to PLAC-seq/HiChIP data to call

protein binding peaks. In the subsequent normalization and interaction calling analysis, only

bin pairs in the “AND” and “XOR” sets are considered, since bin pairs in the “NOT” set are

not the ChIP targets and often contain fewer reads for reliable interaction call (S2 Fig and S1

Table).

Fig 1. Framework of MAPS. MAPS workflow contains three major components: pre-processing, normalization and long-range interaction determination.

Valid read pairs are obtained after pre-processing and then grouped to short-range reads or long-range reads depending on the genomic distance between two

ends (1Kb is used). The long-range reads are further classified into the “AND”, “XOR” or “NOT” set. MAPS only considers the “AND” and “XOR” set of bin

pairs for normalization and identification of the statistically significant long-range chromatin interactions. Short-range reads are used to estimate and correct

for biases introduced by the ChIP procedure.

https://doi.org/10.1371/journal.pcbi.1006982.g001
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After pre-processing, MAPS implements a novel statistical model to remove systematic

biases in PLAC-seq/HiChIP data. Our group previously developed HiCNorm [13], a method

free of the equal-visibility assumption, to remove systematic biases (e.g., effective fragment

length, GC content and sequence uniqueness) in Hi-C data. In MAPS, we extended the HiC-

Norm statistical framework to PLAC-seq/HiChIP data by further incorporating the ChIP

enrichment level and the linear genomic distance (see Methods and Note 3 in S1 Text). As

illustrated in S3 Fig, the Pearson correlation coefficients between contact frequency and each

bias factor are greatly reduced after MAPS normalization. MAPS then calculates the expected

contact frequency, P-value and false discovery rate (FDR) of each bin pair in “XOR” and

“AND” sets so that significant interactions can be determined with a user-defined FDR thresh-

old. Noticeably, MAPS treats “XOR” or “AND” sets as two independent groups for data nor-

malization, since bin pairs in the “AND” set have much higher contact frequency than bin

pairs in the “XOR” set due to the ChIP enrichment on both ends (S2 Fig and S1 Table). Ignor-

ing the difference in contact frequency between “AND” and “XOR” sets of bin pairs and fitting

them with the same model will lead to either under-estimation of background for the “AND”

set or over-estimation of background for the “XOR” set.

Comparison of MAPS with hichipper on four PLAC-seq/HiChIP datasets

To evaluate the performance of MAPS, we applied both MAPS and hichipper to two published

HiChIP datasets targeting H3K27ac and Smc1a in GM12878 cells [6, 7] and two in-house

PLAC-seq datasets targeting H3K4me3 and CTCF in mouse embryonic stem cells (mESCs)

(S2 Table). We did not compare MAPS with HiCCUPS or Fit-Hi-C, since both methods are

not designed for PLAC-seq/HiChIP, and Lareau and Aryee study [10] has demonstrated that

hichipper has higher sensitivity than HiCCUPS, and has better power to detect long-range

interactions than Fit-Hi-C.

Considering the sequencing depth of each dataset, we used 10Kb resolution for mESC

CTCF PLAC-seq data and 5Kb resolution for the other 3 datasets for interaction calling (see

Note 4 in S1 Text for results with finer resolution). To minimize false positives and reduce

computational burden, we only considered the intra-chromosomal bin pairs (from

2�resolution to 1Mb) in “XOR” and “AND” sets (see Note 5 in S1 Text for results with

extended genomic range). We defined a tested bin pair as statistically significant if it satisfies

the following three criteria simultaneously: 1) FDR< 0.01; 2) normalized contact frequency

(i.e., raw read counts/expected read counts) > = 2; 3) raw read counts > = 12. Details of justifi-

cation of such thresholds can be found in Note 6 in S1 Text. We then grouped these significant

bin pairs into singletons or clusters, depending on whether additional significant bin pairs

exist within their neighborhoods (see Methods for details). Since singletons are more likely to

be false positives than clusters [4], we applied additional filtering and only kept singletons with

FDR< 10−4 as significant interactions. To make a fair comparison, the same thresholds

described above was used to define significant interactions from hichipper output (see Meth-

ods for details). We first examined the reproducibility of MAPS and hichipper between two

biological replicates: the reproducibility of MAPS calls among biological replicates ranges

69.4% ~ 90.7% for these four datasets, comparable to the results from hichipper (52.1% ~

92.8%) (S3 Table). As a reference, the widely used HiCCUPS for in situ Hi-C data has 64.3% ~

67.4% reproducibility between biological replicates (Note 7 in S1 Text). Since both MAPS-

and hichipper-identified interactions are reproducible, we combined the biological replicates

and called interactions from the combined data for all downstream analysis.

MAPS identified 37,951, 170,630, 53,788 and 134,179 significant interactions from

GM12878 Smc1a, GM12878 H3K27ac, mESC CTCF, and mESC H3K4me3 data, respectively.

MAPS: A novel long-range chromatin interaction caller for PLAC-seq and HiChIP data
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The application of hichipper resulted in fewer significant interactions (17,982, 113,070, 22,153

and 62,652), which is expected since hichipper does not identify the interactions from the

“XOR” set (S4 Table). The median distance of the MAPS-identified interactions is larger than

that of hichipper-identified interactions (S4 Fig) and MAPS detects more >50Kb interactions

than hichipper (90.0%~97.1% vs 67.1%~76.6%).

Next, we compared the sensitivity of MAPS and hichipper in detecting known interactions —

the chromatin loops identified by HiCCUPS from deeply sequenced in situ Hi-C data from

matching cell types [4, 14] (S5 Table). Since PLAC-seq/HiChIP are designed to detect interac-

tions associated with a specific protein, we filtered the chromatin loops from in situ Hi-C and

only kept the ones associated with the protein of interest for this analysis (Note 8 in S1 Text and

S6 Table). In all four datasets, MAPS achieved consistently higher sensitivity than hichipper

(91.8%, 97.6%, 92.2%, 95.2% vs 68.5%, 52.2%, 41.7%, 32.8%, Fig 2). The substantially improved

sensitivity of MAPS is largely contributed by its ability to identify interactions from the “XOR” set

(S7 Table and Methods). The benefit of including the “XOR” set for interaction calling is more

pronounced for the dataset targeting H3K4me3 compared to the ones targeting CTCF/Smc1a/

H3K27ac, since 45.4% - 64.2% HiCCUPS loops belong to the “AND” set when CTCF/Smc1a/

H3K27ac is the target protein whereas the proportion drops to only 25.8% when H3K4me3 is the

target protein (S6 Table).

We also tried to assess the true positive rate for MAPS- and hichipper-identified interac-

tions. However, due to the lack of a complete list of true interactions in these cells, we instead

asked which method may better recapitulate the known feature of chromatin interactions. It is

known that CTCF/cohesin-associated interactions have a preference in CTCF motif orienta-

tion: 64.5% and 92% of interactions identified from the previous ChIA-PET and in situ Hi-C

studies contain convergent CTCF motifs [4, 15]. We checked the CTCF motif orientation of

the testable MAPS-identified interactions and found the convergent CTCF motif rate is 76.7%,

53.1%, 61.3% and 53.3% for GM12878 Smc1a, GM12878 H3K27ac, mESC CTCF, and mESC

H3K4me3 data, respectively (see Methods for details). By comparison, convergent CTCF

Fig 2. Comparison of sensitivity of MAPS and hichipper. The Y-axis is the sensitivity, defined as the percentage of

detectable HiCCUPS loops of deeply sequenced in situ Hi-C data (S6 Table) recovered by MAPS- or hichipper-

identified interactions.

https://doi.org/10.1371/journal.pcbi.1006982.g002
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motif is found with lower proportions in the testable hichipper-identified interactions (67.0%,

39.2%, 48.8% and 32.3%, Chi-square test p-values <2.2e-16 for all four datasets), suggesting

MAPS yielded more accurate interaction calls than hichipper (Fig 3).

To further evaluate the performance of MAPS and hichipper at specific loci, we examined

ten 3C/4C-verified long-range interactions centered at seven different promoters in mESCs

from previous studies [16–20]. Among them, eight were recapitulated by MAPS using mESC

H3K4me3 PLAC-seq data. By contrast, only five of them were found by hichipper using the

same data (S8 Table). At these promoters MAPS also detected additional long-range interac-

tions and most of the additional promoter-interacting regions are enriched in H3K4me1,

CTCF or H3K27ac, suggesting that MAPS identified biologically relevant interactions (see

more below) (Fig 4 and S5 Fig).

MAPS identifies biologically relevant interactions

To thoroughly evaluate the biological relevance of MAPS-identified interactions, we first

checked whether their anchor regions are enriched for cis-regulatory elements (CREs) that

may contribute to gene regulation. Since MAPS-identified interactions always have at least

one side of anchor overlapping the protein of interest and such protein-binding anchors may

introduce bias to the enrichment analysis, we only selected the anchor bin that is not bound by

the protein of interest from the “XOR” set of interactions (hereafter referred to as the “target”

bin) for this analysis. Intersecting those target bins with H3K4me1, H3K4me3, H3K27ac,

CTCF ChIP-seq and ATAC-seq peaks from matching cell types revealed that all these proteins

are enriched 1.3 to 2.8 folds at target bins for all four PLAC-seq/HiChIP datasets (all Chi-

square test p-values < 2.2e-16, Fig 5, S6 Fig and S9 Table).

Next we asked whether genes involved in MAPS-identified interactions tend to have higher

expression level than those genes that are not. Previous studies demonstrated the positive

Fig 3. CTCF motif orientation of MAPS- and hichipper-identified interactions. The proportion of convergent,

tandem and divergent CTCF motif pairs among testable MAPS- and hichipper-identified interactions. Only

interactions with both ends containing either single CTCF motif or multiple CTCF motifs in the same direction are

considered. The dotted vertical line indicates the expected convergent proportion from randomly chosen CTCF motif

pairs (25%).

https://doi.org/10.1371/journal.pcbi.1006982.g003
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correlation between transcriptional activity and the presence of promoter-centered long-range

interactions [21, 22]. Indeed, the genes with their TSS overlapping with MAPS-identified

interactions express 1.2 to 4.1 folds higher than the genes that are not overlapping (S7 Fig and

S10 Table). Together the above results suggest that MAPS can call long-range interactions that

are related to gene regulation.

MAPS identifies numerous chromatin interactions missed by HiCCUPS

from in situ Hi-C data

Since a large proportion (52.6% - 88.3%) of MAPS-identified interactions do not overlap with

chromatin loops identified from in situ Hi-C data by HiCCUPS, we would like to further vali-

date these MAPS-specific interactions (S11 Table). Several lines of evidence support the valid-

ity of these additional chromatin interactions. First, the “XOR” set of MAPS-specific

interactions are enriched for H3K4me3, H3K4me1, H3K27ac, CTCF and ATAC-seq signal to

the similar degree as the interactions called by both HiCCUPS (from in situ Hi-C data) and

MAPS (from PLAC-seq or HiChIP datasets) (Fig 6 and S8 Fig). Second, both HiCCUPS/

MAPS-shared and MAPS-specific interactions show significantly higher contact frequency (all

Wilcoxon test p-values < 2.2e-16) than the matched control set in the SPRITE data (split-pool

recognition of interactions by tag extension) [23], an orthogonal method for mapping 3D

chromatin structure independent of proximity ligation (Fig 7, see Methods for details). Third,

the MAPS-identified enhancer-promoter interactions match better with functionally validated

enhancer-promoter pairs compared to HiCCUPS-identified ones. A recent study revealed

multiple such pairs in mESC via CRISPR/Cas9-mediated deletion of enhancers [24]. For the

Fig 4. Genome-browser shows MAPS-identified interactions anchored at Mtnr1a promoter from mESC H3K4me3 PLAC-seq data. Anchor regions

around Mtnr1a promoter are highlighted by yellow box (chr8:45,065,000–45,075,000, two 5Kb bins). The MAPS-identified interactions overlapping this

anchor region are marked by magenta arcs. The black arrow points to the interaction verified in the previous publication [20] and the other end of the

interaction is marked by magenta box. Additional interacting regions identified by MAPS are marked by grey boxes. No interaction is identified by hichipper

anchored at this region from mESC H3K4me3 PLAC-seq data.

https://doi.org/10.1371/journal.pcbi.1006982.g004
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five promoter-enhancer pairs spanning a distance greater than 50Kb, MAPS is able to identify

three of them (Fig 8 and S9 Fig). By contrast, none of these five enhancer-promoter pairs are

identified by HiCCUPS from in situ Hi-C data (S12 Table). All together these results indicate

that MAPS can identify biologically relevant long-range chromatin interactions from PLAC-

seq/HiChIP data with better sensitivity, compared to HiCCUPS-identified interactions from

in situ Hi-C data.

Discussion

The rapidly growing popularity of PLAC-seq and HiChIP technologies necessitates the devel-

opment of effective data analysis method tailored to the new datasets. MAPS takes into

account PLAC-seq/HiChIP-specific biases introduced by the ChIP procedure, and identifies

long-range chromatin interactions anchored at different proteins with high reproducibility

and accuracy. More importantly, MAPS can detect a large number of biologically relevant

chromatin interactions that are missed by the state-of-the-art mapping approaches, making it

a useful tool for investigators working on chromatin architecture, epigenomics, and gene regu-

latory networks.

Our current implementation of MAPS aims to identify intra-chromosomal long-range

chromatin interactions at 5Kb or 10Kb bin resolution within 1Mb genomic distance, but it can

be further extended. We found that MAPS also works well at finer resolution (2Kb bin resolu-

tion, Note 4 in S1 Text) or at extended genomic distance range (up to 2Mb, Note 5 in S1

Text) when the sequencing depth is sufficient. In addition, one can use the similar statistical

framework to detect biologically relevant inter-chromosomal chromatin interactions [25].

Moreover, when the haplotype information is available, one can study allelic-specificity among

Fig 5. Cis-regulatory elements are enriched in the target bins of MAPS-identified “XOR” interactions. As only

interactions from the “XOR” set are considered, CTCF enrichment analysis is not applicable for mESC CTCF PLAC-

seq data, H3K4me3 enrichment analysis is not applicable for mESC H3K4me3 PLAC-seq data, and H3K27ac

enrichment analysis is not applicable for GM12878 H3K27ac HiChIP data (denoted as N.A. in the heatmap). For each

ChIP-seq/ATAC-seq data, we calculated the proportion of target bins and control bins containing ChIP-seq/ATAC-

seq peaks, defined as %target and %control, respectively. We further defined the enrichment score as the ratio between

%target and %control (numbers in S9 Table).

https://doi.org/10.1371/journal.pcbi.1006982.g005
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MAPS-identified interactions. Last but not least, it is essential to apply MAPS to multiple

PLAC-seq/HiChIP datasets and identify differential chromatin interactions which are specific

to certain cell types or experimental conditions. These further developments of MAPS are

beyond the scope of our current study, and we will pursue such directions in the near future.

We have released MAPS as a stand-alone software package with detailed user tutorial and

sample input and output files. It can be freely downloaded from GitHub website: https://

github.com/ijuric/MAPS. S10 Fig contains the MAPS running time for the PLAC-seq and

HiChIP datasets used in this study. In general, MAPS running time increases linearly with the

overall sequencing depth. The majority of computation time is at the MAPS pre-processing

step.

In addition to the development of a novel software package MAPS, we have also provided

two new PLAC-seq datasets (mESC CTCF PLAC-seq and mESC H3K4me3 PLAC-seq),

which have been deposited to GEO with access number GSE119663. Noticeably, our mESC

H3K4me3 PLAC-seq data is deeply sequenced, containing >1.1 billion raw reads (combining

two biological replicates together). These data not only provide a highly valuable resource to

Fig 6. Enrichment of CREs around the target bins of XOR set of MAPS-specific interactions. Enrichment of H3K27ac (ChIP-seq peaks), H3K4me1 (ChIP-

seq peaks), ATAC-seq peaks, H3K4me3 (ChIP-seq peaks) and CTCF (ChIP-seq peaks) in a window of 500Kb around the target bins for all four datasets. Due to

the definition of XOR set of interactions, H3K27ac, H3K4me3 and CTCF enrichment level is not analyzed for GM12878 H3K27ac HiChIP, mESC H3K4me3

and mESC CTCF PLAC-seq data, respectively.

https://doi.org/10.1371/journal.pcbi.1006982.g006
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study high resolution long-range chromatin interactions in mESCs, but also can be used to

benchmark additional methods designed for PLAC-seq/HiChIP data analysis.

Methods

Sequencing data

All data sets used (both external and in-house generated for this study) are summarized in S13

Table.

MAPS- and hichipper-identified interactions

The full list of MAPS- and hichipper-identified interactions (both default output and con-

verted/filtered output) for all four datasets are provided in S1 Data. The format of files with

extension “bedpe” is as below: fields 1–3 represents the genome coordinates for the left bins of

interactions; fields 4–6 represents the genome coordinate for the right bins of interactions;

field 7 represents the observed number of raw counts supporting this interaction; fields 8 rep-

resents the expected number of counts between the two bins calculated from MAPS (this field

is always 0 for hichipper since hichipper does not calculate expected value); fields 9 is the FDR

Fig 7. Frequency of MAPS-identified interactions and control bin pairs versus their rankings in the SPRITE contact matrix (see Methods for

details). A bin pair with higher normalized SPRITE interaction frequency tends to rank top, among all bin pairs with the same genomic distance (only

bin pairs in “AND” and “XOR” sets from the SPRITE contact matrix are considered).

https://doi.org/10.1371/journal.pcbi.1006982.g007
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of the interaction calculated from MAPS/hichipper; field 10 is the interaction type (either as

singletons or as part of a cluster); field 11 tells whether this interaction is the cluster summit if

its interaction type is “cluster” (1 as yes and 0 as no; field 11 is 0 for all singletons). The files

with extension “mango” are the default output of hichipper.

Cell culture and fixation

The F1 Mus musculus castaneus × S129/SvJae mouse ESC line (F123 line) was a gift from Dr.

Rudolf Jaenisch and was previously described [26]. F123 cells were cultured in DMEM

(10013-CV, Corning), supplement with 15% knockout serum replacement (10828028, Invitro-

gen), 1×penicillin/streptomycin (15140122, Thermo Fisher Scientific), 1×non-essential amino

acids (11140050, Thermo Fisher Scientific), 1×GlutaMax (35050061, Thermo Fisher Scien-

tific), 1000 U/ml LIF (ESG1107, Millipore), 0.1 mM β-mercaptoethanol (M3128, Sigma). F123

cells were maintained on irradiated CF1 mouse embryonic fibroblasts (A34180, Thermo

Fisher Scientific) and were passaged once on 0.1% gelatin-coated feeder-free plates before

harvesting.

Cells were harvested by accutase treatment and resuspended in culture medium described

above but without knockout serum replacement at a concentration of 1x106 cells per 1ml.

Methanol-free formaldehyde solution was added to a final concentration of 1% (v/v) and fixa-

tion was performed at room temperature for 15 min with slow rotation. The fixation was

quenched by addition of 2.5 M glycine solution to a final concentration of 0.2 M with slow

rotation at room temperature for 5 min. Fixed cells were pelleted by centrifugation at 2,500×g
for 5 min at 4˚C and washed with ice-cold PBS once. The washed cells were pelleted again by

centrifugation, snap-frozen in liquid nitrogen and stored at -80˚C.

PLAC-seq on F123 cells

PLAC-seq libraries were prepared using method as previously described [5]. The detailed

experimental procedures are provided in Note 9 in S1 Text. In brief, 1–3 million crosslinked

Fig 8. MAPS-identified interactions from mESC H3K4me3 PLAC-seq data anchored at Med13l promoter. Anchor region around target promoter is

highlighted by yellow box. The MAPS-identified interactions overlapping this anchor region are marked by magenta arcs. The deleted enhancer region in

Moorthy et al study [24] is marked by magenta box.

https://doi.org/10.1371/journal.pcbi.1006982.g008
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F123 cells were digested 2 hours at 37˚C using 100 U MboI followed by biotin fill-in and prox-

imity ligation at room temperature for 4 hours. Then the nuclei were further lysed, sonicated

and immunoprecipitated against the antibodies of choice. After immunoprecipitation, reverse

crosslink was performed overnight at 65˚C after adding proteinase K to extract DNA. DNA

fragments containing ligation junctions were enriched with streptavidin beads followed by on-

beads end repair, A-tail adding, adapter ligation and PCR amplification for 12–13 cycles.

ATAC-seq on F123 cells

ATAC-seq was performed using method as previously described [27]. In brief, 100,000 freshly

harvested F123 cells were resuspend in lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3

mM MgCl2 and 0.1% IGEPAL CA-630) and rotate at 4˚C for 15 minutes. After lysis the nuclei

was spun down at 500×g for 5 min at 4˚C. Then the reaction was carried out for 30 min at

37˚C in 1×TD buffer with 2.5 μL transposase from Nextera DNA Library Prep Kit (Illumina).

After reaction completion DNA is purified using MinElute PCR Purification Kit (Qiagen).

PCR amplification was performed with 1×NEBNext PCR MasterMix and 1 μM i7-index and

i5-index primers using the following PCR condition: 72˚C for 5 min; 98˚C for 30 s; and 8

cycles of 98˚C for 10 s, 63˚C for 30 s and 72˚C for 1 min. The amplified libraries are purified

and size selected using 0.55× and 1.5× (total) of sample volume.

ChIP-seq on F123 cells

2 million fixed F123 cells were thawed on ice, resuspend in hypotonic lysis buffer (20 mM

HEPES, pH 8.0, 10 mM KCl, 1 mM EDTA, 10% glycerol) with proteinase inhibitors and rotate

at 4˚C for 15 minutes. The nuclei were then washed once with hypotonic lysis buffer with pro-

teinase inhibitors and resuspend in 130 μL RIPA buffer (10 mM Tris, pH 8.0, 140 mM NaCl, 1

mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate) with proteinase inhibi-

tors. After incubation on ice for 10 minutes, the nuclei were sheared using Covaris M220 with

following setting: power, 75 W; duty factor, 10%; cycle per burst, 200; time, 10 minutes; temp,

7˚C. The cell lysate was cleared by centrifugation at 15,000×g for 20 min and supernatant was

collected. The clear cell lysate was precleared with Protein G Sepharose beads (GE Healthcare)

and for 3 hours at 4˚C with slow rotation. ~5% of precleared cell lysate was saved as input con-

trol. The rest of the lysate was mixed with 2.5 μg of H3K4me3 (04–745, Millipore) antibody

and rotate at 4˚C for at least 12 hours. On the next day, 0.5% BSA-blocked Protein G Sephar-

ose beads (prepared one day ahead) were added and rotated for another 3 hours at 4˚C. The

beads were collected by centrifugation at 400×g for 1 min and then washed with RIPA buffer

three times, high-salt RIPA buffer (10 mM Tris, pH 8.0, 300 mM NaCl, 1 mM EDTA, 1% Tri-

ton X-100, 0.1% SDS, 0.1% sodium deoxycholate) twice, LiCl buffer (10 mM Tris, pH 8.0, 250

mM LiCl, 1 mM EDTA, 0.5% IGEPAL CA-630, 0.1% sodium deoxycholate) once, TE buffer

(10 mM Tris, pH 8.0, 0.1 mM EDTA) twice. Washed beads were treated with 10 μg Rnase A in

extraction buffer (10 mM Tris, pH 8.0, 350 mM NaCl, 0.1 mM EDTA, 1% SDS) for 1 hours at

37˚C, followed by reverse crosslinking in the presence of proteinase K (20 μg) overnight at

65˚C. After reverse crosslink the DNA was purified by Zymo DNA Clean&Concentrator. For

library preparation, 10–100 ng ChIP DNA or input DNA was first end repaired at 20˚C for 30

minutes in 1×T4 DNA ligase buffer (NEB) with 0.5mM dNTP mix, 3U T4 DNA polymerase

(NEB), 2.5U Klenow fragment (NEB) and 10U T4 PNK (NEB). The repaired DNA was then

purified by Zymo DNA Clean&Concentrator and adenylated at 37˚C for 30 minutes in

1×NEBbuffer 2 (NEB) with 0.4mM dATP, 10U Klenow fragment (3’-5’ exo-) (NEB). The ade-

nylated DNA was purified by Zymo DNA Clean&Concentrator and ligated to the adapters

(Illumina, TruSeq, 0.1 μL per 100ng DNA) at 16˚C for overnight in 1×T4 DNA ligase buffer
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(NEB) with 400U T4 DNA ligase. After purification with Zymo DNA Clean&Concentrator,

DNA was amplified with KAPA HiFi HotStart ReadyMix PCR Kit for 12 cycles according to

the manufacturer’s instructions. The amplified libraries were purified with Ampure Beads to

extract fragments between 200-600bp for sequencing.

ChIP-seq data processing

The H3K4me3 ChIP-seq data on F123 cells was analyzed using ENCODE Uniform processing

pipeline for ChIP-seq (histone marks) (https://github.com/ENCODE-DCC/chip-seq-pipeline)

with default parameters.

ATAC-seq data processing

ATAC-seq reads were mapped to mm10 genome using bowtie 1.1.2 with flags "-X2000—no-

mixed—no-discordant". The reads were converted to bam files, sorted, and PCR duplicates

and mitochondrial reads were removed using samtools. To account for the Tn5 insertion posi-

tion, read end positions were moved 4bp towards the center of the fragment. Bigwig signal

tracks and peak calls were generated using MACS2 2.1.1.20160309 and the following flags:

"-nomodel -shift 37 -ext 73 -pval 1e-2 -B -SPMR -call-summits". To obtain the set of replicated

peaks for each sample, the data were processed as described above for each replicate indepen-

dently as well as pooled. Using bedtools 2.27.1, the pooled peaks were intersected against each

replicate’s peaks sequentially, and pooled peaks present in both replicates were considered to

be ’replicated’.

MAPS pre-processing component

MAPS took the raw paired-end reads (fastq files) from PLAC-seq and HiChIP experiment as

input, mapped them to the reference genome (S1 Fig). Specifically, we used “bwa mem” to

map each end of paired-end reads to the reference genome separately (mm10 or hg19, S2

Table), and removed non-mappable reads and low mapping quality reads. We further

removed read pairs with less than two or more than three alignments. The read pairs with only

one alignment contain no information whereas the chance of a read pair spanning two real

ligation junctions (having more than three alignments) are rare and such pairs most likely rep-

resent spurious ligation events. A read pair is defined as “valid” when it has exactly two align-

ments. For a read pair with three alignments, in theory it can generate three different

alignment pairs and we only chose one “valid” alignment pair from each read pair to avoid

counting the same ligation event multiple times. The choice of valid alignment pair is based on

the following roles: 1) if all three alignments are on the same chromosome, it often suggests

one of the reads spans the ligation junction. In this case, the alignment pair with the second

largest linear distance is defined as “valid”, since it represents the pair that is closer to the liga-

tion junction. If three alignments are on two different chromosomes, in most cases the two

alignments within the same chromosome are close to each other, therefore we randomly

selected one of the two alignments on the same chromosome, and pair with the alignment on

the other chromosome. The chance of three alignments are on three different chromosomes is

very low and such pairs most likely represent spurious ligation events (the chance of a read

pair spanning two real inter-chromosomal ligation junctions is low), therefore we discard such

pairs. After pairing all the reads as described above, we used “samtools rmdup” to remove PCR

duplicates. Furthermore, we split the reads into two groups in to short-range reads (< = 1Kb)

and long-range reads (>1Kb). The short-range reads (< = 1Kb) are used to correct the bias

introduced by ChIP in subsequent normalization since they are more likely to be dangling

ends or self-ligation products of undigested DNA rather than the products of proximity
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ligation. We chose 1Kb as the distance cutoff because the insert size of PLAC-seq/HiChIP

libraries are often less than 1Kb. We checked the strand orientations of the two ends of short-

range reads (< = 1Kb) in all four PLAC-seq/HiChIP datasets used in this study and found

only 2–8% of them have two ends mapped to the same strand, suggesting that the percentage

of proximity ligation artifacts in the short-range reads is low. We then further filtered these

known proximity ligation artifacts from short-range reads to generate the final short.bed file.

On the other hand, long-range reads (>1Kb) were used to identify long-range interactions.

MAPS extracted the intra-chromosomal long-range reads and took the ChIP-seq peaks of pro-

tein of interest as the interaction anchors (S13 Table), and grouped all bin pairs into the

“AND”, “XOR” and “NOT” sets. MAPS only selected the “AND” and “XOR” sets for the next

data normalization step. Notably, the current version of MAPS requires a list of protein bind-

ing peaks as the input to determine the interaction anchors. When the ChIP-seq data is not

available, one can apply hichipper to PLAC-seq and HiChIP data to obtain interaction

anchors. Since hichipper has already achieved good performance for 1D anchor identification

from PLAC-seq and HiChIP data, our MAPS method only focuses on the identification of sta-

tistically significant long-range chromatin interactions.

Data normalization is a challenging issue for any chromatin interaction data. Notably, the

matrix-balancing algorithms used for Hi-C data normalization, including ICE [28], VC [29]

and KR [4], are inappropriate for PLAC-seq and HiChIP data normalization. Due to the ChIP

procedure, in theory the bins with protein binding always have much higher total number of

contacts compared to the bins without protein binding, which violates the crucial “equal visi-

bility” assumption implied by the matrix-balancing algorithms.

To accommodate unique features of PLAC-seq and HiChIP data, we propose to extend our

previous HiCNorm [13] method to normalize PLAC-seq and HiChIP data. Let xij represent

the read count (i.e., number of paired-end reads) spanning between bin i and bin j. Due to

symmetry, we only considered bin pairs (i,j) with i<j. In addition, we only considered intra-

chromosomal contacts within 1Mb, and did not use two adjacent bin pairs. Let fi, gci, mi and

IPi represent the effective fragment length, GC content, mappability score, and ChIP enrich-

ment level (measured by the number of short-range reads, i.e., intra-chromosomal reads< =

1Kb) of bin i, respectively. The definition of fi, gci and mi are described in HiCNorm [13]. Spe-

cifically, we first truncated each fragment end up to 500 bp, and then defined the effect frag-

ment length of bin i (fi) as the total length of truncated fragment end within bin i. Next, we

calculated GC content and mappability score for each fragment end, and then defined the GC

content of bin i (gci) and mappability score of bin i (mi) as the average GC content and mapp-

ability score of all fragment ends within bin i, respectively. fi, gci and mi for human genome

and mouse genome at different bin resolutions can be downloaded from the following website:

http://enhancer.sdsc.edu/yunjiang/resources/genomic_features/. Since at kilobase resolution

the PLAC-seq and HiChIP data are extremely sparse, and our goal is to identify statistically sig-

nificant long-range chromatin interactions, we only modeled bin pairs (i,j) with non-zero

count (xij�1), and assumed that xij follows a zero-truncated Poisson (ZTP) distribution with

mean μij (Note 3 in S1 Text), where

logðmijÞ ¼ b0 þ bf logðfi � fjÞ þ bGC logðgci � gcjÞ þ bm logðmi �mjÞ þ bIP logðIPi � IPjÞ

þ bd logðdijÞ:

Here β0 is the intercept for overall sequencing depth. βf, βGC, βm, βIP and βd are regression

coefficients for effective fragment length, GC content, mappability score, ChIP enrichment

level and genomic distance, respectively. dij denotes the genomic distance between bin i and

bin j. We fit the aforementioned ZTP regression model for each chromosome, separately for
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the “AND” set and the “XOR” set, using R function “ppois” in the “VGAM” library, to obtain

the expected contact frequency eij for each bin pair (i,j). These eij’s represent background

expected from random chromatin collisions. Next, we calculated a ZTP p-value for each bin

pair (i,j), defined as pij = ZTP(X>xij|eij). Similar to Fit-Hi-C, we viewed bin pairs with

extremely low p-values (< 1 / total number of non-zero bin pairs) as outliers. We then

removed those outliers, and re-fit the ZTP regression model using the remaining data to re-

calibrate the background, obtaining re-calibrated expected contact frequency ~eij and corre-

sponding ZTP p-value ~pij ¼ ZTPðX > xijj~eijÞ. We further converted ZTP p-value ~pij into false

discovery rate (FDR) qij using R function “p.adjust”. Within each chromosome, the FDR was

calculated by the “AND” and “XOR” set, separately.

MAPS interaction calling component

We then identified statistically significant long-range chromatin interactions from normalized

PLAC-seq and HiChIP data. Specifically, we defined a bin pair (i,j) as a statistically significant

bin pair if it satisfies the following three criteria simultaneously: (1) xij�12, (2) xij=~eij � 2 and

(3) qij<0.01. Details of justification of such threshold values can be found in Note 6 in S1

Text. Notably, the threshold values used in MAPS may be defined by users depending on the

sequencing depth of available PLAC-seq/HiChIP data and the purpose of analysis. Since the

sequencing depth of all four datasets used in this study is relatively high, we chose such strin-

gent threshold to minimize the potential false positive calls. Starting from these significant bin

pairs, we further grouped adjacent ones into clusters, and singletons (defined as isolated signif-

icant bin pairs without adjacent ones). Specifically, we denoted dij as the genomic distance

between bin i and bin j, and grouped significant bin pair (i,j) and significant bin pair (m,n)

into the same interaction cluster if max{dim,djn}�15Kb. Each significant bin pair belongs to

one unique cluster, or it is a singleton. For the significant bin pairs defined as singletons, we

applied additional filtering and only kept the ones with qij<10−4 as significant interactions

since singletons are more likely to be false positives. For the significant bin pairs as part of a

cluster, we keep all of them as significant interactions [4]. For each interaction cluster, we fur-

ther identified its summit, defined as the bin pair(s) with the lowest FDR. Therefore, the final

MAPS output contains the following information: 1) a list of statistically significant long-range

chromatin interactions; 2) for each interaction, whether it is a singleton or belongs to a cluster;

3) if an interaction is part of a cluster, whether it is the summit of this cluster and which inter-

actions are in the same cluster. We repeated sensitivity and CTCF motif orientation analysis

using only the sum of singletons and cluster summits and obtained consistent results (S14

Table), showing that MAPS performs equally well when restricted to a conservative subset of

interaction calls.

To verify the robustness of MAPS, we further checked the overlaps between MAPS-identi-

fied interactions from mESC CTCF PLAC-seq data and those from mESC H3K4me3 PLAC-

seq data. Our hypothesis is that the “real” interactions must be detectable from different

PLAC-seq experiments in the same cell type even when different antibodies are used. Since

PLAC-seq can only detect interactions with at least one end binding to the protein of interest,

we only compared the MAPS-identified interactions from those two datasets on the “com-

mon” anchor regions with both H3K4me3 and CTCF binding. Specifically, we first defined

“common” anchor bins as the ones containing both CTCF and H3K4me3 ChIP-seq peaks

(S15 Table). The bin resolution is 10Kb and 5Kb for mESC CTCF PLAC-seq data and mESC

H3K4me3 PLAC-seq data, respectively. Next, we selected the testable MAPS-identified inter-

actions from CTCF (32,474 out of 53,788) and H3K4me3 PLAC-seq data (79,727 out of

134,179) with at least one end being the “common” anchor bin for comparison. We denoted
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dij as the genomic distance between bin i and bin j. We then defined an interaction, bin pair (i,j),
overlaps with another interaction, bin pair (m,n), when max{dim,djn}� 15Kb. With this definition,

90.3% testable interactions from mESC CTCF PLAC-seq data overlap with 69.1% testable interac-

tions from mESC H3K4me3 PLAC-seq data, indicating that MAPS-identified interactions from

the same cell type are highly consistent even when different proteins are targeted.

Identification of interactions with hichipper

To call interactions from the same PLAC-seq and HiChIP datasets using hichipper, we per-

formed the mapping and preprocessing using the default settings of HiC-Pro 2.7.6 and bowtie

2.3.0 as base mapper (recommended by hichipper), specifying digestion fragment size of 100

to 100,000. Genome fragment size files were obtained from the GitHub repository of hichipper

(https://github.com/aryeelab/hichipper). Since the data in each run are from one sample and

no merging was required, we removed allValidPairs and mRStat files to make the HiC-Pro

output consistent with the requirements of the hichipper input. We then used hichipper v0.4.4

to call interactions using ChIP-seq peaks as interaction anchors (S13 Table). Notably, the

default hichipper output is at interacting anchor resolution, which has a median size ~4Kb,

and is not in the unit of 5Kb bin or 10Kb bin (files with extension “mango” in S1 Data). To

make a fair comparison between MAPS and hichipper, we used the same threshold values

described above for MAPS calls to filter the outputs from hichipper and then converted hichip-

per-identified interactions into 5Kb or 10Kb bin pairs. Specifically, we first filtered the hichip-

per output and only kept the hichipper interactions in autosomal chromosomes with raw

contact frequency > = 12 and FDR < 1% (hichipper does not calculate the expected contact

frequency, so the filter based on normalized contact frequency cannot be applied). Next, we

partitioned each of these hichipper interactions into equal sized bin pairs (5Kb or 10Kb,

depending on the resolution used in MAPS on the same dataset). Since a significant propor-

tion of hichipper anchors are larger than 5Kb or 10Kb, one hichipper-identified interactions

may be partitioned into multiple 5Kb or 10Kb interactions after this conversion. We then

removed the 5Kb or 10Kb interactions falling into the XOR and NOT sets, and only kept those

in the AND set after partition to: 1) avoid counting the same hichipper interaction multiple

times; 2) make the converted hichipper interaction list having the same property as its default

output (all anchor regions in default hichipper output contain at least one 1D ChIP-Seq peak).

Afterwards we removed the interactions between two adjacent bins or with a genomic distance

over 1Mb. We then grouped the remaining interactions into clusters or singletons using the

same definition described above and kept all interaction clusters, and the singletons with a

more stringent FDR < 0.0001 as the final hichipper-identified interaction list. The final con-

verted hichipper output has the same format as the MAPS output.

HiCCUPS loops from in situ Hi-C data

The HiCCUPS loops of GM12878 are acquired from Rao et al. study [4]. Specifically, file

“GSE63525_GM12878_primary+replicate_HiCCUPS_looplist.txt.gz” was downloaded, which

contains in total 9,448 loops. Among these 9,448 loops, we selected 6,316 loops where both two

interacting anchors are 5Kb bins (S5 Table). To generate the 5Kb and 10Kb resolution of HiC-

CUPS loops of mESCs, we downloaded the raw fastq files of all four biological replicates from

Bonev et al. study [14] and performed mapping, pairing reads and PCR duplicates removal in

the same way as we did for PLAC-seq and HiChIP data (refer to “MAPS pre-processing com-

ponent” above). Afterwards we combined the valid pairs from all four replicates and then

applied HiCCUPS to call loops at 5Kb and 10Kb resolution with the following parameters: “-r

5000,10000 -k KR -f .1,.1 -p 4,2 -i 7,5 -t 0.02,1.5,1.75,2 -d 20000,20000” (S5 Table).
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Reproducibility analysis

We evaluated the reproducibility of MAPS- and hichipper-identified interactions between two

biological replicates. We denoted dij as the genomic distance between bin i and bin j. We then

defined an interaction, bin pair (i,j), in one replicate is reproducible, if and only if there exists

an interaction, bin pair (m,n), in the other replicate such that max{dim,djn}� 15Kb.

Sensitivity analysis

We evaluated the sensitivity of MAPS- and hichipper-identified interactions, using HiCCUPS

loops called from deeply sequenced in situ Hi-C datasets as true positives. Specifically, we used

GM12878 in situ Hi-C data with ~4.9 billion reads from Rao et al. study [4], and mESC in situ

Hi-C data with ~7.3 billion reads from Bonev et al. study [14]. We first selected a subset of

HiCCUPS loops which are detectable in corresponding PLAC-seq and HiChIP data (S6 Table

and Note 8 in S1 Text). Next, we defined a HiCCUPS loops, bin pair (i,j), is re-discovered by

MAPS or hichipper, if and only if there exists an interaction, bin pair (m,n), called by MAPS

or hichipper such that max{dim,djn}� 15Kb. The sensitivity is calculated by the ratio between

the number of HiCCUPS loops re-discovered by MAPS or hichipper and the total number of

HiCCUPS loops detectable in PLAC-seq and HiChIP data.

Noticeably, although hichipper did not detect any loop in the “XOR” set (S4 Table), there

are some testable HiCCUPS loops in XOR set recovered by hichipper (S7 Table). The reason

is that our definition of loop overlap described above allows 15Kb gap and when the “XOR”

set of HiCCUPS loops are close enough to the hichipper calls (which are always from the

“AND” set) they are counted as “recovered” loops by hichipper.

CTCF motif orientation analysis

We examined the CTCF motif orientation of testable MAPS- and hichipper-identified interac-

tions. Specifically, we first download the CTCF ChIP-seq peak lists of GM12878 and mESC

(S13 Table) and then searched for all the CTCF sequence motifs among those peak using

FIMO [30] (default parameters) and the CTCF motif (MA0139.1) from the JASPAR [31] data-

base. Based on this list of CTCF motifs, we then selected a subset of MAPS- or hichipper-iden-

tified interactions with both ends containing either single CTCF motif or multiple CTCF

motifs in the same direction. Finally, we counted the frequency of four possible directionality

of CTCF motif pairs, and calculated the proportion of convergent, tandem and divergent

CTCF motif pairs among all testable interactions.

Cis-regulatory elements enrichment analysis

For two interacting bins in the “XOR” set, we defined the bin which is bound by the protein of

interest as the “anchor” bin, and the bin which is not bound by the protein of interest as the

“target” bin. In order to access the biological relevance of peaks in the “XOR” set, we evaluated

whether cis-regulatory elements are enriched within those target bins, compared to the control

bins which are in the same distance with the anchor bin, but is not bound by the protein of

interest (S6 Fig).

The ChIP-seq and ATAC-seq data used for this analysis is summarized in S13 Table. For

each ChIP-seq/ATAC-seq data, we calculated the proportion of target bins and controls con-

taining ChIP-seq/ATAC-seq peaks, defined as %target and %control, respectively. We further

defined the enrichment score as the ratio between %target and %control.
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Definition of MAPS-specific interactions and HiCCUPS/MAPS-shared

interactions (for Fig 6)

We divided all MAPS-identified interactions into two groups based on their overlap with HiC-

CUPS loops. Similar to our method in the sensitivity analysis, we defined a MAPS interaction,

bin pair (i,j), is overlapped with a HiCCUPS loop, if and only if there exists an interaction, bin

pair (m,n), in HiCCUPS loop list such that max{dim,djn}� 15Kb. If a bin pair (i,j) is overlapped

with a HiCCUPS loop, we defined it as a HiCCUPS/MAPS-shared interaction. If a bin pair (i,
j) is not overlapped with a HiCCUPS loop, we defined it as a MAPS-specific interaction. The

number of MAPS-specific interactions and HiCCUPS/MAPS-shared interactions are listed in

S11 Table.

Validation of MAPS-specific interactions by SPRITE data

The normalized SPRITE interaction frequency matrices were downloaded from GEO with

access number GSE114242 [23]. The GM12878 and mESC SPRITE data is at 25Kb bin and

20Kb bin resolution, with reference genome hg19 and mm9, respectively. Since SPRITE matrix

is at a lower resolution compared to our MAPS calls (5Kb or 10Kb), for this analysis we

defined “MAPS-specific” and “HiCCUPS/MAPS-shared interactions” differently from what

we described above and only used the singletons and the summits of interaction clusters from

“MAPS-specific” or “shared” group for plot (related to Fig 7). Specifically, the MAPS-identi-

fied interactions consist of two types of bin pairs: singletons and interaction clusters (defined

in “MAPS interaction calling component” section). For each singleton bin pair (i,j), we

defined it as “shared” if there exists a bin pair (m,n) in HiCCUPS loop such that max{dim,djn}�

15Kb. Otherwise, we defined the singleton bin pair (i,j) as “MAPS-specific”. For each interac-

tion cluster, we defined it as “shared” if any one bin pair in the interaction cluster is a “shared”

bin pair. Otherwise, if all bin pairs in an interaction cluster are “MAPS-specific”, we defined

the entire interaction cluster as “MAPS-specific”. We then selected singletons and the summits

of interaction clusters from “MAPS-specific” or “shared” group for the downstream analysis.

We then zoomed the selected bin pairs out to the matched lower resolution in SPRITE data for

a fair comparison. Specifically, for MAPS-identified interactions from GM12878 Smc1a and

GM12878 H3K27ac HiChIP data, we first selected the center position of 5Kb interacting bin of

an interaction summit, and then allocated the 25Kb bin containing that center position. This

procedure created a list of 25Kb bin pair, among which each contains MAPS-identified inter-

action summit. Similarly, for MAPS-identified interactions from mESC CTCF and mESC

H3K4me3 PLAC-seq data, we first selected the center position of 10Kb/5Kb interacting bin of

an interaction summit (reference genome mm10), converted it into reference genome mm9

using UCSC Liftover tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver), and then allocated

the 20Kb bin containing that center position. This procedure created a list of 20Kb bin pair,

among which each contains MAPS-identified interaction summit.

To evaluate the normalized SPRITE interaction frequency for MAPS-identified interac-

tions, we used the following procedure to create the control set. For a bin pair in the “XOR”

set, we defined the bin with ChIP-seq peak as the “anchor” bin and the bin without ChIP-seq

peak as the “target” bin. We then find the “control” bin and such as the “anchor” bin has the

same genomic distance between the “target” bin and the “control” bin (S6 Fig). The control

bin pair is defined as the pair of the “anchor” bin and the “control” bin. For a bin pair in the

“AND” set, since both two bins contain ChIP-seq peak, we randomly selected one bin as the

“anchor” bin, and defined the remaining one as the “target” bin. Next, we repeated the proce-

dures described above to find the “control” bin, and created the control bin pair for the bin

pairs in the “AND” set. Finally, we filtered out any control bin pairs which are overlapped with
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MAPS-identified interactions. Let Sij represent the normalized SPRITE interaction frequency

between 25Kb/20Kb bin i and j. We defined the rank of bin pair (i,j) as the number of bin pair

in the same genomic distance, but with higher normalized SPRITE interaction frequency than

Sij. Here in the normalized SPRITE interaction frequency matrices, we only used all bin pairs

in the “AND” and “XOR” set.

Rankði; jÞ ¼ #fSm;n > Sij : jm � nj ¼ ji � jj; at least one of two bins ðm; nÞ contains ChIP � seq peak:g

A bin pair with higher normalized SPRITE interaction frequency tends to rank top, among

all bin pairs with the same genomic distance.

Gene expression analysis

To examine the correlation between MAPS-identified interactions and gene expression level,

we first checked how many MAPS-identified interactions are overlapped with gene’s TSS. We

then collected published RNA-seq data in mESCs and GM12878 cells [16, 32], and calculated

fragments per kilobase of transcript per million mapped reads (FPKM) for each protein-cod-

ing gene. Next, we divided all protein-coding genes into two groups, based on whether their

transcript start site (TSS) overlap MAPS-identified interactions and calculated their expression

level.

Supporting information

S1 Fig. Flowchart of MAPS pre-processing steps. Details can be found in Methods section.

(TIF)

S2 Fig. Contact frequency plots of chromosome 1 for all four datasets. The results are based

on combined datasets after merging two biological replicates; 10Kb resolution is used for

mESC CTCF and 5Kb resolution is used for all the other datasets. The X-axis is Log10 genomic

distance between two interacting bins (unit: Kb). The Y-axis is the Log10 average raw PLAC-

seq/HiChIP contact frequency. The red line, blue and purple lines represent the contact proba-

bility for bin pairs in the “AND”, “XOR” and “NOT” set, respectively.

(TIF)

S3 Fig. Data normalization by MAPS. (a) MAPS removes biases in GM12878 Smc1a

HiChIP data after normalization. For all autosomal chromosomes, we calculated the Pearson

correlation coefficients (Y-axis) between the systemic biases (effective length, GC content,

mappability, IP effect) and the raw contact frequency in the “AND” set, the normalized contact

frequency in the “AND” set, the raw contact frequency in the “XOR” set and the normalized

contact frequency in the “XOR” set, highlighted in red, yellow, blue and purple boxes, respec-

tively. The grey dash line presents the Pearson correlation coefficient zero. Three panels show

the results in replicate 1, replicate 2, and the combined data (replicate 1 + replicate 2), respec-

tively. (b-d) Similar to S3 Fig a, MAPS removes biases in GM12878 H3K27ac HiChIP data

(b), mESC CTCF PLAC-seq data (c) and mESC H3K4me3 PLAC-seq data (d).

(TIF)

S4 Fig. Summary of MAPS- and hichipper-identified interactions of all four datasets. (a)

The number of interactions and the distribution of interaction length of MAPS-identified

interactions. From left to right are the results of MAPS calls from mESC CTCF PLAC-seq,

mESC H3K4me3 PLAC-seq, GM12878 Smc1a HiChIP and GM12878 H3K27ac HiChIP com-

bined data (replicate 1 + replicate 2). Each histogram shows the distribution of interaction

length. The vertical blue bar represents the median distance of interactions. (b) Similar to S4
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Fig a, the number of interactions and the distribution of interaction length of hichipper-

identified interactions.

(TIF)

S5 Fig. MAPS-identified interactions from mESC H3K4me3 PLAC-seq data anchored at:

(a) Pou5f1 promoter, (b) Sox2 promoter, (c) Tbx5 promoter, (d) Wnt6 promoter, (e)

Nanog promoter. Anchor regions around target promoter are highlighted by yellow boxes.

The MAPS-identified interactions overlapping the anchor regions are marked by magenta

arcs. The black arrow points to the interaction verified in previous publications [16–20] and

the other end of the interaction is marked by magenta boxes. Additional interacting regions

identified by MAPS are marked by grey boxes.

(TIF)

S6 Fig. Cartoon illustration of anchor bin, target bin and control bin used in cis-regulatory

elements enrichment analysis (related to Fig 5, Fig 6, S8 Fig and S9 Table). The solid yellow

curve at left represents a statistically significant long-range chromatin interaction in the

“XOR” set, connecting the anchor bin (the red box) and the target bin (the blue box). The

dashed yellow curve at right represents a random collision between the anchor bin (the red

box) and the control bin (the purple box). The interaction and the random collision has the

same genomic distance.

(TIF)

S7 Fig. Gene expression data analysis. In each panel, the y-axis represents the log2(FPKM+1).

The red box and blue box represent the genes in which TSSs are associated with MAPS-identi-

fied interactions and genes in which TSSs are not associated with MAPS-identified interac-

tions, respectively. For all four datasets, genes in which TSS involves with MAPS-identified

interactions have significantly higher expression than genes in which TSS does not involve

with MAPS-identified interactions (p<2.2e-16).

(TIF)

S8 Fig. Enrichment of CREs around the target bins of XOR set of HiCCUPS/MAPS-shared

interactions. Enrichment of H3K27ac (ChIP-seq peaks), H3K4me1 (ChIP-seq peaks), ATAC-

seq peaks, H3K4me3 (ChIP-seq peaks) and CTCF (ChIP-seq peaks) in a window of 500Kb

around the target bins for all four datasets. Due to the definition of XOR set of interactions,

H3K27ac, H3K4me3 and CTCF enrichment level is not analyzed for GM12878 H3K27ac

HiChIP, mESC H3K4me3 and mESC CTCF PLAC-seq data, respectively.

(TIF)

S9 Fig. MAPS-identified interactions from mESC H3K4me3 PLAC-seq data anchored at:

(a) Elt4 promoter (chr2:20,515,000–20,525,000), (b) Ifitm3 promoter (chr7:141,005,000–

141,015,000). Anchor regions around target promoters are highlighted by yellow boxes. The

MAPS-identified interactions overlapping this anchor region are marked by magenta arcs.

The deleted enhancer regions in Moorthy et al study [24] are marked by magenta boxes.

(TIF)

S10 Fig. MAPS running time (Y-axis) increases linearly proportional to overall sequencing

depth (X-axis).

(TIF)

S1 Table. Summary statistics of AND, XOR and NOT set of bin pairs on chromosome 1.

(XLSX)
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S2 Table. A summary of four PLAC-seq and HiChIP datasets used in this study.

(XLSX)

S3 Table. Reproducibility of MAPS and hichipper between two biological replicates.

(XLSX)

S4 Table. Summary of MAPS- and hichipper-identified interactions from combined data-

sets.

(XLSX)

S5 Table. A brief summary of HiCCUPS loops identified from deeply sequenced in situ Hi-

C data.

(XLSX)

S6 Table. Number of HiCCUPS loops which are detectable in each PLAC-seq and HiChIP

data.

(XLSX)

S7 Table. Overlap between testable HiCCUPS loops and MAPS-identified or hichipper-

identified interactions.

(XLSX)

S8 Table. Ten long-range promoter-centered interactions in mESC verified by 3C or 4C in

previous publications [16–20].

(XLSX)

S9 Table. Numbers related to cis-regulatory elements enrichment analysis.

(XLSX)

S10 Table. Numbers MAPS-identified interactions overlapping with gene TSS.

(XLSX)

S11 Table. Overlap between MAPS-identified interactions and HiCCUPS loops in all four

PLAC-seq and HiChIP datasets.

(XLSX)

S12 Table. A list of functionally validated enhancer-promoter pairs in mESC from

Moorthy et al study [24]. Only enhancer-promoter pairs are>50Kb in genomic distance are

listed.

(XLSX)

S13 Table. Summary of all sequencing data sets used in this study.

(XLSX)

S14 Table. Results of sensitivity and CTCF motif orientation analysis from only cluster

summits and singletons.

(XLSX)

S15 Table. Number of common anchor bins containing both CTCF and H3K4me3 ChIP-

seq peaks in mESC.

(XLSX)

S1 Text. Supporting information. Note 1. Similarities and differences between PLAC-seq

and HiChIP protocols. Note 2. Fit-Hi-C, HiCCUPS, Mango and hichipper are not optimal for

the identification of long-range chromatin interactions from PLAC-seq and HiChIP data.

Note 3. Justification of zero-truncated Poisson model used in MAPS. Note 4. MAPS analysis
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at finer resolution. Note 5. MAPS analysis with extended genomic distance range. Note 6. Jus-

tification of threshold values used in the MAPS interaction calling component. Note 7. Repro-

ducibility of HiCCUPS loops. Note 8. Selecting HiCCUPS loops which are detectable in

PLAC-seq and HiChIP data. Note 9. Detailed experimental procedures of PLAC-seq on F123

cells.

(DOCX)

S1 Data. The full list of MAPS- and hichipper-identified interactions (both default output

and converted/filtered output) for all four datasets used in this study.

(ZIP)
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