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ABSTRACT
DNA methylation at CpG dinucleotides is one of the most extensively studied epigenetic marks. 
With technological advancements, geneticists can profile DNA methylation with multiple reliable 
approaches. However, profiling platforms can differ substantially in the CpGs they assess, conse-
quently hindering integrated analysis across platforms. Here, we present CpG impUtation 
Ensemble (CUE), which leverages multiple classical statistical and modern machine learning 
methods, to impute from the Illumina HumanMethylation450 (HM450) BeadChip to the Illumina 
HumanMethylationEPIC (HM850) BeadChip. Data were analysed from two population cohorts with 
methylation measured both by HM450 and HM850: the Extremely Low Gestational Age Newborns 
(ELGAN) study (n = 127, placenta) and the VA Boston Posttraumatic Stress Disorder (PTSD) 
genetics repository (n = 144, whole blood). Cross-validation results show that CUE achieves the 
lowest predicted root-mean-square error (RMSE) (0.026 in PTSD) and the highest accuracy (99.97% 
in PTSD) compared with five individual methods tested, including k-nearest-neighbours, logistic 
regression, penalized functional regression, random forest, and XGBoost. Finally, among all 
339,033 HM850-only CpG sites shared between ELGAN and PTSD, CUE successfully imputed 
289,604 (85.4%) sites, where success was defined as RMSE < 0.05 and accuracy >95% in PTSD. 
In summary, CUE is a valuable tool for imputing CpG methylation from the HM450 to HM850 
platform.
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Introduction

DNA methylation of cytosine residues at CpG 
dinucleotides is one of the most extensively stu-
died epigenetic marks. Recent literature provides 
evidence regarding its important role not only in 
normal development but also in risk and progres-
sion of many diseases [1–8]. A wide range of 
biological processes are dependent on DNA 
methylation status, including gene transcription, 
X-chromosome inactivation, cell differentiation,
cancer progression, and other critical life events
or processes such as ageing [4,7]. Therefore, stu-
dies of DNA methylation are of great interest and

importance but present challenges for a number of 
reasons including but not limited to the follow-
ing: 1) DNA methylation levels can be dynamic, 
varying over time, across different environments, 
developmental stages, and tissues or cell lines; 2) 
correlation of methylation levels between CpG 
sites decreases dramatically with distance, for 
example, with correlation coefficients typically 
<0.5 when two CpG sites are merely >500bp 
apart; and 3) there are multiple methods for the 
measurement of DNA methylation (see section 2 
for a more detailed review).

With the emergence of powerful technologies 
such as DNA methylation arrays [9] and bisulphite 
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sequencing, geneticists are able to profile DNA 
methylation levels at increasingly higher resolu-
tions. Methylation microarrays have become very 
popular due to lower cost and higher throughput 
than bisulphite sequencing approaches. However, 
new platforms assaying an increasing number of 
CpG sites have replaced old ones every few years 
[10–12]. Different platforms (for example, the 
widely used Illumina HumanMethylation27, 
HumanMethylation450, and MethylationEPIC 
BeadChips) target different CpG sites across the 
genome and have different marker densities. In 
addition, different biochemical or experimental 
techniques can be used to quantify methylation 
levels (e.g., type-I versus type-II assays adopted 
by the Illumina methylation arrays), further hin-
dering joint analysis of data from multiple 
platforms.

Two aforementioned microarrays, the Illumina 
HumanMethylationEPIC (HM850) and 
HumanMethylation450 (HM450) BeadChips, are 
the most commonly used microarrays to measure 
DNA methylation levels. While HM450 investi-
gates 485,577 probes spanning 96% of CpG islands 
and 92% of CpG shores across a moderate number 
of genes [9], HM850 provides much more com-
prehensive coverage with the additional 413,743 
CpG sites located farther outside CpG islands. As 
new arrays are introduced on a fairly regular basis, 
and as old chips have typically not been available 
(HM450 was discontinued) for purchase once the 
new chips have been introduced, researchers will 
increasingly encounter data generated from 
a combination of different arrays. Such data have 
largely constrained pooled analysis, where investi-
gators typically focus on the probes shared 
between the two platforms [13–15]. This is 
a prudent and convenient approach which does 
not necessitate re-evaluation of all samples, for 
example, using an updated HM850 array, which 
would be time-consuming, expensive, and wasteful 
of valuable tissue samples. However, applying such 
an approach to a dataset comprising a mix of 
HM450 and HM850 implies an unfortunate 
waste of HM850 data where more than 40% of 
data will not be used in pooled analyses. In this 
study, we present the CpG impUtation Ensemble 
(CUE), an ensemble learning framework which 

leverages several machine learning algorithms 
and traditional statistical models to efficiently inte-
grate data from these two platforms. While several 
existing methods designed for imputing sequen-
cing-density methylation levels require hundreds 
of genomic features (e.g., those from the ENCODE 
project [16]) to impute each missing CpG methy-
lation site, the present study highlights a relatively 
simple and more widely applicable imputation 
regime which only requires methylation measure-
ments from the HM450 BeadChip.

Because of the practical needs for imputation in 
the context of DNA methylation data as well as the 
success of imputation methods in other genetic 
settings [17–19], a number of DNA methylation 
imputation methods have been proposed. Among 
them, support vector machines (SVM) and 
a hybrid of SVM and other models predominate 
in the DNA methylation imputation literature 
[20–27]. Many of these methods assume that 
methylation status is binary. In other words, 
a CpG site is either methylated or unmethylated 
for an individual and thus imputation becomes 
a classification problem. Almost all methods pro-
posed prior to 2014 predicted the average methy-
lation status for genomic regions, where each 
region encompasses multiple CpG sites [28]. All 
of the studies reported accuracy exceeding 90%.

Dichotomizing methylation status, as adopted 
by previously published SVM-based methods, can 
lead to the loss of biologically meaningful infor-
mation carried by intermediate raw beta values 
(β). The beta value is the ratio of intensities 
between methylated and unmethylated alleles and 
is one standard quantitative measure of DNA 
methylation levels. β values range from 0 to 1 
with 0 being completely unmethylated and 1 com-
pletely methylated. With advances in data science, 
particularly in areas of machine learning and deep 
learning [29], several algorithms have been suc-
cessfully employed for methylation imputation 
and reported to outperform the earlier SVM- 
based methods. For example, Zhang et al. [28] in 
2015 employed a random forest (RF) classifier to 
predict methylation levels with five groups of fea-
tures selected from the ENCODE Project, achiev-
ing 96% accuracy. Angermueller et al. [30] in 2017 



adopted a deep learning method to provide an 
accurate prediction of single-cell DNA methyla-
tion states, which achieved performances similar 
to the previous SVM- or RF-based methods. In the 
same year, BoostMe [31], based on the state-of-the 
-art boosting algorithm XGBoost, achieved the
same level of accuracy as RF, but with increased
computational efficiency.

In the present study, we set out to impute 
methylation levels at CpG sites specific to the 
HM850 array for samples with experimentally 
measured HM450 array data, to increase coverage 
of the epigenomic landscape. We have developed 
a general CUE framework and compared it against 
five available methods to assessed their perfor-
mance to impute data. The five methods evaluated 
were k-nearest-neighbours (KNN), logistic regres-
sion (Logistic) and penalized functional regression 
(PFR) model [32,33], random forest (RF) and 
XGBoost. We applied the CUE framework to 
imputation in two cohorts with methylation mea-
sured both by HM450 and HM850: the VA Boston 
Posttraumatic Stress Disorder (PTSD) genetics 
repository [34] (144 whole blood samples) and 
the Extremely Low Gestational Age Newborns 
(ELGAN) study [35] (127 placenta samples). We 
subsequently examined the imputation results and 
filtered out the low-quality probes. Accurately 
imputed methylation values could subsequently 
improve power in downstream analysis, for exam-
ple, for associating methylation profiles with phe-
notypic traits of interest, widely referred to as 
epigenome-wide association studies (EWAS). Pre- 
trained imputation models for placenta or whole 
blood samples can be found on https://github. 
com/GangLiTarheel/CUE, as well as code for 
applying CUE to new reference datasets assessed 
using multiple methylation arrays.

Results

In this study, DNA methylation data were used 
from both the HM450 and HM850 platforms 
derived from two human cohorts, namely the VA 
Boston Posttraumatic Stress Disorder (PTSD) 
genetics repository [34] (144 whole blood samples) 
and the Extremely Low Gestational Age Newborns 
(ELGAN) study [35] (127 placenta samples). Our 

goal was to boost the epigenomic coverage from 
HM450 to HM850. We compared the performance 
of CUE with that from each of the following five 
methods: three traditional statistical methods, 
namely, k-nearest-neighbours (KNN), logistic 
regression (Logistic), and penalized functional 
regression (PFR) model [32,33]; and two modern 
machine learning algorithms, namely, random for-
est (RF) and XGBoost. Method performance was 
systematically evaluated using six-fold cross- 
validation on the two cohorts (ELGAN and 
PTSD) separately.

Cross-validation results on ELGAN and PTSD

In this paper, we focused on imputation within 
tissue type for two reasons. First, for most studies, 
samples are usually collected for the same tissue. 
Second, differences in methylation patterns across 
tissue types prevent accurate imputation across 
tissues. Imputation quality was assessed within 
each cohort by conducting six-fold cross- 
validation, separately on placenta samples from 
the ELGAN study and whole blood samples from 
the PTSD study. Note that all samples in the two 
cohorts (ELGAN and PTSD) in this study have 
both HM850 and HM450 data and thus could be 
used to evaluate our CUE method using the afore-
mentioned cross-validation strategy.

Note the time complexity of the method is O(n) 
and thus each target probe can easily impute in 
parallel to decrease clock computation time, where 
n is the number of the HM850-specific probes (in 
this case n = 339,014 HM850-specific probes).

For the ELGAN placenta dataset, RF achieved the 
smallest root-mean-square error (RMSE) (0.099) 
and the highest accuracy (measured by dichotomiz-
ing DNA methylation level at a cut-off of 0.5) 
(94.60%) among the five imputation tools that were 
compared (Table 1). KNN, PFR, and XGBoost per-
formed less well than RF with regard to RMSE 
(decreases by 0.004–0.025) and had 0.34–1.96% loss 
in terms of classification accuracy for dichotomous 
methylation status. Logistic regression was the fastest 
algorithm and achieved an accuracy higher than 90% 
but performed less well in RMSE.

Similarly, six-fold cross-validation results were 
obtained in the PTSD dataset. Among the five single 
imputation results, XGBoost outperformed the other 
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methods, in contrast to RF for the ELGAN dataset. 
Specifically, XGBoost achieved the fastest speed (3 
h), the smallest RMSE (0.04), and the highest accu-
racy (98.59%) (Table 1). In fact, RF was not even 
the second-best performing method. The PFR 
approach achieved a 0.39% higher accuracy and 
a lower (by 0.01) RMSE than RF. Compared with 
the results from the ELGAN dataset, these results 
suggest that there is no uniformly best single impu-
tation method across different tissues or datasets, 
which inspired the development of the ensemble 
imputation framework.

We further reported at each CpG site which 
method outperformed all other single imputation 
methods, then showed the proportion of CpG sites 
for which each method performed best (Figure 1). 
Results showed that all four viable imputation meth-
ods (we excluded logistic regression since it failed to 
converge) perform best at some CpG sites, which 
again motivates the development of an ensemble 

imputation framework. For more than 42% of the 
CpG sites, RF achieved the lowest RMSE (Figure 1). 
In contrast, PFR was the best imputation model for 
26% of the CpG sites while XGBoost was the best for 
~30% CpG sites (Figure 1). Lastly, for 1.7% of the 
probes (5,596 probes) KNN performed the best 
(Figure 1). In total, RF and XGBoost outperformed 
the other methods for ~70% of CpG sites.

Ensemble imputation results with CUE within the 
PTSD dataset

Based on these inconsistent results in terms of 
which method had the best performance, CUE 
was developed to improve the prediction of 
methylation values at HM850-specific CpG sites. 
Probes were filtered for those that failed to pass 
quality control (QC) criteria (RMSE <0.05 and 
accuracy >95% at CpG site level). Prior to QC, all 
the methods predicted RMSE below 0.06 and 
CUE showed the best performance (Figure 2). 
The predicted RMSE of the individual tools can 
be reduced by 5.8–30.3% with CUE. After post- 
imputation QC, the predicted RMSE of all the 
tools was reduced by 37.9–50.0%. Among the 
339,033 HM850-only CpG sites shared between 
ELGAN and PTSD, CUE out-performed the indi-
vidual methods at 289,604 (85.4%) sites. 
Specifically, CUE achieved the lowest predicted 
RMSE (0.026) and the highest accuracy (99.97%), 
compared with individual methods which had 
RMSE ranging 0.029–0.036 (improved by 10.0– 
27.4%) and with accuracy 99.95–99.97%.

When evaluating prediction accuracy, we use 
0.5 as the conventional cut-off for the methylation 
states (labelled as 1 [or methylated] if the beta 
methylation level is above 0.5; 0 [or unmethylated] 
otherwise). Our CUE method is robust to different 
cut-offs (thresholds) and achieves the highest 
accuracy across all thresholds (Figure S2). 
Logistic regression seems sensitive to the threshold 
probably because it is trained based on labels 
defined at the cut-off of 0.5.

Independent validation results: cross-dataset 
performance

Although the six-fold cross-validation experiments 
above provide useful information, imputation will 

Table 1. Imputation Performances in the ELGAN and PTSD 
datasets. For all the computational results reported in tables 
of this paper, 15 CPUs were used. Logistic regression did not 
converge (D.N.C.) for the PTSD dataset. The fastest method 
computation time and the highest method accuracy are dis-
played in bold for each dataset.

ELGAN Performances PTSD Performances

Accuracy RMSE Time Accuracy RMSE Time

KNN 92.64% 0.124 2.5 h 98.02% 0.054 3 h
Logistic 91.76% 0.263 2.5 h D.N.C. D.N.C. D.N.C.
PFR 93.50% 0.114 6 h 98.41% 0.044 18.5 h
RF 94.60% 0.099 3 h 98.02% 0.054 5 h
XGBoost 94.26% 0.103 3 h 98.59% 0.040 3 h

Figure 1. Proportions of CpG Sites where Each Method Wins in 
PTSD.



be performed in dataset(s) distinct from the one 
based on which training models are built. To pro-
vide more valid performance estimates and to 
assess the utility of models trained by CUE and 
by the individual methods, we examined their 
performances across the two datasets. With the 
presence of many systematic differences between 
the two datasets, we first attempted to correct for 
batch effects. Specifically, Combat [36] was used to 
generate a harmonized dataset after pooling 
together data from the two cohorts. Methylation 
prediction models were then trained with the har-
monized ELGAN dataset and tested on the har-
monized PTSD dataset. Among six imputation 
methods, CUE achieved the highest accuracy 
(95.48%) and the lowest predicted RMSE 
(0.0704). KNN was the fastest model with ~1.35% 
loss in accuracy and 0.0189 loss in RMSE (Table 
2). While this cross-dataset comparison is compli-
cated by the different tissues in which methylation 
was assessed, these comparisons demonstrate the 
superior performance of the CUE method.

DNA methylation varies across different tissue

DNA methylation data varies across different tis-
sues inherently [32,37]. Separately for each cohort 
(tissue), we classified DNA methylation probes 
into three categories: ‘unmethylated’ if the β values 
across all samples in the cohort are less than 0.5; 
‘methylated’ if the β values across all samples in 
the cohort are greater than 0.5; ‘bilateral’ other-
wise. The proportions of three different categories 
of probes were reported for 339,033 HM850- 
targeted probes (Figure 3). For the PTSD cohort, 
almost 91% of probes were either methylated or 
unmethylated, while this is true of only 62% of 
probes in the ELGAN study. In general, the bilat-
eral probes were more difficult to impute because 
of their inherent complexity, including true bilat-
eral distribution patterns in some cases. One indi-
cator of this complexity is that variance for these 
probes tended to be larger than the rest of the 
tested probes.

Discussion

In this study, we developed an ensemble method, 
CUE, to enhance prediction accuracy when imput-
ing methylation between the HM450 and HM850 
BeadChip platforms. Our initial goal was to extend 
our previously developed PFR framework [29] and 
systematically evaluate its performance with multi-
ple alternative methods. However, our results sug-
gested that there is no single DNA methylation 
imputation method available that performs best 

Figure 2. Imputed performances for probes before (left, hatched) and after QC (right, no hatches) in PTSD. (a) RMSE comparisons. (b) 
1- Accuracy (classification error) comparisons. The different colours represent the different methods for analyses. The horizontal dash 
line is the lowest value corresponding to the best method.

Table 2. Cross-dataset Imputation Performance.

Train: ELGAN 
Test: PTSD

Test Performance

Accuracy RMSE Time

KNN 94.13% 0.0893 1.5 h
Logistic 92.30% 0.2548 1.5 h
PFR 91.28% 0.1341 5 h
RF 95.30% 0.0706 1.5 h
XGBoost 94.90% 0.0785 1.5 h
CUE 95.48% 0.0704 11 h



across different datasets or tissues, which moti-
vated the development of the CUE method. 
Under three different scenarios (cross-validation 
within PTSD dataset, cross-validation within 
ELGAN dataset, and cross-cohort imputation) 
with data from two different cohorts (one with 
samples from placenta and the other with samples 
from whole blood), CUE outperformed all five 
imputation methods in terms of both predicted 
RMSE (measuring methylation values with 
a continuous scale) and predicted accuracy 
(dichotomizing methylation values). CUE also led 
to a larger number of probes that passed post- 
imputation quality control than any other imputa-
tion method tested.

CUE produced accurate imputation results 
when the training and test data characterized the 
same tissue under similar conditions. With the 
CUE imputation framework, data can be com-
bined from multiple methylation platforms, 
enabling higher resolution and more powerful 
downstream analysis, as long as an appropriate 
reference panel including samples assayed from 
both platforms is available. For example, the com-
bined dataset can be used to boost the power of 
not only EWAS studies, but also DNA methyla-
tion quantitative trait loci (mQTL) analyses, inte-
grative multi-omics analyses, and other 
applications. Although in theory imputed and 
directly assessed methylation values could be 
combined directly, if possible, we recommend 
meta-analysis over mega-analysis to guard against 
potential batch effects from pooling together 
imputed and experimentally measured methyla-
tion levels. Regardless of the epigenetic architec-
ture underlying phenotype(s) of interest, it is 

anticipated that this method will facilitate more 
efficient utilization of methylation data from mul-
tiple platforms and foster advances in under-
standing the role of DNA methylation on 
phenotype(s) of interest.

Despite the overall high imputation accuracy, 
quality control after imputation further improves 
imputation performance. As shown in Figure 3, 
the predicted RMSE of all the tools was reduced 
by 37.9–50.0% after post-imputation QC in PTSD. 
For different datasets (tissues), we selected differ-
ent quality control criteria (see more details in 
supplementary materials) according to cross- 
validation metrics within each dataset. We recom-
mend similar basic QC filtering for all users of our 
CUE method, but users are free to adjust their QC 
criteria through our R package to find the best fit 
for their tissue and study.

DNA methylation data inherently vary across 
tissues, based on our results and those of others 
[32,37], suggesting that it would be prudent to 
train separate imputation prediction models for 
different tissues. From this study, we provide two 
sets of imputation models: one for whole blood 
and the other for placenta. Investigators can there-
fore complete their own imputation of placental or 
whole blood HM850 CpG sites using their own 
HM450 data, without access to their own reference 
panel. Our method is also easily useable for impu-
tation in other tissues, provided the user can sup-
ply a reference dataset assayed on both HM450 
and HM850.

To further assess the generalizability of predic-
tion model trained on data from the same tissue 
but from different institutions, we would benefit 
from the availability of such data. However, we are 

Figure 3. Proportions of three-category HM850-specific probes in PTSD and ELGAN.



not aware of such data despite our keen efforts to 
assemble such datasets. Future studies are highly 
warranted when data become available.

In summary, findings in this study suggest that 
the CUE ensemble methylation imputation method 
is valuable for imputing from HM450 to HM850. 
We hypothesize that CUE may also be helpful as 
new methylation arrays continue to be developed. 
This study is the first to impute from HM450 to 
HM850 using data from two different tissues. Using 
information at 248,421 HM450 CpG sites (sites 
overlapping between ELGAN and PTSD, and with-
out missingness in our samples), CUE was able to 
accurately impute 289,604 HM850 sites in the PTSD 
whole blood samples and 238,090 sites in the 
ELGAN placenta samples. It is anticipated that the 
CUE method as well as the pre-trained imputation 
models across the two tissues will be of value to 
many investigators, facilitating more powerful epi-
genetics studies with either HM450 data or 
a mixture of HM450 and HM850 data. Ensemble 
methods like CUE may also benefit in more general 
settings for other tissues and with other future 
methylation assessment platforms.

Methods

Study sample

Data were used from both the ELGAN study and the 
PTSD study. Samples from the PTSD genetics repo-
sitory were from the Translational Research Center 
for TBI and Stress Disorders (TRACTS), a VA 
Rehabilitation Research and Development National 
Center for TBI Research at VA Boston Healthcare 
System. Informed consent was obtained from all 
PTSD subjects at the time of study inclusion. 
ELGAN study enrolled infants born <28 weeks of 
gestion during 2002–2004, in five states and 14 hos-
pitals in the United States [35]. Detailed procedure 
regarding sample recruitment, main characteristics 
of study samples, and methylation measurements are 
presented in previous publications: Logue et al. for 
PTSD [34] and Santos et al. for ELGAN [35].

Preprocessing of methylation data

The data used in this study have been pre- 
preprocessed previously. Logue et al. have 

previously published on the 145 samples from 
the PTSD cohort with methylation measured 
both by HM450 and HM850 [34]. The cleaning 
and processing of this dataset according to 
a consortium-developed pipeline [38] has been 
described in detail elsewhere [34]. Briefly, the 
PTSD dataset was first corrected for the indivi-
dual-level background noise using GenomeStudio 
and then cleaned with the CpGassoc package and 
the ChAMP package in R [39]. Detailed data 
cleaning and processing of the PTSD dataset was 
previously described [34]. In this paper, we further 
excluded one sample as it had a missing rate of 
>69% (568,833 missing probes among 820,611
probes) on the HM850 array, keeping 144 com-
plete samples. Additionally, 127 subjects from
ELGAN study [35] were selected based on the
availability of placental samples with DNA methy-
lation data assessed using both HM450 and
HM850. DNA methylation data for the ELGAN
dataset were first pre-processed by the minfi pack-
age [40]. Then, functional normalization was used
for background subtraction and dye normaliza-
tion. Santos et al. used the ComBat function
from sva package to adjust for batch effects from
two platforms, HM450 and HM850 [36]. The
detailed placenta tissue collection and other assess-
ments of DNA methylation for the ELGAN dataset
can be found in prior publications [41–43].

Since imputing sporadic missing data was not 
the focus of our work, probes with any missing 
values were removed. One could apply methods 
similar to those developed for gene expression data 
[44–47] to impute the sporadic missing values at 
directly assayed CpG sites. After removing spora-
dic missing values, probes were filtered to keep the 
common complete (no missing data) probes 
shared between two cohorts, which would make 
the assessments of different imputation models on 
two cohorts comparable. This left a total of 
248,421 probes for HM450 and 587,454 probes 
for HM850 for the ELGAN and the PTSD cohorts, 
respectively. A total of 248 K HM450 probes were 
used as explanatory variables and the 339 K 
HM850-specific probes were used as response 
variables.

Beta values (βsÞ were used to compare the 
imputation results. To ensure a Gaussian distribu-
tion [48,49] for the PFR model, we employed 



M values, defined as 
M ¼ logit βð Þ ¼ log2 β= 1 � βð Þ½ �, instead of the 
raw βs to impute and later transformed the 
imputed M values back (using the inverse of logit 
function) to β for comparisons. Again, β repre-
sents the intensity of the methylated probes over 
unmethylated probes.

CUE: CpG impUtation ensemble

The primary goal was to efficiently and accurately 
impute HM850-only probes (response variable) 
using probes from HM450 (explanatory variables). 
Specifically, for each target HM850 probe, we have 
N observations and for each observation or sample 
i ¼ 1; 2; . . . ; N, we have data Yi;Zi½ �, with Yi 
as the transformed DNA methylation level at the 
target HM850 probe and Zi is the p-dimensional 
vector of predictors (or covariates, explanatory 
variables; in this paper we use these three terms 
interchangeably).

In this work, we considered several imputation 
methods and benchmarked their performances on 
our three datasets across two cohorts. No single 
method was found to uniformly outperform the 
other methods for every CpG site tested and across 
different tissues or datasets. We, therefore, devel-
oped the following simple yet effective ensemble 
approach to boost prediction accuracy. Given 
M prediction estimators for the j-th CpG site, 
namely cyj;1, cyj;2; . . . ;dyj;M, our ensemble prediction 

has the form dyj;CUE ¼
PM

i¼1
wj;icyj;i as a weighted esti-

mation with weights wj;ifori ¼ 1; 2; . . . ;Mf g. Here 
we list three different approaches to select the 
weights. First, equal weights: wj;1 ¼ wj;2 ¼ . . . ¼

wJ;M ¼
1
M ; Second, best-single-method weights 

(0–1 weights): wj;best ¼ 1, the other weights ¼ 0; 
Third, theoretically optimal weights: 

ðwi;1;w2; . . . ;w5Þ ¼ argmin dYi;ensemble � Yi

�
�
�

�
�
�

�
�
�

�
�
�

2
. The

equal-weights approach is simple and robust but 
could not guarantee the improvement of the per-
formance. The best-single-method-weights 
approach and theoretically-optimal-weights 
approach would be guaranteed to be no worse 

than any single imputation tools by design. The 
theoretically-optimal-weights approach is actually 
the best linear fitting on the training data, which 
tends to overfit on the training data.

In this study, we adopted the best-single- 
method weights, seeking a balance between impu-
tation performance and robustness. Based on the 
training results, we select the best method for 
imputation at each CpG site and employ that 
model for the final prediction. Here the model 
comparison criterion is out-of-bag predicted 
MSE. Suppose the k-th model outperforms other 
methods on a CpG site (i.e., with lowest out-of-bag 
prediction MSE), then wk ¼ 1and wi ¼ 0 for i�k. 
Namely, dyEns=byk for this CpG site if the k-th model 
performs the best. Consequently, the performance 
of the ensemble method outperforms other single 
methods by design.

Imputation quality assessment (cross-validation)

Six-fold cross-validation was used to assess impu-
tation quality. For each split, the full dataset was 
randomly divided into a training set, consisting of 
five-sixths of the total samples, and a testing set 
(one-sixth of the total samples). For each testing 
set, only the data that were represented by probes 
common to HM450 and HM850 (shared probes, 
or predictor probes) were included, and masked 
methylation values of HM850-specific probes. For 
the training set, we employed methylation mea-
surements on the shared probes as predictors to 
impute methylation values at HM850-specific 
probes. Since most HM450 probes are measured 
by both HM850 and HM450 platforms, the pre-
dictors used in our model can be methylation 
levels for these shared probes measured from 
either array. Note that our prediction model was 
built under the realistic and thus more challenging 
scenario where we used as predictors the measure-
ments from HM450 array instead of those from 
HM850 array, which would require the training 
dataset had measurements from both arrays. 
Specifically, we first fitted our PFR model, learning 
the relationship between the methylation values of 
the shared and HM450-specific probes. Second, we 
used the fitted model to impute the masked values 



of HM850 probes from the HM450 data in the 
testing set. In the end, we evaluated the imputation 
performance by integrating imputation results 
from all six splits.

Imputation quality measures and quality control 
metrics

As measures of the imputation quality, we employ 
both the predicted RMSE and the accuracy with 0.5 
as the threshold. Conventionally, if the raw methy-
lation value was above the threshold, it was termed 
‘methylated,’ or ‘unmethylated’ if below the thresh-
old. Two quality control criteria were employed: for 
PTSD: the probe-level predicted RMSE < 0.05 and 
the probe-level predicted accuracy >95% when 
dichotomizing DNA methylation level at a cut-off 
of 0.5; for ELGAN: the probe-level predicted RMSE 
< 0.1 and the probe-level predicted accuracy >90%.

Penalized functional regression (PFR) model

Here we present a penalized functional regression 
model [33] with minor modifications. We also 
observe Xi tð Þ; indexed by Ti ¼ t representing sam-
ple-specific density function of the DNA methyla-
tion levels measured by HM450. Previous work 
has been shown that incorporating non-local den-
sity information improves the imputation accuracy 
when imputed form HM27 to HM450 [32,32]. We 
consider the following functional linear regression 

model : Yi ¼ αþ ò Xi tð Þβ tð Þdt þ Ziγþ εi, where 

β tð Þ 2 L2 Rð Þ characterizes the effect of density 
function Xi tð Þ when Ti ¼ t. α is the grand mean 
and γ denotes the vector of regression coefficients 
corresponding to the vector of covariates Zi, 25 
downstream probes and 25 upstream probes to 
each target probe as the local covariates.

Functional predictors Xi tð Þ were incorporated into 
the model to capture methylome-wide information, 

besides methylation levels from local probes encapsu-
lated in Zi. According to the probe’s relative location 
to a CpG island, we first defined five groups: ‘CpG 
Island,’ ‘North Shore,’ ‘South Shore,’ ‘North Shelf,’ and 
‘South Shelf’ 9] (see Figure 4). The annotated group 
information can be found on Illumina’s website.

The DNA methylation function Xi tð Þ for 
a particular target probe was estimated via kernel 
density estimation using the DNA methylation data 
from all HM450 probes falling in the same group as 
the target probe. To perform model fitting, we pro-
jected the functional term β tð Þ onto a linear spline 
basis, and then the model was reduced to a mixed 
effect model with Kb random effects, where Kb is the 
order of the linear basis. Previous studies have 
shown that the choice of the number of knots (the 
order for the linear basis and the knots for kernel 
density) is not important as long as it is large 
enough to capture the maximum complexity of the 
regression function [32,50,51]. The advantage of the 
PFR approach is that it borrows information from 
the non-local probes. A limitation of PFR is that the 
run time of PFR is relatively long compared to other 
single imputation approaches.
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