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Hi-C experiments have been widely adopted to study chromatin spatial organization, which plays an
essential role in genome function. We have recently identified frequently interacting regions (FIREs)
and found that they are closely associated with cell-type-specific gene regulation. However, computa-
tional tools for detecting FIREs from Hi-C data are still lacking. In this work, we present FIREcaller, a
stand-alone, user-friendly R package for detecting FIREs from Hi-C data. FIREcaller takes raw Hi-C contact
matrices as input, performs within-sample and cross-sample normalization, and outputs continuous FIRE
scores, dichotomous FIREs, and super-FIREs. Applying FIREcaller to Hi-C data from various human tissues,
we demonstrate that FIREs and super-FIREs identified, in a tissue-specific manner, are closely related to
gene regulation, are enriched for enhancer-promoter (E-P) interactions, tend to overlap with regions
exhibiting epigenomic signatures of cis-regulatory roles, and aid the interpretation or GWAS variants.
The FIREcaller package is implemented in R and freely available at https://yunliweb.its.unc.edu/
FIREcaller.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Chromatin folding in the three-dimensional (3D) space is clo-
sely related to genome function [1]. In particular, gene regulation
is orchestrated by a collection of cis-regulatory elements, including
promoters, enhancers, insulators, and silencers. Alteration of chro-
matin spatial organization in the human genome can lead to gene
dysregulation and consequently, complex diseases including
developmental disorders and cancers [2,3].

High-throughput chromatin conformation capture (Hi-C) has
been widely used to measure genome-wide chromatin spatial
organization since first introduced in 2009 [4-6]. Analyzing Hi-C
data has led to the discovery of structural readouts at a cascade
of resolutions, including A/B compartments [6], topologically asso-
ciating domains (TADs) [7], chromatin loops [8], and statistically
significant long-range chromatin interactions [9-11]. Among these
Hi-C readouts identified in mammalian genomes, TADs and chro-
matin loops are largely conserved across cell types [12,13], while
A/B compartments and long-range chromatin interactions exhibit
rather moderate levels of cell-type-specificity [6,7].

As an attempt to identify Hi-C readouts that are better indica-
tive of cell type or tissue-specific chromatin spatial organizations,
we have in our previous work [14], identified thousands of fre-
quently interacting regions (FIREs) by studying a compendium of
Hi-C datasets across 14 human primary tissues and 7 cell types.
We defined FIREs as genomic regions with significantly higher
local chromatin interactions than expected under the null hypoth-
esis of random collisions [14].
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Fig. 1. Flow chart of calling FIREs using the FIREcaller software. * indicates when > 1
replicate per condition exists. Further detailed in Section 2.8.
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FIREs are distinct from previously discovered Hi-C structural
readouts such as A/B compartments, TADs, and chromatin loops.
In general, FIREs tend to reside at the center of TADs, associate with
intra-TAD enhancer-promoter (E-P) interactions, and are contained
within broader regions of active chromatin [14]. FIREs are tissue
and cell-type-specific, and enriched for tissue-specific enhancers
and nearby tissue-specifically expressed genes, suggesting their
potential relevance to tissue-specific transcription regulatory pro-
grams. FIREs are also conserved between human and mouse. In
addition, FIREs have been revealed to occur near cell-identity genes
and active enhancers [14]. Thus, FIREs have proven valuable in
identifying tissue and cell-type-specific regulatory regions, func-
tionally conserved regions such as enhancers shared by human
and mouse, and in interpreting non-coding genetic variants associ-
ated with human complex diseases and traits [14-16].

Since the discovery of FIREs, we have collaborated with
multiple groups to further demonstrate their value in various
applications, resulting in multiple recent preprints and publica-
tions [16-19]. For example, in an analysis of adult and fetal cortex
Hi-C datasets, FIREs and super-FIREs recapitulated key functions of
tissue-specificity, such as neurogenesis in fetal cortex and core
neuronal functions in adult cortex [19]. In addition, evolutionary
analyses revealed that these brain FIRE regions have stronger
evidence for positive selection and fewer rare genetic variants
[19]. For another example, Gorkin et al. [16] investigated how 3D
chromatin conformation in lymphoblastoid cell lines (LCL) varies
across 20 individuals. They reported that FIREs are significantly
enriched in LCL-specific enhancers, super-enhancers, and immune
related biological pathways and disease ontologies, further demon-
strating the close relationship between FIREs and cis-regulatory
elements [16]. In particular, even with the sample size of � 20 indi-
viduals, hundreds of FIRE-QTLs (that is, genetic variants associated
with the strength of FIRE) have been reported, suggesting that
FIREs show strong evidence of genetic regulation.

Despite the importance and utilities of FIREs, only in-house
pipelines exist for detecting FIREs, limiting the general application
of FIRE analysis and the full exploration of cell-type-specific chro-
matin spatial organization features from Hi-C data. In this work,
we describe FIREcaller, a stand-alone, user-friendly R package for
detecting FIREs from Hi-C data, as an implementation of the
method described in our previous work [14].
2. Materials and methods

2.1. Input matrix

First, FIREcaller takes an n�n Hi-C contact matrix M as the input
(Fig. 1), which can be from a gzipped text file, or the widely used .
hic or .cooler file. The contact matrix M is constructed by dividing
the genome into consecutive non-overlapping bins of size b for
each chromosome. In our original work [14], b was fixed at
40 Kb. In this FIREcaller work, we allow b to be 10 Kb, 20 Kb, or
the default 40 Kb. Each entry in the contact matrix M, mij , corre-
sponds to the number of reads mapped between bin i and bin j.
The corresponding symmetric n�n matrix reflects the number of
mapped intra-chromosomal reads between each bin pair [6]. We
removed all intra-chromosomal contacts within 15 Kb to filter
out reads due to self-ligation.

Recommendations for the resolution of the input matrix depend
on the sequencing depth of the input Hi-C data. Specifically, we
recommend using a 10 Kb bin resolution for Hi-C data with ~ 2 bil-
lion reads, 20 Kb bin resolution for Hi-C data with 0.5–2 billion
reads, and a 40 Kb bin resolution for Hi-C data with < 0.5 billion
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reads [6,8,20-23] (more details can be found in Supplement Infor-
mation S1).
2.2. Cis-interaction calculation

Taking the n�n contact matrix as the input, FIREcaller calculates
the total number of local cis-interactions for each bin (40 Kb
default). Following our previous work [14], we define ‘‘local” to
be within ~ 200 Kb by default. This threshold is largely driven by
empirical evidence that contact domains exert influences on tran-
scription regulation within 200 Kb. For instance, contact domains
reported in human GM12878 cells from in-situ Hi-C data are at a
median size of 185 Kb [8,20]. In addition, Jin et al. reported a med-
ian distance of E-P interactions at 124 Kb [21], Song et al.
reported ~ 80% of promoter-interacting regions within 160 Kb
[24], and Jung et al. found promoter-centered long-range chro-
matin interactions with a median distance of 158 Kb [25]. Consis-
tently, an analysis of the dorsolateral prefrontal cortex sample [26]
showed E-P interactions at a median distance of 157 Kb, and our
study showed adult cortex E-P interactions at a median distance
of 190 Kb [19] (Supplement Information S2). On the other hand,
multiple cis-regulatory regions have been shown to control their
target genes from longer genomic distances [3,19,20,27]. To
accommodate these longer-range chromatin interactions, our FIRE-
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caller software allows a user-specified upper bound of the cis-
interacting regions.

2.3. Bin level filtering

Bins are then filtered based on multiple criteria that may lead to
systematic biases, including effective restriction fragment lengths
which measures the density of the restriction enzyme cut sites
within each bin, GC content, and sequence uniqueness [28,29].
FIREcaller removes bins with 0 mappability, 0 GC content or 0
effective fragment length. It also removes bins for which > 25% of
their neighborhood (within 200 Kb, by default) bins have 0 mappa-
bility, 0 GC content or 0 effective fragment length. In addition, any
bins with a mappability < 90% are removed. Finally, any bins over-
lapped within the MHC region or the ENCODE blacklist regions [30]
are also filtered out (Supplement Information S3).

2.4. Within-sample normalization

FIREcaller then uses the HiCNormCis method [14] to conduct
within-sample normalization. HiCNormCis adopts a Poisson
regression approach, adjusting for the three major sources of sys-
tematic biases: effective fragment length, GC content, and mappa-
bility [14].

As a brief summary of the HiCNormCis method, we let Ui, Fi, GCi

and Mi represent the total cis-interactions (15–200 Kb, by default),
effective fragment length, GC content, and mappability for bin i,
respectively. We assume that Ui follows a Poisson distribution,
with mean hi, where log(hi) = b0 þ bFFi þ bGCGCi þ bMMi. After fit-
ting the Poisson regression model, we define the residuals Rifrom
the Poisson regression as the normalized cis-interaction for bin i
which are approximately normal (Supplement Information S4).

FIREcaller fits a Poisson regression model by default. Users can
also fit a negative binomial regression model. In practice, both
Poisson regression and negative binomial regression model
achieve similar effect of bias removal, while Poisson regression is
computationally more efficient (Supplement Information S5).

Our FIREcaller package also allows users to directly input a nor-
malized contact map, for example, data normalized by a different
normalization pipeline, via the ‘‘normalized” option. By default,
normalized = FALSE, if switched to TRUE, FIREcaller will bypass this
within-sample normalization step.

2.5. Across-sample normalization

If the user provided multiple Hi-C datasets, FIREcaller uses the R
function normalize.quantiles in the ‘‘preprocessCore” package to
perform quantile normalization of the normalized cis-interactions
across samples [31].

2.6. Identifying FIREs

FIREcaller then converts the normalized cis-interactions into Z-
scores, calculates one-sided p-values based on the standard normal
distribution, and classifies bins with p-value < 0.05 as FIREs. The
output file contains, for each bin, the normalized cis-interactions,
the –ln(p-value) (i.e., the continuous FIRE score), and the dichoto-
mized FIRE or non-FIRE classification.

2.7. Detecting Super-FIREs

FIREcaller also identifies contiguous FIREs, termed as super-FIRE
(Fig. 2). FIREcaller first concatenates all contiguous FIRE bins by
summing their –ln(p-value) (i.e., the continuous FIRE score) to
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quantify the overall or cumulative amount of chromatin interac-
tions. The summed continuous FIRE scores from contiguous FIREs
(which we term as super-FIRE score) are then evaluated against
their rank from least interactive to most interactive, where FIREcal-
ler determines the inflection point where the slope of the tangent
line is one. Super-FIREs are defined as contiguous FIRE regions
beyond the inflection point (Fig. 2B). This method is adapted from
the Ranking of Super-Enhancer (ROSE) algorithm [32], which was
originally proposed for the identification of super-enhancers.
2.8. Identification of differential FIREs

Similar to TADcompare to identify differential TADs [33], FIRE-
caller allows users to identify differential FIREs between different
experimental conditions (e.g., tissues, cell lines, treatments, or
developmental stages), when each condition contains at least
two replicates. FIREcaller first calculates the normalized cis-
interactions for each replicate, and then applies the R package
‘‘limma” to perform differential FIRE analysis. FIRE bins with fold
change > 2 (in terms of the average normalized cis-interactions
between conditions) and Benjamini-Hochberg adjusted p-
value < 0.05 are selected as differential FIREs.
2.9. Visualizing FIREs and super-FIREs

To visualize FIREs and super-FIREs with other epigenetic data
such as TAD boundaries, ChIP-seq peaks and the locations of typi-
cal enhancers and super-enhancers, FIREcaller generates a circos
plot using the ‘‘circlize” package in R [34] (Supplement Information
S10).
3. Results

To further demonstrate the utility of FIREcaller in terms of con-
necting the 3D genome structure and function, we first visualized
FIREs of Hi-C datasets in Schmitt et al [14] using a virtual 4C plot
(Section 3.1) in HUGIn [35], then presented novel FIRE results in
fetal [36] and adult brain tissue [37] and integrated with gene
expression data (Section 3.2), followed by the joint analysis of E-
P interactions, and histone modifications (Section 3.2 - 3.4), as well
as differential FIRE analysis (Section 3.5).
3.1. An illustrative example

We used the Hi-C data from human hippocampus tissue in our
previous study [14] to showcase the utility of FIREcaller. Fig. 3
shows an illustrative example of a 400 Kb super-FIRE (merged from
10 consecutive bins, and marked by the yellow horizontal bar in
the ‘‘FIREs” track), which overlaps with two hippocampus super-
enhancers (indicated by the two orange horizontal bars in the
‘‘Enhancers” track). Notably, this super-FIRE contains a
schizophrenia-associated GWAS SNP rs9960767 (black vertical
line) [38], and largely overlaps with gene TCF4 (chr18:
52,889,562–53,332,018; pink horizontal bar depicted at the top
with the color of the bar reflecting the log10 expression of the
gene), which plays an important role in neurodevelopment [39].
Since rs9960767 resides within a super-FIRE with highly frequent
local chromatin interactions, we hypothesize that chromatin spa-
tial organization may play an important role in gene regulation
in this region, elucidating potential mechanism by which
rs9960767 affects the risk of schizophrenia.



Fig. 2. Super-FIRE detection. A) Flow chart for super-FIRE identification. B) Scatterplot of clustered FIREs ranked by their super-FIRE scores for the Hi-C data from
hippocampus [14], ordered from the least interactive regions (left) to the most interactive regions (right). Blue dashed line highlights the inflection point of the curve and the
red dots highlight super-FIREs, which are clusters of contiguous FIREs to the right of the inflection point. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. An example of a super-FIRE in human hippocampus tissue. Virtual 4C plot of a 1 Mb region (chr18:52,665,002–53,665,002) anchored at the schizophrenia-associated
GWAS SNP rs9960767 (black vertical line), visualized by HUGIn [35]. The solid black, red and blue lines represent the observed contact frequency, expected contact frequency,
and –log10(p-value) from Fit-Hi-C [40], respectively. The dashed purple and green lines represent significant thresholds corresponding to Bonferroni correction and 5% FDR,
respectively. The yellow horizontal bar in the ‘‘FIREs” track depicts the 400 Kb super-FIRE region. The two orange horizontal bars in the ‘‘Enhancers” track mark the two
hippocampus super-enhancers in the region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Integrative analysis of FIREs with gene expression in human brain
tissues

To study the relationship between FIREs and tissue-specifically
expressed genes, we applied FIREcaller to Hi-C data from fetal [36]
and adult [37] cortical tissues, and identified 3,925 fetal FIREs and
3,926 adult FIREs. Among them, 2,407 FIREs are fetal-specific and
2,408 FIREs are adult-specific (the remaining 1,518 FIREs are
shared).

We then overlapped FIREs with gene promoters and found that
the dynamics of FIREs across brain developmental stages are clo-
sely associated with gene regulation dynamics during brain devel-
opment (Fig. 4). Specifically, we examined expression levels of
genes whose promoters (defined as �500 bp of transcription start
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site [TSS]) overlap with fetal brain-specific FIREs and are expressed
in fetal brain, similarly genes whose promoter overlap with adult
brain-specific FIREs and are expressed in adult brain. Gene expres-
sion data in both fetal and adult brain cortex are from two of our
recent studies [36,37]. These criteria resulted in 707 and 882 genes
in fetal and adult brain, respectively. Among them, 412 genes are
fetal brain specific, 587 are adult brain specific, and 295 genes
are shared (Table 1).

For the 587 genes overlapped adult brain-specific FIREs, the
mean gene expression levels, measured by log2(FPKM), are –
0.052 and 0.190 in fetal and adult brain cortex, respectively. These
587 genes are significantly up-regulated in adult brain (paired t-
test p-value = 1.3 � 10–10 Fig. 4; Table S5). Meanwhile, for the
412 genes overlapped with fetal brain-specific FIREs, the mean



Fig. 4. Distribution of expression for genes overlapping fetal or adult brain FIREs. The leftmost pair of violin boxplots shows the expression profile of the 587 genes mapped to
adult brain-specific FIREs, with expression measured in fetal brain cortex (blue) and adult brain cortex (red), respectively. The second pair of violin boxplots shows the
expression profile of the 412 genes mapped to fetal brain-specific FIREs, again in fetal brain cortex (blue) and adult brain cortex (red), respectively. The third pair shows the
expression profile of the 295 genes mapped to FIREs shared between fetal and adult brain, yet again in fetal brain cortex (blue) and in adult brain cortex (red). The fourth pair
shows the expression profile of genes not overlapping any FIREs, with a total of 15,640 such genes (labelled ‘‘Not FIRE bins”). To the farthest right shows the expression profile
of 816 genes overlapping with ‘‘permuted-FIREs” with fetal cortex gene expression (blue) and adult brain cortex gene expression (red). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Tissue-specific FIREs and shared FIREs, and overlapping genes.

# FIREs # FIREs overlapping
with a gene

# of genes
overlapping FIREs

Adult-specific 2,408 488 587
Fetal-specific 2,407 338 412
Shared 1,518 258 295
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gene expression levels are 0.551 and 0.209 in fetal and adult brain
cortex, respectively. These 412 genes are significantly up-regulated
in fetal brain (paired t-test p-value = 7.8 � 10–13) (Fig. 4; Table S5).
By contrast, for the 295 genes overlapped with FIREs shared
between fetal and adult cortex, the mean gene expression levels
are 0.328 and 0.312 in fetal and adult brain cortex, respectively.
These 295 genes show no significant difference in their expression
levels between fetal and adult brain (paired t-test p-value = 0.79).
Similarly, genes not overlapping with any FIREs exhibit no signifi-
cant expression differences in fetal and adult brains either (paired
t-test p-value = 0.96) (Fig. 4). For genes overlapped with
‘‘permuted-FIREs”, there is no significant difference in expression
359
levels between fetal and adult brain (paired t-test p-value = 0.84)
(Fig. 4).

3.3. Integrative analysis of FIREs and E-P interactions

We used Hi-C data from left ventricle and liver tissues from Sch-
mitt et al study [14], and applied Fit-Hi-C [40] to call significant
chromatin interactions at 40 Kb bin resolution. We only considered
bin pairs within 2 Mb distance. Next, we used H3K27ac ChIP-seq
peaks [41] in left ventricle and liver tissues to define active enhan-
cers, and used 500 bp upstream / downstream of TSS to define pro-
moters. A 40 Kb bin pair is defined as an E-P interaction if one bin
contains a promoter, and the other bin contains an active enhancer.
In total, at an FDR < 1%, we identified 41,401 and 30,569 E-P inter-
actions in left ventricle and liver, respectively. Among them, 29,096
are left ventricle-specific, and 18,264 liver-specific.

We then applied FIREcaller at 40 Kb resolution, and identified
3,643 FIREs in left ventricle and 3,642 FIREs in liver, with 1,186
FIREs shared between these two tissues. We found that FIREs are
enriched for E-P interactions compared to non-FIREs for both liver
and left ventricle (liver: odds ratio [OR] = 7.2, Fisher’s exact test p-
value < 2.2 � 10–16; left ventricle: OR = 4.0, p-value < 2.2 � 10–16).
Comparing between the two tissues, we observed that left



Table 2
Tissue-Specific FIREs and Tissue-Specific E-P interactions in Liver and Left Ventricle
tissues. In the table, we count the numbers of tissue-specific E-P interactions
involving tissue-specific FIREs. For example, 1,093 means there are 1,093 left ventricle
specific E-P interactions involving left ventricle-specific FIREs. Similarly, for the
remaining three counts.

Left Ventricle-Specific E-P Liver-Specific E-P

Left Ventricle-Specific FIRE 1,093 416
Liver-Specific FIRE 951 1,392

Fig. 6. Relationship between differential FIREs and cell-type-specific enhancers in
GM12878 and H1 cells. The size of the dots corresponds to the OR and the color of
the dots corresponds to the p-value.
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ventricle-specific E-P interactions are highly enriched in left
ventricle-specific FIREs and liver-specific E-P interactions highly
enriched in liver-specific FIREs (OR = 3.8, p-value < 2.2 � 10–16;
Table 2). Our results demonstrate that the tissue-specificity of
FIREs is closely associated with the tissue-specificity of E-P interac-
tions [14].

3.4. Integrative analysis of FIREs and ChIP-seq peaks.

Next, we evaluated the relationship between FIREs and histone
modifications in cortex samples [26,37,41]. We found that
H3K4me3 and H3K27ac ChIP-seq peaks are both enriched at FIRE
regions (Fig. 5).

3.5. Differential FIREs between GM12878 and H1 cells

We used FIREcaller to identify differential FIREs between
GM12878 cells [8] and H1 embryonic stem cells [14], where Hi-C
data for each cell type consists of two biological replicates. We
identified 4,140 differential FIREs, where 2,346 FIREs are signifi-
cantly more interactive in GM12878 and 1,794 more interactive
in H1.

Next, we tested whether the differential FIREs are enriched for
typical enhancers or super-enhancers [41] in the corresponding
cell types. As expected (Fig. 6), FIREs more interactive in H1 are sig-
nificantly more likely to overlap H1 typical enhancers (OR = 1.74;
Fisher’s exact test p-value = 1.03 � 10-4) and super-enhancers
(OR = 1.94; p-value = 0.04). Similarly FIREs more interactive in
GM12878 are significantly more likely to overlap GM12878 typical
enhancers (OR = 78.37; Fisher’s exact test p-value < 2.2 � 10-16),
Fig. 5. H3K4me3 and H3K27ac ChIP-seq peaks are enriched at FIREs. X axis is the distan
enrichment quantified by MACS [42] when applied to the corresponding histone ChIP-s
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and super-enhancers (OR = 78.92; p-value < 2.2 � 10-16). We note
that the odd ratios for these two cell lines differ rather drastically,
which is driven by the fact that H1 FIREs are significantly, but not
as strongly enriched in H1 enhancers, compared to GM12878.
These results are consistent with those reported in the original
Schmitt et al paper [14] where ~ 35% GM12878 FIREs overlapped
with GM12878 typical enhancers, whereas only ~ 6% H1 FIREs
overlapped with H1 typical enhancers (Schmitt et al Fig. 4C). Sim-
ilar patterns were observed for super-enhancers (Schmitt et al
Fig. 4D).
4. Discussion

In this paper, we present FIREcaller, a user-friendly R package to
identify FIREs from Hi-C data. We demonstrate its utilities through
applications to multiple Hi-C datasets and integrative analyses
with E-P interactions, histone modifications and gene expression.
We confirmed that FIREs are tissue/cell-type-specific, enriched of
tissue/cell-type-specific enhancers, and are near tissue/cell type-
ce from a bin, with the bins grouped into FIRE bins and non-FIRE bins. Y axis is fold
eq data.
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specifically expressed genes, informative for prioritizing variants
identified from genome-wide association studies (GWAS), consis-
tent with other published works [3,14,16-19]. In addition to the
identification of FIREs and super-FIREs, our FIREcaller also allows
the detection of differential FIREs and visualization of results.

With the development of FIREcaller, FIREs can be easily identi-
fied and used in Hi-C data analysis along with TADs, A/B compart-
ments, and chromatin loops. FIREcaller is computationally
efficient. Using a single core of a 2.50 GHz Intel processor, the
CPU time for running FIREcaller for one Hi-C dataset, all autosomal
chromosomes together, at 40 Kb resolution with default parame-
ters requires 20.3 s with ~ 113 MB of memory.

Except for the identification of differential FIREs, FIREcaller
treats each Hi-C dataset as an independent sample. When multiple
replicates are available, user can merge the replicates before call-
ing FIREs and super-FIREs. For differential FIREs, we currently do
not allow single replicate as we consider multiple replicates to
be necessary for meaningful statistical inference. Future research
can explore strategies to accommodate single replicate from each
or some conditions. One limitation is that we have not yet applied
FIRE calling in many organisms, which warrants future studies.
Another limitation of the current FIREcaller is that the resolution
might still be too coarse, largely due to the lack of high-depth
Hi-C data. With the availability of high-depth Hi-C data based on
4-bp cutters or technologies that allow higher-resolution chro-
matin architecture mapping in the future, we will explore FIREcal-
ler further at higher resolutions. As a region-based summary of
spatial organization information, FIREcaller also lends itself well
to sparse data such as those from single cell Hi-C, which warrants
further study.

In sum, we developed FIREcaller, a stand-alone, user-friendly R
package, to identify FIREs from Hi-C data. We believe FIREcaller is a
useful tool in studying tissue/cell-type-specific features of chro-
matin spatial organization.
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