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Summary

We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by 

multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall 

mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation 

signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering 

refined prior clustering analyses and identified a poor-survival ‘neuronal’ subtype in which the 

majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, lncRNA, 

and miRNA expression converged to identify subsets with differential epithelial-mesenchymal 

transition status, carcinoma-in-situ scores, histologic features, and survival. Our analyses identified 

5 expression subtypes that may stratify response to different treatments.

Graphical Abstract

Keywords

APOBEC mutation; basal mRNA subtype; neuronal subtype; DNA methylation; lncRNA 
transcriptome; luminal mRNA subtype; muscle-invasive bladder cancer; microRNA; neoantigen; 
regulon

Introduction

Urothelial bladder cancer is a heterogeneous epithelial malignancy that presents most 

commonly as an exophytic tumor confined to the mucosa or lamina propria. However, 25% 

of patients have muscle-invasive (MIBC) or metastatic disease at the time of initial diagnosis 
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and have a worse prognosis. We previously reported an integrated genomic analysis of 131 

MIBC samples (Cancer Genome Atlas Research Network, 2014a), finding a high somatic 

mutation rate (median 5.5 per megabase) similar to that of non-small cell lung cancer and 

melanoma (Lawrence et al., 2013); statistically significant recurrent mutations in 32 genes, 

including several chromatin regulators; four expression subtypes; recurrent in-frame 

activating FGFR3–TACC3 fusions; and potential therapeutic targets in 69% of the samples. 

Here, we report a comprehensive analysis of the full TCGA cohort of 412 MIBC cases. The 

expanded cohort allowed us to identify: 32 additional significantly mutated genes; that 

APOBEC-signature mutagenesis is associated with both a high mutation rate and improved 

clinical outcome; an expression subtype that we term ‘neuronal’; and multiple recurrent 

translocations that lead to fusion genes. Clustering expression profiles for mRNA, long 

noncoding RNA, and miRNA further confirmed distinct subsets of MIBC with differential 

survival.

Demographic, Clinical, and Pathological Data

412 chemotherapy-naive, invasive, high-grade urothelial tumors (T1 [n = 1], T2–T4a, N0–3, 

M0–1, Tables S1 and S2.1) from 36 tissue source sites (Table S2.2) were re-reviewed by 4 

expert genitourinary pathologists, who classified them as pure urothelial or mixed histology 

(Figure S1, Table S2.3), and assessed immune infiltrates (Table S2.4). 52 (13%) had 

urothelial carcinoma with variant histology, including 42 squamous, 4 small cell/

neuroendocrine, 2 micropapillary, and 4 plasmacytoid. 5 additional tumors that met 

screening criteria were included: 3 pure squamous cell bladder carcinomas, 1 squamous cell 

carcinoma of non-bladder origin, and 1 bladder adenocarcinoma. Complete clinical data 

were available for 406 tumors (Table S1). 35 patients had received prior intravesical 

immunotherapy with BCG, and 12 had received neoadjuvant chemotherapy (NAC) after 

tumor acquisition. 230 were alive, 163 had recurred, and 182 had died. The median follow-

up was 20.9 months for those alive at last follow-up. At least 122 (67%) deaths were cancer-

related. The samples were characterized by clinical data and by 6 molecular profiling 

platforms (Table S2.5).

Somatic DNA Alterations

Affymetrix SNP6.0 arrays were used to assess somatic copy number alterations (SCNAs). 

GISTIC analysis identified 34 amplified and 32 deleted genomic regions (q < 0.1, Tables 

S2.6–8). Many of the focal SCNAs involved genes known to be amplified in bladder cancer, 

including AHR, BCL2L1, CCND1, CCNE1, E2F3, EGFR, ERBB2, FGFR3, GATA3, 

KRAS, MDM2, MYCL1, PPARG, PVRL4, SOX4, TERT, YWHAZ and ZNF703 (Cancer 

Genome Atlas Research Network, 2014a). The most common recurrent (22%) focal deletion 

(copy number < 1) contained CDKN2A (9p21.3). Recurrent focal deletions in RAD51B 
(14q24.1) were not observed in the first 131 cases.

Whole-exome sequencing (WES) of 412 tumors and matched normal samples targeted 

193,094 exons in 18,862 genes (mean coverage 85X, 79% of target bases > 30X). MuTect 

identified 131,660 somatic mutations (128,772 single-nucleotide variants [SNVs] and 2,888 

indels), with high non-synonymous mutation rates (mean 8.2 and median 5.8 per megabase 
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[Mb]) (Figure 1A). Most mutations were C>G transversions (27%) or C>T transitions 

(51%). Whole genome-doubling events were found in 221 (54%) tumors (Table S1).

To identify processes contributing to the high mutation rate, we used Bayesian NMF to 

identify 5 mutation signatures (Figure S2A). APOBEC-a and APOBEC-b were variants of 

the hallmark APOBEC mutagenesis signature. A third signature, consisting of C>T 

transitions at CpG dinucleotides, is likely due to 5-methylcytosine deamination. A fourth, 

POLE, was present in a single ultra-mutated sample, with > 4000 SNVs and a POLE 
mutation (P286R). The fifth, ERCC2, had a relatively uniform spectrum of base changes and 

has been associated with ERCC2 mutations (Kim et al., 2016b).

The APOBEC-a and -b signatures accounted for 67% of all SNVs. Results from an 

independent method for identifying APOBEC-signature mutations (Roberts et al., 2013) 

strongly correlated with mutation load assigned to APOBEC-a and -b groups (Figure S2B). 

The total count of mutations with a stringent APOBEC signature correlated with the 

remaining mutation burden (r = 0.48, Figure S2C), suggesting that some mutations not 

assigned to APOBEC-signature mutagenesis were also APOBEC-mediated. As expected 

(Roberts et al., 2013), levels of APOBEC-signature mutagenesis correlated with expression 

of APOBEC3A and APOBEC3B (Figure S2D). C>T at CpG and ERCC2 mutation 

signatures accounted for 20% and 8% of total SNVs, respectively. 64% of all mutations, as 

well as 62% of APOBEC-a- and 75% of APOBEC-b-signature mutations (likelihood of 

signature association ≥ 0.7; Methods) (Kasar et al., 2015) were clonal (cancer cell fraction ≥ 

0.9), suggesting that more than half of the APOBEC-signature mutation load was likely 

generated early in bladder cancer development.

Unsupervised clustering of APOBEC-a and -b, ERCC2, and C>T-at-CpG signatures 

identified four mutational signature clusters, MSig1 to MSig4 (Figure 1; Figure S2E), which 

were associated with overall survival (Figure 1B, p = 1.4·10−4). Patients with MSig1 cancers 

(high APOBEC-signature mutagenesis and high mutation burden) showed an exceptional 

75% 5-year survival probability. Better survival was also seen in subsets defined by high 

mutation burden or high APOBEC-signature mutation load (Figure 1B). MSig2 cancers had 

the lowest mutation rate and poorest 5-year survival (22%). MSig4 cluster samples were 

enriched in both ERCC2 signature mutations (average contribution 49% vs. 17% in all 

others, Figure 1A) and ERCC2 mutations (24 out of 39, p = 10−13). ERCC2 signature 

mutations were highest in smokers with ERCC2 mutations (p = 6.9 × 10−11); for cases with 

wild type ERCC2, ERCC2 signature mutations were at higher levels in smokers than in non-

smokers (Figure S2F).

MutSig 2CV identified 58 significantly mutated genes (SMGs) (q < 0.1; Tables S1 and 

S2.9). 34 of the 58 had not been identified as SMGs in our earlier analysis (Cancer Genome 

Atlas Research Network, 2014a); further, 16 of the 34 had not been implicated as cancer 

SMGs in a recent pan-cancer analysis (Lawrence et al., 2014) (Table S2.9). 7 of the 34 genes 

were mutated in > 10% of samples: KMT2C (18%), ATM (14%), FAT1 (12%), CREBBP 
(12%), ERBB2 (12%), SPTAN1 (12%), and KMT2A (11%). Alterations were mutually 

exclusive between CDKN2A and TP53, CDKN2A and RB1, CDKN2A and E2F3, TP53 and 

MDM2, FGFR3 and E2F3, and FGFR3 and RB1 (Table S2.10, q < 0.2). Similar analyses 
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showed co-occurrence of alterations in TP53 and RB1, TP53 and E2F3, and FGFR3 and 

CDKN2A (Table S2.11, q < 0.2). FGFR3 mutations and CDKN2A focal SCNAs co-

occurred in 27 (7%) tumors (Table S1), which may be MIBCs that have progressed from 

non-invasive tumors (Rebouissou et al., 2012). 3 of 4 tumors with plasmacytoid histology 

had nonsense CDH1 mutations, consistent with a previous report (Al-Ahmadie et al., 2016).

We identified four DNA-based clusters using unsupervised NMF clustering with SMG 

mutations (Mut) and focal SCNAs (CN) (Figures S2G and H). The four MutCN clusters 

were characterized by: TP53 and RB1 mutations, SOX4/E2F3 amplification, mutations in 

chromatin-modifying genes, and FGFR3, KDM6A, and STAG2 mutations.

Neoantigen load was strongly correlated with mutation burden, elevated in the MSig1 cluster 

(p = 2.9 × 10−12), and associated with survival (p = 5.2 × 10−4; Figure 1B). It was an 

independent predictor of outcome in addition to age, AJCC tumor stage, and squamous 

differentiation (p = 8 × 10−4; Table S2.12). Polysolver-based HLA mutation detection 

identified 21 non-synonymous variants in 19 of 412 tumors (4.6%, Table S2.13). HLA 

mutations were more common in MSig1 cluster (p = 0.039), suggesting that they may have 

resulted from APOBEC-signature mutagenesis. HLA mutations were somewhat more 

common in patients with prior BCG treatment, 4 of 35 (11.4%) vs. 8 of 261 (3.1%) without 

prior BCG treatment (p = 0.04, Chi-square test), perhaps positively selected in response to 

immunological pressure.

Using RNA-seq data, we identified 784 gene fusions (Table S2.14). The most common was 

an intra-chromosomal FGFR3-TACC3 fusion (n = 10). There were 9 cases of an intra-

chromosomal translocation ITGB6-LOC100505984, whose functional significance is 

uncertain. PPARG was involved in 4 TSEN2-PPARG and 2 MKRN2-PPARG fusions, and 

PPARG expression levels were higher than in samples without such fusions (p = 6 × 10−3). 

Four of the six PPARG fusions led to mRNA products for which the predicted proteins 

retained both PPARG’s DNA-binding and ligand-binding domains, suggesting that they 

were functional (Figure S2I). We searched for similar fusions in RNA-seq data from 30 

human bladder cancer cell lines (Table S2.15). In lines 5637 and 1A6 we identified 

CASC15-PPARG fusions that retained PPARG’s full DNA binding domain; in UC9 we 

identified an NR2C2-PPARG fusion that retained 75% of PPARG’s ligand-binding domain. 

PPARG was overexpressed in all three of these cell lines (p < 0.05).

DNA Methylation

Unsupervised clustering using tumor-associated hypermethylated CpG sites or, 

independently, tumor-associated hypomethylated sites, identified 5 major clusters that were 

significantly correlated with other data types (Figures S3A and S3B). Of particular interest 

was a group of tumors with high purity that showed marked loss of DNA methylation 

(hypomethylation cluster 4, Figure S3B,C). This group significantly overlapped with the 

DNA hypermethylation cluster 2, which showed a low frequency of DNA hypermethylation 

(p = 3.2 × 10−8, odds ratio 9.5, Figure S3D). Samples in cluster 4 showed frequent FGFR3 
mutation (p = 6 × 10−9) and CDKN2A deletion (p = 4 × 10−13), and had no TP53 or 

RB1mutations. Further, those tumors belonged to the luminal-papillary mRNA subtype, 
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exhibited papillary histology (p = 5 × 10−12), were almost all node-negative (p = 5 × 10−12), 

were from younger patients (median age 61 vs. 69; p < 4 × 10−3), and showed better survival 

(p < 0.05; log-rank test, Figure S3E). DNA hypomethylation appeared more widespread in 

low-stage, noninvasive urothelial tumors (Wolff et al., 2010). Analysis of hypomethylated 

CpG sites in this group revealed 12 genes whose hypomethylation was significantly 

correlated with increased expression (Figure S3F; Table S2.16).

Integrated analysis of DNA methylation and gene expression identified 158 genes that were 

epigenetically silenced (Table S2.17, Figure S3G). Although some of the silencing events 

were probably background epigenetic noise, CDKN2A, FAT1, and CASP8 were mutated in 

some tumors and (mutually exclusively) epigenetically silenced in others (Figure S3H). 

Silenced genes included latexin (LXN), the only known endogenous carboxypeptidase 

inhibitor (silenced in 27%), Poly(ADP-ribose) polymerase PARP6 (26%), nicotinate 

phosphoribosyltransferase (NAPRT) (13%), and SPATC1L (19%). In contrast, we found no 

evidence for promoter DNA hypermethylation of other classical tumor suppressor genes, 

including TP53, PTEN, TSC1, TSC2, NF1, NF2, and RB1.

mRNA Expression-Based Molecular Subtypes

Unbiased NMF consensus clustering of RNA-seq data (n = 408) identified five expression 

subtypes (Figure 2): luminal-papillary (n = 142, 35%), luminal-infiltrated (n = 78, 19%), 

luminal (n = 26, 6%), basal-squamous (n = 142, 35%), and neuronal (n = 20, 5%). The 

subtypes were associated with overall survival (p = 4 × 10−4) (Figure S4A). The analysis 

confirmed the two major luminal and basal transcriptional subtypes identified by TCGA and 

other groups (Choi et al., 2014b; Damrauer et al., 2014; Sjodahl et al., 2012), while 

discriminating within those subtypes and identifying luminal and neuronal subtypes (see 

below). The subtypes were concordant with the four subtypes that we had reported for the 

131-tumor subset of the current cohort (Cancer Genome Atlas Research Network, 2014a) 

(Figure 2; Tables S2.18 and S2.19).

Most samples in the luminal subtypes showed high expression of uroplakins (UPK2 and 

UPK1A) and urothelial differentiation markers (FOXA1, GATA3, PPARG) (Figure 2). 

Although differences in purity appeared to contribute to their separation into different 

clusters (Figure S4B), each of the three subtypes also showed distinctive expression features 

with respect to wild type p53, epithelial-mesenchymal transition (EMT), and stromal gene 

signatures (Figure S4C; Methods: mRNA Expression Profiling: Gene expression signature 

scores).

The luminal-papillary cluster was enriched in tumors with papillary morphology (58% vs. 

20% in other subtypes; p < 10−13), lower stage (T2, 55% vs. 23%; p < 10−8), and higher 

purity (median 0.84 vs. 0.50 in other luminal subtypes). Several features suggest a dominant 

role of FGFR3 in 44% of the luminal-papillary tumors: enrichment with FGFR3 mutations 

(42/57; p < 10−9), amplification (5/5; p = 5 × 10−3), overexpression (4-fold vs. median, 

49/67; p < 10−11), and FGFR3-TACC3 fusions (8/10, p = 4 × 10−3). These tumors also had 

low carcinoma-in-situ (CIS) expression signature scores (Figures S4C and Table S2.20; p < 

1016) (Dyrskjot et al., 2004). They retained sonic-hedgehog signaling (SHH, Figure 2). 
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Together, these features suggest that many tumors in this cluster developed from a precursor 

non-muscle-invasive papillary bladder cancer.

The luminal-infiltrated subtype was distinguished from other luminal subtypes by lower 

purity (median 0.46 vs. 0.68; p < 10−11), consistent with the presence of lymphocytic 

infiltrates, and by strong expression of smooth muscle and myofibroblast gene signatures 

(Figures 2 and S4C). 36 of 45 (80%) of the tumors in this subtype had features similar to an 

expression subtype that has been associated with chemoresistance and characterized by a 

wild type p53 signature (Choi et al., 2014b). The wild type p53 signature score was 

inversely correlated with tumor purity (Pearson r = −0.4; p < .001), suggesting the presence 

of smooth muscle and fibroblast cells as a driver of the signature. This subtype contained 23 

of 24 tumors that we had previously classified as Cluster-II, which was reported to benefit 

most from anti-PDL1 treatment (Rosenberg et al., 2016), and had an intermediate 5-year 

survival, comparable to basal-squamous and luminal subtypes (Figure S4A). These tumors 

had increased expression of several immune markers, including CD274 (PD-L1) and 

PDCD1 (PD-1) (Figure 2).

The luminal subtype had the highest expression levels of several uroplakins (UPK1A, 

UPK2) and genes that are highly expressed in terminally differentiated urothelial umbrella 

cells (KRT20, SNX31) (Figure 2). This suggests that these tumors are derived from 

intermediate cells that have a transcriptional program that leads to expression of markers 

characteristic of normal umbrella cells.

The basal-squamous subtype was characterized by high expression of basal and stem-like 

markers (CD44, KRT5, KRT6A, KRT14) and squamous differentiation markers (TGM1, 
DSC3, PI3). The subtype included 37 of 45 tumors squamous features (p < 10−11), was 

enriched in TP53 mutations (p = 5 × 10−3), and was more common in females (33% vs. 21% 

in other subtypes; p = 0.024). Many tumors in this subtype also showed strong expression of 

CIS signature genes (Figures 2 and S4A) and loss of SHH signaling (Figure 2), suggesting 

that they developed from basal cells and CIS lesions. This subtype also showed the strongest 

immune expression signature, including T-cell markers and inflammation genes (Figure 

S4C), consistent with relatively low purity (median 0.49) (Figure S4B) and the presence of 

lymphocytic infiltrates (p < 1 × 10−4). Approximately 20 samples (right portion of this 

subtype in Figure 2) lacked expression of both basal and squamous markers, but clustered 

with this subtype because they lacked luminal marker expression and had high immune gene 

expression.

The neuronal subtype included 3 of 4 with neuroendocrine (NE) histology (p = 5 × 10−3) 

and an additional 17 tumors that had no histopathologic features suggestive of NE origin. 

All 20 showed relatively high expression of neuronal differentiation and development genes, 

as well as typical NE markers (Figures 2 and S4C; p < 10−4). Loss of TP53 and RB1 is a 

hallmark of small cell NE cancer, and 10 of 20 (50%) samples had mutations in both TP53 
and RB1, or TP53 mutation and E2F3 amplification. 17 (85%) of the 20 tumors had 

alterations in genes in the p53/cell cycle pathway. Notably, this subtype had the poorest 

survival (p = 4 × 10−4, log-rank test), consistent with the known aggressive phenotype of NE 

bladder cancers.
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As we had previously shown (Cancer Genome Atlas Research Network, 2014a), several 

proteins (GATA3, EGFR, CDH1, HER2) and miRNAs (miR-200s, miR-99a, miR-100) were 

strongly differentially expressed among the mRNA subtypes (Figures 2, S4D,E and S5A; 

Table S2.21, S.22).

Altered Pathways

Many canonical signaling pathways were altered (Figure 3). The p53/Cell Cycle pathway 

was inactivated in 89% of tumors, with TP53 mutations in 48%, MDM2 amplification (copy 

number > 4) in 6%, and MDM2 overexpression (>2-fold above the median) in 19%. TP53 
mutations were enriched in tumors with genome-doubling events (p < 10−7; Table S2.23), 

suggesting that loss of TP53 activity facilitates genome doubling (Zack et al., 2013).

RB1 mutations (17%) were mostly inactivating and associated with reduced mRNA levels. 

CDKN1A mutations (11%) were predominantly inactivating. CDKN2A mutations (7%) and 

homozygous deletions (22%) were common, as previously described (Williamson et al., 

1995).

Alterations in DNA repair pathways included mutations in ATM (n = 57; 14%) and ERCC2 
(n = 40; 9%) and deletions in RAD51B (n = 10; 2%). All non-silent ERCC2 mutations were 

missense, and many mapped within, or within ±10 amino acids of, the conserved helicase 

domain, suggesting that they impair ERCC2 function and may have dominant negative 

effects (Van Allen et al., 2014).

The FGFR3, PIK3CA, and RAS oncogenes harbored recurrent hotspot mutations. Most 

FGFR3 mutations were the known S249C or Y373C, were more frequent in lower-stage 

tumors (21% in T2 vs. 10% in T3,T4; p = 0.003), and were associated with better survival (p 

= 0.04). PIK3CA mutations (n = 100; 22%) were more common in the helical domain (E542 

and E545; n = 54 total) than in the kinase domain (M1043, H1047; n = 10 total), and were 

likely due to APOBEC mutagenic activity (Cancer Genome Atlas Research Network, 2017; 

Roberts et al., 2013). ERBB2 mutations were common at S310 (S280 in the LRG_724t1 

transcript) in the extracellular domain (24 of 57, 42%), and were also likely due to 

APOBEC-signature mutagenesis.

Ten of the 39 SMGs with mutation frequency >5% were in chromatin-modifying or 

chromatin-regulatory genes: a histone demethylase (KDM6A), histone methyltransferases 

(KMT2A, KMT2C, KMT2D), histone acetylases (CREBBP, EP300, KANSL1), a member 

of the SWI/SNF chromatin remodeling complex (ARID1A), and Polycomb group genes 

(ASXL1, ASXL2). Mutations in these genes were predominantly inactivating (50% frame-

shift or nonsense mutations vs. 26% in other SMGs; p = 10−30), strongly suggesting that 

they are functionally relevant. ARID1A, CREBBP, and KDM6A were also targets of 

genomic deletion (4.2%, 14.2%, 4.9%, respectively, Table S1).
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Noncoding RNAs (lncRNAs and miRNAs) Subdivide mRNA Expression 

Subtypes

Because lncRNAs can be more specific to biological state than coding RNAs (Nguyen and 

Carninci, 2016), we calculated transcript abundances for 8167 (Ensembl v82) lncRNAs and 

processed transcripts. Four unsupervised consensus clusters were associated with purity (p = 

2.3 × 10−27), EMT score (p = 9.9 × 10−34), expression of CIS gene sets (p < 1 × 10−39) 

(Dyrskjot et al., 2004), and 5-year survival (p = 0.015) (Figure 4).

The lncRNA clusters were concordant with the mRNA subtypes (p = 2 × 10−81) and further 

discriminated within them. For example, lncRNA cluster 3 (n = 76), a better-survival subset 

of the luminal-papillary subtype, was depleted in TP53 mutations but enriched in FGRF3 

mutations and fusions. It consisted largely of high-purity, papillary histology, and organ-

confined cancers. Levels of many cancer-associated lncRNAs, including DANCR, GAS5, 

MALAT1, NEAT1, NORAD (LINC00657), and UCA1, were high; others, including 

ZNF667-AS1 (MORT) and LINC00152 (associated with lower EMT scores), were low 

(Figure S5B).

For miRNA mature strands, four unsupervised consensus clusters were associated with 

purity (p = 5 × 10−33), EMT scores (p = 5 × 10−39) (Table S2.24), and 5-year survival (p = 

1.7 × 10−3) (Figure 5). They were concordant with subtypes for mRNA (p = 2 × 10−52), 

lncRNA (p = 2 × 10−45), hypomethylation (p = 5 × 10−30), RPPA (p = 9 × 10−30), and with 

histological subtype (papillary vs. non-papillary), combined T-stage/Node+, node positive/

negative, and CIS gene sets (Dyrskjot et al., 2004). Many cancer-associated miRNAs were 

differentially abundant across the subtypes (Figure S5C).

MiRNA subtype 3 was enriched in lncRNA 3 and showed the best survival among the 4 

subtypes, consistent with low EMT scores and high miR-200 levels; CD274 (PD-L1) and 

PDCD1 (PD-1) levels were low. MiRNA subtypes defined subsets within the mRNA 

subtypes, with miR 4 (n = 75) and miR 2 (n = 127) containing most of the basal/squamous 

mRNA subtype samples and showing relatively poor survival, consistent with relatively high 

EMT scores.

Regulon Activity Differences Among RNA Subtypes

To further characterize the molecular differences between RNA-based subtypes, we 

analyzed activity profiles of 23 candidate ‘regulator’ genes that that have been associated 

with urothelial cancer (Methods, Table S2.25). By ‘regulator’ we mean a gene whose 

product induces and/or represses a target gene set, which we refer to as a ‘regulon’ (Castro 

et al., 2016a). We performed the analysis for this cohort of 412 samples, and also for an 

independent, mixed non-muscle invasive/MIBC cohort (n = 308) (Sjodahl et al., 2012). In 

both cohorts, the inferred regulon activity profiles sorted covariates that included histology, 

mRNA subtype, and EMT score (Figure S5D,E). Segregating by activated vs. repressed 

profiles identified survival-associated regulators with Kaplan-Meier plots and hazard ratios 

that were consistent in the two cohorts (Figure S5F,G). This analysis suggested that regulon 

analysis was robust and biologically relevant.
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We then compared regulon activity across RNA-based subtypes, finding that activities varied 

most strongly for mRNA and lncRNA subtypes, and somewhat less strongly for miRNA 

subtypes (Figures 4, 5, and S5H). In luminal-papillary cases, 11 regulons were activated. 

lncRNA subtypes 2 and 3 (Figure 4A) were both associated with the luminal-papillary 

mRNA subtype and showed similar activation profiles for 9 regulons. Their profiles were 

consistent with the hypothesis that transcription factors GATA3, FOXA1, and PPARɣ drive 

luminal cell biology in bladder cancer (Warrick et al., 2016). The better-survival lncRNA 3 

differed from lncRNA 2 by having, among other characteristics, an activated regulon for 

FGFR3 and undefined (i.e. neither activated nor repressed) regulon activity for TP63. 

Twelve regulons were activated in the basal/squamous cases, which were associated with 

miRNA clusters 2 and 4 (Figure 5A). The TP63 regulon was generally activated in miR 4 

but repressed in miR 2, and the EGFR regulon was largely activated in miR 4 but had 

variable activity in miR 2. Overall, the analysis implicated certain regulators as important 

drivers of the differences in expression phenotype among bladder cancer subtypes.

Microbe analysis

We used RNA-seq (n = 408), WES (n = 412), and whole-genome sequence (n = 136) data to 

identify evidence of infection by HPV (n = 11), HHV4 (n = 6), HHV5 (n = 6), and 

Polyomavirus (n=1) (Tables S3.1–3.3, S3.7–3.8). For HPV we identified genomic 

integration in 4 tumors, with breakpoints associated with BCL2L1, SLC2A1-AS1, DEC1, 

SEC16A, and CCDC68 (Tables S3.4–3.6, 3.9). BK polyoma integration breakpoints were 

associated with FIGN and LIMA1 genes. For HHV4 and HHV5 we found no evidence for 

genomic integration. Hence, viral infection may contribute to a small percentage of 

urothelial carcinomas.

Proteomic Analysis by RPPA

Unsupervised consensus clustering of RPPA proteomic data for 208 antibodies (Table S2.26) 

and 343 of the 412 tumors resulted in five robust clusters that differed in protein expression 

profiles, pathway activities, and overall survival (p = 0.019) (Figure S6A,B).

RPPA cluster 1 (epithelial/papillary) showed the best outcomes, a low EMT pathway score 

(Figure S6C,D), and enrichment with papillary samples (Table S2.27). Cluster 2 (epithelial/

intermediate) was intermediate in profile and outcomes. Elevated HER2 expression levels in 

clusters 1 and 2 suggest that these cases may respond to anti-HER2 directed therapies (e.g. 

Herceptin, T-DM1).

Cluster 3 (proliferative/low signaling) had a high cell cycle pathway score, principally due to 

high CYCLINB1 and PCNA expression, with low MAPK, PI3K, and mTOR pathway 

signaling (Figure S6D). Although cluster 3 tumors showed low levels of signaling, they 

expressed high levels of EGFR, suggesting them as possible candidates for EGFR inhibitors.

Clusters 4 and 5 had higher EMT pathway scores (Figure S6D) and were enriched with non-

papillary and pathologic stage III and IV tumors. Cluster 4 (EMT/hormone signaling) had 

the worst outcome and relatively high reactive and hormone receptor pathway scores. 

Cluster 5 (reactive) had high levels of MYH11, HSP70, FIBRONECTIN, COLLAGEN VI, 
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CAVEOLIN1 and RICTOR, as well as remarkably low levels of the proapoptotic mediator 

BAK, perhaps contributing to the cluster’s poor outcomes. Reactive cancer subtypes showed 

high levels of proteins that are likely produced in the tumor microenvironment as the result 

of interactions between cancer cells and cells in the microenvironment, including fibroblasts, 

as discussed previously for reactive breast cancer subtypes (Cancer Genome Atlas Network, 

2012; Dennison et al., 2016).

Integrative Clustering Analysis

We used the Cluster of Cluster Assignments method (COCA) (Hoadley et al., 2014) to 

integrate and compare the cluster assignments obtained by clustering mRNA, lncRNA, 

miRNA data independently. The analysis identified overlapping subtype classifications. 

Although COCA subtypes were largely determined by the mRNA subtypes, lncRNA and 

miRNA data created finer-grained subdivisions (Figure 6A).

Univariate and Multivariate Survival

This rich data set enabled us to do a detailed analysis of clinical and molecular variables for 

association with overall survival. While follow-up times remain limited, the event rate was 

high enough that results were informative.

Of 101 covariates analyzed by univariate log-rank tests, 20 had a Benjamini-Hochberg-

adjusted p < 0.05 (Table S2.28). We removed 7 with many missing cases, leaving 13 for 

multivariate Cox regression analysis (Figure S7A). Results of nine candidate penalized 

methods were approximately equivalent (Figure S7B), we chose LASSO regression 

(Hutmacher and Kowalski, 2015; Walter and Tiemeier, 2009) to fit a multivariate model. For 

mRNA, lncRNA, miRNA and MSig subtypes, we set the best-survival subtype as the 

reference variable.

After filtering regression coefficients at |β| > 0.1, 7 variables representing 4 covariates were 

retained (Table S2.29, Figure 6B). A coefficient’s sign and magnitude associates a variable 

with poorer or better survival rates, relative to its reference variable, in the context of the set 

of regression variables retained in the model. The variables with largest coefficients were 

AJCC stages III and IV, mRNA neuronal and luminal subtypes, low mutation rate MSig 2, 

and miRNA subtype 4, which is a subset of basal-squamous cases, and KLF4 regulon 

activity, all of which were associated with worse survival. The mRNA luminal-infiltrated 

subtype, age, GATA3 regulon activity, and MSig4 were retained with smaller coefficients 

(Figure 6B).

The fitted model assigns weights to variables and generates a score for each sample. 

Thresholding these scores segregated the cohort into predicted risk groups or strata. Tertile 

thresholds generated three groups that were associated with survival (p < 0.001) (Figure 6C 

and Table S2.30).

We assessed multivariate Cox regressions that included age and AJCC stage, and subtypes 

for mRNA, lncRNA, miRNA, or mutational process (MSig), setting the best-survival 
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subtype as the reference. Each molecular covariate had at least one subtype associated with 

worse survival, independent of age and stage (Figure S7C).

Subtype-stratified potential treatments

In Figure 7, we have integrated results from the multiple platform analyses, and propose 

therapeutic considerations stratified by expression subtyping. For each subtype we 

summarize the key drivers, and propose treatment strategies that may be appropriate in 

multiple clinical scenarios, including peri-operative therapy (neoadjuvant and adjuvant) 

combined with radical cystectomy, systemic therapy combined with locoregional radiation, 

or systemic therapy for measurable metastatic disease. We suggest this schema as a 

framework for prospective hypothesis testing in clinical trials, as well as for validation in 

ongoing or completed clinical trials that test, or have tested, treatment strategies.

Discussion

Bladder cancer, both non-muscle invasive (NMIBC) and muscle-invasive (MIBC), is a major 

source of morbidity and mortality worldwide. In the US there will be an estimated 79,000 

new cases and 17,000 deaths in 2017 (Siegel et al., 2017). NMIBC occurs mainly as 

papillary disease with frequent FGFR3 mutations, whereas MIBC has a more diverse 

mutation spectrum as well as copy-number instability (Balbas-Martinez et al., 2013; 

Cappellen et al., 1999; Gui et al., 2011; Knowles and Hurst, 2015; van Rhijn et al., 2001).

In the following, we highlight essential findings from the complete cohort of 412 TCGA 

cases and suggest how these findings may contribute to our understanding of therapeutic 

possibilities. We identified 34 additional SMGs and 158 genes that are subject to epigenetic 

silencing, both of which may offer additional potential therapeutic targets, fusion events that 

implicate PPARG as a key gene in bladder cancer development, and refined subtypes defined 

by considering both miRNA and lncRNA profiling.

MIBCs show high overall mutation rates similar to those of melanoma and non-small cell 

lung cancers, and we confirm that these high rates are principally associated with mutation 

signatures for an endogenous mutagenic enzyme, APOBEC cytidine deaminase (Roberts et 

al., 2013). Most bladder cancer mutations are clonal, suggesting that APOBEC’s mutagenic 

activity occurs early in bladder cancer development. A better understanding of the origin and 

regulation of APOBEC expression and activity in normal bladder could lead to preventive 

strategies that target APOBEC as a key mutagenic source in bladder cancer.

MSig1’s high mutation burden consisted largely of APOBEC-signature mutations. The 

subset’s unusually good survival contributes to and correlates with the improved survival of 

subjects with higher mutational burden and higher neo-antigen load (Figure 1B). We propose 

that this is due to a natural host immune reaction to the high mutation burden, curbing 

further tumor growth and metastasis. This hypothesis should be tested in additional bladder 

cancer cohorts, and the MSig1 subset should be recognized in ongoing clinical trials, 

including trial of immune checkpoint therapy, as having a much better prognosis than 

average (see further below).
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Chromatin modifier gene mutations are common in bladder cancer and also open potential 

therapeutic opportunities through rebalancing acetylation and deacetylation, and through 

other chromatin modifications. Recent studies have identified BRD4-EZH2 chromatin 

modification as an important growth pathway in bladder cancer, especially in tumors with 

loss of KDM6A, and shown in preclinical models that the BET inhibitor JQ1 and inhibition 

of EZH2 have therapeutic benefit (Ler et al., 2017; Wu et al., 2016). Recently, a Phase 2 

study of Mocetinostat, a histone deacetylase inhibitor, in patients with locally advanced or 

metastatic urothelial carcinoma has completed accrual and results are awaited 

(NCT02236195).

The altered canonical signaling pathways provide multiple opportunities for therapeutic 

intervention. As one example the p53/Rb pathway is being targeted in a multicenter phase II 

trial evaluating palbociclib (PD-0332991) in patients with metastatic urothelial carcinoma 

who have cyclin-dependent kinase inhibitor 2A (CDKN2A) loss and retained retinoblastoma 

(Rb) expression (NCT02334527).

Our mRNA expression clustering identified the well-known luminal and basal subtypes of 

bladder cancer and further stratified them into 5 distinct subtypes. Included are two that we 

did not identify previously, neuronal and luminal, which have recently been corroborated in 

an independent cohort (Sjodahl et al., 2017). The neuronal subtype (5%) showed, in most 

cases, no histopathological distinction from other types of MIBC. Nonetheless, it had high 

levels of TP53 and RB1 mutations, as do small cell carcinomas in other tissues. It had the 

worst survival of the mRNA expression subtypes, making it important to recognize 

clinically. The luminal subtype had the highest expression level of uroplakin genes and may 

have adopted an umbrella cell phenotype. The luminal infiltrated subtype is similar to our 

previous TCGA subtype II and also similar to a subtype identified by Choi et al (Choi et al., 

2014b), is characterized by a mesenchymal expression signature. It appears to be resistant to 

cisplatin-based chemotherapy and particularly sensitive to immunotherapy with checkpoint 

inhibitors.

LncRNA and miRNA expression patterns identified survival-related subsets of cases within 

the mRNA luminal-papillary subtype and basal-squamous subtypes, respectively. Many 

cancer-associated lncRNAs and miRNAs were differentially abundant among the bladder 

cancer subtypes. Multivariate regression analyses identified lncRNA and miRNA subtypes 

as independent predictors of survival.

Our regulon analysis identified the importance of transcriptional driver events in bladder 

cancer development. In this analysis, regulator activity was associated with survival, as 

described previously for breast cancer (Castro et al., 2016a). Certain regulon activity profiles 

varied greatly between the different coding and noncoding gene expression subtypes, 

suggesting that the regulators are key drivers of those expression subtypes. These findings 

provide potential targets for intervention, and could be used for subtype discrimination and 

therapy selection (Castro et al., 2016a).

Integrating RNA subtype classification, pathway information, EMT and CIS signatures, and 

immune infiltrate analyses leads us to propose a model of mRNA-based expression subtypes 

Robertson et al. Page 14

Cell. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that may be associated with unique response to therapies and can be prospectively tested in 

clinical trials (Figure 7). We note that subsequent therapy was not included in this integrated 

analysis. Neoadjuvant cisplatin-based chemotherapy is the current standard of care in 

cisplatin-eligible patients without risk stratification. However, as not all patients derive 

benefit from chemotherapy, subtype-specific personalized therapies could help to optimize 

global patient outcome, while preventing unnecessary toxicity to non-responders. The 

following observations are hypothesis-generating, and thus are not ready to be used for 

clinical decision making.

The luminal-papillary subtype (35%) is characterized by FGFR3 mutations, fusions with 

TACC3, and/or amplification; by papillary histology; by active sonic hedgehog signaling; 

and by low CIS scores. Such cancers have low risk for progression, and preliminary data 

suggests a low likelihood of response to cisplatin-based neoadjuvant chemotherapy (NAC) 

(Seiler et al., 2017). The frequency of FGFR3 alterations in luminal papillary tumors 

suggests that tyrosine kinase inhibitors of FGFR3 may be an effective treatment approach, 

especially since early phase clinical trials show benefit of pan-FGFR inhibitor agents in 

FGFR3-selected advanced solid tumors (Karkera et al., 2017; Nogova et al., 2017).

The luminal-infiltrated subtype (19%) is characterized by the lowest purity, with high 

expression of EMT and myofibroblast markers, and of the miR-200s. It shows medium 

expression of CD270 (PD-L1) and CTLA4 immune markers. This subtype, corresponding to 

TCGA subtype II (Cancer Genome Atlas Research Network, 2014a), has been reported to 

respond to immune checkpoint therapy with atezolizumab in patients with metastatic or 

unresectable bladder cancer (Rosenberg et al., 2016). Validation of this subtype as a 

predictive marker for response to immunotherapy is ongoing in multiple clinical trials. 

Tumors with a luminal-infiltrated subtype may be resistant to cisplatin-based chemotherapy. 

Clinical trials may therefore be directed to validating this subtype as a negative predictive 

biomarker for chemotherapy response and for exploring alternative treatment strategies 

including targeted therapies.

The luminal subtype (6%) shows high expression of luminal markers, as well as KRT20 and 

SNX31. Due to its novelty, optimal therapy is less not defined. Future trial designs may 

compare the relative efficacy of either NAC or a therapy targeted to each cancer’s specific 

mutation profile.

The basal-squamous subtype (35%) is characterized by higher incidence in women, 

squamous differentiation, basal keratin expression, high expression of CD274 (PD-L1) and 

CTLA4 immune markers, and other signs of immune infiltration. Both cisplatin-based NAC 

and immune checkpoint therapy (Sharma et al., 2016) are appropriate therapeutic options, 

and trials comparing those treatments should be performed.

Finally, the neuronal subtype (5%) is characterized by expression of both neuroendocrine 

and neuronal genes, as well as a high cell-cycle signature reflective of a proliferative state. 

The neuronal subtype was recently recognized by others in an independent cohort (Sjodahl 

et al., 2017). Identifying this subtype currently depends on detecting expression of 

neuroendocrine/neuronal markers by either mRNA-seq or immunohistochemistry, as they do 

Robertson et al. Page 15

Cell. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not exhibit the typical morphologic features associated with neuroendocrine tumors. 

Etoposide-cisplatin therapy is recommended in neoadjuvant and metastatic settings, as for 

neuroendocrine neoplasms arising in other sites, but this should also be tested in prospective 

clinical trials.

Our results suggest that mRNA subtype classification may be possible with a reduced gene 

set, enabling validation in independent cohorts and informing clinical trial designs that test 

new personalized therapies. However, additional integrative analyses that include assessment 

of lncRNAs, miRNAs, and regulon relationships can be expected to refine our subtyping of 

bladder cancers and aid in the search for optimal personalized targeted therapies.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact Seth Lerner (slerner@bcm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tumor and normal whole blood samples were obtained from patients at contributing centers 

with informed consent according to their local Institutional Review Boards (IRBs, see 

below). Biospecimens were centrally processed and DNA, RNA, and protein were 

distributed to TCGA analysis centers. In total, 412 evaluable primary tumors with associated 

clinicopathologic data were assayed on at least one molecular-profiling platform.

TCGA Project Management has collected necessary human subjects documentation to 

ensure the project complies with 45-CFR-46 (the “Common Rule”). The program has 

obtained documentation from every contributing clinical site to verify that IRB approval has 

been obtained to participate in TCGA. Such documented approval may include one or more 

of the following:

• An IRB-approved protocol with Informed Consent specific to TCGA or a 

substantially similar program. In the latter case, if the protocol was not TCGA-

specific, the clinical site PI provided a further finding from the IRB that the 

already-approved protocol is sufficient to participate in TCGA.

• A TCGA-specific IRB waiver has been granted.

• A TCGA-specific letter that the IRB considers one of the exemptions in 45-

CFR-46 applicable. The two most common exemptions cited were that the 

research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for 

informed consent, because the received data and material do not contain directly 

identifiable private information.

• A TCGA-specific letter that the IRB does not consider the use of these data and 

materials to be human subjects research. This was most common for collections 

in which the donors were deceased.
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METHOD DETAILS

Biospecimen Collection; Pathological and Clinical Data

Sample inclusion criteria: Biospecimens were collected from patients diagnosed with 

muscle-invasive urothelial carcinoma undergoing surgical resection with either transurethral 

resection or radical cystectomy. No patient had received prior chemotherapy or radiotherapy 

for their disease. Prior intravesical Bacille Calmette Guerin (BCG) was allowed but not 

intravesical chemotherapy. Institutional review boards at each tissue source site reviewed 

protocols and consent documentation and approved submission of cases to TCGA. Cases 

were staged according to the American Joint Committee on Cancer (AJCC) staging system. 

Each frozen primary tumor specimen had a companion normal tissue specimen. This could 

be blood/blood components (including DNA extracted at the tissue source site), adjacent 

normal tissue taken from greater than 2 cm from the tumor, or both. Specimens were shipped 

overnight from 36 tissue source sites (TSS) using a cryoport that maintained an average 

temperature of less than −180°C. Each tumor and adjacent normal tissue specimen (if 

available) were embedded in optimal cutting temperature (OCT) medium and a histologic 

section was obtained for review. Each H&E-stained case was reviewed by a board-certified 

pathologist to confirm that the tumor specimen was histologically consistent with urothelial 

carcinoma and that the adjacent normal specimen contained no tumor cells. Divergent 

histologies within the sample could not represent less than 50% of the cancer specimen. 

Tumor sections were required to contain an average of 60% tumor cell nuclei with equal to 

or less than 20% necrosis for inclusion in the study, per TCGA protocol requirements.

Sample Processing: RNA and DNA were extracted from tumor and adjacent normal tissue 

specimens using a modification of the DNA/RNA AllPrep kit (Qiagen). The flow-through 

from the Qiagen DNA column was processed using a mirVana miRNA Isolation Kit 

(Ambion). This latter step generated RNA preparations that included RNA <200 nt suitable 

for miRNA analysis. DNA was extracted from blood using the QiaAmp blood midi kit 

(Qiagen). Each specimen was quantified by measuring Abs260 with a UV 

spectrophotometer or by PicoGreen assay. DNA specimens were resolved by 1% agarose gel 

electrophoresis to confirm high molecular weight fragments. A custom Sequenom SNP 

panel or the AmpFISTR Identifiler (Applied Biosystems) was utilized to verify tumor DNA 

and germline DNA were derived from the same patient. Five hundred nanograms of each 

tumor and normal DNA were sent to Qiagen for REPLI-g whole genome amplification using 

a 100 μg reaction scale. Only specimens yielding a minimum of 6.9 μg of tumor DNA, 5.15 

μg RNA, and 4.9 μg of germline DNA were included in this study. RNA was analyzed via 

the RNA6000 nano assay (Agilent) for determination of an RNA Integrity Number (RIN), 

and only the cases with RIN >7.0 were included in this study. A total of 722 bladder 

urothelial carcinoma cases were received by the BCR and 412 (57%) passed final quality 

control. Reasons for rejection are described at https://cancergenome.nih.gov/cancersselected/

biospeccriteria. Normal controls included peripheral blood (n=392), and/or tumor-adjacent, 

histologically normal-appearing bladder tissue (n=37).

Pathology Review: All samples were subjected to central review by four urological 

pathologists (HAA, DEH, BAC, VER), using digitally scanned whole slides of a 

representative section from a fresh frozen tumor sample submitted for molecular analysis. 
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All samples were systematically evaluated to confirm the histopathologic diagnosis and any 

variant histology according to the most recent World Health Organization (WHO) 

classification (Moch et al., 2016). Additionally, all tumor samples were assessed for tumor 

content (% tumor nuclei), the presence and extent of tumor necrosis and the presence of 

invasion into muscularis propria. Tumor samples were also evaluated for the presence and 

extent of inflammatory infiltrate as well as the type of the infiltrating cells in the tumor 

microenvironment (lymphocytes, neutrophils, eosinophils, histiocytes, plasma cells). Any 

non-concordant diagnoses among the four pathologists were re-reviewed and resolution 

achieved after discussion.

Clinical Data: Clinical data were submitted for all cases passing quality control. Patient 

information was completed immediately following the notification of qualification, and a 

follow-up submission was required for all living patients one year after the case’s 

qualification date; follow-up data beyond this were submitted voluntarily. For the work 

reported here, clinical data for all 412 cases were downloaded from the Genomics Data 

Commons Data Portal (https://portal.gdc.cancer.gov/) on May 5th, 2017. The majority of the 

fields included in the dataset used for analysis were found in the patient section of the 

clinical XML files (e.g. nationwidechildrens.org_clinical.TCGA-HQ-A5ND.xml). This 

information had been collected during the initial submission from the participating Tissue 

Source Sites (TSSs). For survival analysis, the follow-up information was also considered, in 

order to capture each case’s longest number of days to follow-up or death; this information 

changed survival information for a subset of cases reported in the previous TCGA 

publication (Cancer Genome Atlas Research Network, 2014a).

Copy Number Analysis—DNA from each tumour or germline sample was hybridized to 

Affymetrix SNP 6.0 arrays using protocols at the Genome Analysis Platform of the Broad 

Institute as previously described (McCarroll et al., 2008). Briefly, from raw .CEL files, 

Birdseed was used to infer a preliminary copy-number at each probe locus (Korn et al., 

2008). For each tumour, genome-wide copy number estimates were refined using tangent 

normalization, in which tumour signal intensities are divided by signal intensities from the 

linear combination of all normal samples that are most similar to the tumour. This linear 

combination of normal samples tends to match the noise profile of the tumour better than 

any set of individual normal samples, thereby reducing the contribution of noise to the final 

copy-number profile. Individual copy-number estimates then underwent segmentation using 

Circular Binary Segmentation (Olshen et al., 2004). Segmented copy number profiles for 

tumour and matched control DNAs were analyzed using Ziggurat Deconstruction, an 

algorithm that parsimoniously assigns a length and amplitude to the set of inferred copy-

number changes underlying each segmented copy number profile, and the analysis of broad 

copy-number alterations was then conducted as previously described (Mermel et al., 2011). 

Significant focal copy number alterations were identified from segmented data using 

GISTIC 2.0 (Mermel et al., 2011). Allelic copy number, regions of homozygous deletions, 

whole genome doubling and purity and ploidy estimates were calculated using the 

ABSOLUTE algorithm (Carter et al., 2012a).
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DNA Sequencing

DNA sequencing and data processing: Exome capture was performed using Agilent 

SureSelect Human All Exon 50 Mb according to the manufacturers’ instructions. Briefly, 

0.5–3 micrograms of DNA from each sample were used to prepare the sequencing library 

through shearing of the DNA followed by ligation of sequencing adaptors. All whole exome 

(WES) and whole genome (WGS) sequencing was performed on the Illumina HiSeq 

platform. Paired-end sequencing (2 × 101 bp for WGS and 2 × 76 bp for WE) was carried 

out using HiSeq sequencing instruments; the resulting data was analyzed with the current 

Illumina pipeline. Basic alignment and sequence QC was done on the Picard and Firehose 

pipelines at the Broad Institute. Sequencing data were processed using two consecutive 

pipelines:

Sequencing data processing pipeline (‘Picard pipeline’)

Picard (http://picard.sourceforge.net/) uses the reads and qualities produced by the 

Illumina software for all lanes and libraries generated for a single sample (either 

tumor or normal) and produces a single BAM file (http://samtools.sourceforge.net/

SAM1.pdf) representing the sample. The final BAM file stores all reads and 

calibrated qualities along with their alignments to the genome.

Cancer genome analysis pipeline (‘Firehose pipeline’)

Firehose (http://www.broadinstitute.org/cancer/cga/Firehose) takes the BAM files for 

the tumor and patient matched normal samples and performs analyses including 

quality control, local realignment, mutation calling, small insertion and deletion 

identification, rearrangement detection, coverage calculations and others as described 

briefly below. The pipeline represents a set of tools for analyzing massively parallel 

sequencing data for both tumor DNA samples and their patient_matched normal 

DNA samples. Firehose uses GenePattern (Reich et al., 2006) as its execution engine 

for pipelines and modules based on input files specified by Firehose. The pipeline 

contains the following steps:

Quality control. This step confirms identity of individual tumor and normal to 

avoid mix-ups between tumor and normal data for the same individual.

Local realignment of reads. This step realigns reads at sites that potentially 

harbor small insertions or deletions in either the tumor or the matched normal, to 

decrease the number of false positive single nucleotide variations caused by 

misaligned reads.

Identification of somatic single nucleotide variations (SSNVs) – This step 

detects candidate SSNVs using a statistical analysis of the bases and qualities in 

the tumor and normal BAMs, using Mutect (Cibulskis et al., 2013).

Identification of somatic small insertions and deletions – In this step putative 

somatic events were first identified within the tumor BAM file and then filtered 

out using the corresponding normal data, using Indellocator (Ratan et al., 2015)
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Mutation significance analysis: Genes with a significant excess of the number of non-

synonymous mutations relative to the estimated density of background mutations were 

identified using MutSig algorithm. MutSig has been used to identify significantly mutated 

genes (SMGs) in several previous TCGA tumor sequencing projects and has undergone a 

development path starting from the most basic approach implemented in MutSig 1.0 (Getz et 

al., 2007) to the current version MutSig 2CV (Lawrence et al., 2014; Lawrence et al., 2013). 

This study made use of MutSig 2CV to produce a robust list of significantly mutated genes 

(Table S2.9).

Mutation clonality analysis: We used the ABSOLUTE algorithm (Carter et al., 2012b) 

with copy number and mutation data to infer purity and ploidy for 400 tumor samples, and 

estimated the cancer cell fraction (CCF) for each mutation. We classified mutations with 

CCF ≥ 0.9 as clonal and all other mutations as sub-clonal.

Mutation signature analysis: Mutation signature discovery involves deconvolving cancer 

somatic mutations, stratified by mutation contexts or biologically meaningful subgroups, 

into a set of characteristic patterns (signatures), and inferring the contributions of signature 

activity across samples (Alexandrov et al., 2013). Single nucleotide variants (SNVs) in the 

412 samples were classified into 96 base substitution types, i.e. the six base substitutions 

C>A, C>G, C>T, T>A, T>C, and T>G, within the tri-nucleotide sequence context that 

includes the bases immediately 5′ and 3′ to each mutated base. Thus the input data for the 

mutation signature analysis is given as the mutation counts matrix X (96 by N=412), where 

each element represents an observed mutation count at the context i in the sample j. We 

applied a Bayesian variant of the non-negative matrix factorization (NMF) with an 

exponential prior (BayesNMF) (Kim et al., 2016a; Tan and Fevotte, 2013) to enable a de 
novo signature discovery with an optimal inference for the number of signatures (K*) best 

explaining the observed X. The mutation count matrix was taken as an input for the 

BayesNMF and factored into two matrices, W′ (96 by K*) and H′ (K* by N), 

approximating X by W′H′. All fifty independent BayesNMF runs with a different initial 

condition for 409 samples converged to the solution of K* = 4, identifying four distinct 

mutational processes, C>T_CpG, ERCC2, APOBC-b, and APOBEC-a.

To enumerate the number of mutations associated with each mutation signature we 

performed a scaling transformation, X ~ W′H′ = WH, W = W′U−1 and H = UH′, where U 
is a K* by K* diagonal matrix with the element corresponding to the 1-norm of column 

vectors of W′, resulting in the final signature matrix W and the activity matrix H. Note that 

the kth column vector of W represents a normalized mutability along 96 tri-nucleotide 

mutation contexts in the kth signature, and the kth row vector of H dictates the number of 

mutations associated with the kth signature across samples. The MSig clustering analysis for 

409 samples was performed using a standard hierarchical clustering in R, with a ‘euclidian’ 

distance for the signature activity matrix H and a ‘ward.D’ linkage. The number of MSig 

clusters was chosen by manual inspection.

Using the W and H matrices determined by BayesNMF we annotated each mutation with the 

probability (likelihood of association) that it was generated by each of the discovered 

mutational signatures, pms, where ‘m’ denotes a mutation and ‘s’ refers to the signature. 

Robertson et al. Page 20

Cell. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Specifically, the likelihood of association to the kth signature for a set of mutations 

corresponding to the i-th mutation context and j-th sample was defined as [wkhk/Σkwkhk]ij, 

where wk and hk correspond to the kth column vector and kth row vector of W and H, 

respectively (Kasar et al., 2015).

Unsupervised clustering of mutations in SMGs and focal SCNAs—We first 

created a binary event matrix, Q (n by m), comprised of mutations in 53 SMGs and focal 

SCNAs in the 25 genes that had more than ten SMG mutations and more than ten focal 

SCNAs across 408 samples. The resulting event matrix was used to compute a consensus 

matrix, MK, in which the element Mij represents how often both event i and sample j 
clustered together, with K being the number of clusters, by iterating conventional NMF with 

Frobenius norm (K * 25) times to approximate Q ~ WH. The cluster membership for event i 
and sample j was determined by the “maximum association criterion” as i* = max_k [wik] 

and j* = max_k [hkj] (k = 1 through K). Then the cumulative consensus matrix, M, was 

computed by summing up all MK with K increasing through 2 to 8, and normalized by the 

total number of iterations, resulting in the normalized M*. To determine the optimal number 

of consensus clusters, K*, i.e. that best explain the observed M*, we applied Bayesian non-

negative matrix factorization (NMF) with a half-normal prior, finding the best 

approximation, M* ~ W*H*, where wik in W* (m by K) and hkj in H* (K by m) represents a 

clustering affinity or an association of the event i and the sample j to the cluster k, 

respectively. Twelve out of 20 independent BayesNMF runs with different initial conditions 

converged to the solution of K* = 4, while eight runs converged to the solution of K* = 5. 

After manual inspection we chose the K* = 4 solution, and reported four MutCN clusters.

Quantitation of Mutagenesis by APOBEC Cytidine Deaminases—The exome-

wide prevalence of the APOBEC mutagenesis signature and the enrichment of this signature 

over its presence expected for random mutagenesis was evaluated with Pattern of 

Mutagenesis by APOBEC Cytidine Deaminases (P-MACD) analysis pipeline as outlined in 

(Roberts et al., 2013) and described in detail in Broad Institute TCGA Genome Data 

Analysis Center (2016): Analysis of mutagenesis by APOBEC cytidine deaminases (P-

MACD). Broad Institute of MIT and Harvard (doi:10.7908/C1CC1013). Briefly, analysis is 

based on previous findings that APOBECs deaminate cytidines predominantly in a tCw 

motif and that the APOBEC mutagenesis signature is composed of approximately equal 

numbers of two kinds of changes in this motif – tCw ➔G and tCw ➔T mutations (flanking 

nucleotides shown in small letters; w=A or T). We calculated on a per sample basis, the 

enrichment of the APOBEC mutation signature among all mutated cytosines in comparison 

to the fraction of cytosines that occur in the tCw motif among the +/− 20 nucleotides 

surrounding each mutated cytosine (“APOBEC_enrich” column in data files). In addition, 

several other parameters that characterize the prevalence of the APOBEC mutagenesis 

pattern in a sample and/or that are useful for downstream analyses and comparisons. The 

main parameter used in this paper was the minimum estimate of the number of APOBEC 

induced mutations in a sample - “APOBEC_MutLoad_MinEstimate”. It was calculated 

using the formula: [“tCw➔G+tCw➔T”]x[(“APOBEC_enrich”-1)/“APOBEC_enrich”], 

which allows estimating the number of APOBEC signature mutations in excess of what 

would be expected by random mutagenesis. For example, if statistically significant 
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enrichment in a sample would be =2, the minimum estimate of APOBEC-induced mutations 

would be 50%of total number of APOBEC-signature mutations ([“tCw➔G+tCw➔T”]). 

Calculated values are rounded to the nearest whole number. 

“APOBEC_MutLoad_MinEstimate” is calculated only for samples with passing 0.05 FDR 

threshold for APOBEC enrichment ([“BH_Fisher_p-value_tCw”]=<0.05. Samples with 

“BH_Fisher_p-value_tCw” value greater than 0.05 receive a value of 0. For some analyses 

and figures “APOBEC_MutLoad_MinEstimate” parameter was converted into categorical 

values as follows:

• “no”: “APOBEC_MutLoad_MinEstimate”=0

• “low”: 0<”APOBEC_MutLoad_MinEstimate” ≤ median of non-zero values in 

the set of 412 BLCA samples

• “high”: “APOBEC_MutLoad_MinEstimate” > median of non-zero values in the 

set of 412 BLCA samples (median of non-zero values in the set of 412 BLCA 

samples = 61.5).

Class I HLA mutation and neoantigen analysis

Class I HLA typing and mutation detection: HLA typing and detection of mutations in 

class I HLA genes (HLA-A/B/C) was performed using Polysolver (Shukla et al., 2015). 

Briefly, the HLA typing algorithm employs a Bayesian model that first estimates the prior 

probabilities of different alleles based on the ethnicity of the individual. These probabilities 

are then updated with a model that takes into account the base qualities and alignments of 

putative HLA-derived reads against the reference HLA allele database. The alleles for each 

of the three HLA genes are inferred based on the computed scores in a two-stage process. 

These inferred HLA alleles serve as the reference for the HLA mutation detection step. 

Putative HLA reads from the tumor and the germline sample are extracted and aligned to the 

inferred allele sequences, followed by mutation and insertion/deletion identification with the 

Mutect (Cibulskis et al., 2013) and Strelka (Saunders et al., 2012) tools respectively.

We used a Chi-square test to assess whether HLA mutations were more common in patients 

with prior BCG treatment.

Neoantigen prediction: For each patient, we first enumerated a list of all possible 9 and 10-

mer peptides bearing somatic mutations, or overlapping open reading frame derived from 

frameshifting indels or nonstop mutations. These peptides were then evaluated for binding 

against the patient’s inferred HLA type using the NetMHCpan-3.0 algorithm (Nielsen and 

Andreatta, 2016). The neoantigen load was defined as the total number of predicted 

peptide:allele binders with rank percentile score less than or equal to the weak binder 

threshold (2%). Univariate survival analysis of neoantigen load was evaluated using the 

Kaplan-Meier method. The effect of neoantigen load in the context of other variables was 

assessed using the Cox proportional hazards model. The comparison of number of HLA 

mutations or number of predicted binders between groups (e.g. MSig1 vs MSig2–4 clusters) 

was performed with two-sided t-tests.
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DNA methylation and epigenetic silencing

Assay platform: We used the Illumina Infinium HumanMethylation450 (HM450) DNA 

methylation platform (Bibikova et al., 2011; Bibikova et al., 2009) to obtain DNA 

methylation profiles of 412 tumor samples and 21 tumor-adjacent, histologically normal-

appearing bladder tissue samples. The HM450 assay analyzes the DNA methylation status 

of up to 482,421 CpG and 3,091 non-CpG (CpH) sites throughout the genome. It covers 

99% of RefSeq genes with multiple probes per gene and 96% of CpG islands from the 

UCSC database and their flanking regions. The assay probe sequences and information for 

each interrogated CpG site on Infinium DNA methylation platform are available from 

Illumina (www.illumina.com).

The DNA methylation score for each assayed CpG or CpH site is represented as a beta (β) 

value (β = (M/(M+U)) in which M and U indicate the mean methylated and unmethylated 

signal intensities for each assayed CpG or CpH, respectively. B values range from zero to 

one, with scores of “0” indicating no DNA methylation and scores of “1” indicating 

complete DNA methylation. An empirically derived detection p value accompanies each 

data point and compares the signal intensity with an empirical distribution of signal 

intensities derived from a set of negative control probes on the array. Any data point with a 

corresponding p value greater than 0.05 is deemed to not be statistically significantly 

different from background and is thus masked as “NA” in the Level 3 data packages as 

described below. Further details on the Illumina Infinium DNA methylation assay 

technology have been described previously (Bibikova et al., 2011; Bibikova et al., 2009).

Sample and data processing: We performed bisulfite conversion of 1µg of genomic DNA 

from each sample using the EZ-96 DNA Methylation Kit (Zymo Research, Irvine, CA) 

according to the manufacturer’s instructions. We assessed the amount of bisulfite-converted 

DNA and completeness of bisulfite conversion using a panel of MethyLight-based quality 

control (QC) reactions as previously described (Campan et al., 2009). All the TCGA 

samples passed our QC tests and entered the Infinium DNA methylation assay pipeline. 

Bisulfite-converted DNAs were whole-genome-amplified (WGA) and enzymatically 

fragmented prior to hybridization to BeadChip arrays as per the Infinium protocol. 

BeadArrays were scanned using the Illumina iScan technology to produce IDAT files. Raw 

IDAT files for each sample were processed with the R/Bioconductor package methylumi. 

TCGA DNA methylation data packages were then generated using the EGC.tools R package 

which was developed internally and is publicly available on GitHub (https://github.com/

uscepigenomecenter/EGC.tools).

TCGA Data Packages: The data levels and the files contained in each data level package 

are described below and are present on the NCI Genomic Data Commons (https://

gdc.cancer.gov).

Level 1 data contain raw IDAT files (two per sample) as produced by the iScan system and 

as mapped by the Sample and Data Relationship Format (SDRF). These IDAT files were 

directly processed by the R/Bioconductor package methylumi. We provided a disease-

mapping file (BLCA.mappings.csv) in the AUX directory to facilitate this process. Level 2 
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data contain background-corrected methylated (M) and unmethylated (U) summary 

intensities as extracted by the R/Bioconductor package methylumi. Detection p values were 

computed as the minimum of the two values (one per methylation state measurement) for the 

empirical cumulative density function of the negative control probes in the appropriate color 

channel. Background correction was performed via normal-exponential deconvolution 

(Triche et al., 2013). Multiple-batch archives had the intensities in each of the two channels 

multiplicatively scaled to match a reference sample. The reference sample is defined in each 

array as the sample having R/G ratio of the normalization control probes closest to 1.0. 

Level 3 data contain β value calculations with annotations for HGNC gene symbol, 

chromosome, and genomic coordinates (UCSC hg19, Feb 2009) for each targeted CpG/CpH 

site on the array. Probes having a common SNP (dbSNP build 135, Minor Allele Frequency 

>1%) within 10 bp of the interrogated CpG site or having an overlap with a repetitive 

element (as detected by RepeatMasker and Tandem Repeat Finder based on UCSC hg19, 

Feb 2009) within 15 bp (from the interrogated CpG site) were masked as “NA” across all 

samples, and probes with a detection p value greater than 0.05 in a given sample were 

masked as “NA” on that array. Probes that were mapped to multiple sites in the human 

genome (UCSC hg19, Feb 2009) were annotated as “NA” for chromosome and 0 for the 

CpG/CpH coordinate.

We used Level 3 DNA methylation data for the analyses described in this manuscript.

Unsupervised clustering analysis of DNA methylation data: We removed probes which 

had any “NA”-masked data points and probes that were designed for sequences on X or Y 

chromosomes or non-CpG sites.

To capture cancer-specific DNA hypermethylation events, we first selected CpG sites that 

were not methylated in normal tissues (mean β value <0.2). To minimize the influence of 

variable tumor purity levels on a clustering result, we dichotomized the data using a β value 

of ≥0.3 to define positive DNA methylation and < 0.3 to specify lack of methylation. The 

dichotomization not only ameliorated the effect of tumor sample purity on the clustering, but 

also removed a great portion of residual batch/platform effects that are mostly reflected in 

small variations near the two ends of the range of β values. We also removed CpG sites that 

were methylated in leukocytes, a major source of contamination present in a tumor sample 

(mean β-value >0.2). We then performed consensus clustering with the dichotomized data 

on 31,249 CpG sites that were methylated in at least 5% of the tumor samples. The optimal 

number of clusters was assessed based on 80% probe and tumor resampling over 1,000 

iterations of hierarchical clustering for K = 2, 3, 4…20 using the binary distance metric for 

clustering and Ward’s method for linkage as implemented in the R/Bioconductor 

ConsensusClusterPlus package.

Similarly, in order to investigate subgroups based on cancer-specific DNA hypomethylation, 

we identified CpG sites that were highly methylated in normal tissues (mean β value >0.8). 

We dichotomized the data using a β value of <0.7 as a threshold for loss of DNA 

methylation. We then performed consensus clustering with the dichotomized data on 53,862 

CpG sites that showed hypomethylation in at least 10% of the tumors.
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Heatmaps were generated to assess clustering results based on the original β values for a 

subset of the most variably methylated CpG sites across the tumors. The probes were 

displayed based on the order of unsupervised hierarchal clustering of the β values using the 

Euclidean distance metric and Ward’s linkage method. Covariate association p values were 

calculated with Chi-square tests.

Identification of epigenetically silenced genes: We first removed DNA methylation probes 

overlapping with SNPs, repeats or designed for sequences on X or Y chromosomes or non-

CpG sites. The remaining probes were mapped against UCSC Genes using the 

GenomicFeatures R/Bioconductor package. Probes unmethylated in normal tissues (mean β 
value <0.2) and located in a promoter region (defined as the 3 kb region spanning from 

1,500 bp upstream to 1,500 bp downstream of the transcription start site) were identified. 

mRNA expression data were log2 transformed [log2(RSEM+1)] and used to assess the gene 

expression levels associated with DNA methylation changes. DNA methylation and gene 

expression data were merged by Entrez Gene IDs.

We dichotomized the DNA methylation data using a β value of >0.3 as a threshold for 

positive DNA methylation and eliminated CpG sites methylated in fewer than 3% of the 

tumor samples. For each probe/gene pair, we applied the following algorithm: 1) classify the 

tumors as either methylated (β ≥0.3) or unmethylated (β <0.3); 2) compute the mean 

expression in the methylated and unmethylated groups; 3) compute the standard deviation of 

the expression in the unmethylated group. We then selected probes for which the mean 

expression in the methylated group was less than 1.64 standard deviations from the mean 

expression of the unmethylated group. We labeled each individual tumor sample as 

epigenetically silenced for a specific probe/gene pair if: a) it belonged to the methylated 

group and b) the expression of the corresponding gene was lower than the mean of the 

unmethylated group of samples. If there were multiple probes associated with the same 

gene, a sample that was identified as epigenetically silenced at more than half the probes for 

the corresponding gene was also labeled as epigenetically silenced at the gene level. For 

each gene, we evaluated resulting silencing call based scatter plot of DNA methylation vs. 

expression and a heatmap.

We manually examined the list of genes that were significantly mutated. We identified 

additional genes having evidence for epigenetic silencing at low frequencies. CDKN2A 
DNA methylation status was assessed based on the probe (cg13601799) located in the 

p16INK4 promoter CpG island. p16INK4 expression was determined by the log2(RPKM+1) 

level of its first exon (chr9:21974403-21975038).

The complete list of 158 genes identified as epigenetically silenced is provided in Table 

S2.17.

Genes upregulated in hypomethylated subtype 4: We used four types of data: 1) β values 

for 5386 probes for 412 primary tumour samples and 21 adjacent normal samples, 2) RSEM 

gene-level expression data for 408 primary tumours and 19 adjacent normals, and 3) clinical 

and molecular data for 412 tumor samples, and 4) pathology review of micrograph images 
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for the adjacent normals, which indicated that we should remove BT-A20U-11, BT-

A2LB-11, GD-A2C5-11, and GD-A3OP-11.

Of the 408 tumor samples with RSEM data, 36 were in hypomethylation subtype 4 (‘subtype 

4’), and 372 in the other hypomethylation subtypes.

We identified 10368 genes had a mean RSEM abundance of at least 1.0 in each of the 

tumour groups (subtype 4 vs. other), and an absolute value fold change of at least 1.25 

between the two groups. 1863 genes were differentially abundant between the two groups 

(Benjamini-Hochberg (BH)-corrected p < 0.01, Wilcoxon test), and 436 of the 1863 genes 

were more abundant in subtype 4, with a fold change of at least 1.5.

We identified 2646 of the 5386 methylation probes that had a fold change more negative 

than −1.5 between subtype 4 and other samples, i.e. had lower β values in subtype 4. These 

had BH-corrected Wilcoxon p values < 0.003, and −1/FC ranging from −5.6 to −1.5.

Using the ‘annotations’ from the IlluminaHumanMethylation450kanno.ilmn12.hg19 v0.6.0 

R package, we associated 1784 of the 2646 probe IDs with one or more gene symbols. Of 

these, 681 records had gene symbols that were semicolon-separated lists, e.g. 

SIRPG;SIRPG;SIRPG, or NCRNA00175;NCRNA00175;COL18A1. We collapsed such lists 

into unique symbols, and arbitrarily took the last of these symbols, even when the list 

contained more than one symbol. This associated each probe ID with one RefSeq gene 

symbol. Because some symbols have more than one associated probe, the 1784 gene 

symbols contained 1240 unique symbols.

187 unique RefSeq gene symbols were present in both a) the differentially abundant RSEM 

genes and b) genes associated with differential probes. For each probe-associated gene we 

retained only the probe with the most significant BH-corrected p value, accepting all 

annotated relationships of a probe to a CpG island (i.e. Island, N_Shelf, N_Shore, S_Shelf, 

S_Shore, or OpenSea).

From the 187 RefSeq genes, we identified 39 for which, in hypomethylation subtype 4, the 

RSEM gene abundance was higher, and the beta value for the associated DNA methylation 

probe was lower. We then inspected scatterplots of beta vs. RSEM abundance, which 

included the 14 adjacent normals that were present in both DNA methylation and RSEM 

datasets, and had passed pathology review. We identified a subset of 12 genes for which 

DNA hypomethylation in subtype 4 may have resulted in higher RSEM abundance in that 

subtype.

Statistics: Statistical analysis and data visualization were carried out using the R/

Biocoductor software packages (www.bioconductor.org).

mRNA Expression Profiling

mRNA sequencing and expression quantification: RNA was extracted, prepared into 

mRNA libraries, and sequenced by Illumina HiSeq resulting in paired 50nt reads, and 

subjected to quality control as previously described (Cancer Genome Atlas Research, 2012). 

RNA reads were aligned to the hg19 genome assembly using Mapsplice (Wang et al., 2010), 
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and RNA fusion events were automatically detected by MapSplice as previously described. 

Gene expression was quantified for the transcript models corresponding to the TCGA 

GAF2.1 (https://gdc-api.nci.nih.gov/v0/data/a0bb9765-3f03-485b-839d-7dce4a9bcfeb), 

using RSEM (Pasqualucci et al., 2011) and normalized within-sample to a fixed upper 

quartile. For further details on this processing, refer to GDC Description file under the 

V2_MapSpliceRSEM workflow (https://gdc-api.nci.nih.gov/legacy/data/

cf4559f9-6beb-4bb3-ac43-c99ba6cf7f0f). Data for genes were median-centered across 

samples for downstream analysis.

Unsupervised mRNA expression clustering: For unsupervised clustering analysis the 

log2(RSEM) gene expression data for N = 408 samples was pre-processed to determine the 

most highly expressed and variable 3,347 genes across samples. We removed genes with NA 

values more than 10% across samples and then selected top 25% most-varying genes by 

standard deviation of gene expression across samples. The resulting expression matrix R 
(3347 by 408) was further transformed to the matrix R* of fold changes centered at the 

median expression. The expression clustering analysis was done by combining BayesNMF 

(Tan and Fevotte, 2013) with a consensus hierarchical clustering approach, as follows. Using 

the distance matrix of 1 – C, the element Cij representing the Spearman correlation between 

the sample i and j across 3347 genes in R*, we first compute a consensus matrix, MK, the 

element Mij representing how often both samples i and j clustered together, and K being the 

number of clusters, by iterating a standard hierarchical clustering (K * 500) times with the 

average linkage option and 80% resampling in sample space. Then the cumulative consensus 

matrix, M, was computed by summing up all MK with K increasing through 2 to 10, and 

normalized by the total number of iterations, resulting in the normalized M*. To determine 

the optimal number of clusters, K*, i.e. that best explain the observed M*, we applied 

Bayesian non-negative matrix factorization (NMF) with a half-normal prior, finding the best 

approximation, M* ~ HT H, where hkj in H (K* by N) represents a clustering affinity or an 

association of the sample j to the cluster k and HT is a transpose of H. Nine out of 20 

independent BayesNMF runs with different initial conditions converged to the solution of 

K* = 5, while 11 runs converged to the solution of K* = 4. After manual inspection we 

chose the K* = 5 solution, giving rise to the five mRNA expression subtypes: luminal, 

luminal-infiltrated, basal-squamous, neuronal, and luminal-papillary. We noted that both 

luminal and luminal-infiltrated clusters merged together to form a single cluster in the K* = 

4 solution, indicating that expression patterns in these two clusters were relatively more 

similar than any other subtypes. The cluster membership for sample j was determined by the 

“maximum association criterion” as k* = max_k [hkj] (k = 1 through K*). The concordance 

of the derived expression subtypes was examined in the comparison to those in TCGA 

marker paper (Cancer Genome Atlas Research Network, 2014a) and other various subtype 

classifications for 234 TCGA samples (Aine et al., 2015) (Table S2.19).

We selected subtype-specific marker genes in Figure 2 by performing an additional non-

negative matrix factorization to the log2(RSEM) gene expression data X with the fixed K* 

and H* (a column-wise normalization of H) to determine the optimal W (18197 by K*) as X 
~ WH*. Note that the element wik in W represents an inferred contribution of the cluster k to 

the expression of the gene i, i.e. measures an affinity or association of the gene i to the 
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cluster k. The clustering membership of the gene i was determined by the maximum 

association criterion as k* = max_k [wkj] (k = 1 through K*). We considered the top 1% 

genes in descending order of wik, with dik ≥ 2.75, where dik refers to the mean expression 

difference in log2(RSEM) between samples in the cluster k and other samples.

Gene expression signature scores: The raw gene expression signature score in Figure S4 

was defined as a mean of log2(RSEM) for the basal markers (CD44, CDH3, KRT1, KRT14, 
KRT16, KRT5, KRT6A, KRT6B, KRT6C), luminal markers (CYP2J2, ERBB2, ERBB3, 
FGFR3, FOXA1, GATA3, GPX2, KRT18, KRT19, KRT20, KRT7, KRT8, PPARG, XBP1, 
UPK1A, UPK2), p53-like markers (ACTG2, CNN1, MYH11, MFAP4, PGM5, FLNC, 
ACTC1, DES, PCP4), squamous-differentiation markers (DSC1, DSC2, DSC3, DSG1, 
DSG2, DSG3, S100A7, S100A8), neuroendocrine markers (CHGA, CHGB, SCG2, ENO2, 
SYP, NCAM1), CIS (carcinoma-in-situ) markers (Dyrskjot et al., 2004), cell-cycle genes 

(Cuzick et al., 2011), cancer-stem cell markers (CD44, KRT5, RPSA, ALDH1A1I) (Chan et 

al., 2010), a set of markers known to be associated with EMT (epithelial-mesenchymal; 

ZEB1, ZEB2, VIM, SNAIL, TWIST1, FOXC2, CDH2), claudin-low markers (CLDN3, 
CLDN7, CLDN4, CDH1, VIM, SNAI2, TWIST1, ZEB1, ZEB2), and CIT (Cartes d’Identité 

des Tumeurs) gene sets (Biton et al., 2014). CIT sets included tumour cell component 9; 

stromal components 3, 8, and 12; and components 5 and 14, which could not be attributed to 

either tumour or stromal cells. The basal, luminal, p53-like, and claudin-low markers were 

adapted from (Dadhania et al., 2016), and the squamous, neuroendocrine, and EMT markers 

were manually chosen based on prior knowledge and literatures. To highlight a differential 

activity of each signature the raw gene expression signature scores were rank-normalized in 

Fig. 4c. The CIS signature score was defined as a mean difference of log2(RSEM) between 

up-regulated and down-regulated genes (Dyrskjot et al., 2004).

miRNAs and RPPAs that were differentially abundant across mRNA subtypes: The 

1212 miRNA mature strands were reduced to 303 expressed strands by requiring a mean 

RPM of at least 10 across n=405 tumor samples. A SAM (samr v2.0) multiclass analysis 

was run using 1000 permutations, no array centering, a Wilcoxon test statistic, and an FDR 

output threshold of 0.05. The same settings were used for RPPA normalized abundance data 

for 195 antibodies and 344 primary tumours.

Detecting somatic gene fusions—A modified version of VirusSeq (Chen et al., 2013) 

that implements a greedy algorithm with a robust statistical model was used in gene fusion 

discovery for RNA-Seq data. Specifically, MOSAIK aligner (Lee et al., 2014) was used to 

align paired-end reads to human genome reference (hg19). A given paired-end read 

alignment was then quantified in terms of the genomic location (L) of the aligned read pair, 

the distance (D) between the aligned read pair of the fragment (insert), and the orientation 

(O) of the read pair. The specific pattern in (L, D, O) space was used as a constraint to define 

the discordant read pair. For example, a discordant read pair may have an exceptionally long 

D spanning a region in the reference genome. All discordant reads were then annotated 

using the genes defined in UCSC refFlat file, and clustered into the ones that support the 

same fusion event (e.g., FGFR3–TACC3). Finally, each fusion candidate was defined and 

selected as the discordant read clusters in which a statistical model-based algorithm with 
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greedy strategy was implemented to accurately detect the boundaries of discordant read 

clusters and in silico fusion junctions. Here, in silico fusion junction is the nucleotide-level 

genomic coordinate on either side of the gene fusion and is not necessary to be at the ends of 

known exons. Specifically, the boundary for each discordant read cluster of candidate fusion 

was estimated on the basis of discordant read mapping locations and orientations with 

fragment length distribution (e.g., within mean plus three SDs, μ+3*σ) as a constraint of 

cluster size. The cluster size of discordant reads was measured by using reads’ genomic 

location excluding introns if mapped reads are located across adjacent exons in a candidate 

fusion gene. Finally, to help PCR primer design, which facilitates rapid PCR validations, an 

in silico sequence was generated using the consensus of reads within discordant read clusters 

for each fusion candidate.

Bladder cancer cell lines: Thirty human bladder cancer cell lines were obtained from the 

MD Anderson (MDA) Bladder SPORE Tissue Bank. Cell line identities were validated by 

the MDA Characterized Cell Line Core, using DNA fingerprinting with AmpFlSTR 

Identifiler Amplification (Applied Biosystems, Foster City, CA). Cell lines were cultured in 

MEM supplemented with 10% fetal bovine serum, vitamins, sodium pyruvate, L-glutamine, 

penicillin, streptomycin, and nonessential amino acids at 37°C in 5% CO2 incubator. Total 

RNA was isolated using a mirVana miRNA isolation kit (ThermoFisher Scientific, Waltham 

MA). RNA-Seq data was generated with a TruSeq Stranded Total RNA Library Prep Kit, 

and 76-bp PE reads on an Illumina HiSeq 2500.

Integrative pathway analysis—We evaluated somatic mutations and copy number 

changes at the gene level, within the context of well-studied signaling pathways. Pathway 

alteration frequencies were based on the following genes:

• TP53/Cell Cycle pathway: ATM, TP53, MDM2, CDKN2A, RB1, CCND1, 

CDKN1A, PTEN, CCNE1, FBXW7, CDKN1B, CCND1/2/3, and CDK4/6

• RTK/RAS/PI3K pathway: PIK3CA, FGFR1/3, ERBB2/3, RAF1, PTEN, 

TSC1/2, EGFR, AKT1/2, NF1, RAC1, H/N/KRAS, JAK1/2, and BRAF

• Histone modification pathway: EP300, CREBBP, KMT2C/D, KDM6A, BAP1, 

ASXL1/2 and SETD2

• SWI/SNF pathway: ARID1A, ARID1B and ARID2

• DNA Damage pathway: ERCC2, BRIP1, ATM, BRCA1/2, RAD21/50 and 

CHEK1

• Cohesin complex pathway: STAG1/2, RAD21 and SMC1A/3 (Losada, 2014)

• Oxidative stress pathway: NFE2L2, KEAP1, CUL3 and TXNIP

• Alternative splicing pathway: RMB10, SF3B1, U2AF1 and CDK12.

Oncogenic relevance was assessed using OncoKB, a knowledgebase for the oncogenic 

effects of cancer genes that is manually curated by researchers and physicians at Memorial 

Sloan Kettering (Chakravarty et al., 2017). More precisely, a mutation is counted and 
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included in the diagrams if (1) it has been reported 4 or more times in COSMIC (Forbes et 

al., 2011), or (2) it has been labeled as oncogenic, or likely oncogenic, in OncoKB.

Amplifications and deep deletions are based on GISTIC calls and indicate somatic 

alterations in more than half of the baseline gene copies. They are counted and included in 

the diagrams only if they are labeled as oncogenic, or likely oncogenic, in OncoKB. The 

actual list of oncogenic and likely oncogenic alterations is regularly updated based on the 

literature; the most recent version can be retrieved online from the OncoKB public website 

(www.oncokb.org) or visualized when viewing the data in the cBioPortal 

(www.cbioportal.org). For known oncogenes, we considered only genetic alterations inferred 

to be activating; for genes with tumor suppressive roles, only alterations inferred to be 

inactivating were considered.

Non-coding RNA (lncRNA and miRNA) Sequencing and Analysis

Mapping RNA-seq reads for lncRNAs: RNA sequence reads were aligned to the human 

reference genome (hg38) and transcriptome (Ensembl v82, September 2015) using STAR 

2.4.2a (Dobin et al., 2013). STAR was run with the following parameters: minimum/

maximum intron sizes were set to 30 and 500,000, respectively; noncanonical, unannotated 

junctions were removed; maximum tolerated mismatches was set to 10; and the 

outSAMstrandField intron motif option was enabled. The Cuffquant command included 

with Cufflinks 2.2.1 (Trapnell et al., 2013) was used to quantify the read abundances per 

sample, with fragment bias correction and multiread correction enabled, and all other 

options set to default. To calculate normalized abundance as fragments per kilobase of exon 

per million fragments mapped (FPKM), the cuffnorm command was used with default 

parameters. From the FPKM matrix for the 80 tumor samples, we extracted 8167 genes with 

“lincRNA” and “processed_transcript” Ensembl biotypes.

miRNA sequencing: We generated miRNA sequencing (miRNA-seq) data from messenger 

RNA-depleted RNA (Chu et al., 2016). Briefly, we aligned reads to the GRCh37/hg19 

reference human genome, assigned read count abundances to miRBase v16 stem-loops and 

5p and 3p mature strands, and assigned miRBase v20 mature strand names to MIMAT 

accession IDs. Note that while we used only reads with exact-match alignments in 

calculating miRNA abundances, BAM files available from the Genomics Data Commons 

(https://gdc.cancer.gov/) include all sequence reads.

Unsupervised clustering for lncRNAs, miRNAs: We extracted lncRNAs that were robustly 

expressed (mean FPKM ≥ 1) and highly variable across the n=80 tumor cohort (≥ 95th 

FPKM variance percentile) from the matrix of 8167 lncRNAs (above), and identified groups 

of samples with similar abundance profiles by unsupervised consensus clustering with 

ConsensusClusterPlus (CCP) 1.20.0 (Wilkerson and Hayes, 2010). Calculations were 

performed using Spearman correlations, partitioning around medoids (PAM) and 10,000 

iterations. From solutions with 2, 3, 4 and 5 clusters we selected a four-cluster solution after 

assessing consensus membership heatmaps and dendrograms, CCP clustering metrics, 

Kaplan-Meier (KM) plots, and clustering results from other platforms. To visualize typical 

vs. atypical cluster members, we calculated a profile of silhouette widths (Wcm) calculated 
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from the consensus membership matrix. To generate an abundance heatmap we identified 

lncRNAs that had a mean FPKM ≥ 5 and a SAM multiclass (samr 2.0) (Li and Tibshirani, 

2013) q ≤ 0.01 across the unsupervised clusters (see differential abundance, below), 

transformed each row of the matrix by log10(FPKM + 1), then used the pheatmap R package 

(v1.0.2) to scale and cluster only the rows, using a Pearson distance metric and Ward 

clustering.

For miRNA mature strand data we used a similar approach. The input was a reads-per-

million (RPM) data matrix for the 303 (25% of 1212) most-variant 5p or 3p mature strands, 

which we transformed by applying log10(RPM+1), then median-centering each miRNA’s 

record. Using Pearson distances, PAM, and 5000 iterations with a 0.85 random fraction of 

miRNAs in each iteration, we assessed solutions with between two and eight clusters. After 

assessing information as for lncRNAs, we focused on a four-cluster solution. As for 

lncRNAs, to generate a clustering heatmap we first identified miRNAs that were 

differentially abundant between the unsupervised miRNA clusters using a SAM multiclass 

analysis (samr 2.0) (Li and Tibshirani, 2013) in R, with a read-count input matrix and a FDR 

threshold of 0.05. We included miRNAs that had the largest SAM scores and median 

abundances > 25 RPM. The RPM filtering acknowledged that miRNAs that are more 

abundant are more likely to be influential (Mullokandov et al., 2012; Thomson and Dinger, 

2016). We transformed each row of the matrix by log10(RPM+1), then used the pheatmap R 

package (v0.7.7 or v1.0.2) to scale and cluster only the rows.

Carcinoma in situ (CIS) signature genes: We used RSEM gene-level data and the 

pheatmap R package with row scaling to generate heatmaps of normalized expression for 32 

‘up’ and 36 ‘down’ carcinoma in situ (CIS) signature gene sets (Dyrskjot et al., 2004). ‘Up’ 

genes were (genes are given as in the RSEM file: HGNC symbol | Entrez gene ID): 

AKR1B10|57016, CALD1|800, CDH11|1009, CLIC4|25932, COL15A1|1306, COL3A1|

1281, CXCR4|7852, DCN|1634, DPYSL2|1808, EFEMP1|2202, FLNA|2316, HLA-DQA1|

3117, HLA-DQB1|3119, HOXA9|3205, ITM2A|9452, KPNA2|3838, KYNU|8942, LHFP|

10186, LUM|4060, LYZ|4069, MAN1C1|57134, MSN|4478, NR3C1|2908, PDGFC|56034, 

PRG1|23574, RARRES1|5918, S100A8|6279, SGCE|8910, SPARC|6678, TOP2A|7153, 

TUBB|203068, and UAP1|6675. ‘Down’ genes were: ACSBG1|23205, ANXA10|11199, 

BBC3|27113, BCAM|4059, BMP7|655, BST2|684, CA12|771, CLCA4|22802, CRTAC1|

55118, CTSE|1510, CYP2J2|1573, EEF1A2|1917, ENTPD3|956, FABP4|2167, FGFR3|

2261, GRB7|2886, HBG1|3047, HOXA1|3198, HOXB2|3212, INA|9118, ITGB4|3691, IVL|

3713, KCNQ1|3784, LAD1|3898, LAMB3|3914, LTBP3|4054, MAPRE3|22924, MST1R|

4486, PADI3|51702, PLA2G2A|5320, SOX15|6665, TMPRSS4|56649, TNNI2|7136, 

TRIM29|23650, UPK2|7379, UPK3B|80761.

To generate compact ‘collapsed’ covariate expression tracks for the ‘up’ and ‘down’ CIS 

signature gene sets, we calculated Bonferroni-corrected Kruskal-Wallis p values for RSEM 

gene expression across lncRNA, miRNA and regulon status clusters. For each of the three 

clustering solutions, for the two gene sets, we used these p values to select a subset of 

strongly differentially expressed genes. We calculated a profile of the median RSEM 

expression for each gene subset, across the cluster-ordered cases, and used pheatmap to 

generate a row-scaled normalized expression track for the median profile. P value-selected 
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gene sets were as follows. For the lncRNA clusters, we used the 21 of 32 ‘up’ genes and 18 

of 36 ‘down’ genes that passed a threshold of a Bonferroni-corrected Kruskal p ≤ 1E-15. For 

the miRNA clusters, we used the 20 ‘up’ genes that passed a Kruskal p ≤ 1E-15 threshold, 

and the 11 ‘down’ genes that passed Kruskal p ≤ 1E-10.

Covariates associated with unsupervised clusters: We compared unsupervised clusters to 

clinical and molecular covariates by calculating contingency table association p values using 

R, with a Chi-square or Fisher exact test for categorical data, and a Kruskal-Wallis test for 

real-valued data.

Pathology review of adjacent tissue normal samples: After pathology review, four of the 

19 adjacent tissue cases were removed from the expression data for lncRNAs and miRNAs: 

BT-A20U, BT-A2LB, GD-A2C5, and GD-A3OP.

EMT scores from RNA-seq data: The samples were scored based on expression of EMT 

signature genes (Mak et al., 2016). Briefly, the EMT score for each sample is calculated as 

the mean expression of epithelial markers subtracted from the mean expression of 

mesenchymal markers. Higher EMT scores correlate with a more mesenchymal expression 

pattern.

Regulon analysis

Candidate regulators: We inferred the relative activity of 23 candidate ‘regulator’ genes 

that had previously been reported as associated with bladder cancer: the steroid hormone 

receptors ESR1/2, AR and PGR; the nuclear receptors PPARG, three RARs (A/B/G), and 

three RXRs (A/B/G); the receptor tyrosine kinases ERBB2/3 and FGFR1/3; and the 

transcription factors FOXA1, FOXM1, GATA3/6, HIF1A, KLF4 and STAT3 and TP63 
(Breyer et al., 2016; Choi et al., 2014a; Dadhania et al., 2016; DeGraff et al., 2013; Eriksson 

et al., 2015; Godoy et al., 2016; Jones et al., 2016; Kardos et al., 2016; Lim et al., 2016). By 

‘regulator’ we mean a gene whose product induces and/or represses a target gene set, which 

we call a ‘regulon’ (Castro et al., 2016a).

Reconstruction of RTN regulons: The BLCA regulator-target associations are inferred 

using the R package RTN (Castro et al., 2016b), which is extensively described elsewhere 

for reconstructing regulatory units for transcriptions factors and upstream regulators 

(Campbell et al., 2016; Castro et al., 2016a; Fletcher et al., 2013). Briefly, gene expression 

matrices for a set of samples are used to estimate the associations between a regulator and all 

potential targets. We use two metrics to identify potential regulator-target associations: 

Mutual Information (MI) and Spearman’s correlation. MI-based inference indicates whether 

a given regulator is informative of the status of a given target gene, while Spearman’s 

correlation indicates the direction of the inferred associations. Associations with less than a 

minimum MI threshold are eliminated by permutation analysis (BH-adjusted p value < 

1e-5), and unstable interactions are additionally removed by bootstrapping (n=1000 

resamples, consensus bootstrap > 95%), to create a regulatory network. RTN regulons are 

additionally evaluated by the Data Processing Inequality (DPI) algorithm with 

tolerance=0.01 (Margolin et al., 2006). Note that MI-based inference computes regulons 
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irrespective of positive or negative associations, and Spearman’s correlation is then used 

only to assign direction to the predicted regulons. As an optional step, we assessed the 

stability of the main observations by filtering regulons using the Bioconductor package 

genefilter v1.56.0 (Gentleman et al., 2016). Feature selection was performed using the 

coxfilter function on the Sjodahl 2012 cohort (see below) and used to filter genes in the 

TCGA cohort. Since overfiltering discards both false and true null hypotheses, we also look 

at the fraction of filtered genes and the total number of observations (i.e. overall results 

should be stable irrespective of the fractions removed). The list of positively and negatively 

associated genes in each regulon is provided in Table S2.25.

Regulon activity estimated by two-tailed GSEA: The two-tailed gene set enrichment 

analysis (GSEA) is described elsewhere (Castro et al., 2016a). Briefly, this approach 

assesses the skewness of two distributions of a selected gene set in a list of genes that is 

ranked by a particular phenotype, as follows. The gene set represented for a given regulon is 

split into positive (A) and negative (B) targets using Spearman’s correlation, and the 

phenotype corresponds to the gene-wise differential expression observed when comparing a 

given tumour with the average expression of all tumours in the cohort. The distribution of A 

and B is then tested by the GSEA statistics in the ranked phenotype, producing independent 

per-sample enrichment scores (ES), and then differential enrichment scores (dES), which are 

obtained by subtracting the enrichment score for positive targets (ESA) from that obtained 

for negative targets (ESB). A large positive dES indicates an induced regulon status while a 

large negative dES indicates the opposite case. Differential enrichment score values that are 

near zero (with ESA and ESB distributions skewed to the same side) are assigned as 

inconclusive. The two-tailed GSEA was performed in R (R-Core-Team, 2012) using the 

function tni.gsea2 in the RTN package (Castro et al., 2016a).

Regulon activity as readout of clinical and molecular variables: For each case in a cohort 

we assign an enrichment score (dES) using the two-tailed GSEA approach described above. 

Then, ordering the cohort’s cases by dES, we can assess how a given regulon is associated 

with clinical and molecular variables. The cohort cases are also stratified by positive vs. 

negative dES values, and the stratified cases are used to plot Kaplan-Meier survival curves, 

with p values calculated using log-rank statistics (Castro et al., 2016a). The survival analysis 

is performed in R using the functions coxph, survfit and survdiff.

Independent BLCA cohort and transcriptome data: Data used to assess survival statistics 

in BLCA from an independent cohort are obtained from a large-scale microarray study for 

n=308 BLCA cases (Sjodahl et al., 2012), which we downloaded from GEO (accession 

number GSE32894). We use the gene sets in the regulons that we infer from TCGA data to 

assess the Sjodahl cohort. For each regulon’s gene set, the regulon activity is initially 

estimated for all tumours of the Sjodahl cohort with the two-tailed GSEA approach, and then 

the regulon activity is used as readout of clinical and molecular variables, as described 

above.
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Microbial analysis

Microbial screening and genomic integration (British Columbia Cancer 
Agency): Microbe analysis consists of two stages: read screening and genomic integration. 

In the first stage we classify read sequences using a pipeline based on BBT (Release 1.2.10), 

a fast Bloom filter-based method (Chu et al., 2014). For 48-bp PE RNAseq data, we 

processed data for 408 tumor samples and 19 tissue normal samples; for 76-bp PE WES data 

we processed 412 tumor samples and 429 blood or tissue normals; and for 51-bp PE WGS 

data (high and low pass) we processed 136 tumor samples and 145 blood or tissue normal 

samples. We ran BBT with a sliding window size (i.e. k-mer length) of 25 bp and a false 

discovery rate of 0.02. We generated 43 filters from ‘complete’ NCBI genome reference 

sequences for microbial species that included bacteria, viruses, fungi and protozoa. In a 

single-pass scan, BBT categorizes each read as matching a filter for human or a single 

specific microbe, as matching two or more species (multi-match), or as matching none of the 

filters (no-match). For each filter, we calculated a reads-per-million (RPM) abundance 

metric (below) and applied a threshold of 0.2 RPM (Cancer Genome Atlas Research 

Network, 2014b) to identify samples as being positive for specific microbes. For HPV-

positive samples, we identified HPV strains with a second BBT run that uses strain-specific 

filters.

In the second stage of analysis we assessed whether viruses had integrated into the human 

genome, working only with data sets for which BBT results for HPV, HHV4 or HHV5 were 

above or close to the 0.2 RPM screening threshold, and with BK-Polyomavirus in DK-A3IT. 

We performed de novo assembly (Robertson et al., 2010) with ABySS v1.3.4 on each 

library, using every fourth k-mer value from k=24 to 48 for RNA-seq data, every fourth k-

mer from k=52 to 96 for WES data, and k=24, 36 and 48 for WGS data. For HPV analysis 

we assembled only the reads that BBT had classified as human, HPV match, multi-match, 

and no-match. We used a similar approach for the HHV4 and HHV5 assemblies. For each 

library, we merged the contig sets for all k-mer assemblies with Trans-ABySS v1.4.8 to 

generate a working contig set. We reran BBT on each of these contig sets, applying only 

human and either HPV or herpes virus filters, identifying the contigs that matched to only a 

viral filter, or to both the human filter and a viral filter. For HPV-only contigs we confirmed 

the strain by using BLAT v34 to align each contig to 48 HPV reference sequences. For 

chimeric multi-match contigs we confirmed the HPV strain, and, for HPV, HHV4 and 

HHV5, identified integration breakpoints by using BLAT v34 (Kent, 2002) to align each 

contig to the human GRCh37/hg19 reference sequence, and to 110 HHV4, 22 HHV5, or 48 

HPV reference sequences. We retained contig alignments in which the aligned human and 

viral sequences summed to at least 90% of the contig length, and the human and viral 

aligned overlapped by less than 50%. We annotated human breakpoint coordinates against 

RefSeq and UCSC gene annotations (downloaded from the UCSC genome browser on 30-

Jun-2013) (Kuhn et al., 2013). Breakpoints that had supporting evidence consisting of at 
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least 3 spanning mate-pair reads or 5 flanking mate-pair reads were considered potential 

integration sites.

Microbial detection from RNAseq data by PathSeq (The Broad Institute)

PathSeq Microbial Detection: The PathSeq algorithm (Kostic et al., 2011) (https://

github.com/ChandraPedamallu/PathSeq) was used to perform computational subtraction of 

human reads, followed by alignment of residual reads to a combined database of human 

reference genomes and microbial reference genomes (which includes but is not limited to 

Human Papillomaviruses (HPV’s), BK Polyomaviruses (BK), Human Herpesviruses 

(HHV’s)), resulting in the identification of reads mapping to HPV, BK, and HHV genomes 

in RNA sequencing data.

In brief, for PathSeq human reads were subtracted by first mapping reads to a database of 

human genomes using BWA (version 0.6.1) (Li and Durbin, 2009), Megablast (version 

2.2.23), and Blastn (version 2.2.23) (Altschul et al., 1997). Only sequences with perfect or 

near perfect matches to the human genome were removed in the subtraction process. To 

identify HPV/HBK/HHV reads, the resultant non-human reads were aligned with Megablast 

to a database of microbial genomes that includes multiple HPV, BK and HHV reference 

genomes. HPV, BK and HHV reference genomes were obtained from the NCBI nucleotide 

database (downloaded in June 2012).

Subjects were classified as HPV by RNA sequencing if at least 1 HPV read in 1 million 

human reads were present; otherwise, subjects were classified as HPV-negative. In addition, 

subjects were classified as BK-positive by RNA sequencing if at least 1 BK reads in 1 

million human reads were present; otherwise, subjects were classified as BK-negative. 

Similar thresholds are used for Human Herpesviruses.

Identification of Human papillomavirus and BK Polyomavirus integration events: An 

HPV-positive sample was considered integration positive if there were at least 5 spanning 

read pairs or 10 flanking reads supporting an integration event. In case of HPV-positive, 

flanking read pairs were defined as having one end of the paired-end read mapped to the 

HPV genome and its mate pair mapped to the human genome. Spanning reads were defined 

as having one end of the paired end read spanning the integration junction and its mate pair 

mapped to either the human or HPV genome. Once HPV reads were obtained, we extracted 

all pair mates and used Tophat-2.0.84 (Trapnell et al., 2009) with the fusion option enabled 

to map these paired end reads to a combined database containing the human genome and an 

HPV genome. Next, spanning reads and flanking reads are identified from the aligned BAM 

file. Human genes involved in the integration are identified using the breakpoint coordinates 

against RefSeq and UCSC gene annotations (last modified on 30-Jun-2013) from the UCSC 

genome browser (Kuhn et al., 2013). A similar approach is followed for identification of BK 

Polyomavirus integration from RNAseq data.

RPPA protein expression profiling

RPPA experiments and data processing: RPPA lysis buffer was used to extract protein 

from human tumors and RPPA was performed as described previously (Hennessy et al., 
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2007; Hu et al., 2007; Liang et al., 2007; Tibes et al., 2006). Frozen tumors were lysed by 

Precellys homogenization, adjusted to 1 µg/µL concentration as assessed by bicinchoninic 

acid assay (BCA), boiled with 1% SDS, and manually serial diluted in two-fold of 5 

dilutions with lysis buffer. Details on slide preparation, analysis and quantification of spot 

intensities to generate spot signal intensities (level 1 data), SuperCurve-based QC metric to 

filter slides with highest QC for each antibody (level 2 data) (Hu et al., 2007), loading 

control across antibodies for protein measurements (level 3 data) (Gonzalez-Angulo et al., 

2011; Hu et al., 2007), and final selection of antibodies for specificity and sensitivity 

(Hennessy et al., 2010) are given in (Cancer Genome Atlas Research Network, 2014a). In 

total, 215 antibodies and 343 muscle invasive urothelial/bladder carcinoma (BLCA) samples 

were used in the analysis, including 109 papillary and 224 non-papillary samples. Forty-two 

of these 343 samples were squamous cell carcinomas that were mostly non-papillary (40 

non-papillary and 2 papillary) samples. RPPA raw data (level 1), SuperCurve 

nonparameteric model fitting on a single array (level 2), and loading corrected data (level 3) 

(Ju et al., 2015; Zhang et al., 2009) were deposited at the DCC.

Data normalization: Median centering was performed across all the antibodies for each 

sample to correct for sample loading differences. These differences could arise because 

protein concentrations are not uniformly distributed per unit volume of lysate due to several 

factors such as differences in protein concentrations of large and small cells, differences in 

the amount of proteins per cell, or heterogeneity of the cells comprising the samples. The 

expression levels across many different proteins in a sample could be used to estimate 

differences in the total amount of protein in that sample vs. other samples. Further, 

subtracting the median protein expression level forces the median value to become zero, 

allowing for a comparison of protein expressions across samples. These median-centered 

data were used for the analysis of BLCA samples. Surprisingly, processing similar sets of 

samples on different slides of the same antibody may result in datasets that have very 

different means and variances. Neely et al. (Neeley et al., 2009) processed clinically similar 

ALL samples in two batches and observed differences in their protein data distributions. 

There were additive and multiplicative effects in the data that could not be accounted by 

biological or sample loading differences. We observed similar effects when we compared the 

two batches of bladder tumor protein expression data. A new algorithm, replicates-based 

normalization (RBN), was therefore developed using replicate samples run across multiple 

batches to adjust the data for batch effects. The underlying hypothesis is that any observed 

variation between replicates in different batches is primarily due to linear batch effects plus a 

component due to random noise. Given a sufficiently large number of replicates, the random 

noise is expected to cancel out (mean = zero by definition). Remaining differences are 

treated as systematic batch effects. We can compute those effects for each antibody and 

subtract them out. Many samples were run in both batches. One batch was arbitrarily 

designated the “anchor” batch and was to remain unchanged. We then computed the means 

and standard deviations of the common samples in the anchor batch, as well as the other 

batch. The difference between the means of each antibody in the two batches and the ratio of 

the standard deviations provided an estimate of the systematic effects between the batches 

for that antibody (both location-wise and scale-wise). To cancel out those systematic 

differences, each data point in the non-anchor batch was adjusted by subtracting the 
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difference in means, then multiplying by the inverse ratio of the standard deviations. Our 

normalization procedure significantly reduced technical effects, thereby allowing us to 

merge the datasets from different batches.

RPPA clusters and pathway scores: BLCA samples (n = 343), including 109 papillary and 

224 non-papillary samples, were clustered based on 208 antibodies by consensus clustering 

using the partitioning around medoids algorithm and a Euclidean dissimilarity measure 

(Wilkerson and Hayes, 2010). The role of cell signaling networks in urothelial carcinomas 

was illustrated by computing twelve pathway scores similar to those described previously 

(Akbani et al., 2014).

Kaplan-Meier curves for overall survival: P values are based on the G-rho family of 

Harrington and Fleming (Xu and Harrington, 2001) tests to evaluate the difference between 

two or more survival curves.

Carcimoma-in-situ (CIS) gene sets: Carcimoma-in-situ (CIS) gene sets were from 

(Dyrskjot et al., 2004).

Univariate and Multivariate Survival Analysis

Data preparation and univariate survival analysis: As described in Table S2.28, we 

recoded values of certain covariates (columns E vs. F), then excluded from the analysis 

covariates that had many missing values (column C), including 

CLIN_ajcc_nodes_pathologic_pn and CLIN_ajcc_tumor_pathologic_pt, or that were highly 

unbalanced between two categories (i.e. one category contained <5% of the cases) (column 

H). We removed PATH.NOS and PATH_squamous covariates, retaining PATH_Short.Path, 

because the information in the first two was close to what the latter offered. After excluding 

all copy number covariates for technical reasons, we had retained 101 covariates. For 

univariate calculations we used the survdiff function from the R survival v2.40-1 package, 

and adjusted the log-rank p values with a Benjamini-Hochberg (BH) correction. The 

univariate analysis identified 18 covariates that were statistically associated with overall 

survival (BH-adjusted p value < 0.05).

LASSO and Cox regression analysis: As input covariates we used 13 of the 18 that the 

univariate calculations returned as significant, rejecting five because they had relatively large 

numbers of missing values:

CLIN_Node_positive_vs_negative (47 cases missing), CLIN_Combined_Tx_Node_positive 

(64), CLIN_ajcc_nodes_pathologic_pn (47), CLIN_T12_vs_T34 (39), 

CLIN_ajcc_tumor_pathologic_pt (43). We tested nine types of penalized estimation 

methods: lasso, adaptive lasso, fused lasso, elastic-net, adaptive elastic-net, SCAD, Snet, 

MCP, and Mnet assessing the performance of each approach with time-dependent ROC 

curves (tAUC) (Xiao et al., 2016). When no fitting strategy was significantly better, we 

choose to use LASSO to fit the final model.

We performed the multivariate Cox regression analysis in R (R Core Development Team, 

2016), assuming additive effects. For MSig, mRNA, lncRNA and miRNA subtypes we set, 
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as a reference, a subtype with the best survival (Table S2.29). All LASSO models were fit 

using the glmnet v2.0-5 and hdnom v4.6 packages (cv.glmnet and hdcox.lasso functions) 

(Friedman et al., 2010; Xiao et al., 2016). For comparison, we also used a stepwise selection 

algorithm for model selection (stepAIC function in the R MASS package); stepwise model 

selection, while widely used, has poor predictive performance compared to modern 

approaches like LASSO penalized regression (Hutmacher and Kowalski, 2015; Walter and 

Tiemeier, 2009). We selected the LASSO-penalized Cox model that resulted in minimal 

prediction error, using Leave-One-Out Cross-Validation (LOOCV), and assessed the 

stability of the results by bootstrap analysis (n=1000 times).

We determined risk groups from the LASSO model, as follows. The set of regression 

coefficients is equivalent to a predictive model that is a sum of terms, each of which is a 

covariate’s coefficient multiplied by the value of that covariate for a case. The cohort is split 

into training and validation sets in the k-fold cross-validation. The final model is used to 

estimate a survival probability for each case, at a chosen end-point (e.g. 48 months). The risk 

groups are then determined from the predicted probabilities; Figure 6C shows low-, 

medium- and high-risk tertiles. This process, called model calibration, is used to assess how 

far the model predictions are from actual survival outcomes. For the work reported here, the 

predictions were made on the samples that were used to build the model; when new cases 

that have data for the model’s covariates are available, predictions can be made on them 

using the same approach.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative and statistical methods are noted above according to their respective 

technologies and analytic approaches.

DATA AND SOFTWARE AVAILABILITY

The data and analysis results are available and can be explored through the Genomic Data 

Commons (https://gdc.cancer.gov), the Broad Institute GDAC FireBrowse portal (http://

gdac.broadinstitute.org), the Memorial Sloan Kettering Cancer Center cBioPortal (http://

www.cbioportal.org), and the TCGA publication page (https://tcga-data.nci.nih.gov/docs/

publications/). RNA-Seq data for 30 human bladder cancer cell lines are available at the 

Gene Expression Omnibus (GEO) with the accession GSE97768.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Multiplatform analysis informs muscle-invasive bladder cancer subtyping

• A framework associating distinct subtyping with therapeutic options

• High mutational load is driven mainly by APOBEC-mediated mutagenesis

• APOBEC-related mutational signature corresponds to a 75% 5-year survival
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Figure 1. Landscape of mutational signatures, mutations and copy number alterations
(A) Alteration landscape for 412 primary tumours. Top to bottom: Synonymous and non-

synonymous somatic mutation rates, with one ultra-mutated sample with a POLE signature. 

Mutational signature (MSig) cluster, APOBEC mutation load, and neoantigen load by 

quartile. Normalized activity of 4 mutational signatures. Combined tumor stage (T1,2 vs. 

T3,4) and node status, papillary histology, and gender. Somatic mutations for significantly 

mutated genes (SMGs) with frequency ≥ 7%. Copy number alterations for selected genes, 

and FGFR3 and PPARG gene fusions.

(B) Kaplan-Meier plots for overall survival (L to R): Overall mutation burden (SNVs); 

Mutation signature clusters (MSig1–4); APOBEC-mediated mutation load; Neoantigen load;
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Figure 2. mRNA expression subtypes
Top, L to R: 5 mRNA expression subtypes: luminal-papillary, luminal-infiltrated, luminal, 

basal-squamous and neuronal. Covariates: 4 previously reported TCGA subtypes; selected 

clinical covariates and key genetic alterations; normalized expression for miRNAs and 

proteins; log2 (fold change against the median expression across samples) for selected genes, 

for labeled gene sets. Samples within the three luminal subtypes, the basal-squamous 

subtype, and the neuronal subtype are ordered by luminal, basal, and neuroendocrine 

signature scores, respectively. Genes that are down-regulated* vs. up-regulated** in CIS.
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Figure 3. Somatic alterations in signaling pathways across mRNA subtypes
Somatic alterations include mutations and copy-number changes (i.e. deep deletions and 

high-level amplifications, from GISTIC results). Missense mutations are counted only if 

they have known oncogenic function based on OncoKB (http://oncokb.org) annotations, or 

have previously been reported in COSMIC, or occur at known mutational hotspots. The 

table shows the fraction of samples with alterations in selected signaling pathways. In the 

pathway diagrams, edges show pairwise molecular interactions; boxes outlined in red denote 

alterations leading to pathway activation, while boxes outlined in blue denote predicted 

pathway inactivation. The oncoprint illustrates type and frequency of alteration, as well as 

patterns of co-occurrence, for selected genes from the pathways highlighted in the table.
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Figure 4. LncRNA expression subtypes
(A) Heatmap and covariates for four unsupervised lncRNA consensus clusters. Top to 

bottom: normalized abundance heatmap for 171 lncRNAs; profile of silhouette width 

calculated from the consensus membership heatmap, Wcm; covariates for clinical 

parameters, molecular subtypes, purity, mutations in TP53 and FGFR3, FGFR3 and PPARG 

gene fusions; row-scaled mRNA levels for 3 genes; collapsed CIS gene sets (Dyrskjot et al., 

2004) (Methods; CIS up = genes up-regulated in CIS; CIS down = genes down-regulated in 

CIS); row-scaled regulon activity profiles (showing activated, undefined, or repressed status) 
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for 23 regulators; RNA-seq-based EMT scores (Mak et al., 2016). The following p values 

are Bonferroni-corrected: for mutated genes (for 58 SMGs), gene fusions (for 23 fusions), 

regulon activity (for 23 regulators), and mRNA-seq (for 12 genes).

(B) A Kaplan-Meier plot for overall 5-year survival according to lncRNA subtype.
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Figure 5. MicroRNA expression subtypes
(A) Heatmap and covariates for a 4-cluster unsupervised consensus clustering solution. Top 

to bottom: Normalized heatmap showing a subset of 142 miRNAs that had a mean RPM ≥ 

50 and an absolute value of tumour-vs-normal fold change ≥ 1.5. Profile of silhouette width 

calculated from the consensus membership heatmap, Wcm, with lower values indicating 

samples that are atypical cluster members. Covariate tracks for clinical parameters, genomic 

platform subtypes, purity, mutations in TP53 and FGFR3, and FGFR3 and PPARG gene 

fusions. Row-scaled regulon activity profiles for 23 regulators that have been associated with 
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bladder cancer. Row-scaled mRNA levels for 12 genes, then for collapsed CIS gene sets 

(Dyrskjot et al., 2004) (Methods; CIS up = genes up-regulated in CIS; CIS down = genes 

down-regulated in CIS); and RNA-seq-based EMT scores (Mak et al., 2016). The following 

p values are Bonferroni-corrected: for mutated genes (for 58 SMGs), gene fusions (for 23 

fusions), regulon activity (for 23 regulators), and mRNA-seq (12 genes).

(B) A Kaplan-Meier plot for overall survival data that has been censored at 5 years.
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Figure 6. Integrated analysis
(A) Cluster of cluster assignments analysis (COCA). Unsupervised clustering of subtype 

calls. Subtype calls for mRNA (red), lncRNA (black), and miRNA (blue) are colored by 

separate data type. Annotations at the right of and below the heatmap use colors for mRNA 

subtypes. (B,C) Multivariate Cox analysis for overall survival.

(B) Coefficients (β) from the LASSO-penalized multivariate Cox regression on 15 

covariates that were significant (corrected p < 0.05) in univariate survival calculations. 
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Dashed blue lines indicate |β| = 0.1; variables shown in grey text have coefficients with |β| < 

0.1.

(C) Kaplan-Meier plot predicted from the cohort, for three tertile risk groups, at 48 months.

Robertson et al. Page 55

Cell. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Proposed schema of expression-based, subtype-stratified therapeutic approach as a 

framework for prospective hypothesis testing in clinical trials. * For luminal-papillary cases, 

the low predicted likelihood of response is based on preliminary data from (Seiler et al., 

2017). See Discussion.
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