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ABSTRACT
Background
Pulmonary hypertension (PHT) is common in sickle cell disease (SCD). The purpose of this
study was to determine whether markers of coagulation activation and inflammation are asso-
ciated with PHT in SCD.

Design and Methods
This cross-sectional study was performed using a cohort of patients followed at an adult Sickle Cell
Clinic. Pulmonary artery systolic pressure was determined by Doppler echocardiography, and the
diagnosis of PHT was defined using age, sex and body mass index-adjusted reference ranges.
Clinical laboratory examinations, including hematologic studies and biochemical tests, as well as
various measures of coagulation activation, endothelial activation and inflammation, were conduct-
ed on SCD subjects and on healthy, race-matched control subjects without SCD.

Results
Patients with SCD (n=76) had higher plasma levels of markers of coagulation (thrombin-
antithrombin complex, prothrombin fragment F1+2, D-dimer) and endothelial (soluble vascular
endothelial cell adhesion molecule, sVCAM) activation compared with control subjects (n=6).
SCD patients with PHT (n=26) had significantly higher levels of sVCAM compared with those
patients without PHT (n=50). Although PHT patients showed increased plasma measures of
coagulation activation, the differences were not statistically significant when compared to those
of patients without PHT. HbSS patients with PHT also had a trend towards higher levels of other
inflammatory cytokines (interleukins 6, 8 and 10) than HbSS patients without PHT. There was
a modest negative correlation between hemoglobin and plasma measures of coagulation and
endothelial activation, and modest positive correlations between markers of hemolysis and
plasma measures of coagulation and endothelial activation.

Conclusions
SCD patients with PHT have higher levels of markers of endothelial activation and other inflam-
matory markers than patients without PHT. A trend towards an increased level of markers of
coagulation activation was observed in SCD patients with PHT compared with that in patients
without PHT. Markers of hemolysis are associated with coagulation activation and endothelial
dysfunction in SCD patients. Clinical trials of anticoagulants and anti-inflammatory agents are
warranted in SCD patients with PHT.
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Introduction

Pulmonary hypertension (PHT) is a common compli-
cation in patients with sickle cell disease (SCD), with a
reported prevalence of approximately 30%.1-4 Multiple
studies have shown that PHT is associated with
increased mortality in SCD patients.2,4-7 The pathogene-
sis of PHT in SCD is probably due to a variety of factors.
Recent evidence suggests a central role for chronic
intravascular hemolysis, with associated scavenging of
nitric oxide by cell-free plasma hemoglobin.4,8,9 Arginase,
which converts L-arginine (the substrate for nitric oxide
synthesis) to ornithine, is also released following hemol-
ysis.10 Elevated arginase activity, and the resultant
decrease in the arginine/ornithine ratio, is associated
with PHT in SCD.4,11 Although various studies have
found no association between PHT and a history of
acute chest syndrome,3,4 chronic lung injury resulting
from repeated episodes of acute chest syndrome may
lead to the development of PHT due to chronic fibrotic
pulmonary parenchymal damage, altered vascular tone,
vascular proliferation, hypoxia and consequent pul-
monary vasculopathy. Finally, pulmonary thromboem-
bolism12,13 and progressive endothelial damage with con-
centric pulmonary vascular intimal hyperplasia and in
situ thrombosis13,14 may also contribute to the pathogen-
esis of PHT in SCD. The aim of the present study was
to determine whether coagulation activation and
inflammation are associated with PHT in SCD.
Furthermore, we aimed to assess correlations between
measures of coagulation activation and inflammation
with markers of hemolysis. To address these questions,
we evaluated a cohort of patients followed at an adult
Sickle Cell Clinic. 

Design and Methods

Patients and study design
The patients studied represent a cohort followed at

the Sickle Cell Clinic at The University of North
Carolina, Chapel Hill, USA. Patient selection methods
have been previously described.7 Seventy-six patients
(median age, 39 (interquartile range 31-47) years; 46
women) with SCD, and an additional six healthy, race-
matched control subjects (median age 45 (interquartile
range: 37-49) years; 4 women) without SCD were
included in the analyses. Each enrolled patient with
SCD was studied while in a non-crisis, steady state, had
not experienced an episode of acute chest syndrome in
the 4 weeks preceding enrollment and had no clinical
evidence of congestive heart failure. The study was
approved by the Committee on the Protection of the
Rights of Human Subjects at the University of North
Carolina, Chapel Hill, USA. Written informed consent
was obtained from all subjects.

Echocardiography
Transthoracic Doppler echocardiography was per-

formed in all SCD patients using a Hewlett-Packard
2500 Ultrasound System, with a 2.5/2.0 MHz ultra-
sound probe (Model 21215A) for recording continuous
wave signals. Echocardiography was not performed in
the control subjects. Echocardiograms were interpreted
by a single cardiologist blinded to all the patients’ data,
except for the diagnosis of SCD. Multiple views (apical
four-chamber, short axis and tricuspid inflow) were
obtained to record optimal tricuspid flow signals. The
tricuspid regurgitant jet velocity was measured using
continuous wave Doppler echocardiography on at least
three waveforms with well-defined velocity envelopes
and an average value used for data analysis. The pul-
monary artery systolic pressure (PASP) was calculated
using the modified Bernoulli equation (PASP=4V2 +
right atrial pressure), with the right atrial pressure
assumed to be 10 mmHg. The diagnosis of PHT in our
study was based on PASP values adjusted for age, sex,
and body mass index.15 A subject was classified as hav-
ing PHT if his/her PASP exceeded the upper limits of
normal in the reference ranges. 

Measurements of coagulation activation, endothelial
activation and inflammation 

Blood samples were drawn into citrate-containing
tubes using a 21-gauge needle. Plasma aliquots immedi-
ately isolated from patients’ samples were stored at -
80°C. Commercially available enzyme-linked immuno-
sorbent assay kits were used according to the manufac-
turers' recommendations to measure the following plas-
ma markers of coagulation activation, endothelial acti-
vation and inflammation: (i) prothrombin fragment
F1+2 (F1+2; Dade Behring, Marburg, Germany), (ii)
thrombin-antithrombin complex (TAT; Dade Behring,
Marburg, Germany), (iii) D-dimer (Asserachrom® D-
Di; Diagnostica Stago, Asnières, France), (iv) human sol-
uble vascular cell adhesion molecule-1 (sVCAM-1; R&D
Systems, Minneapolis, Minnesota, USA), and (v) soluble
CD40 ligand (sCD40L; Alexis Biochemicals, San Diego,
CA, USA). Plasma levels of seven other inflammatory
cytokines were measured in homozygous SCD patients
(HbSS) according to the manufacturer’s instructions
using the Bio-Plex system from Bio-Rad Laboratories,
which combines the principle of a sandwich immunoas-
say with Luminex fluorescent bead-based technology.16

Statistical analysis
Most of the data related to coagulation and inflamma-

tory markers were not normally distributed; therefore,
medians and interquartile ranges (25th and 75th per-
centiles) are used to describe the distributions of these
variables stratified by SCD and PHT status. Wilcoxon’s
rank sum tests were used to compare continuous meas-
ures between SCD patients and controls, and to com-
pare PHT patients with those SCD patients without
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PHT. Kruskal-Wallis tests were used to compare contin-
uous markers of coagulation activation among the three
groups (PHT, no PHT, and healthy controls). Fisher’s
exact tests were used to compare categorical variables
between controls and SCD patients. A large proportion
of SCD patients had no measurable interleukin-2 or
interleukin-4 (80-94%), therefore these variables were
analyzed on the basis of detectable levels. Patients with
or without PHT were compared with respect to those
with detectable levels using Fisher’s exact tests.
Spearman’s correlations were used to identify associa-
tions among measures of coagulation activation,
endothelial activation, and inflammatory cytokines. All
tests were two-sided (a=0.05). Statistical analyses were
performed using SAS software (version 9.1; SAS
Institute, Cary, NC, USA). 

Results

Clinical and laboratory characteristics
Patients with SCD had higher white blood cell counts

(9.2×109/L vs 7.1×109/L; p=0.02), platelet counts
(399×109/L vs 251×109/L; p=0.002), reticulocyte counts
(6.1% vs 1.7%; p=0.0002) and fetal hemoglobin levels
(5.4% vs 0.5%; p=0.0009) than healthy control subjects
(Table 1). Furthermore, SCD patients showed higher
absolute neutrophil counts (4.8×109/L vs. 3.6×109/L;
p=0.03) and absolute monocyte counts (0.45×109/L vs.
0.25×109/L; p=0.002) than healthy control subjects.
When SCD patients with PHT were compared with
those SCD patients without PHT, the former had high-
er white blood cell count counts (10.4×109/L vs.
8.7×109/L; p=0.05), absolute neutrophil counts
(5.5×109/L vs 4.4×109/L; p=0.03), and absolute monocyte
counts (0.55×109/L vs 0.4×109/L; p=0.02).

Markers of coagulation activation and inflammation
The plasma markers of coagulation activation

assessed in this study were higher in SCD patients than
in control subjects. SCD patients with and without PHT
had significantly higher D-dimer levels than control
subjects (1251.5 ng/mL [FEU] vs. 318 ng/mL [FEU];
p=0.02). The median values of TAT and F1+2 levels

were also higher in SCD patients, although the differ-
ences were not statistically significant. When SCD
patients with PHT were compared with those SCD
patients without PHT, the median values of all three
markers of coagulation activation were higher, but the
differences were not statistically significant (Table 2).
Levels of sCD40L (a marker of platelet activation and
inflammation) and sVCAM-1 (a marker of endothelial
activation) were higher in SCD patients than in control

Table 1. Patients’ clinical and laboratory characteristics.

Sickle cell disease Control p
Characteristic (n=76) (n=6) value*

Median (25th,75th) Median (25th,75th)
or frequency (%) or frequency (%)

Age (years)† 39 (31, 47) 45 (37, 49) 0.35
Gender (female) 46 (61) 4 (67) 1.00
Genotype

SS 56 (74) −
Sb0 4 (5) −
Sb+ 7 (9) −
SC 9 (12) −

White blood cell count 9.2 (7.3, 11.5)   7.1 (4.4, 7.9) 0.024
(×109/L)

Hemoglobin (g/dL) 8.8 (7.6, 10.5) 13.2 (12.2, 13.4) <0.001

Platelet count (×109/L) 399 (312, 487) 251 (219, 291) 0.002

Reticulocyte count (%) 6.1 (4.4, 9.2) 1.7 (1.3, 1.8) <0.001

Absolute neutrophil count 4.8 (3.8, 6.6) 3.6 (2.1, 4.5) 0.03 
(×109/L)

Absolute monocyte count 0.45 (0.3, 0.65) 0.25 (0.2, 0.3) 0.01
(×109/L)

Fetal hemoglobin (%) 5.4 (2.5, 9.6) 0.5 (0.3, 2.0) <0.001

NT-proBNP (pg/mL) 98 (52, 186) 50 (50, 53) 0.006

Blood urea nitrogen (mg/dL) 9 (7, 14) 11 (8, 13) 0.52

Creatinine (mg/dL) 0.8 (0.65, 1.0) 1 (0.7, 1.1) 0.30

Total bilirubin (mg/dL) 1.8 (1.0, 3.1) 0.35 (0.3, 0.5) <0.001

Direct bilirubin (mg/dL) 0.1 (0.1, 0.2) 0.1 (0.1, 0.1) 0.13

Indirect bilirubin (mg/dL) 1.7 (0.9, 2.9) 0.2 (0.2, 0.3) 0.001

Lactate dehydrogenase (U/L) 872 (652, 1424) 494 (376, 537) 0.001

Chronic NSAID use (Yes) 18 (24%) 0 (0%) 0.58

Chronic anticoagulant use (Yes) 12 (16%) 0 (0%) 0.58

*p values comparing SCD patients to control were obtained by Wilcoxon’s rank
sum tests; †pulmonary hypertension was defined using age, sex and body
mass-index adjusted reference ranges.

Table 2. Markers of coagulation activation, endothelial activation, and sCD40 ligand. 

Sickle cell disease Control
(n=76) (n=6)

PHT No PHT
(n=26) (n=50) p value* pvalue°

Median (25th,75th) Median (25th,75th) Median (25th,75th) for 3 groups PHT vs. not

TAT (ng/L) 7.1 (4.0, 15.2) 5.7 (3.5, 13.5) 3.1 (2.2, 5.4) 0.32 0.80
F1+2 (nmol/L) 1.2 (0.7, 1.9) 0.9 (0.7, 1.3) 0.55 (0.4, 1.0 0.16 0.26
D-dimer (ng/mL) 1603 (758, 2547) 1234 (679, 1744) 318 (295, 433) 0.043 0.32
Soluble CD40L (ng/mL) 6.7 (6.4, 8.6) 7.6 (6.2, 9.0) 2.8 (2.7, 3.1) 0.001 0.62
Soluble VCAM (ng/mL) 954 (714, 1553) 682 (507, 885) 374 (324, 446) 0.001 0.004

*p values comparing the three groups (PHT, no PHT, and healthy controls) were obtained by Kruskal-Wallis tests; °p values comparing PHT to no PHT were obtained
by Wilcoxon’s rank sum tests.



subjects. When SCD patients with PHT were compared
with those patients without PHT, the former had high-
er median sVCAM-1 levels (954 ng/mL vs. 682 ng/mL;
p=0.004), but there were no differences in the levels of

sCD40L. Levels of other inflammatory cytokines were
only measured in HbSS patients. Of the cytokines
measured, HbSS patients with PHT had consistently
higher median levels of interleukin-6 (4.7 ng/mL vs. 2.9
ng/mL; p=0.06), interleukin-8 (5.4 ng/mL vs. 2.7 ng/mL;
p=0.07) and interleukin-10 (0.57 ng/mL vs. 0.35 ng/mL;
p=0.10) compared with HbSS patients without PHT,
although the differences were only of borderline statis-
tical significance (Table 3). 

Relationship of markers of coagulation and
endothelial activation with markers of hemolysis

We looked for correlations between plasma measures
of both coagulation and endothelial activation, and
markers of hemolysis in SCD patients with and without
PHT. Hemoglobin concentration showed modest nega-
tive correlations with TAT, F1+2, D-dimers and sVCAM
(Table 4). Lactate dehydrogenase showed statistically
significant, but modest positive correlations with TAT,
F1+2, D-dimers and sVCAM (Figures 1A and 1B).
Indirect bilirubin, another marker of hemolysis, showed
a small positive correlation with D-dimers and sVCAM.
sVCAM was positively correlated with D-dimers
(r=0.24; p=0.045) but not with other measures of coag-
ulation activation. Surprisingly, fetal hemoglobin was
not correlated with TAT, F1+2, or D-dimers, although
there appeared to be a small negative correlation with
sVCAM (r=-0.22; p= 0.07).

Relationship of markers of coagulation and
endothelial activation, and inflammatory cytokines
with absolute monocyte count

Spearman’s correlation coefficients were not signifi-
cant for relationships between absolute monocyte
count and any of the measures of coagulation or
endothelial activation (Table 4). However, there were
weak positive correlations between absolute monocyte
count and interleukin-10 (r=0.28; p=0.05) and between
sVCAM and interleukin-10 (r=0.28; p=0.04). 

Discussion

Sickle cell disease is characterized by a chronic
inflammatory state.17,18 Patients exhibit elevated leuko-
cyte counts, abnormal activation of granulocytes,
monocytes, and endothelial cells,19-21 and increased lev-
els of multiple inflammatory mediators.18,22-24 In addi-
tion, SCD is often referred to as a hypercoagulable
state25 because patients manifest increased thrombin
and fibrin generation,26,27 increased tissue factor proco-
agulant activity,28 and increased platelet activation19,22,27

even when they are in a non-crisis, steady state.
Furthermore, thrombosis may contribute to the patho-
genesis of several SCD-related complications. For
example, stroke, caused by large vessel obstruction
with superimposed thrombosis, often occurs in SCD
patients.29 Both pulmonary embolism and pregnancy-
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Table 3. Cytokine levels in HbSS patients with and without pul-
monary hypertension.

PHT No PHT p value*
(n=19) (n=34) 

Interleukin-2 (pg/mL) 84% 82% 1.00
(% 0 or not detectable) (Fisher’s exact test)

Interleukin-4 (pg/mL) 79% 94% 0.17
(% 0 or not detectable) (Fisher’s exact test)

Median (25th,75th) Median (25th,75th)

Interleukin-6 (pg/mL) 4.7 (2.7, 7.8) 2.9 (1.5, 6.5) 0.06
Interleukin-8 (pg/mL) 5.4 (2.4, 15.5) 2.7 (0, 7.9) 0.07
Interleukin-10 (pg/mL) 0.57 (0.25, 1.2) 0.35 (0.03, 0.82) 0.10
IFN-g (pg/mL) 31.3 (0, 85.7) 13.3 (0, 71.4) 0.76
TNFa (pg/mL) 1.9 (0, 7.8) 3.3 (0.98, 21.9) 0.25

*p values were obtained by Wilcoxon’s rank sum tests. IQR: interquartile range
(25th percentile, 75th percentile). IFN: interferon; TNF: tumor necrosis factor.

Figure 1A. The level of sVCAM is higher in SCD patients with PHT
than in patients without PHT. sVCAM levels are positively correlat-
ed with lactate dehydrogenase in study patients with SCD, rs=0.51
(p<0.001). 1B. Plasma measures of coagulation activation are
correlated with markers of hemolysis. D-dimer levels are positive-
ly correlated with lactate dehydrogenase (LDH) concentration in
the study patients with SCD, rs=0.42 (p<0.001).
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related venous thromboembolism appear to occur more
commonly in SCD patients than in appropriate control
patients.30,31 Finally, autopsies of SCD patients suggest
that in situ thrombotic arteriopathy of small pulmonary
arteries is present in most patients with PHT.13

In our cohort, we found increased levels of measured
plasma markers of coagulation activation (D-dimers,
F1+2, and TAT) in patients with SCD compared to the
levels in healthy age- and race-matched controls.
Although not statistically significant, the median values
of these markers were higher in SCD patients with PHT
than in those SCD patients without PHT. The median
absolute monocyte count in SCD patients with PHT
was also higher than that observed in SCD patients
without PHT. Tissue factor is an important physiologic
initiator of hemostasis and essentially all tissue factor
procoagulant activity that can be assayed in the whole
blood in normal individuals is present in the mononu-
clear cell fraction.28 Monocytes are activated in SCD
patients, increasing the expression of E-selectin, inter-
cellular adhesion molecule 1, VCAM-1 and tissue factor
on endothelial cells,20 and are a source of tissue factor-
positive microparticles in these patients.32 The lack of
correlation between plasma markers of coagulation acti-
vation and absolute monocyte count suggests that the
monocyte count is not an appropriate surrogate for tis-
sue factor procoagulant activity. This agrees with a pre-
vious report by Key et al.28

However, the correlations observed between markers
of hemolysis and plasma measures of coagulation acti-
vation suggest that the activated blood coagulation
present in SCD is due, at least in part, to hemolysis with
resultant scavenging of nitric oxide by cell-free plasma
hemoglobin. These results are consistent with a recent
report that hemolysis and decreased nitric oxide
bioavailability appear to contribute to platelet activa-
tion in SCD-associated PHT.33 Several factors, including
abnormal red blood cell phospholipid membrane asym-
metry, with increased expression of phosphatidylser-
ine,34 and ischemia-reperfusion injury35 appear to con-
tribute to the hypercoagulability observed in SCD
patients. Recent data suggest that type II phos-
phatidylserine red blood cells (highly phosphatidylser-
ine-positive and including dense sickle cells) cause a 2-

fold increase in endothelial tissue factor expression.
This appears to be due to the increased hemolysis of
these cells rather than to the physical interaction of type
II phosphatidylserine red blood cells with the endothe-
lium in patients with SCD.36

The higher levels of sVCAM observed in SCD patients
with PHT compared to those in patients without PHT
confirm the presence of increased endothelial dysfunc-
tion in these patients. In addition, the strong correlation
between sVCAM and markers of hemolysis suggests
that endothelial dysfunction may, in part, be a result of
decreased nitric oxide availability, a finding in agreement
with previous studies.9,37 Nitric oxide decreases cytokine-
induced endothelial activation by repression of VCAM-
1 gene transcription.38 The increased levels of inter-
leukin-6, interleukin-8 and interleukin-10 observed in
PHT patients in our study suggest a role for cytokines in
the development of PHT in SCD. Although a variety of
biological stimuli, including inflammatory cytokines, are
known to up-regulate VCAM in vascular endothelial
cells,39-43 only interleukin-10 was weakly correlated with
sVCAM in our study. While the reason for this correla-
tion is not clear, the trend towards higher interleukin-10
levels in patients with PHT may represent a protective
anti-inflammatory response to the increased inflamma-
tion observed in SCD patients with PHT. Interleukin-10
is an important physiological negative regulator of
macrophage activation44 and suppresses the release of
various inflammatory mediators including tumor necro-
sis factor-a and NO by activated macrophages.45,46 The
administration of interleukin-10 ameliorates disease in
models of endotoxemia,47 transplantation48 and autoim-
munity.49 Furthermore, elevated endogenous levels of
interleukin-10 in humans appear to be a positive prog-
nostic variable in autoimmune disease50 and allogeneic
transplant patients.51

The increased coagulation activation, endothelial dys-
function and inflammation observed in SCD patients
with PHT have important therapeutic implications. In
the absence of controlled studies, the majority of
patients with SCD-associated PHT are treated with
pharmacological agents known to be effective in idio-
pathic pulmonary arterial hypertension. Autopsy find-
ings in SCD patients with PHT are similar to those in

Table 4. Correlations with markers of coagulation and endothelial activation.*

Variable TAT F1+2 D-Dimers sVCAM

Hemoglobin (g/dL) -0.24 (p=0.045) -0.30 (p=0.012) -0.26 (p=0.03) -0.43 (p<0.001)

Total bilirubin (mg/dL) 0.21 (p=0.08) 0.14 (p=0.24) 0.32 (p=0.008) 0.36 (p=0.002)

Indirect bilirubin (mg/dL) 0.18 (p=0.15) 0.12 (p=0.35) 0.29 (p=0.02) 0.32 (p= 0.007)

Lactate dehydrogenase (U/L) 0.25 (p=0.04) 0.27 (p= 0.03) 0.42 (p<0.001) 0.51 (p<0.001)

Absolute monocyte count (x109/L) 0.09 (p=0.43) 0.03 (p=0.79) 0.05 (p=0.65) 0.03 (p=0.82)

Fetal hemoglobin (%) -0.025 (p=0.84) -0.13 (p=0.29) -0.10 (p= 0.40) -0.22 (p=0.07) 

*Data shown as Spearman’s correlation coefficients (rs values) and p values are presented in parentheses.
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non-SCD patients who have idiopathic pulmonary arte-
rial hypertension.13,52 Several observational studies sug-
gest that anticoagulation may be effective in the treat-
ment of patients with idiopathic pulmonary arterial
hypertension.53-55 Given the coagulation activation and
in situ thrombosis observed in SCD-associated PHT,
anticoagulation may be an effective treatment in these
patients. In addition, as these patients manifest
endothelial dysfunction and increased inflammatory
markers, statins, which possess anti-inflammatory and
other favorable effects, may also be beneficial by
improving endothelial function and decreasing tissue
factor expression (and as a consequence, coagulation
activation).35 Treatment with simvastatin appears to
improve 6-minute walk performance, cardiac output,
and lowers right ventricular systolic pressures in non-
SCD patients with pulmonary arterial hypertension.56

Hydroxyurea may also be beneficial in SCD patients
with PHT. In addition to improving red blood cell sur-
vival57 and endothelial function,58 treatment with
hydroxyurea decreases the monocyte counts (and levels
of inflammatory cytokines). Indeed, the prevalence of
PHT in SCD patients on hydroxyurea has been report-
ed to be lower than in those not receiving this agent.7

Although echocardiograms were not performed in the
control subjects, it is our belief that these subjects did not
have any clinically meaningful cardiac disease. This is
because they enjoyed good overall health, with no abnor-
mal symptoms which might suggest cardiac disease, and
they all had normal N-terminal pro-brain natriuretic pep-
tide (NT-proBNP) values. Normal values of this peptide
are particularly important given that some reports show
a correlation between natriuretic peptide values and right
ventricular pressure overload.59,60

To summarize, SCD patients with PHT appear to have
increased endothelial dysfunction, coagulation activation

and inflammation compared with patients without PHT.
The endothelial dysfunction, as well as coagulation acti-
vation, is due, at least in part, to hemolysis, with result-
ant scavenging of nitric oxide. Further studies evaluating
the contribution of coagulation activation and inflamma-
tion to the pathogenesis of PHT in SCD are needed. In
the absence of defined therapies for SCD-related PHT,
our data suggest that clinical trials evaluating anticoagu-
lants and anti-inflammatory agents are warranted. 
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