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Abstract. As a breast-imaging technique, digital breast tomosynthesis has great potential to improve the diag-
nosis of early breast cancer over mammography. Ray-tracing-based reconstruction algorithms, such as ray-trac-
ing back projection, maximum-likelihood expectation maximization (MLEM), ordered-subset MLEM (OS-MLEM),
and simultaneous algebraic reconstruction technique (SART), have been developed as reconstruction methods
for different breast tomosynthesis systems. This paper provides a comparative study to investigate these
algorithms by computer simulation and phantom study. Experimental results suggested that, among the four
investigated reconstruction algorithms, OS-MLEM and SART performed better in interplane artifact removal
with a fast speed convergence. © 2015 SPIE and IS&T [DOI: 10.1117/1.JEI.24.2.023028]
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1 Introduction
Breast cancer is the second-leading cause of cancer-related
deaths among women in the United States. Approximately
one in eight women in USA will be diagnosed with breast
cancer during their lifetime.1 Mammography is the most
effective tool for the early detection of breast cancer
among current breast-imaging techniques.1 However, the
overlapping of breast tissues in two-dimensional (2-D) im-
aging makes it difficult to interpret the images.2 A breast
cancer can be hidden in the overlapping tissues and not
be detected. Breast tomosynthesis may allow us to detect
smaller lesions that would be hidden with standard mammo-
grams.2,3 Researchers believe that this new imaging tech-
nique is promising to replace mammography imaging.2

Tomosynthesis reconstruction algorithms transform 2-D
projection images into a three-dimensional (3-D) volume.
A commonly used reconstruction model is to divide the
breast volume into a great number of small nonoverlapping
voxels with constant attenuation coefficients which represent
how easily the material can be penetrated by an x-ray
beam.4,5 When an x-ray projection line penetrates these
voxels, the ray-tracing model is used to calculate the x-ray
attenuation along the path of the projection line. With
assumptions of the relationship between the incident and
detected x-ray intensities, the ray-tracing model, in practice,
has been used in several reconstruction algorithms, such as
simultaneous algebraic reconstruction technique (SART)6 and
maximum-likelihood expectation maximization (MLEM),7,8

to reconstruct 3-D images. These algorithms have been
developed and implemented in the design of several breast
tomosynthesis prototype systems.6–8

Consequently, it is important to investigate the ray-trac-
ing-based reconstruction algorithms and to evaluate the
image quality. In our previous work, a sparse matrix method
was used to improve the ray-tracing model and speed up the
MLEM reconstruction algorithm.9 This paper presents our
investigation about the convergence and image quality of
inplane sharpness and interplane blurring removal of the
reconstruction algorithms using the ray-tracing model. Four
representative ray-tracing-based reconstruction algorithms,
including ray-tracing back projection (ray-tracing BP),6

MLEM,7,8 ordered-subset MLEM (OS-MLEM),10 and SART6

were evaluated by computer simulation and phantom study.

2 Methods

2.1 Ray-Tracing Model
The ray-tracing model divides the object into small voxels
with a constant attenuation coefficient μ. The intensity
attenuation can be written as5

O ¼ I · e−
P

i
ðl·μÞ; (1)

whereO is the detected x-ray intensity, I is the incident x-ray
intensity, i is the voxel which is penetrated by the projection
line, μ is the attenuation coefficient, and l is the path length
where the x-ray projection line passes through the voxel.

Equation (1) can be rewritten as a linear formX
i

ðl · μÞ ¼ Ai; (2)

where Ai ¼ logðI∕OÞ.
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Only a few voxels are penetrated by each projection line,
and thus a data structure based on the sparse matrix was used
to accelerate the MLEM algorithm in our previous work.9

This technique was used for the investigation of the follow-
ing four reconstruction algorithms.

2.2 Ray-Tracing Back Projection
In the linear attenuation Eq. (2), the total intensity attenua-
tion depends on both attenuation coefficients as well as the
path lengths. The ray-tracing BP was proposed based on this
fact.6 It can be written as

μj ¼
P

M
i¼1 lij

�
Ai
Li

�
P

M
i¼1 lij

: (3)

This equation takes into account the proportion of indi-
vidual path lengths. i is the i’th projection line, j is the
j’th voxel and Li is the total path of the i’th projection line.

2.3 Maximum-Likelihood Expectation Maximization
MLEM attempts to maximize the likelihood of getting the
detected x-ray intensity from the incident intensity and
x-ray attenuation model. It assumes that the statistical rela-
tionship between the detected and incident x-ray follows
the Poisson distribution.11,12

The attenuation coefficient μ can be acquired by an iter-
ative equation6–8

μðtþ1Þ
j ¼ μðtÞj þ ΔμðtÞj ¼ μðtÞj þ μðtÞj

P
ilijðIie−

P
i
lijμ

ðtÞ
j −OiÞP

i
ðlijhl; μðtÞiiIie−

P
i
lijμ

ðtÞ
j Þ

;

(4)

where Oi is the detected x-ray intensity pixel value for the
x-ray projection line i. i is the individual voxel in the 3-D
attenuation model. Ii is the incident x-ray intensity to the
pixel i. lij is the path length of the intersection between
the voxel j and the x-ray projection line from the x-ray
source to the pixel i on the detector.

2.4 Ordered-Subset Maximum-Likelihood
Expectation Maximization

The MLEM converges very slowly due to its absorption of
all the projection information in each iteration. OS-MLEM
provides the order-of-magnitude acceleration over MLEM.10

In OS-MLEM, only a subset of the projection image dataset
is used for each iteration.

In our implementation, we used a direct transform of
MLEM and changed the original update into a projection-
by-projection view update. To improve the convergence,
we designed a special update order to maximize the angle
separation13 between the successive absorbed projection
views.

2.5 Simultaneous Algebraic Reconstruction
Algorithm

In algebraic iterative reconstruction algorithms,14 the pro-
cedure of estimating the attenuation coefficients, generating
a new set of projection images from the estimate, comparing

the simulated images to real projection data, and then smear-
ing the difference back to generate a new estimate, is itera-
tively called.

In our SART implementation, the solution for the attenu-
ation coefficients is expressed as6

μðtþ1Þ
j ¼ μðtÞj þ ΔμðtÞj ¼ μðtÞj þ

P
ilij

Ai−
P
j

lijμtjP
j

lij

!
P
i
li;j

: (5)

3 Experiments
A multibeam Deutsche Bundespost Telekom prototype sys-
tem built up by our collaborators15–18 was used to generate
the tomosynthesis projection images. Figure 1 illustrates par-
allel-imaging geometry in the imaging system. Multiple
x-ray sources are aligned along the x direction that is parallel
to the detector plane. This system has 31 evenly distributed
x-ray beam sources. The vertical distance from the x-ray
tubes to the detector (source-to-image distance) is
692.8 mm in our experiments. A digital flat-panel detector
with a pixel size of 140 μm is integrated into the system.

3.1 Sphere Simulation
A solid sphere was simulated with a different attenuation
coefficient of 0.038 mm−1 to imitate the mass.19 An finite
element modeling (FEM) method was used to create the
spherical object and then to generate the projection images.
The reconstruction algorithms of the ray-tracing BP, MLEM,
OS-MLEM, and SARTwere used to reconstruct the spherical
object. Then, both the attenuation error and mean square
error (MSE) were calculated.

The attenuation error was calculated based on Eq. (1), i.e.,

Attenuation error ¼
X
i

���Oi − Ii · e
−
P

i
ðl·uÞ
���; (6)

for all the x-ray projection lines.
The MSE between the real finite elements and the recon-

structed volume was defined as

MSE ¼
P

J
j¼1 jμj − μ̂jj

J
; (7)

Fig. 1 Illustration of the parallel breast tomosynthesis imaging
geometry.
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for all the voxels j. μj is the exact attenuation coefficient in
the FEM model, and μ̂j is the calculated attenuation coeffi-
cient in the reconstruction volume.

3.2 Phantom Study
A standard Computerized Imaging Reference Systems, Inc.
(CIRS) breast biopsy phantom (CIRS Company; Norfolk,
Virginia) was used to evaluate the performance of the

reconstruction algorithms. Solid masses and microcalcification
clusters were embedded in the phantom as the targets of the
evaluation. The four representative algorithms including ray-
tracing BP, MLEM, OS-MLEM, and SART were investigated
to generate reconstructed images and to evaluate the image
quality of the targets.

In order to evaluate the capability of enhancing the
inplane object sharpness and removing interplane blurring,
a metrics called the artifact spread function (ASF) was

Fig. 2 (a) Attenuation error [Eq. (6)] and (b) mean square error (MSE) of attenuation coefficients [Eq. (7)].

Fig. 3 Reconstructed regions of interests (ROIs) from the four investigated algorithms: (a)–(d) Masses
reconstructed by ray-tracing BP, MLEM, OS-MLEM, and SART. (e)–(h) Line profiles in the reconstructed
masses. Line profiles are the pixel intensities along the red lines from the four reconstructed masses. Red
arrow is one example of edge enhancement. (i)–(l) Microcalcifications reconstructed by ray-tracing BP,
MLEM, OS-MLEM, and SART.
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analyzed for the reconstructed objects. ASF has been used to
describe the artifact suppression efficacy along the interplane
direction in breast tomosynthesis studies.16 It is defined as
the ratio of the contrast-to-noise ratio (CNR) values between
the off-focus plane and the in-focus plane

ASFðzÞ ¼ CNRðzÞ
CNRðz0Þ

; (8)

where z0 is the slice location of the in-focus plane of the
object and z is the location of the other plane. The CNR
value6 is defined by

CNR ¼ μobject − μbackground
σbackground

; (9)

where μobject and μbackground are the mean pixel intensity of the
object and image background respectively, and σbackground is
the root-mean-square noise value of pixel intensity in the
image background.

4 Results

4.1 Sphere Simulation
Figure 2 shows the attenuation error and MSE of attenuation
coefficients over the iteration number. As shown in the fig-
ure, we found that after the first 10 iterations, attenuation
errors dropped from 163.19 to 68.81 (76% of the overall
drop-off) for MLEM, from 45.91 to 27.14 (66% of the over-
all drop-off) for OS-MLEM, and from 89.94 to 31.64 (84%
of the overall drop-off) for SART. Accordingly, in the first
few iterations, MLEM, OS-MLEM, and SART converged at
a fast speed. After all the iterations, OS-MLEM and SART
generated the minimal attenuation error with the specified

iteration number. Moreover, the attenuation error of the
ray-tracing BP was 129.91; therefore, it could be a good ini-
tialization for iterative reconstruction algorithms.

5 Phantom Study
Figure 3 shows reconstructed regions of interest (ROI) from
the four algorithms including ray-tracing BP, MLEM, OS-
MLEM, and SART, respectively. In Figs 3(a)–3(d) and 3(i)–
3(l), margins and shapes of the mass and microcalcification
reconstructed with all the investigated algorithms can be
identified. The microcalcifications are visible although the
interplane blurring may reduce their conspicuity and bring
difficulties to 3-D localization.

Figures 3(e)–3(h) show the line profiles along the dotted
lines in the reconstructed ROIs of the mass. As exampled by
the red arrow, the edge enhancement is present in all four
reconstructed ROIs, which increases the conspicuity of the
mass. Furthermore, the edge enhancement is greater in the
ROIs reconstructed by OS-MLEM and SART.

Different algorithms have their implicit or explicit design
to remove interplane artifacts. The image background region
for noise estimation was chosen as a 40 × 40 pixel region far
from all target objects and the boundaries in the slice images,
and at the same slice as the evaluated object. The mean pixel
intensity of a mass was calculated in a 40 × 40 pixel region
enclosed within the relatively uniform central region of the
mass. The selected masses were the same as in Fig. 3.
Figure 4 shows the ASF curves for ray-tracing BP, MLEM,
OS-MLEM, and SART. CNR drop-offs in the ASF curves
are different between the side close to the detector (down-
side) and the other side close to the x-ray sources (upside).
CNR drops 1%, 1.5%, 2.4%, and 2.5% on the downside
(20 mm from the focus plane) for ray-tracing BP, MLEM,
OS-MLEM, and SART, respectively; and it drops 1%, 1.3%,

Fig. 4 Artifact spread function (ASF) curves of the investigated reconstruction algorithms.
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1.8%, and 1.9% on the upside (20 mm from the focus plane)
for ray-tracing BP, MLEM, OS-MLEM, and SART, respec-
tively. OS-MLEM and SART show bigger CNR drop-offs,
so they can remove interplane artifacts better.

6 Conclusions
All the investigated ray-tracing-based reconstruction algo-
rithms can provide clear 3-D reconstructed images, and
therefore, provide feasible solutions to breast tomosynthesis
imaging. OS-MLEM and SART converge faster. Ray-tracing
BP can be a good initialization for iterative reconstruction
algorithms.

The phantom study showed that OS-MLEM and SART
removed interplane artifacts better based on the ASF curves
due to their fast convergence speed.
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