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Abstract: In addition to the usual sources of error that have been long studied

by statisticians, many data sets have been rounded off in some manner, either by

the measuring device or storage on a computer. In this paper we investigate the-

oretical properties of generalized fiducial distribution introduced in Hannig (2009)

for discretized data. Limit theorems are provided for both fixed sample size with

increasing precision of the discretization, and increasing sample size with fixed

precision of the discretization. The former provides an attractive definition of gen-

eralized fiducial distribution for certain types of exactly observed data overcoming

a previous non-uniqueness due to Borel paradox. The latter establishes asymptotic

correctness of generalized fiducial inference, in the frequentist, repeated sampling

sense, for i.i.d. discretized data under very mild conditions.
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1. Introduction

Fisher (1930) introduced the idea of fiducial probability and fiducial inference

as an attempt to overcome what he saw as a serious deficiency of the Bayesian

approach to inference – the use of a prior distribution on model parameters even

when no prior information is available. In the case of a one-parameter family of

distributions, Fisher gave the following definition for a fiducial density r(θ) of the

parameter based on a single observation x0 for the case where the distribution

function F (x|θ) is a function of θ decreasing from 1 to 0:

r(θ) = −∂F (x0|θ)
∂θ

. (1.1)

Fiducial inference created some controversy once Fisher’s contemporaries

realized that, unlike earlier simple applications involving a single parameter,

fiducial inference often led to procedures that were not exact in the frequentist

sense and did not possess other properties claimed by Fisher (Lindley (1958);

Zabell (1992)). More positively, Fraser (1968) developed a rigorous framework

for making inferences along the lines of Fisher’s fiducial inference assuming that
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the statistical model was coupled with an additional group structure, e.g., the

location-scale model. Wilkinson (1977) argued that for complicated problems the

fiducial distribution is not unique and should depend on the parameter of interest.

Dawid and Stone (1982) provided further insight by studying certain situations

where fiducial inference leads to exact confidence statements. Barnard (1995)

proposed a view of fiducial distributions based on the pivotal approach that seems

to eschew some of the problems reported in earlier literature. Dempster (2008)

and Shafer (2011) discussed Dempster-Shafer calculus, which is closely related to

fiducial inference. An interested reader can consult Section 2 of Hannig (2009)

for a more thorough discussion of the history of fiducial inference and a more

complete list of references.

Tsui and Weerahandi (1989) and Weerahandi (1993) proposed a new ap-

proach for constructing hypothesis tests using the concept of generalized P -values

and generalized confidence intervals. These generalized confidence intervals have

been found in many simulation studies to have good empirical frequentist prop-

erties, see Hannig, Iyer, and Patterson (2006) for references. Hannig, Iyer, and

Patterson (2006) established a direct connection between fiducial intervals and

generalized confidence intervals and proved the asymptotic frequentist correct-

ness of such intervals. These ideas were unified for parametric problems in Hannig

(2009) without requiring any group structure related to the model. This unifi-

cation is termed generalized fiducial inference and has been found to have good

theoretical and empirical properties for a number of practical applications (E,

Hannig, and Iyer (2008, 2009); Hannig and Lee (2009); Wandler and Hannig

(2011, 2012a,b)).

Traditionally, the goal of fiducial inference was to formulate clear principles

that would guide a statistician to a unique fiducial distribution. Generalized

fiducial inference does not have such a goal. It treats the mechanics of generalized

fiducial inference as a tool to define a distribution on the parameter space and uses

this distribution to propose statistical procedures, e.g. approximate confidence

intervals. The quality of the proposed procedures is then evaluated on their own

merit using theoretical large sample properties and simulations.

Generalized fiducial inference begins with expressing the relationship be-

tween the data, X, and the parameters, ξ, as

X = G(ξ,U), (1.2)

where G(·, ·) is termed a structural equation, and U is the random component

of the structural equation, a random variable or vector whose distribution is

completely known and independent of any parameters. We intentionally leave

the definition of the structural equation as general as possible. We offer some

comments and suggestions on how to select a structural equation in Section 5.
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A formal definition of a generalized fiducial distribution will be presented in

Section 2. The purpose of the rest of this section is to give the reader a heuristic

understanding of the ideas developed in this manuscript.

Let x0 be the fixed realized value ofX generated using some fixed unobserved

parameter ξ0. To explain the idea behind the formal definition of generalized fidu-

cial distribution, suppose first that the structural relation (1.2) can be inverted

and the inverse G−1(x0,u) always exists. That is, for observed x0 and all u,

there is the unique ξ solving x0 = G(ξ,u). As example of such a situation con-

sider x0 a sample of size n = 1 from a location parameter family, X = ξ + U , or

x0 a sample of size n = 2 generated using X1 = ξ1 + ξ2U1, X2 = ξ1 + ξ2U2 with

ξ = (ξ1, ξ2) ∈ R2. Since the distribution of U is completely known, one can al-

ways generate a random sample ũ1, . . . , ũM from it. This random sample of U is

transformed into a random sample {ξ̃1 = G−1(x0, ũ1), . . . , ξ̃M = G−1(x0, ũM )},
which is called the fiducial sample. The fiducial sample ξ̃1, . . . , ξ̃M is a sample

from the fiducial distribution and can be used to obtain estimates and approxi-

mate confidence intervals for ξ.

The inverse G−1(· , · ) often does not exist. This can happen under two

situations: for some value of x0 and u, either there is more than one ξ, or there

is no ξ satisfying x0 = G(ξ,u).

The first situation can be dealt with by using the mechanics of Dempster-

Shafer calculus (Dempster (2008)), see Section 4 of Hannig (2009) for more detail.

A more practical solution is to select one of the several solutions using some

possibly random mechanism. We provide some guidance on how this selection

can be made in Section 2. see also Section 6 of Hannig (2009). In any case, we

show in this paper that in many problems of practical interest the method of

selection has only a second order effect on statistical inference.

For the second situation, Hannig (2009) suggests removing the values of u

for which there is no solution from the sample space and then re-normalizing the

probabilities, i.e., using the distribution of U conditional on the event that the

“there is at least one ξ solving the equation x0 = G(ξ,U)”. The rationale for this

choice is that we know that the observed data x0 were generated using some fixed

unknown ξ0 and u0, i.e., x0 = G(ξ0,u0). The information that the solution of the

equation x0 = G(ξ,U) exists for the true U = u0 is available to us in addition

to knowing the distribution of U. The values of u for which x0 = G(· ,u) does
not have a solution could not be the true u0 hence only the values of u for

which there is a solution should be considered in the definition of the generalized

fiducial distribution, which leads to the conditioning. However, the set of u for

which the solution exists has probability zero in many practical situations, e.g.,

most problems involving absolutely continuous random variables. Conditioning

on such a set of probability zero will therefore lead to non-uniqueness due to the

Borel paradox Casella and Berger (2002, Section 4.9.3).
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Careful evaluation of the event “there is at least one ξ solving the equa-

tion x0 = G(ξ,u)” reveals that it has probability zero only if the probability of

generating the realized data is zero. Hence, the Borel paradox is not an issue

when defining generalized fiducial distribution for discrete models. Taking this

observation a step further, notice that any data that a statistician can come

into contact with has been rounded off in some manner, e.g., by a measuring

instrument or by storage on a computer. Mathematically speaking, we do not

know the exact realized value X = x0. Instead we only observe an occurrence

of an event {X ∈ Ax0}, for some multivariate interval Ax0 = [a,b) containing

x0 and satisfying Pξ0 (X
⋆ ∈ Ax0) > 0, where X⋆ is an independent copy of X.

To demonstrate this, if the exact unobserved value of the random vector X were

x0 = (π, e, 1.28) and, due to instrument precision, all the values were rounded

down to one decimal place, our observation would be the knowledge that the

event {X ∈ [3.1, 3.2)× [2.7, 2.8)× [1.2, 1.3)} happened.

Replacing the event of probability zero {X = x0} with the event of positive

probability {X ∈ Ax0} removes non-uniqueness due to the Borel paradox in the

definition of generalized fiducial distribution. This is done without any loss of

information as only the occurrence of the event {X ∈ Ax0} is known to us and

the interval Ax0 is a member of some fixed partition of Rn determined by the

measuring instrument or computer precision. Using the language of σ-algebras,

discretization is accommodated by restriction of the the Borel σ-algebra to a sub-

σ-algebra generated by the countable partition {Ai} whose events have positive

Pξ0 probability.

In situations where exact, non-discretized data is available, we propose to de-

fine the generalized fiducial distribution as a limit offering an attractive resolution

of the Borel paradox. To this end, we first study the limit of the generalized fidu-

cial distribution for a fixed sample size of jointly absolutely continuous random

variables under general conditions as the precision of the discretization increases,

(b − a) → 0. We derive the limit in a closed form and show that it does not

suffer from non-uniqueness due to multiple solutions of x0 = G(ξ,u). Indeed the

limiting distribution is the conditional distribution conditioned on the limit of

the σ-algebras generated by the discretizations.

Second, we study the limit of the generalized fiducial distribution for i.i.d. data

as the sample size goes to infinity and the discretization of the data remains fixed.

We show that under very mild conditions the generalized fiducial distribution al-

ways leads to asymptotically correct inference. Here we evaluate the quality

of an inference procedure in the repeated sample frequentist sense. To do this

we effectively prove a Bernstein-von Mises theorem for generalized fiducial dis-

tributions and show that the effect of the particular selection of one of the ξ

solving G(ξ,u) ∈ Ax0 is of a second order as the sample size increases. Our
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result greatly relaxes the conditions under which the asymptotic correctness of

generalized fiducial distribution has been previously proved.

The third source of non-uniqueness in the definition of the generalized fiducial

distribution is due to the choice of structural equation (1.2). In particular, two

different structural equations resulting in the same sampling distribution for data

can lead to a different generalized fiducial distribution. While we do not fully

resolve this issue, we offer some practical suggestions and comments on this topic.

The rest of the paper is organized as follows. In Section 2 we provide a

rigorous definition of the generalized fiducial distribution. Section 3 studies the

limit of the fiducial distribution as the precision of the data increases. Section 4

explores large sample asymptotics for the generalized fiducial inference under the

presence of discretized data. Thoughts on the choice of structural equation are

offered in Section 5. Section 5 concludes.

2. Generalized Fiducial Inference

We closely follow the definition of generalized fiducial distribution found in

Hannig (2009) with a small modification to allow for discretized data. In order to

avoid repeating the same arguments, we refer the reader to Section 4 of Hannig

(2009) for a more detailed development.

Let X ∈ Rn be a random vector with a distribution indexed by a parameter

ξ ∈ Ξ. Assume that the data generating mechanism for X is expressed by (1.2)

where G is a jointly measurable function and U is a random variable or vector

with a completely known distribution independent of any parameters. We define

for each measurable set A ⊂ Rn and all u a set-valued function

Q(A,u) = {ξ : G(ξ,u) ∈ A}. (2.1)

The function Q(A,u) is the inverse image of the function G for fixed u.

Next, we select a possibly random point out of each inverse image Q(A,u).

Following Section 4 of Hannig (2009), let {V (S)}S∈Bp be a collection of random

elements each with support S̄. Since we will use V (Q(A,u)) in the definition

of the generalized fiducial distribution, the random elements {V (S)}S∈Bp should

be selected to be as uninformative as possible. A good default choice is a selec-

tion that maximizes the dispersion of the parameters of interest. For example if

S = (a, b) ⊂ R, V ((a, b)) selects one of the endpoint a, b at random maximizing

the variance of V ((a, b)), or if S is a polyhedron and the parameters of interest

are a subset of all parameters, V (S) first projects the polyhedron on the sub-

space of the parameters of interest and then selects one of the vertices of the

projection at random maximizing the determinant of the relevant covariance ma-

trix. Simulation studies in Section 6 of Hannig (2009) and E, Hannig, and Iyer
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(2009) examine the effects of the choice of {V (S)}S∈Bp on frequentist behavior

of generalized fiducial distribution arriving to a similar recommendation.

Assume that our data were generated by (1.2) using some true unknown

parameter value ξ0 and, instead of observing the exact realized value X = x0,

we only observe the event that the sample values lie in some measurable set

{X ∈ Ax0}, where x0 ∈ Ax0 is a member of a partition of Rn. In addition to

the information given to us by observing {X ∈ Ax0}, we also know that the

true values of ξ0 and u0 satisfy G(ξ0,u0) ∈ Ax0 . Using the argument immedi-

ately preceding Equation (4.3) in Hannig (2009), we define a generalized fiducial

distribution for ξ as

V (Q(Ax0 ,U
⋆)) | {Q(Ax0 ,U

⋆) ̸= ∅}, (2.2)

where U⋆ is an independent copy of U. The conditional distribution in (2.2) is

well-defined provided that P (Q(Ax0 ,U
⋆) ̸= ∅) > 0, which is the case as soon as

P (X⋆ = G(ξ0,U
⋆) ∈ Ax0) > 0, since {u : G(ξ0,u) ∈ Ax0} ⊂ {u : Q(Ax0 ,u) ̸=

∅}. Otherwise, additional care is needed to interpret the conditional distribution.

We provide such an interpretation in Section 3. A generalized fiducial distribution

for a subset θ of the parameter vector ξ is obtained through marginalization of

the distributions in (2.2) Hannig (2009, Equation (4.4)). Finally notice that for

exactly observed data we have Ax0 = {x0} and (2.2) is the same as (4.3) in

Hannig (2009).

We prove that the effect of the particular choice of {V (S)}S∈Bp disappears

asymptotically. In order to simplify some of the notation in the proofs we modify

the generalized fiducial distribution by having it defined as a probability distri-

bution on the set of all subsets 2Θ;

Q(Ax0 ,U
⋆) | {Q(Ax0 ,U

⋆) ̸= ∅}. (2.3)

The object defined in (2.3) is a random set of parameters (such as an interval or a

polygon) with distribution conditioned on the set being non-empty. If there is no

danger of misunderstanding, we call the modified generalized fiducial distribution

of (2.3) also a generalized fiducial distribution.

Examples 1 and 2 of Section 4 of Hannig (2009) provide simple illustrations

of the definition of generalized fiducial distribution for exactly observed data. An

example provides a slightly more complicated illustration of the definition of a

generalized fiducial distribution for discretized continuous data.

Example 1. Suppose U = (U1, . . . , Un), where Ui are i.i.d. N(0, 1) and

X = (X1, . . . , Xn) = G(µ,U) = (µ+ U1, . . . , µ+ Un)



FIDUCIAL INFERENCE VIA DISCRETIZATION 495

for some µ ∈ R, so the Xis are i.i.d. N(µ, 1). We observe a discretized realization

of X, i.e., the event {X ∈ (a,b)}, where a = (a1, . . . , an), b = (b1, . . . , bn) and

(a,b) is an n-dimensional cube determined by the way the data is rounded off

at the measuring device.

If n = 1 then Q((a, b), u) = (a−u, b−u) and Pξ0(Q((a, b), U⋆) ̸= ∅) = 1. Thus

following (2.3), the modified generalized fiducial distribution is the distribution

of the random interval (a− U⋆, b− U⋆) where U⋆ ∼ N(0, 1), independent of the

data.

If n > 1, take L(a,u) = maxi{ai − ui} and R(b,u) = minj{bj − uj}. The
inverse image is

Q((a,b),u) =

{
(L(a,u), R(b,u)) if L(a,u) < R(b,u),

∅ otherwise.

Using Φ(x) and φ(x) for the distribution function and density of N(0, 1), respec-

tively, we compute for constants l, r,

P (L(a,U⋆) ≤ l, r < R(b,U⋆)) = P (ai − l ≤ U⋆
i < bi − r, for all i)

=

n∏
i=1

(Φ(bi − r)− Φ(ai − l))+ (2.4)

Notice that the probability in (2.4) is not zero if and only if bi− r > ai− l, for all

i = 1, . . . , n, which is equivalent to ∆ > r − l with ∆ = mini{bi − ai}. The joint

density L(a,U⋆), R(b,U⋆) is computed by taking derivatives, and the modified

generalized fiducial distribution for µ, (2.3), is the distribution of the random

interval (L,R), where the joint density fLR(l, r) is∑
i ̸=j

(
φ(ai − l)φ(bj − r)

∏
k/∈{i,j} (Φ(bk − r)− Φ(ak − l))

)
I{l<r<l+∆}∫∞

0

∫ ∆+l′

l′
∑

i̸=j

(
φ(ai − l′)φ(bj − r′)

∏
k/∈{i,j} (Φ(bk − r′)− Φ(ak − l′))

)
dr′dl′

.

The generalized fiducial distribution for µ, (2.2), is obtained by selecting a

point inside of the interval [L,R]. A reasonable default is to take V ((L,R)) = L

with probability .5 and V ((L,R)) = R with probability .5, independently of

everything else.

3. Increasing Precision Asymptotics

In this section we discuss the behavior of the generalized fiducial distribu-

tion as we increase the precision of the measurements. This provides a definition

of the generalized fiducial distribution for exactly observed observations. Such
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asymptotic considerations are not relevant for discrete distributions, and there-

fore we turn our attention to distributions that are absolutely continuous with

respect to Lebesgue measure.

Let us now state the assumptions of Theorem 1; these are weaker than the

assumptions stated in Section 4.1 of Hannig (2009). In particular the current

assumptions apply to a wider selection of models than just the i.i.d. sequences

covered in Hannig (2009). For examples, see the end of this section.

Assume that the realized value of X, generated using some true unknown

parameter value ξ0, is x0. Suppose that the parameter of interest ξ0 ∈ Ξ ⊂
Rp is p-dimensional. Recall (1.2), and assume that U ∈ Rn is an absolutely

continuous random vector with a joint density fU(u), defined with respect to

Lebesgue measure on Rn, continuous on its support. Write G = (g1, . . . , gn) so

that Xi = gi(ξ,U) for i = 1, . . . , n. Assume that for each fixed ξ ∈ Ξ the function

G(ξ, · ) is one-to-one and continuously differentiable, denoting the inverse by

G−1(x, ξ). Using the Jacobian transformation, the density of X is

fX(x | ξ) = fU
(
G−1(x, ξ)

) ∣∣∣∣det( d

dx
G−1(x, ξ)

)∣∣∣∣ . (3.1)

For all p-tuples of indexes i = (1 ≤ i1 < · · · < ip ≤ n) ⊂ {1, . . . , n} we

denote the list of unused indexes by i{ = {1, . . . , n} \ i, the collection of variables

indexed by i by xi = (xi1 , . . . , xip), and its complement by xi{ = (xi : i ∈ i{).
Assume that there is an open neighborhood B(x0) and a measurable sets Ui,

P (Ui ∈ U) > 0, such that, for all x = (x1, . . . , xn) ∈ B(x0) and for all p-tuples

of indexes i, the function G−1 ((xi, · ), · ), viewed as a function of ξ and xi{ , is

one-to-one and differentiable onto Ui. Thus, the density of (ξ,Xi{) is

fξX
i{
(ξ,xi{ |xi) = fU

(
G−1(x, ξ)

) ∣∣∣∣det( d

d(ξ,xi{)
G−1(x, ξ)

)∣∣∣∣ . (3.2)

Here d
d(ξ,x

i{ )
G−1(x, ξ) stands for the Jacobian matrix computed with respect to

all parameters ξ and all observations xi{ . It follows that for any fixed ξ the

function fξX
i{
(ξ,xi{ |xi) is continuous in x = (xi,xi{). Assume additionally that

the marginal density
∫
Ξ fξX

i{
(ξ,xi{ |xi) dξ is continuous in x = (xi,xi{).

Finally, consider a sequence of discretizations of x0 = (x1,0, . . . , xn,0). In

particular, for each m = 1, 2, . . ., each coordinate x0,i ∈ (ai,m, bi,m) for all i =

1, . . . , n. Let am = (a1,m, . . . , an,m), bm = (b1,m, . . . , bn,m), and assume that for

all m = 1, 2, . . . the probability Pξ0(X ∈ (am,bm)) > 0, so that the conditional

distributions in (2.3) are uniquely defined.

Theorem 1. Under the assumptions of this section, consider a sequence of p-

dimensional intervals (a1,b1) ⊃ (a2,b2) ⊃ · · · and numbers cm ↑ ∞ such that
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m(am,bm) = {x0} and cm(bm,i − am,i) → wi > 0 for all i = 1, . . . , n. Then the

modified generalized fiducial distribution

Q((am,bm), U⋆) | {Q((am,bm), U⋆) ̸= ∅} (3.3)

converges weakly to a singleton that has an absolutely continuous distribution
with density

r(ξ) =
fX(x0|ξ)J(x0, ξ)∫

Ξ fX(x0|ξ′)J(x0, ξ′) dξ′
, (3.4)

where fX(x0|ξ) is the likelihood function and

J(x, ξ) =
∑

i=(i1,...,ip)
1≤i1<···<ip≤n

1

wi1 . . . wip

∣∣∣∣∣∣∣
det
(

d
d(ξ,x

i{ )
G−1(x, ξ)

)
det
(

d
dxG

−1(x, ξ)
)

∣∣∣∣∣∣∣ . (3.5)

As discussed in Hannig (2009), Section 4, Remark 1, there are three sources
of non-uniqueness in the definition of the fiducial distribution: the choice of
structural equation, the Borel paradox if Pξ0(Q(A,U⋆) ̸= ∅) = 0, and the choice
of a particular value in Q(A,U⋆) if it contains more than one element. Theorem 1
gives a reasonable, consistent way of resolving the non-uniqueness due to the last
two issues for large class of models.

In particular, the limit of conditional distributions (3.3) contains only one
element with probability 1, and the non-uniqueness due to the choice of a par-
ticular value in Q(A,U⋆) is therefore not present in the limit. Moreover, since
limm→∞(am,bm) = {x0}, the limiting probability density (3.4) can be taken as
an appealing implementation of the conditional distribution (2.2) with A = {x0},
resolving non-uniqueness due to the Borel paradox. Finally, the wi are fully de-
termined by the relative limiting size of the discretization. For example we have
w1 = · · · = wn = 1 if the observed data is discretized to the same precision and
recorded on the same scale, such as in the case of i.i.d. observations measured by
the same instrument.

A proposition shows that the limiting generalized fiducial distribution in
(3.4) and (3.5) is invariant under smooth reparametrizations. This is a desirable
property similar to the invariance of the posterior computed using the Jeffreys
prior.

Proposition 1. Let ξ = ϕ(η) be a one-to-one, continuously differentiable func-
tion onto the parameter space Ξ. Let r(ξ) be the generalized fiducial distribution
computed from X = G(ξ,U) using (3.4) and (3.5), and r̃(η) the generalized fidu-
cial distribution computed from X = G(ϕ(η),U) using (3.4) and (3.5). Then for
each measurable set A ⊂ Ξ∫

A
r(ξ) dξ =

∫
ϕ−1(A)

r̃(η) dη.
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Proof. The multivariate chain rule reveals, after simplification of the second

determinant that

det

(
d

d(η,xi{)
G−1(x, ϕ(η))

)
= det

(
d

d(ϕ(η),xi{)
G−1(x, ϕ(η))

)
det

(
d

dη
ϕ(η)

)
.

By the usual Jacobian transformation

∫
A
fX(x0|ξ)

∣∣∣∣∣∣∣
det
(

d
d(ξ,x

i{ )
G−1(x, ξ)

)
det
(

d
dxG

−1(x, ξ)
)

∣∣∣∣∣∣∣ dξ
=

∫
ϕ−1(A)

fX(x0|ϕ(η))

∣∣∣∣∣∣∣
det
(

d
d(ϕ(η),x

i{ )
G−1(x, ϕ(η))

)
det
(

d
dxG

−1(x, ϕ(η))
)

∣∣∣∣∣∣∣
∣∣∣∣det( d

dη
ϕ(η)

)∣∣∣∣ dη
=

∫
ϕ−1(A)

fX(x0|ϕ(η))

∣∣∣∣∣∣∣
det
(

d
d(η,x

i{ )
G−1(x, ϕ(η))

)
det
(

d
dxG

−1(x, ϕ(η))
)

∣∣∣∣∣∣∣ dη.
The statement now follows by simple algebra.

If the observations are from an i.i.d. univariate absolutely continuous dis-

tribution, we can choose a particular structural equation (1.2) that recovers

Fisher’s original definition of fiducial distribution. To this end, with F (x, ξ)

and f(x, ξ) the distribution and density functions, respectively, define the usual

pseudo-inverse F−1(ξ, u) = infx{F (x, ξ) ≥ u) and use the structural equation

Xi = F−1(ξ, Ui), i = 1, . . . , n, (3.6)

where Ui are i.i.d. U(0, 1). If, additionally, the assumptions of Theorem 1 are

satisfied, the inverse of the structural equation u = G−1(x, ξ) is

ui = F (xi, ξ), i = 1, . . . , n,

and the generalized fiducial distribution is (3.4), with (3.5) simplified to

J(x, ξ) =
∑

i=(i1,...,ip)
1≤i1<···<ip≤n

∣∣∣∣∣∣
det
(

d
dξ

(
F (xi1 , ξ), . . . , F (xip , ξ)

))
f(xi1 , ξ) · · · f(xi,p, ξ)

∣∣∣∣∣∣ . (3.7)

If n = p = 1, (3.4) and (3.7) become (1.1). Similarly if n ≥ p = 1, (3.4) and (3.7)

agree with the proposal of Dempster (1963).

We remark that (3.4) and (3.5) agree with, validate, and generalize a heuristi-

cally motivated proposal of Hannig (2009), Section 4.1, which uses a particularly
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simple idea to implement the conditional distribution in the definition of general-

ized fiducial distribution. This is an unexpected result because the heuristically

motivated proposal is based on picking p equations at random, solving for the

parameters using the selected equations, and conditioning on the rest of the

equations, while the result presented here is a consequence of the geometry of

the random sets used in the definition of the generalized fiducial distribution.

Hannig (2009) relates, in Section 4.2, (3.4) and (3.5) to Lindley (1958), see

also Dempster (1963). It is also of interest that, in the same section, Hannig

(2009) notices that the function J(x, ξ) can be viewed as a U -statistic estimator

of π(ξ) = Eξ0J(X
∗, ξ), where X∗ is an independent copy of the data, giving the

generalized fiducial distribution an empirical Bayes interpretation.

We remark that the J(x, ξ) of (3.7) is related to the data dependent priors

proposed by Fraser, Reid, Marras, and Yi (2010). Consider a matrix

V (x, ξ) =


d
dξ

F (x1,ξ)

f(x1,ξ)
...

d
dξ

F (xn,ξ)

f(xn,ξ)

 .

The solution in (3.7), derived as the limit of the generalized fiducial distribution

for discretized data, obtains the data dependent default prior J(x, ξ) as a sum of

all possible absolute values of determinants of p×p matrices obtained by selecting

p rows from V (x, ξ). Alternatively, Fraser, Reid, Marras, and Yi (2010) consider

their data dependent prior as | det(A(x, ξ)V (x, ξ))|q, where q > 0 and A(x, ξ) is

a suitable matrix. Fraser, Reid, Marras, and Yi (2010) propose several choices

of A(x, ξ) but, as a reasonable default motivated by maximum likelihood ideas,

recommend q = 1 and A(x, ξ) = ( d2

dξdξ′ l(x, ξ))
−1/2 d2

dξdx l(x, ξ), where l(x, ξ) is the

log likelihood of the data. The drawback of this proposal is that it requires the

existence of a second derivative of the log-likelihood. If the log-likelihood is not

differentiable, they recommend q = 1/2 and A(x, ξ) = V (x, ξ)⊤. They do not

provide any simulation studies that would exhibit small sample performance.

To conclude this section we consider two examples.

Example 2. Let X1, . . . , Xn be i.i.d. U(θ, θ2) random variables, θ > 1. Using

the inverse distribution function for a structural equation we get

Xi = θ(θ − 1)Ui + θ, i = 1, . . . , n

with Ui i.i.d. U(0, 1). Using the limit in (3.3) and (3.7) we get the generalized

fiducial density

r(θ) ∝
I
(x

1/2
(n)

,x(1))
(θ)

(θ(θ − 1))n
·
∑n

i=1 xi(2θ − 1)− nθ2

θ(θ − 1)
, (3.8)



500 JAN HANNIG

where the first term on the right side of (3.8) is the likelihood and the second

term is the Jacobian factor in (3.7).

We performed a limited simulation study to validate the frequentist perfor-

mance of the confidence intervals based on the generalized fiducial distribution

(3.8). We used θ = 1.01, 1.5, 2, 10, 50, 250 and sample sizes n = 1, 2, 3, 5, 10, 20,

100. The simulation results show that confidence intervals based on the general-

ized fiducial distribution have nearly exact frequentist coverage for all parameter

combinations and all confidence levels. Moreover, the expected length of the pro-

posed 95% equal tailed confidence intervals based on (3.8) was slightly shorter

than the 95% intervals based on the reference prior solution of Berger, Bernardo,

and Sun (2009) and the proposal of Fraser, Reid, Marras, and Yi (2010). The

details of the simulation study are available from the author upon request.

Example 3. Consider the Gaussian AR(1) model. The usual model formulation

Xi = aXi−1 + Zi, with Zi i.i.d. N(0, σ2), can be reexpressed as the structural

equation

Xi = aix0 + σ
i∑

j=1

ai−jUj , i = 1, . . . , n,

with parameters ξ = (a, σ, x0) and random component U = (U1, . . . , Un), where

the Ui are i.i.d. N(0, 1). The inverse of the structural equation u = G−1(x, ξ) is

ui =
xi − axi−1

σ
, i = 1, . . . , n.

The generalized fiducial distribution in (3.4) is

r(ξ) ∝ (2πσ2)−n/2 exp

(
−
∑n

i=1(xi − axi−1)
2

2σ2

)
J(x, ξ),

with J(x, ξ) given by (3.5). To compute J(x, ξ), notice that the Jacobian matrix

in the denominator is triangular and therefore the Jacobian is

det

(
d

dx
G−1(x, ξ)

)
= σ−n.

The Jacobians in the numerator are more complicated but careful algebra reveals

that if i = (i, j, k), 1 ≤ i < j < k ≤ n,

det

(
d

d(ξ,xi{)
G−1(x, ξ)

)
=

k−i−1∑
l=1

(−1)i+l−1al+i−1
(
xmax{j−l,i}xmin{k,k+j−l−i} − xjxk−l

)
σn+1

.
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Recall that d
d(ξ,x

i{ )
G−1(x, ξ) stands for the Jacobian matrix computed by taking

derivatives with respect to the parameters (a, σ, x0) and xl, l ̸= i, j, k. Again,

wi = 1 and J(x, ξ) is obtained by simple algebra.

Numerical studies reveal an interesting property of the generalized fiducial

distribution for the Gaussian AR(1) model. If the observed Xi are stationary,

the marginal generalized fiducial distribution for (a, σ) is bimodal with one mode

near the true values (a0, σ0) and the other near (a−1
0 , σ0|a0|−1). The existence

and location of the second mode is intriguing, given that the second mode is near

the parameters of the same time series run backwards in time X̃i = Xn−i. To

explain this, recall that the distribution of a stationary Gaussian AR(1) series

is the same as the distribution of the time reversed stationary time series, as

both have the same covariance function. The existence of the two modes in the

generalized fiducial density therefore correctly reflects the fact that we cannot

distinguish causal and non-causal stationary time series based on observations

only. Since the time series is stationary, we might feel at the first glance that

this non-causal bump is superfluous. However, the direction of the time series is

important for predicting the starting value X̂ and the joint generalized fiducial

distribution correctly recognizes the non-identifiability in the time direction. This

is all the more exciting because the likelihood function itself has only one mode

near the causal values, |a0| < 1.

We remark that based on our simulations, if the true |a0| < 1 and we assume

that the starting value X̂ is observed, the corresponding generalized fiducial

distribution does not have the second non-causal mode. Similarly, if the observed

time series is far from stationary, both the likelihood and the marginal generalized

fiducial distribution for (a, σ) is unimodal with mode near the true value (a0, σ0),

regardless of whether the time series is causal or not.

4. Increasing Sample Size Asymptotics

In this section we look at the behavior of the generalized fiducial distribution

for i.i.d. random variables as the number of observations increases and observa-

tional discretization remains fixed. The conditions stated here are weak and easy

to verify. They are formulated in terms of the distribution function, and only the

existence and continuity of the first partial derivative with respect to the param-

eters is assumed. Also, unlike in Section 3 where only the intervals including the

fixed realized data x0 are considered, here we are investigating repeated sampling

performance and need to know all the members of the partition discretizing the

real line.

Assume the structural equation (3.6),

Xi = F−1(ξ, Ui), i = 1, . . . , n,
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where the Xi are random variables, ξ ∈ Ξ ⊂ Rp is a p-dimensional parameter, the

Ui are i.i.d. U(0, 1) and F−1(ξ, u) = infx{F (x, ξ) ≥ u) . We choose this structural

equation, because it fits naturally into the structure of our proof and does not

require introduction of additional assumptions. If another structural equation

generating the same sampling distribution of the data were chosen, additional

assumptions on this structural equation would be required.

Assume that R is partitioned into the fixed intervals (−∞, a1], (a1, a2], . . .,

(ak,∞) with a0 = −∞, ak+1 = ∞. The values of Xi are observed only up to the

resolution of the grid, i.e., we observe k = (k1, . . . , kn) so that xi ∈ (aki , aki+1],

or equivalently x ∈ (ak,ak+1] with ak = (ak1 , . . . , akn).

Assume that k ≥ p, pj(ξ) = P (X ∈ (aj , aj+1]) > 0 for all j = 0, . . . , k and

all ξ. Assume F (x, ξ) is continuously differentiable in ξ for all x ∈ {a1, . . . , ak}.
Additionally, assume for all j = (j1 < · · · < jp) ⊂ {1, . . . , k} that (F (aj1 , ξ), . . .,

F (ajp , ξ)) = (u1, . . . , up) as a function in ξ with u1 < · · · < up, is one-to-one and

the Jacobian

det

(
d(F (aj1 , ξ), . . . , F (ajp , ξ))

dξ

)
̸= 0.

Finally, let Rξ be a random variable having the generalized fiducial distribution

(2.2).

Theorem 2. Under the assumptions of this section, Rξ has an asymptotically

normal distribution and any confidence set based on Rξ of a shape satisfying

Assumption 3 of Hannig (2009) has asymptotically correct coverage regardless of

the choice of V (· ).
The proof of the theorem is relegated to Appendix B. We remark that, as

a consequence of this result, the do-not-know probability in Dempster-Shafer

calculus (Dempster (2008)) vanishes and does not influence inference for large n.

The need to properly account for uncertainty due to discretization of ob-

servations modeled by continuous random variables is of particular importance

in the field of metrology. The problem of inference for the mean of discretized

normal data has obtained some attention in the last decade. Frenkel and Kirkup

(2005) and Cordero, Seckmeyer, and Labbe (2006) proposed a maximum likeli-

hood based approach, Willink (2007) used an ad-hoc modification of the sam-

ple mean, and Hannig, Iyer, and Wang (2007) proposed a generalized fiducial

solution. Witkowsky and Wimmer (2009) report a thorough simulation study

comparing the coverage and expected length of approximate confidence intervals

for various sample sizes and levels of discretization. They compare approximate

confidence intervals based on the standard Student t, asymptotic distribution

of the maximum likelihood, the proposal of Willink (2007), and the generalized
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fiducial distribution. Among them, the Student t interval ignores the discretiza-

tion while the rest accounts for it. Witkowsky and Wimmer (2009) report that

the Student t intervals work poorly if the discretization is coarse; this is not

surprising as it ignores the discretization. The maximum likelihood based confi-

dence intervals are reported not to maintain the stated coverage for small sample

sizes making them unreliable. Both Willink (2007) and the generalized fiducial

solution performed adequately in terms of maintaining the stated coverage with

the generalized fiducial intervals having uniformly shorter average length than

the interval of Willink (2007). Hannig, Iyer, and Wang (2007) report a smaller

simulation study that also shows good small sample performance of the gener-

alized fiducial inference based intervals. Theoreom 2 therefore complements the

good small sample properties by providing the necessary theoretical backing for

the use of the generalized fiducial inference in practice.

5. Comments on the Choice of Structural Equation

The definition (1.2) is kept very general in order to make it applicable to

many statistical models. This also means that the same sampling distribution

can be generated by different structural equations. For example, it is well-known

that one can always find a function G so that the random vector X = G(ξ, U)

where U is a single U(0, 1). However, such a choice can lead to generalized

fiducial distributions that are mathematically and computationally intractable.

If X is absolutely continuous, we recommend choosing a structural equation

so that the limiting generalized fiducial distribution (3.4) and (3.5) in Theorem 1

can be used. In particular the dimension of X should be the same as the di-

mension of the random vector U, the inverse of the function u = G−1(x, ξ)

should exist and be continuously differentiable in ξ and x, and the distribu-

tion of U should be absolutely continuous with a known simple density, e.g.,

U = (U1, . . . , Un) with Ui i.i.d. U(0, 1) or N(0, 1). This recommendation is

based on the fact that we find these assumptions necessary to derive a tractable

expression for the generalized fiducial distribution and to prove its asymptotic

properties, c.f., Section 5 of Hannig (2009). Moreover, Proposition 1 establishes

that the generalized fiducial distribution given by (3.4) and (3.5) is invariant un-

der one-to-one continuously differentiable reparametrizations of the parameter

vector ξ.

Identifiability considerations imply that the structural equation should be

chosen so that, for all disjoint A1, A2 and all u, the sets Q(A1,u) and Q(A2,u)

at (2.1) are disjoint.

If X = (X1, . . . , Xn) are i.i.d. with a distribution function differentiable in

the parameter vector ξ, and the number of data points n is much larger than

the number of parameters p, then the result in Section 4 together with its proof
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strongly suggest using a structural equation based on the inverse distribution

function (3.6) as a reasonable default. Additionally, if X is absolutely continuous

the generalized fiducial distribution obtained (3.4) and (3.7) could be viewed as

a direct generalization of Fisher’s original definition (1.1).

It is known that different structural equations generating data with the same

sampling distribution can lead to different generalized fiducial distributions. We

assert that this non-uniqueness is to be welcomed rather than eschewed. Wilkin-

son (1977) argues that the fiducial distribution should depend on the choice of

parameter of interest, and the same argument has also been made in connection

with the choice of an objective prior in Bayesian inference (Efron (1986); Berger,

Bernardo, and Sun (2009)). Similarly, we conjecture that any general theory on

the choice of the structural equation cannot ignore the parameter of interest. We

demonstrate this conjecture with an example.

Example 4. Consider the sequence of independent random variables Xi ∼
N(µi, 1), i = 1, . . . , n. The parameter of interest is θ =

(∑n
i=1 µ

2
i

)1/2
. The nui-

sance parameter is a point on the unit sphere η = µ/θ, where µ = (µ1, . . . , µn) =

θη. The näıve structural equation

Xi = µi + Zi, Zi i.i.d. N(0,1), i = 1, . . . , n, (5.1)

leads to the fiducial distribution that is the same as the Bayesian posterior com-

puted with respect to the flat prior that is known to have exact frequentist

properties for every individual µi but very bad frequentist properties for the

parameter of interest θ.

Guided by our interest in θ, we propose another structural equation that

isolates θ in a part of the structural equation. WriteX = (X1, . . . , Xn). We model

∥X∥ =
(∑n

i=1X
2
i

)1/2
and X/∥X∥ separately. First, ∥X∥ = F−1

n (θ, U1), where

and U1 ∼ U(0, 1) and F−1
n is the square root of the inverse of the non-central

chi-square distribution function with n degrees of freedom and non-centrality

parameter θ2/2. Next, X/∥X∥ = η ◦ Hn(θ, U1, U2), where Hn(θ, U1, U2) is an

appropriate function generating X/∥X∥ if η = (1, 0 . . . , 0) were the truth, ◦ is

the rotation group operator on the unit sphere and U2 ∼ U(0, 1) independent of

U1. By combining these two expressions we get the structural equation

X = F−1
n (θ, U1) · (η ◦Hn(θ, U1, U2)) . (5.2)

Notice, that for any observed x ̸= 0 and any fixed u1, u2 ∈ (0, 1), there

is unique θ, η solving (5.2). Moreover, θ is the solution to ∥x∥ = F−1
n (θ, u1)

only, and the resulting generalized fiducial distribution is based entirely on the

non-central chi-square portion of the structural equation. It is well-known that

the generalized fiducial distribution for θ, derived from the structural equation
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∥x∥ = F−1
n (θ, U⋆

1 ), leads to confidence intervals with very good frequentist prop-

erties, see for example the Example 5 of Hannig, Iyer, and Patterson (2006). We

conclude that if θ is the parameter of interest, the structural equation (5.2) is

preferable to the näıve structural equation (5.1).

A similar issue arises in the objective Bayes literature. If the parameter of

interest is θ the default prior is π(µ) = ∥µ∥−(p−1) = θ−(p−1) and not the näıve

default prior π(µ) = 1 (Stein (1985); Tibshirani (1989)).

It would be desirable if one could start with the näıve structural equation and

obtain the “correct” structural equation by some well defined process. Search

for such a process is a topic of our future research. Some promising ideas in that

direction can be found in Zhang and Liu (2011).

6. Conclusions

In this paper we have studied asymptotic properties of generalized fiducial

distribution for discretely observed data. The use of discretized data is natural

because all data is discretized due to instrument precision and computer storage.

The limiting distribution of the generalized fiducial distribution of discretely

observed data as the precision of the discretization increases is obtained and

used to resolve an ambiguity in the definition of generalized fiducial distribution

for exactly observed data. We also show that, under some mild conditions on the

parametric model, the generalized fiducial distribution for discretized data leads

to asymptotically correct inference.

This paper did not deal with the computational issues surrounding general-

ized fiducial inference. Typically, a numerical scheme, such as MCMC or Sequen-

tial MC, needs to be employed. For example, Hannig, Iyer, and Wang (2007)

implement a modified Gibbs sampler and show that generalized fiducial inference

for discretized normal data indeed has very good small sample statistical proper-

ties. More complicated computational schemes for generalized fiducial inference

can be also found in Hannig and Lee (2009), Wandler and Hannig (2011), and

elsewhere.

Finally, we remark that there are interesting connections between generalized

fiducial distribution, the asymptotic theory of likelihood Davison, Fraser, and

Reid (2006), the theory of second order ancillaries Fraser, Fraser, and Staicu

(2010) and as discussed in Section 3, the data dependent prior of Fraser, Reid,

Marras, and Yi (2010). We plan to investigate these connections in future work.
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Appendix A: Proof of Theorem 1.

The exact form of the generalized fiducial distribution (3.3) appears to be
rather difficult to derive explicitly. Fortunately, one can find an explicit formula
for the distribution of certain extremal points of the set Q((a,b),U⋆).

We restrict our attention to x ∈ B(x0). The assumptions guarantee that for
every u ∈ Ui and xi the function

Qi(xi,u) = ξ if Gi(ξ,u) = xi

is well defined. Moreover, for each fixed u, the function Qi(· ,u) is a homeo-
morphism and, for each fixed xi, the function Qi(xi, · ) is continuous. Moreover,
for any (a,b),

Q((a,b),u) =
∩
i

Qi((ai,bi),u).

Thus any point on the boundary of Q((a,b),u) is also on the boundary of
Qi((ai,bi),u) for some i. Let Ci denote the set of 2

p vertices of (ai,bi), C((a,b),
u) =

∪
iQi(Ci,u) and QE((a,b),u) = C((a,b),u)∩Q([a,b],u). Because of our

assumptions on uniqueness of inverses, the set QE((a,b),u) = ∅ if and only if
Q((a,b),u) = ∅. Moreover, the points in QE((a,b),u) lie on the boundary of
Q((a,b),u). In fact, QE((a,b),u) could be viewed as the set of extremal points
of Q((a,b),u).

Let d = {d1, . . . ,dp} ⊂ Rp be a collection of orthonormal basis vectors.
Take the furthest point in QE((a,b),u) along the direction d1. If there are ties,
select among the tied points the one furthest along d2, etc. Eventually a unique
value in QE((a,b),u) is selected. We denote it by Qd((a,b),u).

Similarly, for each i consider the furthest point in Qi(Ci,u) along d and
denote the vertex in Ci that maps to this extreme cdi (u).

Lemma A.1. Under the assumptions of Theorem 1 the distribution of

Qd((a,b),U
⋆) | {Q((a,b),U⋆) ̸= ∅} (A.1)

is absolutely continuous with density

rd(ξ) ∝
∑
i

∫
(a

i{ ,bi{ )

∑
si∈Ci

fξX
i{
(ξ, si{ | si)I{cdi (G−1((si,si{ ),ξ))=si}dsi{ ,

where fξX
i{
(ξ, si{ | si) is given by (3.2).
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Proof. The conditional distribution (A.1) is well-defined, because the condition

P (Q((a,b),U⋆) ̸= ∅) ≥ Pξ0(X ∈ (a,b)) > 0.

The assumptions imply Qd((a,b),U
⋆) is equal to exactly one of the cdi (U

⋆) with
probability 1.

Denote by Yi(u, si) the unique solution (ξ̃, s̃i{) to the equation (si, s̃i{) =
G(ξ̃,u). By assumptions, Yi(U

⋆, si) is a random variable with density given by
(3.2). Compute

P
(
{Qd((a,b),U

⋆) ≤ z} ∩ {Q((a,b),U⋆) ̸= ∅}
)

=
∑
i

∑
si∈Ci

P ({cdi (U⋆) = si} ∩ {Yi(U
⋆, si) ∈ (−∞, z)× (ai{ ,bi{)})

=
∑
i

∑
si∈Ci

∫
(−∞,z)×(a

i{ ,bi{ )
fξX

i{
(ξ, si{ | si)I{cdi (G−1((si,si{ ),ξ))=si}dξdsi{

The last step follows from (3.2) and the fact that for each si, there is a one-to-one
map between (si{ , ξ) and u. The proof now follows by differentiation.

Proof of Theorem 1. The assumptions of the theorem guarantee that Ci →
{x}. Thus Q((am,bm), U⋆), if non empty, converges to a singleton. To find the
distribution of the limit it is enough to find the limiting distribution of

Qd((am,bm),U⋆) | {Q((am,bm),U⋆) ̸= ∅}

for any fixed d.
Fix ξ and recall that x0, the observed value of our data, is also fixed. The

continuity of fξX
i{
(ξ,yi{ |yi) implies that

lim
m→∞

sup
y∈[am,bm]

|fξX
i{
(ξ,yi{ |yi)− fξX

i{
(ξ,x0,i{ |x0,i)| = 0,

and a simple calculation shows that for each i,

cn−p
m

∑
si∈Ci

∫
(a

i{ ,bi{ )
fξX

i{
(ξ, si{ | si)I{cdi (G−1((si,si{ ),ξ))=si} dsi{

→ fξX
i{
(ξ,x0,i{ | x0,i)

∏
j∈i{

wj .

Similarly the assumption on the continuity of the integral implies

cn−p
m

∫
Ξ

∑
si∈Ci

∫
(a

i{ ,bi{ )
fξX

i{
(ξ, si{ | si)I{cdi (G−1((si,si{ ),ξ))=si} dsi{ dξ

→
∫
Ξ
fξX

i{
(ξ,x0,i{ | x0,i)

∏
j∈i{

wj dξ.
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The statement of the Theorem follows immediately.

Appendix B: Proof of Theorem 2

Let Sj , j = 0, . . . , k, be the number of observations in (ajaj+1]. The dis-

tribution of S is multinomial(n, p0(ξ0), . . . , pk(ξ0)). Just as in Appendix A,

let d = {d1, . . . ,dp} ⊂ Rp be a collection of orthonormal basis vectors. For

j ⊂ {1, . . . , k} and t ∈ {0, 1}p, define cdj,t(uj) as the the vertex in (ai+t−1,ai+t)

that maps to the furthest point in Qj({(aj+t−1,aj+t},uj) along d.

Lemma B.1. Under the assumptions of Theorem 2 the distribution of (A.1) is

absolutely continuous with density

rd(ξ) ∝
(2π/n)(k−p)/2Γ(

∑k
i=0 Si)∏k

i=0 Γ(Si)

k∏
i=0

pi(ξ)
Si−1

·
∑
j

J(aj, ξ)

( ∑
t∈{0,1}p

I{cdj,t(G
−1
j (aj,ξ))=aj}

∏
j∈j+t−1

n−1Sj

∏
j∈{0,...,k}\j+t−1

pj(ξ)

)
, (B.1)

where the Jacobian

J((x1, . . . , xp), ξ) =

∣∣∣∣det d(F (x1, ξ), . . . , F (xp, ξ))

dξ

∣∣∣∣ .
Proof. If F (F−1(ξ, u), ξ) = u for each fixed ξ, then the lemma follows imme-

diately from a calculation analogous to the proof of Lemma A.1 by simply re-

arranging the non-zero terms and multiplying both numerator and denominator

by a suitable constant.

Otherwise, we can find F̃ (s, ξ) so that F̃ (ai, ξ) = F (a,ξ) for all i = 1, . . . , k

and F̃ (F̃−1(ξ, u), ξ) = u. This is achieved by redistributing jumps continuously

over the intervals (ai, ai+1). Define X̃i = ˜F−1(Ui, ξ) and denote the correspond-

ing inverse (2.1) by Q̃. For a,b ∈ {a0, . . . , ak+1}, the inverse Q((a,b),u) =

Q̃((a,b),u). Since we only observe X ∈ (a,b), the generalized fiducial distri-

butions (2.3) computed based on the structural equation for X and X̃ are the

same.

Proof Theorem 2. We prove the theorem in two steps. First, we prove Berstein-

von Mises for some special points in Q((a,b), u) and verify the conditions of

Theorem 1 of Hannig (2009) for them. We only need to verify Assumptions 1

and 2, as Assumption 3, related to the shape of the confidence set, is assumed.

Second, we show that the same is true for all the other points in Q((a,b), u) .

Take p = (p0(ξ0), . . . , pk(ξ0)) and Σ as the variance matrix of the Multino-

mial (1,p) distribution. By the Skorokhod Representation Theorem we can find

S Multinomial(n,p) and H Normal(0,Σ) such that S = np+n1/2H+ oas(n
1/2),
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n → ∞. Recall that S0 = n −
∑k

j=1 Sj , p0(ξ) = 1 −
∑k

j=1 pj(ξ), and H0 =

−
∑k

j=1Hj .

Let Rd
ξ have the generalized fiducial distribution given by (B.1). The density

of n1/2(Rd
ξ − ξ0) is g(z) = rd(ξ0 + n−1/2z)n−p/2. We investigate the behavior of

g(z) as n → ∞.

Set

g2,j(ξ) = J(aj, ξ)
( ∑

t∈{0,1}p
I{cdj,t(G

−1
j ((aj+t−1,aj+t),ξ))=aj}

×
∏

j∈j+t−1

n−1Sj

∏
j∈{0,...,n}\j+t−1

pj(ξ)
)
.

By our assumptions, g2,j(ξ0 + n−1/2z) → g2,j(ξ0) a.s..

Compute, using Taylor series and Stirling’s formula,

log(g1(z)) = log

(
n−p/2(2π/n)(k−p)/2Γ(

∑k
i=1 Si)∏k

i=1 Γ(Si)

k∏
i=0

pi(ξ0 + n−1/2z)Si−1

)

= −p

2
log(2π)−

k∑
j=0

Sj log(n
−1Sj) +

1

2

k∑
j=0

log(n−1Sj)

+
k∑

j=0

Sj log(pj(ξ0+n−1/2z))−
k∑

j=0

log(pj(ξ0+n−1/2z))+oas(1).(B.2)

By our assumptions

1

2

k∑
j=0

log(n−1Sj)−
k∑

j=0

log(pj(ξ0 + n−1/2z)) → −1

2

k∑
j=0

log(pj(ξ0)) a.s..

Using Sj = npj(ξ0) + n1/2Hj + oas(n
1/2), we compute

k∑
j=0

Sj log(n
−1Sj)

=

k∑
j=0

Sj

(
log(pj(ξ0)) +

n−1Sj − pj(ξ0)

pj(ξ0)
− 1

2

(n−1Sj − pj(ξ0)

pj(ξ0)

)2
+ oas(n

−1)

)

=

k∑
j=0

Sj log(pj(ξ0)) +
1

2

k∑
j=0

H2
j

pj(ξ0)
+ oas(1).
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Using pj(ξ0 + n−1/2z) = pj(ξ0) + n−1/2∇pj(ξ0) · z + o(n−1/2), we analogously

compute

k∑
j=0

Sj log(pj(ξ0 + n−1/2z))

=

k∑
j=0

Sj log(pj(ξ0)) +

k∑
j=0

Hj(∇pj(ξ0) · z)
pj(ξ0)

− 1

2

(∇pj(ξ0) · z)2

pj(ξ0)
+ oas(1).

By plugging back into (B.2) we get

g1(z) →
exp

(
−
∑k

j=0 (∇pj(ξ0) · z−Hj)
2/2pj(ξ0)

)
(2π)p/2

(∏k
j=0 pj(ξ0)

)1/2 a.s.. (B.3)

Denote the function on the right side of (B.3) by ñ(z). We show this function is,

up to a constant, a density of a non-degenerate, multivariate normal distribution.

The random vector H̃ = (H1, . . . , Hk) is a non-degenarate Normal(0, Σ̃).

Define the p× k Jacobi matrix

A =

(
∂pj(ξ0)

∂ξr

)
r=1,...,p, j=1,...,k

,

the diagonal k × k-matrix D = diag(p1(ξ0), . . . , pk(ξ0))
−1, and the p × p-matrix

V = A
(
D + (1−

∑k
j=1 pj(ξ0))

−11 · 1⊤
)
A⊤. By our assumptions, A is full rank

and V is non-singular, hence positive definite. A simple multiplication reveals

that Σ̃−1 = D + (1 −
∑k

j=1 pj(ξ0))
−11 · 1⊤, so that V = AΣ̃−1A⊤. Recall that

properties of multinomial distribution imply det Σ̃ =
∏k

i=0 pi(ξ0).

After some slightly tedious algebra we obtain that the function n(z) = Cñ(z),

C =

(
detV

k∏
j=0

pj(ξ0)

)1/2

exp

(
1

2
H̃⊤

(
Σ̃−1 − Σ̃−1A⊤V −1AΣ̃−1

)
H̃

)
,

is the density of a multivariate normal distribution with mean V −1AΣ̃−1H̃ and

variance matrix V −1.

In particular, if k = p, | detA| = J((a1, . . . , ap), ξ0), and consequently C =

J((a1, . . . , ap), ξ0). Thus

g1(z)J((a1, . . . , ap), ξ0 + n−3/2z) → n(z) a.s.. (B.4)

However, since the function g1(z)J((a1, . . . , ap), ξ0+n−1 1
2 z) is a transformation of

Dirichlet density, it integrates to 1. Hence the convergence in (B.4) is also in L1.
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Since 0 ≤ n−1Sj ≤ 1 and 0 ≤ pj(ξ) ≤ 1, the uniform integrability of g1(z)g2,j(z)

follows and one can conclude that n1/2(Rd
ξ − ξ0) converges in distribution to a

Normal with mean V −1AΣ̃−1H̃ and variance matrix V −1 almost surely.

If k > p, we have for each j, g1(z)g2,j(z) → Dj n(z) a.s., and

g1(z)g2,j(z) ≤ 2kg1(z)J(aj, ξ0 + n−1/2z).

We now show that g1(z)J(aj, ξ0 + n−1/2z) is uniformly integrable by com-

parison with a density based on k = p. In order to do that, we pool the digitizing

categories between the entries of j, i.e.,

p̃j(ξ) = pij (ξ) + · · ·+ pij+1−1(ξ), S̃j = Sij + · · ·+ Sij+1−1,

where i0 = 0, ip+1 = k + 1, and

g̃1(z) =
n−p/2Γ(

∑p
i=1 S̃i)∏p

i=1 Γ(S̃i)

p∏
i=0

p̃i(ξ0 + n−1/2z)Si−1.

As argued above, g̃1(z)J(aj, ξ0+n−1/2z) is uniformly integrable. Moreover, by the

Stirling formula and simple algebra, there are constant K1 and K2 independent

on z and n such that

g1(z)

g̃1(z)
≤ K1n

−(k−p)/2

∏p
i=1 Γ(S̃i)∏k
i=1 Γ(Si)

≤ K2 a.s..

Thus g1(z)g2,j(z) is uniformly integrable and g1(z)g2,j(z) → Djn(z) in L1. We

conclude by a straightforward calculation that n1/2(Rd
ξ − ξ0) converges in dis-

tribution to a Normal with mean V −1AΣ̃−1H̃ and variance matrix V −1 almost

surely.

Finally, notice that Var (V −1AΣ̃−1H̃) = V −1. The Assumptions 1, 2 of

Theorem 1 in Hannig (2009) are verified for the special extreme points Rd
ξ . The

first step of the proof is complete.

Now we finish the proof by showing that

diamQ((ak,ak+1),U
⋆) | {Q((ak,ak+1),U

⋆) ̸= ∅} = OP (n
−1) a.s.. (B.5)

This, together with what was proved above, verifies the Assumptions 1, 2 of

Theorem 1 in Hannig (2009) for Rξ based on any point in Q((ak,ak+1),U
⋆).

Recall that our observations are in the form xi ∈ (aki , aki+1) for i = 1, . . . , n.

Notice that

P (diamQ((ak,ak+1),U
⋆) > K/n | Q((ak,ak+1),U

⋆) ̸= ∅)

=

∫
P (diamQ((ak,ak+1),U

⋆) > K/n | Qd((ak,ak+1),U
⋆) = ξ)fRd(ξ),
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where fRd(ξ) is the density of Qd((ak,ak+1),U
⋆) given {Q((ak,ak+1),U

⋆) ̸=
∅} displayed in (B.1). For i ⊂ {1, . . . , n} denote by Jd

i the event that the

Qd((ak,ak+1),U
⋆) is based of the p observational inequalities for Xi. We then

have

P (diamQ((ak,ak+1),U
⋆) > K/n | Qd((ak,ak+1),U

⋆) = ξ)

=
∑
i

P (diamQ((ak,ak+1),U
⋆) > K/n | Jd

i , {Qd((ak,ak+1),U
⋆) = ξ})

×P (Jd
i | Qd((ak,ak+1),U

⋆) = ξ).

Consider Jd
i . The observational inequalities labeled by aki < xi ≤ aki+1, i ∈ i

are used for computing Qd. From the remaining observational inequalities we get

U⋆
i{
|Jd

i ∩{Qd((ak,ak+1),U
⋆)=ξ} are independent Uniform(F (akj , ξ), F (akj+1, ξ))

random variables, respectively, i.e., conditionally on Jd
i ∩ {Qd((ak,ak+1),U

⋆) =

ξ}, the random variables Ũ⋆
i = (U⋆

i − F (aki , ξ))/(F (aki+1, ξ)− F (aki , ξ)), i ∈ i{,
are i.i.d. Uniform(0, 1). For each j = 0, . . . , k, we have Sj observations in

(aj , aj+1]. We lose at most one observation per group to be a part of i. Conse-

quently, on the set Jd
i ∩ {Qd((ak,ak+1),U

⋆) = ξ} we have

Q((ak,ak+1),U
⋆)

⊂

(
k∩

j=1

{ξ̄ : F (aj , ξ̄) ≤ F (akj , ξ)+(F (akj+1, ξ)−F (akj , ξ))Ũ
j
1:Sj−1}

∩
k−1∩
j=0

{ξ̄ : F (aj+1, ξ̄) ≥ F (akj+1, ξ)+(F (akj+1, ξ)−F (akj , ξ))(1−Ũ j
Sj−1:Sj−1)}

)
.

(B.6)

Here Ũ j
1:Sj−1

and Ũ j
Sj−1:Sj−1

are the order statistics of an array obtained by re-

ordering Ũ⋆
i , i ∈ i{, so that they are grouped according to their observational

inequality.

By (B.6) and the differential geometric structure of our manifolds around

the true value ξ0, there is an open neighborhood N of ξ0 and a constant C such

that, for all ξ ∈ N and all i,

diamQ((ak,ak+1),U
⋆) ≤ Cmax{Ũ j

1:Sj−1, 1− Ũ j
Sj−1:Sj−1, j = 0, . . . , k}.

This and the well known fact that nŨ j
1:Sj−1 and n(1 − Ũ j

Sj−1:Sj−1) converge in

distribution to Exponential(1), imply that for every ϵ there is K, independent of

i, such that

P (diamQ((ak,ak+1),U
⋆) > K/n | Jd

i , Qd((ak,ak+1),U
⋆) = ξ) ≥ ε
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for all n, i and ξ ∈ N a.s.. Here the a.s. is due to the fact that Sj → ∞ only

a.s..

However, as proved above, Qd((ak,ak+1),U
⋆)

P−→ ξ0 a.s., and (B.5) follows

immediately. Here the a.s. comes from the assumption, n−1/2(S−np) → H a.s.,

obtained from Skorokhod’s representation.
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