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 Abstract. This article presents a statistical analysis of the results of the

 2000 U.S. presidential election in the 67 counties of Florida, with particular

 attention to the result in Palm Beach county, where the Reform party

 candidate Pat Buchanan recorded an unexpectedly large 3,407 votes. It

 was alleged that the "butterfly ballot" had misled many voters into voting

 for Buchanan when they in fact intended to vote for Al Gore. We use

 multiple regression techniques, using votes for the other candidates and

 demographic variables as covariates, to obtain point and interval predictions

 for Buchanan's vote in Palm Beach based on the data in the other 66

 counties of Florida. A typical result shows a point prediction of 371 and a

 95% prediction interval of 219-534. Much of the discussion is concerned

 with technical aspects of applying multiple regression to this kind of data

 set, focussing on issues such as heteroskedasticity, overdispersion, data

 transformations and diagnostics. All the analyses point to Buchanan's actual

 vote as a clear and massive outlier.

 Key words and phrases: Binary data, butterfly ballot, Florida election,

 heteroskedasticity, Monte Carlo tests, multiple regression, overdispersion,

 regression diagnostics, transformations.

 1. INTRODUCTION

 The 2000 U.S. presidential election was eventually

 settled when George Bush officially beat Al Gore by
 537 votes, out of nearly 6 million cast, in the state

 of Florida. This gave Bush the 25 Electoral College

 votes he needed to become President under the U.S.

 Constitution. During the month that it took to resolve

 this election, many allegations of voting irregularities

 were made. One of the strongest arguments concerned

 Palm Beach county, the second largest of Florida's

 67 counties, with over 400,000 votes cast for a total

 of 10 candidates. Here, it was alleged, the "butterfly

 ballot" design had misled many voters into voting
 for a different candidate from the one they intended.

 Specifically, it was claimed that many voters who had

 intended to vote for Al Gore in fact voted for Pat
 Buchanan, the candidate of the Reform party. The
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 initial returns gave Buchanan 3,407 votes in Palm
 Beach, compared with about 1,300 that he might have
 expected based on his overall vote in the state. The
 excess of about 2,000 votes, had they indeed been
 credited to Gore, would have given Gore the state of
 Florida and hence the White House.

 Within a few days of the election, numerous articles
 appeared on various websites, containing statistical
 analyses of the election results. Many of these articles
 focussed specifically on the Buchanan vote in Palm
 Beach county, using various political or demographic
 covariates to predict the number of votes he should
 have received. Most such analyses in fact put the
 predicted number of Buchanan votes at considerably
 less than 1,300. For example, Palm Beach overall is

 a Democratic county-Al Gore gained 62% of the
 total vote there-so one would have expected the
 right wing Buchanan to gain a smaller percentage of
 votes than he did over the whole state. Comparisons
 like this have generally been taken as strengthening
 the argument that Gore should have won, but they
 also raise questions over the correct application of
 regression methodology to the results of an election.
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 The purpose of this article is to examine this hy-

 pothesis in detail by presenting a detailed regression

 analysis of the number of Buchanan votes across all

 67 Florida counties, using both the votes for other can-

 didates and demographic variables obtained from the
 Census as covariates. The analysis devotes particular

 attention to the problem of heteroskedasticity, an in-

 evitable problem when there is such a large disparity
 in the populations of the various counties (from un-

 der 7,000 in Lafayette and Liberty counties, to over
 2 million in Miami-Dade county). I consider various

 transformations of the data as remedies against this.

 Other questions considered include variable selection,

 overdispersion in a Poisson or binomial analysis of the

 data, and various forms of diagnostics and tests of fit.
 When applied to the prediction of Buchanan's Palm

 Beach vote based on the vote in the other 66 Florida

 counties, all the analyses result in point and interval
 predictions well short of his actual vote, and confirm

 that it was an enormous outlier.

 The motivation for the present article is to draw

 attention to statistical rather than political issues. Even

 if it were proved that some voters were misled by

 the ballot design, there appears to be no legal or

 constitutional basis for overturning the result of an

 election on the basis that the results were inconsistent

 with some statistical prediction, and indeed the Gore

 team acknowledged this when they decided not to

 pursue a formal legal challenge based on the Palm
 Beach ballot design (instead they pursued a claim
 to have the votes in a number of Florida counties

 recounted by hand, the issue on which the U.S.

 Supreme Court eventually decided the election in
 Bush's favor). Another point is that the present analysis

 presents no evidence that the excess votes came from
 Gore's supporters rather than Bush's, though some
 other commentators have argued that point; see the
 review in Section 2.

 On the other hand, the enormous public interest in

 the outcome of the Florida vote resulted in a number

 of statistical analyses of the results, many of which

 used regression analysis in some form. Most of these
 analyses did not go through a careful process of model
 building and model checking. No claim is made that

 the present analysis is in any sense definitive, but my
 hope is that it may serve as a positive example of
 how modem regression techniques may be applied to

 a question of real public interest.
 An outline of the article is as follows. Section 2

 is a review of other analyses that have appeared
 since the election. Section 3 describes the data used

 in this analysis. Section 4 goes through the various

 stages of building a regression model and discusses in

 detail such issues as homoskedasticity, normality of the

 errors, selection of variables, and outlier and influence

 diagnostics. Section 5 discusses the actual predictions,

 and Section 6 presents an alternative analysis that treats

 the votes cast as binary data. Finally, Section 7 presents

 a summary and conclusions.

 Data and programs used in the present article are

 available from the World Wide Web address http://

 www.stat.unc.edu/faculty/rs/palmbeach.html.

 2. REVIEW OF OTHER ANALYSES

 Within a few days of the election, numerous statis-

 tical analyses appeared on various websites, and much

 has been published since then. It is not feasible to at-

 tempt a review of all of these, but this section provides

 an overview.

 Adams (2001) provided a number of data plots

 to illustrate the point that Buchanan's vote in Palm

 Beach was highly anomalous. For example, he plotted

 the Buchanan votes in each of the 67 Florida coun-

 ties against total votes cast, against the number of
 registered Reform party voters and against the 1996
 votes for Buchanan in the Republican primary. All of

 these plots showed a clear outlier in Palm Beach. In
 an attempt to make the case that the butterfly ballot

 was specifically responsible for the anomaly, he also
 made a similar plot for the Socialist and Green party

 candidates-the Socialist candidate also achieved a
 much higher than expected vote in Palm Beach and
 since the Socialist candidate's name appeared immedi-

 ately below Buchanan's on the ballot paper, it seems
 likely that voters were also misled into voting for
 the Socialist candidate by mistake. Adams' published

 work refrained from any detailed regression analysis,

 citing concerns such as the effect of different popula-
 tions in the counties (an earlier World Wide Web ver-
 sion of the paper did include such analyses). Adams
 also did not consider any form of multiple regression
 analysis.

 Other World Wide Web analyses attempted to take
 account of varying population size by various methods,
 for example, by assuming the variance to be inversely
 proportional to population size, or by some transforma-
 tion, such as log transformation, or by considering pro-
 portions of votes for different candidates rather than to-
 tal votes cast (such transformations do not remove the
 problems associated with heteroskedasticity, but they
 are better than simple linear regression applied to ac-
 tual vote counts). Examples of such analyses include
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 Carroll (2000), Hansen (2000) and Monroe (2000). Al-

 though most of these analyses support the general con-

 tention that Buchanan's vote was an outlier, there are

 some analyses that express a contrary opinion (e.g.,

 Farrow, 2000).

 Agresti and Presnell (2001) summarized a number

 of the statistical issues in a paper written for lawyers.

 As examples, they made comparisons of Buchanan's

 vote in 2000 with the votes cast for Ross Perot in

 the 1996 presidential election (Perot was the Reform

 party's candidate in 1996), with the Buchanan vote

 in the 1996 Republican primary, with Bush and Gore

 votes in 2000, and with Reform party registration to-

 tals. They also drew attention to the Socialist Party's

 unusually large vote and discussed results from in-

 dividual precincts within Palm Beach county (noting

 the positive correlation between Buchanan and Gore

 votes), from overvotes (ballots that were invalidated

 through voting for more than one candidate) and under-

 votes (ballots where no vote was made for President).

 All of these were argued as supporting the case that the

 anomalous vote for Buchanan was specifically a conse-

 quence of the butterfly ballot and that the excess votes

 came from Gore rather than Bush.

 The most detailed and comprehensive analysis I have

 seen of the Palm Beach result is the article by Wand

 et al. (2001). Their abstract directly claimed that "the

 butterfly ballot ... caused more than 2,000 Democratic
 voters to vote by mistake for Reform candidate Pat

 Buchanan." They used county-level data to study the

 Buchanan vote not only in the whole of Florida, but

 also repeated the regression study in each of the other

 states (some of the smaller states were lumped together

 to create sufficiently large sample sizes). They argued
 that Palm Beach produced the most anomalous vote for

 Buchanan among all the 3,053 U.S. counties that they

 examined. To substantiate the claim that this anomaly
 was due to the butterfly ballot and that it took votes

 away from Gore rather than Bush, they used a number
 of other data sources. They looked at precinct-level

 data for Florida, they looked at election day versus

 absentee ballots (the absentee ballot in Palm Beach

 did not use the butterfly format and did not show any

 anomalous support for Buchanan) and they also looked

 at individual ballots in Palm Beach (a substantial
 number of the votes for Buchanan came from voters

 who voted Democratic for the other major offices on

 the ballot).

 Concerning the actual regression analysis used by
 Wand et al., the main analyses used votes for Buchanan
 as the response variable together with a number of

 covariates including votes for other candidates in the

 2000 presidential election, votes for the Republican

 and Reform candidates in the 1996 presidential elec-

 tion, and a set of demographic variables. Instead of

 considering the demographic variables individually, as

 the following analysis does, they performed a principal
 components analysis, and the leading principal compo-
 nent was treated as a single measure of demographic

 variability. For the analysis itself, the authors noted

 the twin problem of overdispersion (i.e., that the vari-
 ance of the countywide Buchanan votes is much larger
 than could be explained by a simple binomial or Pois-

 son model) and outliers, and proposed an apparently
 original method of "robust estimation of the overdis-

 persed binomial regression model." Although their ro-
 bust analysis indeed appears to reduce the influence of

 outliers, nowhere in their article did they attempt to val-
 idate in detail the assumptions of their model, based on
 the data.

 The present analysis is restricted to the county-
 level data for Florida and examines Buchanan's vote

 as predicted by two types of covariates: (a) votes
 for the other candidates in the same election and
 (b) demographic variables. Variable selection methods

 are used to reduce the dimensionality of the covariates.

 The remainder of the analysis is concerned with

 detailed building of a regression model and the use

 of diagnostic techniques to examine the fit of the
 model, together with the role and possible influence of
 outliers.

 3. DATA USED IN THIS STUDY

 Two data sets have been assembled, one consist-

 ing of election returns from the Florida Division of

 Elections, and the other of demographic data compiled

 from the U.S. Census Bureau. Tables 1 and 2 give

 the votes for the 10 presidential candidates on the bal-
 lot in Florida, classified by county. These data are the

 provisional results issued immediately after the elec-
 tion, which may differ slightly from the final certified
 totals that were issued only after the first version of

 the present analysis had been completed. In addition

 to the votes for Bush, Gore and Buchanan, I also in-
 clude in the analysis the votes for the Libertarian candi-
 date Browne and the Green party candidate Nader. The

 other five candidates (Harris, Hagelin, McReynolds,
 Phillips and Moorehead) all achieved less than 0.1Y%
 of the vote and shall play no part in the analysis, al-
 though they may be of some interest for determining
 whether other minor-party candidates also showed un-
 usual voting patterns, an aspect we shall not consider
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 TABLE 1

 County voting data, part I

 County Bush Gore Brow Nade Har Hag Buc Mc Ph Mo

 Alachua 34,124 47,365 658 3226 6 42 263 4 20 21

 Baker 5,610 2,392 17 53 0 3 73 0 3 3

 Bay 38,637 18,850 171 828 5 18 248 3 18 27

 Bradford 5,414 3,075 28 84 0 2 65 0 2 3

 Brevard 115,185 97,318 643 4470 11 39 570 11 72 76

 Broward 177,323 386,561 1212 7101 50 129 788 34 74 124

 Calhoun 2,873 2,155 10 39 0 1 90 1 2 3

 Charlotte 35,426 29,645 127 1462 6 15 182 3 18 12

 Citrus 29,765 25,525 194 1379 5 16 270 0 18 28

 Clay 41,736 14,632 204 562 1 14 186 3 6 9

 Collier 60,433 29,918 185 1399 7 34 122 4 10 29

 Columbia 10,964 7,047 127 258 1 7 89 2 8 5

 Desoto 4,256 3,320 23 157 0 0 36 3 8 2

 Dixie 2,697 1,826 32 75 0 2 29 0 3 2

 Duval 152,098 107,864 952 2757 37 162 652 15 58 41

 Escambia 73,017 40,943 296 1727 6 24 502 3 110 20

 Flagler 12,613 13,897 60 435 1 4 83 3 3 12

 Franklin 2,454 2,046 17 85 1 3 33 0 3 2

 Gadsden 4,767 9,735 24 139 3 4 38 4 7 6

 Gilchrist 3,300 1,910 52 97 0 1 29 0 2 4

 Glades 1,841 1,442 12 56 0 3 9 1 0 1

 Gulf 3,550 2,397 21 86 2 4 71 2 2 9

 Hamilton 2,146 1,722 12 37 4 1 23 8 7 4

 Hardee 3,765 2,339 17 75 0 2 30 0 2 3

 Hendry 4,747 3,240 11 103 3 1 22 2 7 2

 Hemando 30,646 32,644 116 1501 8 26 242 4 10 22

 Highlands 20,206 14,167 64 545 6 16 127 3 7 8

 Hillsborough 180,760 169,557 1138 7490 35 217 847 29 68 154

 Holmes 5,011 2,177 18 94 1 7 76 3 6 2

 Indian River 28,635 19,768 122 950 4 13 105 2 13 10

 Jackson 9,138 6,868 40 138 0 2 102 1 4 7

 Jefferson 2,478 3,041 14 76 2 1 29 1 0 0

 Lafayette 1,670 789 6 26 2 0 10 1 1 0

 Lake 50,010 36,571 204 1460 4 36 289 1 21 15

 Lee 106,141 73,560 538 3587 30 81 305 5 34 96

 Leon 39,053 61,425 330 1932 9 28 282 7 16 31

 Levy 6,858 5,398 92 284 1 1 67 1 10 12

 Liberty 1,317 1,017 12 19 0 3 39 0 1 2

 here. The demographic data in Tables 3 and 4 include

 the following variables:

 * Pop: County population in 1997.

 * Whi: Percentage of whites in 1996.
 * Bla: Percentage of blacks in 1996.

 * Hisp: Percentage of Hispanics in 1996 (note that the

 percentages of whites, blacks and Hispanics some-

 times add up to more than 100, because Hispanics
 include other races).

 * > 65: Percentage of the population aged 65 and over
 (actually calculated from the 1996 population aged
 65 and over, divided by the 1997 total population).

 * HS: Percentage of the population that graduated

 from high school (1990 census).

 * Coll: Percentage of the population that graduated

 from college (1990 census).

 * Inc: Mean personal income (1994).

 As an initial analysis of the data, Figure 1 plots the

 Buchanan percentage vote against 12 covariates. In

 each case, Palm Beach county is marked with an x.

 The plots show that the percentage of Buchanan votes

 is overall decreasing with total population size; not ob-

 viously dependent on the percentages of whites and
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 TABLE 2

 County voting data, part II

 County Bush Gore Brow Nade Har Hag Buc Mc Ph Mo

 Madison 3,038 3,014 18 54 0 2 29 1 1 5

 Manatee 57,952 49,177 242 2491 5 35 271 3 19 26

 Marion 55,141 44,665 662 1809 13 26 563 6 22 49

 Martin 33,970 26,620 109 1118 14 29 112 7 20 14

 Miami-Dade 289,492 328,764 760 5352 87 119 560 35 69 124

 Monroe 16,059 16,483 162 1090 1 26 47 0 3 7

 Nassau 16,280 6,879 62 253 0 7 90 4 3 3

 Okaloosa 52,093 16,948 313 985 4 15 267 2 33 20

 Okeechobee 5,057 4,588 21 131 1 4 43 1 3 4

 Orange 134,517 140,220 891 3879 13 65 446 7 41 46

 Osceola 26,212 28,181 309 732 10 20 145 5 10 33

 Palm Beach 152,846 268,945 743 5564 45 143 3407 302 188 103

 Pasco 68,582 69,564 413 3393 19 83 570 14 16 77

 Pinellas 184,823 200,629 1230 10022 41 442 1013 27 72 170

 Polk 90,180 75,193 365 2062 8 59 532 5 46 36

 Putnam 13,447 12,102 114 377 2 7 148 3 10 12

 Santa Rosa 36,274 12,802 131 724 1 13 311 1 43 19

 Sarasota 83,100 72,853 431 4069 11 94 305 5 15 59

 Seminole 75,677 59,174 550 1946 6 38 194 5 18 26

 St. Johns 39,546 19,502 210 1217 4 11 229 2 12 13

 St. Lucie 34,705 41,559 165 1368 4 12 124 10 13 29

 Sumter 12,127 9,637 53 306 2 2 114 0 3 17

 Suwannee 8,006 4,075 52 180 2 4 108 0 9 5

 Taylor 4,056 2,649 4 59 0 3 27 1 8 1

 Union 2,332 1,407 15 33 1 0 37 0 1 0

 Volusia 82,214 97,063 442 2903 8 36 496 5 20 69

 Wakulla 4,512 3,838 30 149 2 3 46 1 0 6

 Walton 12,182 5,642 68 265 3 11 120 2 7 18

 Washington 4,994 2,798 32 93 0 2 88 0 9 5

 blacks but strongly negatively correlated with Hispan-

 ics; decreasing with the percentage of population aged

 65+; decreasing with mean high school graduation
 rate; decreasing with mean college graduation rate; and

 decreasing with mean personal income. There are also

 clear negative correlations with the proportions of Gore

 and Nader votes, and a positive correlation with the

 proportion of Bush votes. On several of these plots,

 Palm Beach county stands out as an outlier, in the sense

 that it is inconsistent with the pattern of the rest of the

 data points.

 4. BUILDING A REGRESSION MODEL

 4.1 Transformation of the Response Variable

 Possibly the main technical difficulty with fitting a

 regression to these data is the enormous variation in

 county populations. If we define Ni to be the total num-

 ber of votes cast and yi to be the number of votes for
 Buchanan in county i, then the binomial distribution

 would suggest that the variance of yi is approximately
 Ni pi (1 - pi), where pi is the proportion of voters who
 support Buchanan in county i. Since the overall value

 of pi is about 0.003, we subsequently neglect 1 - pi in
 this expression and write

 (1) Var(yi) ; Nipi.

 Also, in view of the small pi, the binomial distribu-
 tion is very closely approximated by a Poisson distrib-

 ution, for which (1) is exact. Thus, any direct attempt to

 perform least-squares regression analysis runs into the

 difficulty that the data are heteroskedastic, contradict-

 ing one of the standard assumptions of least-squares

 regression analysis.

 In fact, as we shall see later, even (1) is a substantial

 underestimate of the true variance, because it turns

 out that there is substantial overdispersion in these

 data. However, the more fundamental issue is still the

 enormous variation of variance with Ni.
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 TABLE 3

 County demographic data, part I

 County Pop Whi Bla Hisp > 65 HS Coll Inc

 Alachua 198,326 74.4 21.8 4.7 9.4 82.7 34.6 19,412

 Baker 20,761 82.4 16.8 1.5 7.7 64.1 5.7 14,859

 Bay 146,223 84.2 12.4 2.4 11.9 74.7 15.7 17,838

 Bradford 24,646 76.1 22.9 2.6 11.8 65.0 8.1 13,681

 Brevard 460,977 88.3 9.2 4.1 16.5 82.3 20.4 19,567

 Broward 1,470,758 80.3 17.5 10.9 20.3 76.8 18.8 24,706

 Calhoun 12,337 81.6 16.9 1.6 14.3 55.9 8.2 12,570

 Charlotte 133,681 94.3 4.4 3.4 33.4 75.7 13.4 18,977

 Citrus 112,454 96.2 2.8 2.5 30.7 68.6 10.4 16,060

 Clay 135,179 91.0 6.0 3.5 7.9 81.2 17.9 18,598

 Collier 195,731 93.3 5.7 17.1 21.5 79.0 22.3 30,906

 Columbia 52,856 78.3 20.5 1.9 12.3 69.0 11.0 15,349

 Desoto 26,259 80.6 18.1 12.1 18.0 54.5 7.6 16,544

 Dixie 12,563 89.8 9.5 1.2 14.4 57.7 6.2 12,035

 Duval 732,622 69.4 27.5 3.4 10.7 76.9 18.4 20,686

 Escambia 282,604 73.3 22.7 2.6 11.7 76.2 18.2 17,661

 Flagler 46,128 88.5 9.8 5.9 23.0 78.7 17.3 15,613

 Franklin 10,133 84.5 14.5 1.0 17.8 59.5 12.4 15,735

 Gadsden 45,441 37.6 61.8 2.9 11.6 59.9 11.2 14,416

 Gilchrist 13,367 90.0 9.3 2.1 13.0 63.0 7.4 12,865

 Glades 9,698 79.6 13.7 10.1 15.3 57.4 7.1 14,789

 Gulf 13,926 73.9 25.2 1.1 13.6 66.4 9.2 15,482

 Hamilton 12,521 56.3 43.0 3.6 10.9 58.4 7.0 12,357

 Hardee 22,113 93.1 5.9 28.4 13.3 54.8 8.6 16,812

 Hendry 31,634 78.2 18.8 26.6 9.9 56.6 10.0 17,823

 Hernando 125,537 94.4 4.6 4.0 29.6 70.5 9.7 16,062

 Highlands 76,854 87.1 11.6 6.7 32.4 68.2 10.9 17,655

 Hillsborough 909,444 82.8 14.9 16.0 12.3 75.6 20.2 20,167

 Holmes 18,382 91.7 6.5 1.7 15.5 57.1 7.4 12,790

 Indian River 99,215 89.2 9.9 3.9 26.6 76.5 19.1 28,977

 Jackson 45,706 69.5 29.6 3.5 14.4 61.6 10.9 15,519

 Jefferson 13,232 49.4 50.1 1.3 13.4 64.1 14.7 15,574

 Lafayette 6,289 83.0 16.4 5.1 10.7 58.2 5.2 13,663

 Lake 196,214 88.2 10.9 3.8 26.3 70.6 12.7 18,269

 Lee 387,091 91.1 7.8 5.9 24.4 76.9 16.4 22,053

 Leon 215,170 70.4 27.3 3.1 8.4 84.9 37.1 16,705

 Levy 32,254 84.4 14.2 2.6 17.6 62.8 8.3 13,745

 Liberty 6,703 78.1 20.9 3.1 10.7 56.7 7.3 14,896

 One standard way to deal with this issue is to trans-

 form the response variable so that we are considering a

 model of the form

 (2) h((yi) = Exij/j + Ei,

 where h is the transformation function, {xij, 1 < i < n,
 1 < j < p} are the regressors and {8i} are random er-
 rors. Indeed, it is well known that the transformation

 h (yi) = ./I5y7 is approximately variance-stabilizing for
 a Poisson random variable, so this suggests a square

 root transformation for our analysis. On the other hand,

 a logarithmic transformation, suggested in several of

 the analyses reviewed in Section 2, is not variance-

 stabilizing. Alternatively, one could embed both trans-

 formations in the Box and Cox (1964) transformation

 family, usually written

 (3) h (yi) = CA -

 where CA is a scaling constant and X may be any real

 number; the case X -O 0 corresponds to a logarithmic
 transformation. The scaling constant CA is chosen to
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 TABLE 4

 County demographic data, part II

 County Pop Whi Bla Hisp > 65 HS Coll Inc

 Madison 17,558 53.9 45.6 1.9 13.8 56.5 9.7 13,002
 Manatee 237,159 89.8 9.0 5.8 27.8 75.6 15.5 23,031
 Marion 237,308 84.3 14.6 4.0 21.4 69.6 11.5 14,502
 Martin 116,087 91.8 6.9 6.2 26.6 79.7 20.3 31,996

 Miami-Dade 2,044,600 77.0 21.2 54.4 14.4 65.0 18.8 20,014
 Monroe 81,919 92.3 6.2 15.8 15.9 79.7 20.3 25,160

 Nassau 54,096 87.3 11.9 1.5 9.8 71.2 21.5 20,874

 Okaloosa 167,580 85.3 10.3 4.2 9.1 83.8 21.0 18,959
 Okeechobee 33,102 91.1 7.5 14.8 14.6 59.1 9.8 15,162

 Orange 783,974 79.1 17.5 12.3 10.4 78.8 21.2 20,469
 Osceola 142,128 90.7 6.6 15.3 13.2 73.7 11.2 16,256
 Palm Beach 1,018,524 83.9 14.4 9.8 23.7 78.8 22.1 33,518

 Pasco 320,253 96.5 2.3 4.4 32.0 66.9 9.1 16,924
 Pinellas 871,766 89.1 9.0 3.1 26.6 78.1 18.5 24,796

 Polk 448,646 83.3 15.4 5.3 18.2 68.0 12.9 17,824

 Putnam 70,430 78.1 20.9 3.4 17.6 64.3 8.3 14,250

 Santa Rosa 114,481 92.6 4.6 2.0 8.9 78.5 18.6 17,127

 Sarasota 301,644 94.0 5.1 2.8 32.3 81.3 21.9 30,205

 Seminole 344,729 87.4 9.8 8.4 10.1 84.6 26.3 21,815

 St. Johns 112,707 88.7 10.1 3.0 15.6 79.9 23.6 25,637

 St. Lucie 179,559 79.6 19.0 5.2 20.1 71.7 13.1 16,483

 Sumter 39,428 81.0 18.1 3.1 20.3 64.3 7.8 14,606

 Suwannee 33,077 82.2 16.9 2.0 15.8 63.8 8.2 14,773

 Taylor 18,718 77.1 21.5 1.3 12.7 62.1 9.8 15,459

 Union 12,359 71.0 27.8 4.8 7.0 67.7 7.9 10,783

 Volusia 419,797 88.0 10.5 5.0 22.7 75.4 14.8 17,778

 Wakulla 19,172 83.9 14.9 0.9 10.9 71.6 10.9 15,570

 Walton 37,914 88.9 8.6 1.2 14.9 66.5 11.9 14,866

 Washington 20,221 79.7 17.6 1.5 16.4 60.9 7.4 13,732

 satisfy the relationship Hl Ih'(yi)I = 1, which for (3)
 leads to

 (4) CA Y

 where y is the geometric mean, that is, (H , Yi)/ln,
 where n is the number of observations. This choice

 of scaling constant makes the Jacobian of the transfor-

 mation 1, and hence allows different values of X to be

 compared in terms of the residual sum of squares of the

 regression model.

 For the initial stages of the analysis, three response

 variables were used: yi itself, V7i and log(yi/Ni).
 According to (3) and (4), these should be multiplied

 by scaling constants which are, respectively, 1, 2,/y
 and y. For this particular data set, y, the geomet-

 ric mean of Buchanan votes across all counties, is

 127.2651.

 Aside from transformation and scaling issues asso-

 ciated with the response variable, one must also con-

 sider the scaling issue with respect to the covariates.

 A number of authors on regression, such as Cook and

 Weisberg (1982) and Carroll and Ruppert (1988), have

 pointed out that there is often a need to transform both

 sides of a regression equation, and this appears to be a

 case in point. Consider income, for example, a signifi-

 cant covariate in all the models to be discussed. It does

 not make sense that the influence of income on the to-

 tal Buchanan vote in Miami-Dade county (population

 2,044,600) would be the same as that in, say, Lafayette

 county (population 6,289). Logically, if income affects

 votes at all, then the level of the effect is on the prob-

 ability that an individual voter supports Buchanan, and

 if one wants to know the influence on the yi, one must
 multiply by the total number of votes cast in the county.

 The same argument applies to all the covariates we are

 considering, so if the response variable is proportional

 to yi for some other value of i, then the covariates

 should be scaled by Ni. To be logically consistent, this

 rescaling should also include the intercept, that is, in-

 stead of implicitly defining a covariate 1 the coefficient
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 of which is the intercept of the linear regression, we

 should replace this by a covariate N/i, and then fit a
 regression without a separate intercept term. In its han-

 dling of the intercept term, the analysis presented in

 this article differs from an earlier version posted on my

 website. This rescaling of the covariates has been made
 in all the analyses presented below.

 Specifically, when the response variable is y1? for

 some X > 0, the jth covariate xij is replaced by x* =

 N7xij, while the intercept term xi,1 is replaced
 by x* = N/. Then, ordinary least squares without

 an intercept is performed on yi against regressors

 x*j, j = 1, ... , p. An alternative approach would be to

 define (yil/Ni)X to be the response, make no scaling
 of covariates and use a weighted linear regression, but
 the method that has been described is only slightly

 more complicated to implement and allows us to use

 the full range of diagnostic techniques associated with

 standard linear regression.

 One minor difficulty with implementing the pro-

 posed analyses in SAS is that for many of the analy-

 ses, we would like to predict the Buchanan vote in

 Palm Beach county based on a regression analysis

 fitted to the other 66 counties. For this purpose, we

 would like to define the Buchanan vote in Palm Beach

 to be a missing value, but to get the predictions, the

 other covariates, including Ni, need to be defined for
 Palm Beach. To avoid this difficulty, the actual def-

 inition of Ni has been the sum of all votes cast ex-
 cluding Buchanan. Given that the overall percentage of

 Buchanan's vote is so small, this should make no dif-
 ference to the results. This also avoids a possible ob-
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 TABLE 5

 List of covariates used in the analysis

 Covariate Definition

 lpop Log total population size

 whit Proportion of whites

 lblac Log proportion of blacks

 lhisp Log proportion of Hispanics

 o65 Proportion of population aged 65 and over

 hsed Proportion graduated high school

 coll Proportion graduated college

 inco Mean personal income

 pbush Proportion voting for Bush

 pbrow Proportion voting for Browne

 pnade Proportion voting for Nader

 jection that if Ni is being treated as one of the predic-
 tors for Buchanan's vote, the definition of Ni should
 not include the quantity we are trying to predict, al-

 though again, this should be a minor issue given the

 small overall percentage of votes for Buchanan.

 4.2 Variable Selection

 After both the covariates and the response vari-

 able were suitably transformed and rescaled, regres-

 sion analyses were performed to determine which co-

 variates were statistically significant. Noting from Fig-

 ure 1 that some of the covariates give more meaning-

 ful responses when plotted on a logarithmic scale, a

 logarithmic transformation was applied in those cases.

 The full list of covariates considered is shown in Ta-

 ble 5. Note that the proportion of Gore votes has not

 been included in this analysis, but the reason for that

 is that it is so highly correlated with the proportion of

 Bush votes (in most counties, the two add up to very

 nearly 100%) that it makes no sense to consider both in

 the analysis-we would get very similar results to the

 following if we deleted the proportion of Bush voters

 from the analysis and replaced it with the proportion of

 Gore voters (with opposite signs in the corresponding

 regression coefficients).

 Because of our strong prior suspicion, supported by

 Figure 1, that Palm Beach county was a very strong

 outlier, this has been omitted from all analyses used to

 determine variable selection.

 Variable selection may be applied using any of the

 standard techniques used for multiple regression: the

 two criteria considered here are Mallows' Cp and
 backward selection. The variables selected by these

 two methods are shown in Table 6.

 The models selected by backward selection and

 Mallows' Cp differ somewhat, for the models using yi
 and log(yi/Ni), but some comparisons of the models
 (not reported here) suggest that it makes very little

 difference to the eventual predictions which of the

 two model selection strategies is employed. However,

 the differences among the models fitted to the three

 response variables are far more significant, so we

 concentrate on that aspect in subsequent discussion.

 The residual sums of squares (RSS) for the three

 models selected by Cp are 127,298 (57 df), 72,712
 (59 df) and 91,933 (60 df) for response variables yi,

 V and log(yi/Ni), respectively, after rescaling the
 response variable as mentioned earlier. This implies

 a clear preference for the square root transformation

 among the three models considered, but it also shows

 that a logarithmic transformation is much better than

 using yi directly as a response.
 However, after adjusting the residual sums of squares

 for the rescaling, the residual variance derived from

 the square root transformation model is 2.42, compared

 with an approximate variance of 0.25 for ,'5-y if yi is
 Poisson. This implies a very considerable amount of

 overdispersion compared with the Poisson distribution.

 TABLE 6

 Covariates selected by either Mallows's Cp or backward selection; all models
 include the rescaled intercept term

 Response Selection

 variable method Variables selected

 Yi Cp lpop, whit, lhisp, o65, hsed, coll, pbush, pnade
 Yi Backward lpop, whit, lhisp, o65, hsed, pbush, pnade
 V Cp whit, lhisp, o65, hsed, inco, pbrow
 VH Backward whit, lhisp, o65, hsed, inco, pbrow

 log(yi /Ni) Cp lpop, lhisp, hsed, inco, pbush
 log(yi /Ni) Backward lhisp, hsed, inco, pbush
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 4.3 Testing for Heteroskedasticity

 After tentatively identifying a model, we can now

 make various tests to decide whether the model is

 appropriate. Given the strong emphasis we have placed

 so far on the homoskedasticity assumption, it seems

 natural to examine this first.

 Suppose a model of the form of (2) has been fitted.

 After constructing estimates f3j of the parameters ,8y,
 we form residuals

 (5) ei = h (yi) - xij Bj, < i < n.

 One way to examine the data for homoskedasticity

 is to plot the absolute values of the residuals against

 some other variable of interest-if the variability of the

 residuals increased or decreased over the range of the

 plot, that would indicate a problem with the model.

 In Figure 2, the square root of absolute residu-

 als from three regressions, (a) based on the origi-

 nal Buchanan votes as the response, (b) based on the

 square root of Buchanan votes and (c) based on the log

 proportion of Buchanan votes, is plotted against total

 vote (on a logarithmic scale) in each county, omitting

 Palm Beach. Also shown on each plot is a smoothed

 function through the scatterplot, calculated using the

 lowess function in S-PLUS. The covariates included in

 each regression were the ones selected as optimal by

 the Cp method in Table 6. The square root scale for
 the y axis was chosen after visually inspecting several

 plots for the one that gave the best visual representa-

 tion of the scale variation of the residuals. In plot (a),

 it is clear that the residuals have a tendency to increase

 with the total votes in the county. In (b), the scale of

 the residuals seems approximately constant. In (c), the

 residuals appear to decrease sharply with increasing to-

 tal vote over the left-hand half of the plot, then level off

 and even increase slightly. These three plots support

 the square root transformation as the one most consis-

 tent with an assumption of equal variance of the resid-

 uals. Other plots using different variables on the x axis

 supported the conclusion that the variance of residuals

 is approximately constant when the response variable

 in the regression is the square root of Buchanan votes.

 These visual impressions may be backed up by for-

 mal tests of homoskedasticity. One such test is due

 to White (1980) and is implemented in SAS through

 the SPEC option with PROC REG. In this procedure,

 squared residuals (derived from the ordinary least-

 squares regression) are regressed on the squares and

 cross-products of all the regressors, and a test statistic

 is constructed based on the multiple correlation coef-

 ficient (nR2) of this regression. The results are shown

 in Table 7. Given our heavy emphasis on the whole ho-

 moskedasticity issue so far, it is somewhat disappoint-

 ing that in none of the five cases considered is the null

 hypothesis of homoskedasticity rejected at the 5% level

 of significance. This may be pointing to a lack of power

 of the test when the number of covariates is large and

 the number of observations is comparatively small.

 Wetherill (1986) described a number of other tests

 for homoskedasticity. For example, a combination of

 ideas from Godfrey (1978) and Koenker (1981) led

 Wetherill to propose the test statistic

 n{Li(i - E)ee2_ (6) Yi5 j2 y(2&i 2
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 FIG. 2. (a) Plot of the square root of absolute values of studentized residuals for the model with untransformed Buchanan votes as the
 response variable against total votes in the county, together with a smoothed curve from the lowess function in S-PLUS. Palm Beach county
 has been omitted from the plot. (b) The same thing based on regression using square root of Buchanan votes as the response. (c) The same
 thing based on regression using log proportion of Buchanan votes as the response.



 STATISTICAL ASSESSMENT OF BUCHANAN'S VOTE 451

 TABLE 7

 Results of White's heteroskedasticity test applied to the five

 distinct models of Table 6

 Response Selection

 variable method nR2 DF p value

 Yi Cp 43.52 45 0.53
 Yi Backward 47.81 36 0.09

 Va Cp or Backward 23.02 28 0.73
 log(yi /Ni) Cp 18.20 20 0.57
 log(yi /Ni) Backward 13.12 14 0.52

 where 9i is the ith fitted value, - is the average of yi or equivalently 5i, ei is the ith residual and a2 = E ei/n.
 Under the null hypothesis of homoskedasticity, i has

 an approximate X2 distribution.
 Another approach is to regress ei on selected covari-

 ates zij, which may or may not be the same as the co-

 variates xij. This was the idea of Godfrey (1978) and
 appears to be particularly appropriate when we suspect

 the variance depends on a specific covariate or group

 of covariates (such as total population of the county in

 the present example). Godfrey defined Z to be a matrix

 of covariates including a column of Is to represent an

 intercept term, and defined r as the vector with entries

 rl, .. ., rn,, where ri = e?/ 2- 1. Then define

 (7) G = r TZ(ZTZ)-Z zT r.

 Godfrey claimed that under the null hypothesis of ho-

 moskedasticity, G has an asymptotic X4 distribution,
 where p is the number of columns of Z.

 For the present study, I have taken just a single

 variable Zi, and hence defined G = (Erizi)2/(2Ez?),
 where zi = logNi. (A corresponding analysis based
 on Zi = Ni did not produce nearly such clear-cut
 results.) The p values associated with both / and G

 have been assessed by simulation: for each regression

 model under study, the analysis was repeated 1,000

 times using the same covariates but Yi generated as

 independent standard normal random variables, and 0
 and G computed for the simulated regression analysis.

 The quoted p values are the proportions of simulations

 for which the simulated 0 or G value exceeded that
 calculated for the real data. For this analysis, which

 differs from Godfrey's in the omission of an intercept
 term in Z, no asymptotic x2 result appears applicable

 for the distribution of G.

 For the Florida data, the test statistics / and G are

 tabulated in Table 8, together with simulated p values.

 The test based on 0 rejects all the models, except the
 one based on >/i, at the 0.1 level of significance, and
 two of the p values are around 0.01-0.02. The G test

 is much more definitive, decisively rejecting the null

 hypothesis for all cases except the model based on

 square roots.

 Thus our conclusion is that, for this data set, White's

 test apparently accepts the homoskedasticity hypothe-

 sis for all the models considered, but the other two tests

 are more definitive. In particular, the test based on the

 G statistic (7) leads to the clear-cut conclusion that the

 square root transformation is the only one for which

 homoskedasticity is valid.

 4.4 Other Diagnostics of the Model Fit

 We now consider a number of other diagnostics for

 the fit of the model. The studentized residuals are

 (8) d* h (yi) -Ej xij AX (i)
 S(i)

 where /j(i) denotes the estimate of /j and s(i) denotes
 the estimate of residual standard deviation a, based on

 all observations omitting the ith. It is a standard fact,

 used later, that if all the usual model assumptions of
 linear regression are satisfied, the distribution of di is

 exactly t,-p_l.
 There are also a number of measures used to define

 influence, of which one of the most popular is DFFITS

 TABLE 8

 Test statistics 0 and G, with corresponding p values, applied to the five distinct
 models of Table 6

 Response Selection

 variable method 0 p value G p value

 Yi Cp 2.95 0.04 0.269 0.00
 Yi Backward 4.49 0.01 0.328 0.00

 X Cp or Backward 1.70 0.18 0.031 0.26
 log(yi /Ni) CP 5.42 0.02 0.277 0.00
 log(yi /Ni) Backward 3.18 0.08 0.233 0.00
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 (see, e.g., Belsley, Kuh and Welsch, 1980; Cook

 and Weisberg, 1982; Atkinson, 1985; Neter, Kutner,

 Nachtsheim and Wasserman, 1996).

 Atkinson (1985) proposed a plotting technique in

 which the absolute values of either the studentized

 residual or the DFFITS statistic are first arranged in

 increasing order and then plotted as a half-normal

 plot; that is, if there are n observations, a quantile-

 quantile plot is constructed as if they were the largest

 n observations from 2n + 1 normal data values. As a

 measure of how much such a plot differs from what
 would be expected under normal-theory assumptions,

 Atkinson also proposed constructing confidence bands

 by simulation. The entire regression model fit, up to

 the calculation of Studentized residuals or DFFITS,

 is repeated but with response variables generated

 at random from a normal distribution. In this way,

 probability bands for the order statistics of Studentized

 residuals or DFFITS are constructed (separately for

 each order statistic). In Atkinson's own examples he

 used just 19 simulations to construct approximate 95 %

 confidence bands, but for the experiments shown here,
 1,000 simulations have been used and the 50th largest

 and smallest values (marked by dashes) correspond to
 approximate 5% tail probabilities in each tail.

 Because our objective now is to examine how much

 Palm Beach county really is either an outlier or an in-

 fluential observation, the regression model has been re-

 fitted including Palm Beach, for the model with "'YT as
 the response and whit, lhisp, o65, hsed, inco and pbrow

 as regressors (the Cp-best model of Table 6). Ordered
 values of the studentized residuals and DFFITS are

 plotted in Figure 3, with simulated confidence bands

 as just described. In each case there is an enormous

 outlier, which corresponds to Palm Beach. The stu-

 dentized residual associated with Palm Beach is 17.5,

 with a nominal t58 distribution and p value of 10-72
 based on standard normality assumptions. This is the

 first clear evidence in this paper that Palm Beach is in-

 deed extremely inconsistent with the rest of the data.

 This exercise has been repeated using log(yi/Ni)
 as the response variable, with results very similar

 to Figure 3. In this case, the studentized residual

 associated with Palm Beach is 6.36, with a nominal

 t59 distribution and a p value of 10-10. Although the
 quoted p values should not be taken too literally (e.g.,

 even in the absence of any anomaly associated with

 Palm Beach, it is unlikely that the errors in this kind of

 regression analysis are exactly normally distributed),

 they do serve to highlight the extreme nature of the

 Palm Beach outlier.

 The question naturally arises whether Palm Beach

 is the only outlier. In Figure 3, it can be seen that

 some other large values of the Studentized residual or

 (a) (b)
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 FIG. 3. (a) Half-normal plot of ordered studentized residuals for the model based on square root Buchanan votes, with pointwise 90%
 simulation bounds. (b) Half-normal plot of ordered DFFITS for the model based on square root Buchanan votes, with pointwise 90%
 simulation bounds. Palm Beach county is the large outlier on both plots.
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 FIG. 4. Same as Figure 3, but omitting Palm Beach altogether.

 DFFITS are outside the simulation bands, but it is not

 clear whether these represent other outliers, or whether

 this is simply part of the distorting effect of Palm Beach

 on the rest of the analysis. This question has been

 examined by repeating the whole analysis, including

 the calculations of Studentized residuals and DFFITS

 and the corresponding simulation bounds, for the data

 set in which Palm Beach has been deleted entirely. For

 the model with the square root of Buchanan vote as

 the response, Figure 4 shows the resulting plots. There

 is no sign that any other county, besides Palm Beach,

 is an outlier, but from Figure 4(b), it still appears that

 a number of the DFFITS statistics are close to the

 upper simulation envelope and therefore may represent

 influential observations.

 One possible explanation for this is that, even in the

 absence of outliers, large cities are still influential. As

 an indicator of that, DFFITS has been plotted again

 in Figure 5, against Ni. From Figure 5(a), it does
 indeed appear that large counties are influential in the

 analysis using the square root transformation. However

 in Figure 5(b), which is the same plot using log

 proportion of Buchanan votes as the response variable

 in the regression, it appears to be the other way around,

 that is, in this case, small cities are more influential

 than large ones (except Miami-Dade).

 4.5 Reexamination of the Transformation

 So far, we have seen that both the square root and
 logarithmic transformations appear to work reason-
 ably, but there is no clear preference between the two,
 and the theoretical argument in favor of a square root

 transformation is unclear because of the large overdis-
 persion. Therefore, we are motivated to look further at
 the question of transformations.

 One motivation behind the Box and Cox (1964)
 transformation (3) was the possibility of searching
 through different values of X to obtain the best re-
 gression model. As noted earlier, if "best" is defined

 in terms of minimum residual sum of squares, then
 it is essential to adopt the scaling (4). In Figure 6,
 this has been done, plotting the RSS against i, for

 0 < A. < 1, for the scaled transformation. The model

 used for this calculation included the same covariates

 as for the ,/5y regression earlier, although very similar
 results are obtained with other selections of covariates.
 For this calculation, Palm Beach has been omitted from
 the analysis-we get a very different curve from Fig-
 ure 6 if we include Palm Beach, but we have already
 provided very strong evidence that Palm Beach is an
 outlier, so it is appropriate to omit it from this part of
 the analysis.

 Figure 6 shows that the smallest RSS is obtained
 very near A. = 0.4, but the actual value of RSS at this
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 FIG. 6. Selecting the transformation: Plotting the residual sum

 of squares against transformation parameter i, for the normalized

 transformation.

 point (70,711) is not much reduced from the value at

 A = 0.5 (72,712). As a test of this, we can form an F

 statistic,

 72,712- 70,711 58 1
 1 70,711

 which p value (approximately 0.2) is not significant.

 This is not an exact F test because A. is not one of the

 linear regression parameters, but we are treating it as

 such for the purpose of the test.

 Thus our conclusion is that although we could pursue

 other analyses based on different values of i., it appears

 that A. = 0.5 is adequate.

 4.6 Testing Normality

 Another issue about whether any of these models fits

 the data is whether the normality assumption of errors

 is adequate.

 Figure 3(a), in which a probability plot was drawn

 for the studentized residuals, from a regression analy-

 sis in which VAy was the response, provides clear evi-
 dence that the normality assumption is not appropriate

 for the data set that includes Palm Beach, because of

 the Palm Beach outlier itself. On the other hand Fig-

 ure 4(a), which shows the same plot in which Palm

 Beach has been deleted from the analysis, appears con-

 sistent with the normality assumption. This still raises

 the question of a formal test, however.

 As a further check on this, four test statistics of
 normality were computed: the statistic of Looney and

 Gulledge (1985), which is similar to the Shapiro-Wilk
 test, and three familiar goodness of fit statistics, the

 Kolmogorov-Smirnov statistic, the Cramer-von Mises

 statistic and the Anderson-Darling statistic (see, e.g.,
 D'Agostino and Stephens, 1986). Critical values for all
 four statistics may be obtained by simulation-for this

 analysis, I preferred simulation to asymptotic or tabu-
 lated critical values because the simulations correctly
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 allow for the estimation of the regression parameters,
 which standard asymptotics or tables do not. The re-

 sults reported here are based on the Studentized resid-

 uals, though similar results were obtained using the or-
 dinary residuals without Studentization.

 Using 1,000 simulations, the empirical p values for
 the four tests based on Figure 3(a) are 0, 0.031, 0.008

 and 0, respectively-decisive rejection of the normal-

 ity hypothesis in all four cases. However, based on Fig-

 ure 4(a), the empirical p values are all greater than 0.3,
 indicating no problem with a normal distribution.

 The corresponding results based on a log(yi/Ni)
 response are essentially the same: rejection of the

 normal distribution hypothesis if the outlier is included

 and acceptance if it is excluded. However, if the same

 analyses are repeated using yi itself as a response, the
 result is rejection of the normality hypothesis even if

 the outlier is excluded.

 Acceptance of a null hypothesis does not prove that

 the hypothesis is correct, but these results strengthen

 the case that while regression based on yi itself is
 not acceptable, either of the models based on i
 or log(yi/Ni) gives an acceptable fit to a normal
 distribution, provided Palm Beach is excluded from

 the analysis. The earlier tests of homoskedastacity still
 lead us to favor the square root transformation overall.

 5. PREDICTING THE PALM BEACH VOTE

 We now return to the original purpose of the analy-
 sis: predicting the Palm Beach vote from a regression
 model in which Palm Beach itself has been omitted

 from the fit. In accordance with the previous results,

 we consider both V57i and log(yi /Ni) as response vari-
 ables, with corresponding model selection using either

 the Cp criterion or backward selection, as in Table 6.
 Based on the model fitted to the other 66 counties,

 point estimates and 95% prediction intervals were cal-

 culated for the values of the covariates corresponding

 to Palm Beach county. The intervals calculated are pre-

 diction intervals rather than confidence intervals, that
 is, they are intended to reflect the result of a single vote
 rather than a long-run average over a series of votes.
 Predictions are calculated on the transformed scale,

 then transformed back to the original scale for the re-

 sults reported here. It will be recalled that the actual
 Buchanan votes in Palm Beach county were 3,407.

 Table 9 shows point predictions and prediction in-
 tervals for three versions of the model. The point pre-
 dictions are remarkably close to one another, and even
 the interval estimates are sufficiently consistent to re-
 inforce the point that Buchanan's actual vote was way

 TABLE 9

 Point predictions and prediction intervals under three versions of
 linear model

 Response Variable Point Prediction

 variable selection predictor interval

 Cp or Backward 371 (219, 534)
 log(yi/Ni) Cp 363 (180, 735)
 log(yi/Ni) Backward 371 (182, 758)

 out of line with predictions based on any reasonable re-
 gression model. In all three cases, the point prediction

 is under 400, and the widest bounds for the prediction

 interval are 180 at the lower end and 758 at the upper
 end.

 6. BINARY DATA ANALYSIS

 An alternative approach to the whole analysis is

 to take into account from the beginning that the
 data are counts and to use the binomial or Poisson

 distribution in conjunction with a logistic-linear or
 log-linear model to account for covariates. As already
 noted, however, this analysis is deficient in the present

 context because of a rather drastic overdispersion-
 Equation (1) appears to underestimate the true variance
 by a factor on the order of 10.

 Suppose yi is the ith count based on population Ni.
 As in the rest of this paper, yi is the Buchanan vote
 in county i, Ni is the total vote excluding Buchanan
 in county i and we exclude Palm Beach for the pur-
 pose of model fitting and prediction. McCullagh and
 Nelder (1989, pages 124-128) described quasilike-
 lihood approaches to overdispersion based on mod-

 els of the form Var(yi) = ONipi(I - pi), where
 0 is estimated from either the Pearson or deviance
 statistics. An alternative approach due to Williams

 (1982) assumes that an individual voter votes for

 Buchanan with random probability P, where P is

 independent from voter to voter, and in county i

 has mean pi and variance 4fpi (1 - pi). As a result,
 yi has mean Ni Pi and variance Ni pi (1 -Pi) { I +
 (Ni - I)fr}. The case 4f = 0 corresponds to the case
 with no overdispersion. These methods are imple-
 mented in SAS as part of PROC LOGISTIC, using op-
 tions SCALE=DEVIANCE, SCALE=PEARSON or
 SCALE=WILLIAMS.

 For pi, we assume as in standard logistic regres-

 sion that log{pi/(I - pi)} = 3xijpj, where the xij
 are covariates, the same covariates as in Table 1. When
 this model is fitted using standard logistic regression



 456 R. L. SMITH

 and backward selection of covariates, the only vari-

 able dropped from the regression is lblac. Using the

 resulting model to predict P50 (the value of pi for
 i = 50, which is Palm Beach) leads to a point estimate

 0.000884 and a 95% confidence interval (0.000814,

 0.000960). With N50 = 428,879, this leads to a point
 estimate 379 and 95% confidence interval (349, 412)

 for the mean vote N50p50. Compared with the results
 in Table 9, the point estimate looks reasonable but the

 interval is too narrow.

 The same variable selection (dropping only lblac) is

 made under the analyses with SCALE=DEVIANCE

 and SCALE=PEARSON, which also lead to the same

 point estimate for P50, but the estimates of 0 are 9.6932
 for the deviance analysis and 9.7334 for the Pearson

 analysis, with both confidence intervals for P50 coming
 out to (0.000683, 0.001143). These lead to the interval

 (293, 491) for N5pP50.
 The results using SCALE=WILLIAMS are a little

 different: backward selection removes all variables

 except lhisp, hsed, inco and pbush; the estimated value

 of 4f is 0.000452. Estimating P50 from the other
 66 counties, we get a point estimate 0.000804 with

 95% confidence interval (0.000492, 0.00131 1). The

 resulting interval estimate of Nsopso is (211, 562)

 with a point prediction of 345. However, the variance

 formula for the Williams analysis seems less realistic,

 since it implies much greater overdispersion, compared

 with the binomial case, in large counties as compared

 with small counties. This would not be consistent

 with our earlier conclusions in which we showed

 that a squarE root transformation appears to lead to
 homoskedastic errors.

 The intervals that have been quoted in this section

 are properly described as confidence intervals rather

 than prediction intervals because they do not take into

 account the variability of Y50 given p50. A precise
 resolution of this issue seems hard to achieve, since

 none of the quasilikelihood models specifies the full

 distribution of Y50. As an ad hoc solution to this
 problem, the following quasi-Bayesian argument has

 been adopted. For each of the logistic regression
 models, the confidence interval for log pso (but not

 for P50 itself) is symmetric about the point estimate.
 Therefore, we assume log P50 has a normal posterior
 distribution, given the data in all counties other than
 Palm Beach, with a mean and standard deviation
 chosen to be consistent with the stated confidence

 interval. Conditionally on P50, we assume Y50 has a
 normal distribution with mean Nsopso and variance

 kN50p50( - P50). The two sources of randomness are

 TABLE 10

 Point predictions, confidence and prediction intervals under four

 versions of logistic regression

 Point Confidence Prediction

 Method estimate interval interval

 No overdispersion 379 (349,412) (330,447)

 Deviance 379 (293,491) (237,606)

 Pearson 379 (293,491) (237,606)

 Williams 345 (211, 562) NA

 combined using a simple simulation to obtain a quasi-

 Bayesian 95% prediction interval for y5o.
 This procedure leads to approximate prediction in-

 tervals for y5o, given the data in the other 66 counties,
 that are given in Table 10. For comparison, the confi-

 dence intervals for N5op5o are also summarized in the
 same table. The model with no overdispersion seems

 clearly wrong and leads to unrealistically narrow inter-

 vals. The deviance and Pearson results lead to identi-

 cal estimates that are consistent with those of Table 9.

 Prediction intervals are not given for the Williams ap-

 proach because this appears to lead to an unrealistically

 large variance for Y50 and in fact led to a number of
 negative predictions of y5o.

 In conclusion, the binary data analyses seem com-

 petitive with, but not superior to, the normal regres-

 sion analyses based on a square root response. It is

 clearly necessary to account for overdispersion, and

 both the deviance and Pearson methods for estimating
 the overdispersion parameter lead to realistic results,

 whereas the Williams method probably overestimates

 the variance in those yi for which Ni is large. On the
 other hand, the binary data analyses have not been sub-
 jected to such intensive diagnostic tests as those based
 on normal regression, and the approach that has been

 taken to the calculation of prediction intervals is ad
 hoc.

 7. SUMMARY AND CONCLUSIONS

 Previous analyses of the Florida election data have

 used either yi itself or log(yi/Ni) as a response vari-
 able, with several authors claiming that the latter is su-
 perior and some claiming that there is no evidence of
 a "Palm Beach effect" in this case. The present analy-

 sis confirms that the analysis based on yi as a response
 fails on two counts: (a) lack of homoskedasticity and
 (b) failure to fit the normal distribution. A model with

 log(yi/Ni) as a response is clearly superior to that
 based on yi directly, but it still fails the homoskedas-
 ticity test, whereas the analysis based on i seems
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 satisfactory from all points of view. Binary data analy-

 ses are also satisfactory, provided one allows appropri-
 ately for overdispersion, but in many respects seem less
 clear-cut than the normal-theory regression analyses,
 for example, in the treatment of prediction intervals.

 In all cases, however, the outlier and influence diag-

 nostics confirm that Palm Beach is a very significant

 outlier. Point predictions for Buchanan's vote in Palm

 Beach, based on the other 66 counties, are all under 400
 in the analyses presented here, with upper bounds to a

 95% prediction interval of under 800 even for analyses

 based on log proportions, for which some commenta-
 tors have claimed Palm Beach was not an outlier.

 The present analysis establishes conclusively that

 Buchanan's Palm Beach vote cannot be explained away

 as normal statistical variation and the likely distortion
 of the Florida vote was at least 2,500 votes. This

 article has not attempted to establish that the anomaly
 was specifically due to the butterfly ballot or was

 at the expense of Gore's votes rather than Bush's,

 but other authors, notably Wand et al. (2001), have
 argued these points persuasively. As far as the broader

 implications are concerned, from a legal point of view,
 the issues are probably already dead: Florida law has

 been changed to require electronic rather than punched
 card voting in future elections, and it seems safe to
 say that no future election in the Western world will

 use anything resembling the butterfly ballot that caused
 so much confusion in Florida. From a political or

 historical perspective, however, there remains much

 interest in the question, "Who really won the election?"
 Although there were many other contentious issues in

 this election-the failure of machines to record votes

 correctly, the alleged harrassment of racial minority
 voters, the disputed legality of some of the absentee

 ballots that were counted and the whole question of
 recounting the ballots by hand-most commentators

 agree that there is no proof that any of these factors

 were responsible for Bush winning the election. The
 most convincing evidence that Gore should have won

 the election is based on the outcome in Palm Beach

 county, and the present analysis may be viewed as

 strengthening the evidence in favor of that conclusion.
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