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We present a new application of the chain growth algorithm to lattice generation of protein structure
and thermodynamics. Given the difficulty ab initio protein structure prediction, this approach
provides an alternative to current folding algorithms. The chain growth algorithm, unlike Metropolis
folding algorithms, generates independent protein structures to achieve rapid and efficient
exploration of configurational space. It is a modified version of the Rosenbluth algorithm where the
chain growth transition probability is a normalized Boltzmann factor; it was previously applied only
to simple polymers and protein models with two residue types. The independent protein
configurations, generated segment-by-segment on a refined cubic lattice, are based on a single
interaction site for each amino acid and a statistical interaction energy derived by Miyazawa and
Jernigan. We examine for several proteins the algorithm’s ability to produce nativelike folds and its
effectiveness for calculating protein thermodynamics. Thermal transition profiles associated with
the internal energy, entropy, and radius of gyration show characteristic folding/unfolding transitions
and provide evidence for unfolding via partially unfoldéoholten-globule states. From the
configurational ensembles, the protein structures with ltheest distance root-mean-square
deviations(dRMSD) vary between 2.2 to 3.8 A, a range comparable to results of an exhaustive
enumeration search. Though teesemble-averagedRMSD values are about 1.5 to 2 A larger, the
lowest dRMSD structures have similar overall folds to the native proteins. These results demonstrate
that the chain growth algorithm is a viable alternative to protein simulations using the whole chain.
© 2000 American Institute of Physids$0021-960680)50337-1

I. INTRODUCTION and peptides! More recently, Grassberger and co-workers
introduced the pruned-enriched Rosenbluth method for poly-

Currgnt eqwhpnum S|mulat|qns of proteins are based %Mners and HP protein modeé Their method incorporates a
Metropolis algorithm$ and, in more recent years,

. . 6 . mechanism for favoring the selection of chain growth con-
multicanonicat or entropy ~°® sampling schemes. These algo- .. . L - . .
. . figurations with high statistical weights over those with low
rithms generate valuable structural and thermodynamic pro veiahts
erties of peptides and proteins. Despite advances in algoritﬁ/y ?An i.m rtant element of chain arowth schemes is that
mic development,ab initio structure prediction remains portant element ot chain gro schemes IS tha

challenging, and the computation of thermodynamic func-éhel transition pr.ot?ablhty for growing the Imksf,s gmded b{]
tions is costly. Thus, it is worthwhile exploring a third alter- oltzmann statistics so as to generate configurations that

native to these problems based on the chain growth algoc_ontribute significantly to the thermodynamic average at a
fithm given temperature. For example, compact configurations are

This algorithm was originally developed by Rosenbluthsampled more frequently than open configurations at low

and Rosenbluth for self-avoiding walk chairand extended —temperatures; the reverse is true at high temperatures.
by Meirovitch to chains with attractive potentidi€Meiro- ~ Meirovitch” developed a scanning method where future con-

vitch and others later applied algorithmic extensions tolinuations of the chairinvolving several links are searched
single-chain polymer®® simple protein models with two before the current growth dlrgctlon |s_selected. Meirovitch
residue typeghydrophobic and hydrophilior HP model<® and co—V\_/o_rkers foun(_j that this scanning apprc_):_;\ch samples
more efficiently peptide conformation.In addition, the
. — . thermodynamic free energy of chain molecttesould be
b,E'Iz‘égg’;'lg mg:'l Z?Ei”?(?'z?:gu”nycué%du“ evaluated efficiently, as well as computation of their thermo-

@ ToP ' ynamic transition profile}} These features of the chain

9Author to whom all correspondence should be addressed. Electronic maiF.j i - ) '
schlick@nyu.edu growth algorithm offer valuable information when analyzing
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conformations and thermodynamic properties of polymeravhich may be confined to small regions of configurational
and proteins. space. The results thus demonstrate that the chain growth
Another proposed variant of the chain growth idea is thealgorithm is a viable alternative for protein structure and
configurational-biased Monte Carlo methiddin this algo-  thermodynamics studies.
rithm, a new configuration of the chain is sampled by re- In Sec. Il, we present the protein model and associated
growing only part of the chain, and the acceptance or rejecattice and energy functions. The methodology of the chain
tion of the new configuration is judged by an appropriatelygrowth approach is described in Sec. Ill, which includes the
weighted transition probability. Hao and Scheraga have approcess of chain generation, factors affecting the algorithm’s
plied this configuration sampling procedure successfully taconvergence, thermodynamic functions, and an efficient
their entropy sampling Monte Carlo simulations@frotein  method for evaluating thermal averages. Section IV de-
models with polar(P), hydrophobic(H), and neutralN)>~®  scribes the analysis of configurational ensembles and protein
residue types. thermodynamics. We summarize our findings and conclu-
Apart from the chain growth approach, simulations ofsions in Sec. V. In the Appendix, we elaborate on some
protein folding with Metropolis Monte Carlo methods have aspects of the chain growth algorithm.
been found to be quite successful in structure prediction,
especially with distance constraints obtained either from
NMR or theoretical predictions* Furthermore, Metropolis 'l. PROTEIN MODEL, LATTICE MOVES,
. . . . AND POTENTIAL FUNCTION
methods can yield folding pathway informatfSnwhile
chain growth approaches generate statistically independent The choice of an appropriate lattice/protein model repre-
configurations. Since the chain growth configurations are nosents a balance between the accuracy of the attainable results
dynamically connected, they can lead to enhanced explorand the overall computational complexity. Lattice geometries
tion of configuration space. that have been used to simulate protein structures range from
Here we apply the chain growth method to prediction oflow to high resolution models. Examples of low resolution
protein structure and thermodynamics from the amino acidattices include simple cubit®® and diamon#® models.
sequence. We determine the quality of the algorithm for thidHigher resolution lattices for protein simulations include
application by analyzing the computed configurational en-octahedraf and a family of refined cubt¢?*?*models. Low
sembles and thermodynamic functions. We use a lowresolution lattices are more efficient in sampling the confor-
resolution protein model with the two-body Miyazawa— mational space—even exact enumeration of all compact con-
Jernigan (MJ) residue interaction potentidi:}” Although  figurations for short chains is possible, such as for a diamond
such a model is not expected to yield accurate folded nativéattice”>—but high resolution lattices are necessary to repro-
protein structures, it can be used to rapidly compute proteinluce more accurately the secondary and tertiary structural
thermodynamics and assess the ability of the algorithm t@lements.
generate nativelike configurations for known test cases. Here, we consider a protein model defined on a moderate
When additional experimental or theoretical information isresolution cubic lattice that is similar to the family investi-
incorporated, such approaches are also viable predictiopated by Kolinski and Skolnick! Each residue is repre-
tools. sented by an interaction site and the residues interact via the
Specifically, we describe results of the chain growthtwo-body MJ potentiat®!”In the following, we describe the
method guided by the MJ contact potential on Cd-7lattice used, the protein model parameters, and the form of
Metallothionein-2 proteiri30 residues, PDB code 2mhand  the pairwise interaction potential.
helical protgins 434 Repre;s(ﬂ_}3 residues, 1r69nd 434 Geometry of protein model and lattice moves
Cro (65 residues, 2cpo Applications are also performed for
Protein G (56 residues, 1pgband ColE1 Repressor of In our simplified protein model, the interaction sites are
Primer protein(63 residues, 1rgp both associated with the located at theC , positions; side chains are not modeled. We
solution to the Paracelsus challeri§&Ve analyze the result- reproduce the geometric characteristics of polypeptide chains
ing configurational ensembles using a novel statisticalPy restricting theC, pseudobond angles and by preventing
weight-based scheme to select nativelike conformations. Wé1€ overlap of excluded-volume sites. The pseudobond
also calculate several thermodynamic properties such as ingles are limited to the range of 63°-143°; excluded-
ternal energy, entropy, and free energy at different temperaVOIl_"me sites W|I_I bg m@roduced below_ after_ the Iattlce. is
tures using both simulations and theory, the latter of which i¢l€fined. Our objective is to grow configurations of lattice
based on an analytical extrapolation formula. We find a good®oteins that satisfy these geometric constraints. Protein con-
agreement between simulated and predicted thermal trang;guratlgns on lattices are generally no? invariant with respect
tion curves. Moreover, the thermal transition profiles showf© rotations, although the effects of anisotropy are not severe
evidence of unfolding via molten globule or intermediate for refined cgb|c Igtuces with hlgh. coordination numbers.
states. From the configurational ensembles generated, the 1€ cubic lattice we employ is €11) model with 24
lowest distance RMSDIRMSD) structures have the correct allowed moves from a given site. On this lattice, the p0§5|ble
overall folds with dRMSD of 2—4 A or coordinate RMSD growth directions are given by the direction vectors xi
(cCRMSD) of 3—6 A as compared to native structures. Fur-+yj+zk where §,y,z)e{(*1,23,+1),(+3,+1,+1),
thermore, our method can explore these reasonable structurgs 1,+1,+3)}. We illustrate the related3l) lattice move
rapidly, faster than unbiased searches or dynamic schemésrections in 2D in Fig. (8. In the actual chain growth
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(a) A is sufficient to reproduce elements of the secondary struc-
tures and overall protein folds.

The possible move directions on ti@ll) lattice are
further restricted by the condition that the near neighbors of
C, sites do not overlap. On th&11) lattice in 3D, there are
26 such near neighbors which are separated from the central
\ / C, site by the vector(+1,+1,+1),(+1,+1,0),(+1,0,

+1),(0,+1,+1),(+1,00),(0,+£1,0),(0,0;+1)}. Note that
the magnitudes of lattice vectors are in unitd.ef 1.146 A.
These excluded-volume sites, together with the finite repul-
sive energy at short distances described below, define the
/ \ geometric characteristics of protein backbones. We illustrate
in Fig. 1b an allowed configuration of a growing chain on a
(31) lattice in 2D.

\|/
JAA

B. Potential function

We choose a simple square-well function to parametrize
(b) the residue/residue potential. The attractive interactions are
represented by the residue-based contact energies of statisti-
cal potentials which are derived from solved protein struc-
tures. For each andj pair representing two residues, with

/’7‘\ distance separatioR;; , our potential has the form
€y |f R|]<4 A
0 if Rj>6.5 A
where ¢, is a residue-independent finite repulsive energy,
/ ande;; is a contact-energy value derived from experimental

protein databases. The short-range repulsive energy ensures
minimal overlap between protein cores. The value,df set
" simply as:e,=5 ma>gij}|eij|; we found results to be insensi-
tive to the precise value of, within a wide range.

The contact energigs;;} of statistical potentials are de-
FIG. 1. lllustration of the chain growth procedure on a 2D lattieglattice rived .from the observed Occurrehc.es of reSId.ue pajrsn
vectors of the(31) moves of a growing chain anth) associated allowed ~Protein structure datgbases. Statistical potentials assume that
configuration in 2D. The constant vector lengtiond length determines the  the contact energy;; is related to the observed occurrences
spacing of the underlying square lattice. The growth directions of the algf residue pairsi,j via Boltzmann's relation: €ij

lowed configuration(b) are prescribed by31) lattice moves in(a). The _ =3 o _
chain vertices represent ti®, positions with excluded-volume sites placed KeT In(F;;/R;), whereF;; is the observed contact fre

at its nearest-neighbor sitéfilled circles. Possible new growth directions dqUENCY for the pair, j, andR;; is its corresponding reference

must not overlap with any of the previo@,, the excluded-volume sites, statel625:26

and the pseudo-bond angle constraints. The reference stat®;; has been defined based on both
the random or uncorrelated residue pairs and the solvent-
mediated contact pairs in protein structures. For the random
reference stateR;; <n;n; wheren; ,n; are the frequencies of

implementation, many of these move directions are prohibresidues in the protein structure database. The solvent-

ited by the pseudobond angle restrictions and the excludednediated reference state is calculated as follbs:

volume requirementésee below. Rij = nsingj/ngs Whereng;,ng; refer to solvent(s) with resi-

The lattice parameters and mapping accuracy for proteiglue ( or j) contact numbers in protein structures;s is
molecules depend on the type of lattice. Since the distancsolvent/solvent contact number which is evaluated by using
between two adjacer@,, positions in proteins is 8.A , the  the estimated number of effective solvent molecules in na-
lattice spacing in ouf311) lattice isL=3.8/\/x’>+y?+2z%> A tive protein structures. The choice of the reference state af-
=1.146 A . The discrete nature of the formulation leads to anfects the scale of the residue contact energies. Contact ener-
accuracy for lattice-mapped structures of native proteins ofjies{e;;} calculated with the random reference state reflect
about 1.5 A in cRMSD, as found empirically. Better map- the residual nonrandom preferences for residue/residue con-
ping resolutions(e.g., cRMSD of 0.7 A or legscan be tacts in proteins; energies calculated with solvent-mediated
achieved at the expense of computational cost with latticeseference state are related to the preferences for residue/
that have greater number of move vectors and more sophisesidue over residue/solvent contacts. The MJ energies are
ticated move protocolé Still, our current resolution of 1.5 derived using a solvent-mediated reference state and are cor-
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related with experimental hydrophobic energies ofBoltzmann-weighted transition probability, which is a modi-
residues® Thus they implicitly incorporate effects due to fication of the form for athermal chains. This transition prob-
dispersive, electrostatic, and other interactions that arability favors growth directions with low energy contacts; it
present in protein structures. The attractive hydrophobic enallows generation of both open and compact chain configu-
ergies drive the protein chain toward a folded conformationrations depending on the temperature. This form of the tran-
Since the MJ approach models short-range contacts, there asition probability is not unique, and other forms have been
neither long-range correlations nor specialized terms for hedsed by Grassberger and co-workers to study polymer and

lices, sheets, etc. simple protein system<. Here we use the transition prob-
We represent the pairwise energigsby a modified MJ  ability proposed by Meirovitch.
matrix. The modification involves a simple shii;—M;; Greater efficiency in chain growth algorithms can be in-

+2, whereM;; is the MJ interaction matrix as re-evaluated troduced by adding more than one link at each step. This
in 19961" the energies are expressedkiT, units, wherekg procedure confers greater foresight to growth process and
is Boltzmann’s constant andl, is the room temperature. reduces the frequency of “dead-end” configuratiofi®.,

This modification is effectively similar to the statistical po- those that cannot be fully grown given the near neighbor
tential derived by Skolnick and co-workéfsn modeling the  constraints; see belowExamples of multilink steps are the
residue/residue contact energies with a random referenseanning and double-scannifigorocedures, and multilink
state that accounts for chain connectivity rather than thénsertion techniqué® Since these procedures require assess-
solvent-mediated as in the original MJ formulatfSrBetan-  ment of lattice occupancy and energy evaluations of possible
court and Thirumaldf have shown that the interaction ener- future configurations, greater computational costs are in-
gies of Skolnicket al?” can be related to the MJ energies by volved especially for high coordination lattices. For this rea-
a linear fit'e;;—aM;;+b wherea and b are constantsgl ~ SON, we use a simple approach of one link per step; see also
=0.37 andb=1.26 in Ref. 28 in kgT, units. Our simple Sec. lIID on convergence.

shift similarly weakens the attractive energies between the After fully grown chains are generated by the chain
residues and was found to yield reasonable global properticdfowth method, ensemble averages are calculated using an
of proteins in our simulation protocol. To arrive at our con- importance sampling procedure where each contributing
stant shift value, we experimented with a range of valuesgonfiguration is appropriately weightédiThe weight is de-

large shifts favor open structures, and small shifts tend téived from the known probability of generating a configura-
result in overcompact structures. tion. A unique feature of the chain growth algorithm is that

the temperature dependence of ensemble averages can be
efficiently computed using an analytic extrapolation
Ill. METHODS technique® This technique greatly facilitates calculation of

This section presents the temperature-dependent Cha’fnermal transition curves, often costly to reproduce by other

growth transition probability, thermal averages derived frommethOdS'

the importance sampling procedure, and an efficient teché Chain generation by temperature-dependent
nigue for computing thermal curves. This is followed by a, énsition probability and computing thermal averages
brief discussion on the factors that affect the convergence of

the chain growth algorithm. We also derive thermodynamic ~ The direction chosen at each step of the chain growth
averages for chain growth configurations. Detailed formulaprocess is determined by the transition probability. If the first

tions of the chain growth algorithm are found in the Appen-i—1 links of a chain withN links have been placed, the
dix. temperature-dependent transition probabiRtyat stepi, as

proposed by Meirovitcf;!t is given by
(Ri+V|Ry, ... Ri;B)

A. The chain growth method: Overview

Here we integrate central concepts in the chain growthp'
algorithm, reported previously for different systems; quanti- Ci
tative formulations are provided in the Appendix. Essen- :exq—,Bui(RiJrvki)]/ > exd — Bui(Ri+vi )1,
tially, the chain growth algorithm generates chain configura- ki=1
tions by sequential addition of links until the full length of 2
the chain i.s reaghed. Since gagh configuration Is gengdeted where the incremental, nonbonded potential energy is
novg configurations are statistically independent, unlike the
standard Metropolis algorithms. For HP protein models,
comparisons between the Metropolis and chain growth ap- ui(Ri+Vki):Zl Ui (Rij)- ()
proaches show that the latter is more efficient for sampling as I~
well as for computation of thermal curvésThese main Other symbols are defined as follows: temperature parameter
findings motivate our present application of the algorithm to8=1/kgT; Ry, ... ,R; are position vectors ofinteraction
proteins. sites 1,2, .. ,i; Vi is the lattice vector for the chosen direc-
For chains where the properties are independent of tention k; ; andC; is the number of vacant sites at stefsince
perature, all possible self-avoiding growth directions havehe growing chain configuration must be self-avoiding, the
equal transition probabilities. To treat self-avoiding andtransition probability depends on the coordinate vectors of
temperature-dependent polymers, Meirovitchsed the sites 1,2,..,i; P; is also normalized to unity. The above

i—-1
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temperature-dependent transition probability favors configuenly a few configurational samples are needed. In this ap-
ration states with large Boltzmann weights and/or growthproach, the thermal averagl);» can be computed based on
directions with favorable energetic contacts. Configurationgonfigurational ensemble generated at the temperature pa-
thereby generated are compact at low temperatures and ma@meterg as follows*°
open at high temperatures.

We generate chains d811) cubic lattice guided by the (Ayg=2 AAWA(,B')/ > W, (B')
transition probability(2). The first link can be placed in any A A
direction, and the move directions for subsequent links are
selected according 8; by a Monte Carlo proceduisee the %2 AASA(B’,,B)/ 2 Sy(B',8), (8
Appendix. This growth process is continued until the entire A} A}
chain length N links) is reached. Each configuratioh is  where
generated with a probability

N SA(B'.B)=W,(B)exd —(B'—B)E,]. 9
P8 =11 Pi(R+V|Ry, ... R:B) In this _approxir_nation of (A), the statistical weight
i=1 : W, (B’) is effectively replaced by the Boltzmann-corrected
_ B weight S, (B’,8). Equation(8) is exact when3= ' and a
= exp( = BEA)/W,(B), ) poor approximation ofA) . for non-negligible values of
whereE , is the energy for configuration and the statistical |8’ —8|. The approximation is reasonable because energy
weight distributions of two configurational ensemblesgit and 8
N (G overlap significantly wheng’— 3| is small. Hence, the
WA(,G):H E exd — BU; (R + Vv, )] . (5) above extrapolation of thermal averages is justified within a
i=1 [ K=1 e i certain temperature range.

If a dead-end configuration, i.eG;=0, is encountered be-

fore the chain is f.ully' grown, the growth process is termi- 5 EFactors affecting convergence

nated and the chain discarded, the next chain is then regrown

from scratch. In this way, successive configurations are not The convergence _Of the_ average prop&ay; depends
correlated. To obtain accurate estimates of thermal average@ the size of the configurational ensemblgthe number of

we generate millions of configurations. links b placed at each step of the growth process, and the
Once configurations are generated as above, the averalfdtice coordination numben.. Since the chain growth al-
of a propertyA in canonical ensemble is given by gorithm explores all available growth directions at each step,
the number of energy evaluations per step is proportional to
b .
A =S AW W , 6 (no)®. The cost per step must be balanced with the overall
(s {% A A(B)/ {EA:} A(B) © added efficiency possible by the “scanning” approadh (

whereA, is the value of property for configurationA. We >1) of Meirovitct? "’.“?d it.s varignts SUCh. as double-scgnning
have used an importance sampling procedure to obtain tH%rocedur& and m_ul_tlllnk insertion technlqujé’z all of which
above statistical average, which ensures that (thiased are gener_ally_ efficient for polymeors when implemented on
chain growth configurations are assigned appropriat ow coor_dmatlon squaiegnd cubic® lattices. For our311
weights'! All successfully grown configurations are 'attice withne=24, (n;) is large even for small values bf

counted, each with a statistical weigit, . The statistical We thus choos®=1 - compensgt_e by generating a
weight large sample size on the order of 10 million. Largerould

mean reducing the sample sizéand likely to decrease the
W, (B)=Pa(B) "exp — BE,), (7)  effectiveness of the importance sampling approach to com-
represents a correction of the Boltzmann weightpU“ng thermal averages. As our thermodynamic results

(exd—BE,]) of the canonical ensemble. Since each chairShOW, our statistical fluctuations are not large, but latger

growth configuration is generated with a probabily(g), ~ v&lues might be considered in the future.
the correction factoP ,(8) ! in Eq. (7) removes this bias Our simulations are performed on a 300 MHz R12000

(see also the AppendixTo ensure accuracy and conver- SC! Origin2000 computer at New York University. Sam-
gence of the averagéd),, the size of the configurational pImg 5 million configurations for a 30 residue protein re-
sample must be sufficiently large so that configurations witfluires about 10 CPU hours.

large weights belong to the sample.

E. Thermodynamic functions

C. An extrapolation technique for calculating thermal

profiles We now present the expressions for the thermodynamic

energy, free energy, entropy, and heat capacity. These ther-
Temperature-dependent quantities are expensive to comaal averages are computed based on the importance sam-
pute because many configurational ensembles are oftgrling procedure and the analytic extrapolation technique out-
needed to reproduce thermal profiles. An efficient way oflined in Secs. IlIB and Il C(see also subsection 2 of the
obtaining thermal curves is by an analytic extrapolative techAppendiX. The changes in thermodynamic quantities are
nique employed by O'Toole and Panagiotopolfloshere  more meaningfully measured with respect to a reference
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state. The reference state for a protein chain molecule is 434 Repressor (1r69)
taken to be the ideal random walk chain on (B&2) lattice. 1 - FENEE
We define the excess free energy as A

F(B)=—KkeTIN[Z(B)/Zrel, (10

whereZ(B) andZ, are the configuration partition functions
of the protein and reference chains, respectively. For an ideal
random walk chain on the lattice, the number of states is
(no)N wheren.= 24 for the(311) lattice. Therefore, the ex-
act reference partition function is

N

Z o= A2:1 ny=Any, (11)

1 o o
ES ) ]
T T T

Relative number of configurations

o
)

where N is the number of configurations. As expect&g;
only depends on the chain and lattice characteristics. ol ,
We rewrite the protein partition functionZ(B) -3 -2 -1 0
=3,y exp(=BE,), using an importance sampling procedure
for chain growth configurations ag(B)==2,;W,(B). FIG. 2. Energy distribution of configurations for a helical protein 434 Re-
When the extrapolation technique is employed to evaluat@'€ssornire9 at reduced temperaturd® =T/To=1, 1.5, and 2 wher&,
temperature dependence oZ(B8), we have Z(B) =298 K. Ensembles of 10 million configurations were generated to produce

, : . the curvesE/N is the excess internal energy per residue, expressed in units
=2,Sx(B,B"); therefore the excess free energy function isef kT,

given by
1 N
F(B)=—kgTIn| 0— 2 SA(/g,lg')] (12)  terize the energy distributions, examine average energies in
Zref A=1 comparison to native energies, and discuss the relationship
Similarly, the excess internal energy is given by between statistical weights and energies.

Figure 2 shows the energy distributions of protein 434
_ _ / / Repressof1r69 for ensembles generated at three different
E_<E>'B_{% ExSA(B.B )/ {% S\BED, (13 temperaturesT* =T/To=1, 1.5, and 2, wherd, is the
room temperaturg298 K). No weighting byW,(8) was
done to obtain these distributions. We see that, as expected,
higher temperature distributions are peaked at higher ener-
S/kg=B(E—F). (14 gies. The distributions are nearly Gaussian and they have

: : imilar widths. The widths can be parametrized by a function
While we might also evaluate the entropy and free energy b?'m' i o
using the probability of configurationB,, , such estimates °F the form exp—[E-Eo(T)]720% where Eo(T) and o

lead to results that are poorer than the weight-corrected forc_,peufy Fhe Iocatllon of the p(leak.and vy|dth c_>f the d|st_r|but|qn,
mulas abovél respectively. This chgracterlzayon arises since gonflguratlons
The evaluation of specific heat is of significant interest{A} and corresponding energi¢k,} of the chain growth

because this quantity can be measured in calorimetrffugo_lr_'rt1hm are sta(tj|§ ttlff;l”)t/_ uncqrrellgtedz. | how that th
experiment$®3°The specific heat capacity corresponds to € terlergyt dlf‘fn U|totns n Itg. also IS ow .]f‘ ﬂe
second energy moment or energy fluctuations, given as energy stales at different temperatures overiap signincantly.
This suggests that an ensemble generated at a temperature
C d(E)g

_ 322 £)2 15 can be used to approximate thermodynamic averages at
Kg aT =BTUED s >ﬁ]' (15 neighboring temperatures according to the analytic extrapo-

lation of Eq. (8). Indeed, we show later that only a few

;ﬁ‘:vfg trgerig]c;(\j/g:an:ifnf%?iﬂoe?;:{ ?rgﬁgirt ?ssecilceasfoég:;\?v%%sembles are needed to reproduce the temperature curves
P ) . for various average properties.

we compare this method of determining thermodynamic Next we assess the energies and configurations of the

functions to direct simulation results at different tempera—Chain growth ensemble compared to the native states. Table |
tures. shows that the ensemble-averaged ene{By,, of 1r69 is
considerably lower than the value for the native protein,

IV. RESULTS AND DISCUSSION which is close to the peak of the energy distributi®ig. 2)

at room temperature. This follows the fact that the larger

weights are associated with the lower energy configurations.

Indeed, observation@ata not showngive an almost linear

correlation between weight W,(8) and energy

—E,/kgT at T*=1. Hence W, (B) approximates the Bolt-
The energy distribution of configurations reflects the nazmann weight at low temperature and, from Eg), P, is a

ture of the algorithm used to produce it. Below, we charac-constant of temperature and energy. In other words, configu-

whereEA:2{“<juij and, from thermodynamic relations, the
excess entropy is

A. Analysis of configurational ensembles

1. Energy distributions
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TABLE |. Comparison of the global properties of chain grow@G) con-
figurations and native structures for three proteins. Results include excess
internal energy per residu&(N), mean radius of gyrationR;;), ensemble-
averaged dRMSD({D?,,9) and the lowest dRMSD values in the gener-
ated ensembles along with their corresponding cRMSD values. The native & 0.8
values of energy refer to computed energieof proteins in their native
configurations. The energy is expressed in unit&gf, whereT, is room
temperature and the RMSD values are in A .

1

o
»
T

Lowest Lowest
Proteins Sizel) E/N Rg(A) (D30 dRMSD cRMSD

1N
»
T

2mhu  native 30 -—1.46 8.47
2mhu CG 30 -—-293 715 3.71 2.18 3.27
1r69 native 63 —1.92 10.22
1r69 CG 63 —3.90 10.46 5.74 3.82 5.48
2cro native 65 —2.11 10.22
2cro CG 65 —-4.85 10.24 5.37 3.82 5.67

Relative number of configuratio

o
N
T

10 15 20
dRMSD (angstroms)

rations generated af* =1 are unbiased. By contrast, for FIG. 3. DistribL_Jtion_ of distance root-mean-square dgviati@n”m\/ISD) for

h ? hai hiah . . y h Cd-7 Metallothionein-22mhu and 434 Crd2cro) proteins at reduced tem-
a_lt erma chains or hig temperature situations, the open .Corﬂérature *=1 as computed from an ensemble of 5 million configurations
figurations have larger weights than compact ones SinC®r 2mhu and 10 million configurations for 2cro.
WA~HiNCi . This predicted lower equilibrium energy of

generated configurations could be attributed to our use of

relatiyely simple MJ interaction energies apd possibly.thqarger proteins 1r6963 residuesand 2cro(65 residues For

protein model as well. The calculated radius of gyration,comparison, the best dRMSD values obtained by Hinds and
however, agrees well with the native value, as also shown i eyit?! using an exact enumeration method on diamond lat-
Table I. Thus, it may be generally more difficult to reproducetjce are in the range of 3.17— 4.01 A for proteins having 52

observations also hold for the proteins 2mhu and Zeee  \yith those by Hinds and Levitt.

Table ). Some of the factors determining the lowest dRMSD
value obtainable include quality of the algorithm and energy
2. dRMSD distributions and 3D structures function, the sequence length, and nature of protein fold. For

The RMSD distribution yields a more direct measure Ofexample, as the sequence length increases the number of

the quality of configurational ensembles than the energy disﬁloosrzib(;?ﬁfcour:tﬁ?grgg;?ﬁ %@VLSRTZ(E%”?/;L&;Z’ g‘;lzionr%gar:mgh
tribution. The distance RMS , is defined b . ’
I gms y the best dRMSD values of 2mHKa0 residuesand 2cro(65

1 NN residuey we see that doubling the protein length nearly
D grms= I\ izl 21 (Dj;—D%?, (16)  doubles the dRMSD value. Moreover, simple protein folds
T are expected to be easier to generate than complicated pro-

whereD;; and D{}at are distances between residigsof a  tein folds, as the comparisons of three-dimensional structures
generated configuration and the native protein, respectivelyoelow illustrate.
We use the dRMSD measure to allow rapid evaluation of Best dRMSD structuregwith corresponding cRMSD
deviations of about 10 million configurations from the nativevalue for the three test proteins 2mhu, 1r69, and 2cro are
structure. We also compu€, cRMSD, obtained by optimal compared to their native structures in Fig. 4. These configu-
superposition of structures using Kabsch’s metffotf. The  rations with cRMSD of about 3—6 A or dRMSD of 2—-4 A
cRMSD value is typically about 40%—50% larger than thatreproduce the rough overall folds of their native structures.
of the dRMSD. However, secondary structures of 1r69 and 2cro are not evi-

As shown in Fig. 3, the dRMSD distributions for the dent in these calculated configurations; specific short range
proteins 2mhu and 2cro are rather broad, but the peaks apotentials are needed to reproduce these features.
located at the lower ends of the distributions which means  To further explore the performance of our approach on a
that most configurations have lower dRMSD values. Con+elevant protein with unknown native structure, we consider
versely, a distribution peaked at the high end of the dRMSDthe Janus sequence, a solution to the Paracelsus challenge of
range would indicate a poor algorithm or/and energy funcRose and Creamér:transform the conformation of a parent
tion. Certainly, the goal is to devise a selection criterion toglobular protein into a target protein by altering less than
pick the structures in the ensemble with the lowest dRMSD60% of the parent protein sequence. The solution to the chal-
values. This is discussed in the next subsection, but now wkenge, based on the pareriipgh and target (1rop
examine the best structure or the one with the lowesproteinst® is the Janus sequence that has an experimentally
dRMSD value in a given ensemble of configurations. We seénferred fold that is similar to the target protein 1rffHow-
in Table | that the best structures have a dRMSD value of 2.2ver, its experimental three dimensional structure has not
A for the small protein 2mh(30 residuesand 3.8 A for the  been solved. We use our algorithm to generate the folds of
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FIG. 4. (Color) Comparison of native
a o C, trace(red and the corresponding
2mhu, cRMSD=3.27A 1169, cRMSD=5.48A Siuclure _generaled by the. chaln

? A growth algorithm(blue) with the low-
est dRMSD or cRMSD. Superposi-
tioning was done using the molecular
graphics program Insight Il. The
cRMSD value was calculated using
the optimal superposition method of
Kabsch (Ref. 31). Results were ob-
tained using 5 million configurations
for protein 2mhu and 10 million each
for proteins 1r69 and 2cro.

2¢cro, cRMSD=5.67A

the parent, target, and Janus proteins; 5 million configura- The algorithm’s ability to generate accurate folds is a
tions were generated for each of the proteins. Since 1pgb prerequisite for predicting protein structurEe novopredic-
residues and 1rop(63 residuek proteins do not have the tions must be based on some selection criteria such as free
same number of residues, the last seven residues at the wenergy. For completeness, we also compare the lowest en-
structured C-terminal tail of 1rop are not considered in ourergy structure of Janus in our ensemble to the parent and
simulations. target proteins in Fig. (8). Disappointingly, the Janus struc-
Figure 5a) shows how well the best generated structuregure has cRMSD values of 8.1 and 11.8 A with respect to the
compare with the native 1pgb and 1rop proteins: the cRMS[parent 8 protein and targetr protein, respectively. This
for 1rop is 4.9 A and for 1pgb it is 8.A . Better accuracy is failed prediction may be explained by the fact that the lowest
achieved for the alk protein because it is topologically sim- energy conformation from our model is a compact structure
pler than the mainly3 protein 1pgb. whereas the 1rop structure is an elongated fold. A better
Since the Janus structure is not available, we next comassessment of a prediction algorithm is to test its predictive
pare the configurations generated with this sequence to theapability on a set of proteins. On this measure, our algo-
parent and target structures. From the Janus configurationdthm’s accuracy of predicted folds generally varies between
ensemble, we select two structures where one of them hasto 8 A for a set ofx proteins®* Recent assessment of blind
the lowest dRMSD with respect to the parent protein and th@redictions(CASP3, critical assessment of structure predic-
other to the parent protein. The two pairs of superimposedions) from ab initio methods shows that for most target
structures are shown in Fig. 5b. The best Janus structure fatructures the cRMSD value is abou A , although a few
the target protein has a low cRMSB® A , but theequiva-  significantly better predictions are report&dVhile progress
lent structure for the parent protein has a larger cRMSD of 7n ab initio approaches has been made, all approaches are far
A . Thus, our approach can approximate the target structurfom being sufficiently accurate to be useful for detailed
using its native(lrop) and Janus sequences. functional studiege.g., prediction of active sitgs
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1pgb, cRMSD=6.2A 1rop, cRMSD=4.9A |
(a) 15} ]
—_ 169
£
%12- 1
s o
NQ o 2mhu
¥ G-D u] u} l
Op
3r i
4 3 2 - 0
I pgb/Janus lrop/Janus EN
CRMSDITHA cRMSD=5.0A FIG. 6. Ensemble-averaged distance RMSDE/#, the excess internal

W

energy per residue, for the two proteins 2mhu and 1r69. The square symbols
“3") denote simulation points, and the composite curves were computed using the
analytic extrapolation formula E8) given four configurational ensembles
atT*=1, 1.25, 1.5, and 2.
weightW, . Energy and statistical weight are different crite-
ria for selecting favorable configurations whereas ensemble-
averaged dRMSD is a global measure of ensemble’s quality.
We define the thermal or ensemble-averaged dRMSD
value for the configurational ensemble at inverse temperature
paramete3 as follows:

2 _ 2 ' ’
Ipeb/Tanus Lrop/Janus ‘ <Ddrms>ﬁ—; Damsa (8.8 )/ ; SA\(B,B"), (17)
cRMSD=8. ](3, cRMSD=11 'HA whereS, (B,8') is defined in Eq(9). This average is a more

meaningful measure of expected deviations produced by the
model and algorithm than other measures based on specific
configurations, especially for equilibrium configurations with
considerable flexibility. It is also equivalent to the long-time
average of dRMSD in equilibrium molecular dynamics simu-
lations. The dependence of(D2,,0 on internal energy
E(T)=(E,)z for the proteins 2mhu and 1r69 is shown in
Fig. 6. In this plot, we have calculated the mean energy per

residue using both direct simulatiofinty and an extrapo-
lation technique whose results are shown as composite
curves. The composite curves from the extrapolation proce-
dure were obtained by using formul&q. (8)] with four
FIG. 5. (Colon Comparison of native,, trace(red) and the corresponding configurational ensembles generatedat1, 1.25, 1.5, and
structure generated by the chain growth algoritioe): (a) lowest dRMSD 2, Figure 6 shows that the ensemble-averaged dRMSD value
or cRMSD structures in configurational ensembles for 1@gft) and 1rop is a monotonic decreasing function of the internal energy. It
(right) proteins;(b) two structures from the Janus ensemble with the lowest hasi h | |
dRMSD with respect to 1pgb and lrop proteilis} the generated Janus emphasizes that a low average dRMSD cprresponds to a low
structure with the lowest energy is superimposed with 1pgb and 1rop proaverage energy, although below a certain threshold energy
teins. Note that the last seven unstructured residues of the C-terminal ghe average dRMSD does not seem to improve. For the con-
1rop are not shown, and the structures superimposed have 56 residues eaﬁEjurations with the lowest energiéise near room tempera-
Five million configurations were produced for each of the protein sequences. . o
9 P P a ture) their dRMSD values vary betwaet A and 6 A .These
values are abdw2 A larger than the best values in the en-
) . sembles and slightly lower than the dRMSD values at which
3. Correlations between RMSD and energy [weight the peaks of the dRMSD distributions are fouffdg. 3).

Next we assess the quality of configurational ensembles The average RMSD is a statistical measure of the RMSD
by displaying the correlation between RMSD and energy foifor an ensemble of configurations. Often, it is desirable to
the configurations. We also introduce the ensemble-averagemmpare specific, favorable configurations to the native
dRMSD and an energylike quantity based on the statisticadtructure; this requires a way of ranking the configurations.

~—
gi )
e —



5520 J. Chem. Phys., Vol. 113, No. 13, 1 October 2000 Gan, Tropsha, and Schlick

-2

-3

g§-3
wi

-5

5 15 25
cRMSD cRMSD

5 15 25

FIG. 7. Scatter plots of the weight-based energy per resilygN [Eq. FIG.8. S P . .
; . . . . 8. Scatter plot as in Fig. 7, but for internal ener er resifl{l, vs
(18)], vs cRMSD for three proteins. Energy is expressed in unitkgdf, cRMSD P 9 ayPp
whereT, is the room temperature and cRMSD iisA . Eachplot displays '
50 000 randomly chosen configurations.

weaker degree of energy/cRMSD correlations when statisti-

Most ranking of proximity to the native state is based on thec?! poten_tials are %Sed to compute th_e protein energy or used
internal energy by assuming that the entropic contribution &S selection criteridX Stronger correlations between cRMSD

small. Here we employ both energy and weight-based seleé"‘—nd energy are possible with all-atom potentidls.
tion criteria to display their correlations with RMSD.
The new weight-based selection criterion is rationalizedB- Thermodynamic analysis of temperature-induced
as follows. Recall that the excess free enefgyg)e  transitions
—InZ W,y (B). This function cannot be used to rank con-  The native states of proteins are special points in the
figurations because a free-energy like function that is conthermodynamic phase diagram. Experimental studies of pro-
figuration specific is required. We achieve this by using theein folding/unfolding provide essential information about
following weight-based energy for configuratidn the behavior of proteins under a wide range of temperature
Ey(A)= —keTINW, . (18  and solvent condition®:° The validity of protein interac-
tion potentials and the algorithms designed to find the global
Here, configurations with large weights correspond to lIoWfree energy minimum are more fully tested when computed
energies. Reca“ that StatiStica| WelgM\ iS related to ChO' properties of proteins in Various regions of the thermody_
sen growth directions which are in turn determined by thezamic phase diagram are assessed with respect to experimen-
Boltzmann factors in the transition probability. Moreover, i3] data. Below we report on the response of thermodynamic
the weight-based energy is correlated with both the internajynctions to variation of temperature. Since the solvent de-
and the free energies. In fact, our simulation results showrees of freedom are not included explicitly, variation of
that —kgTInW, is correlated with internal energlf, at  thermodynamic properties with respect to solvent conditions

room temperature. It is also apparent taf(A) is obtained  cannot be adequately studied here.
from the free energy when a configuration in the ensemble

has a dominant weight. Thugy,(A) offers a different se- 1. Statistical fluctuations in thermodynamic
lection criterion but is still related to the internal and free quUantiies
energies. We begin with a consideration of statistical errors in the
Folded nativelike conformations are expected to haveomputation of thermodynamic quantities. Statistical errors
much lower energies than unfolded conformations. Therein thermodynamic quantities are estimated by performing
fore, there should be a good correlation between the configudifferent runs for the same protein at a given temperature,
ration weight-based energy and cRMSD value. Scatter plotand repeating this process for various temperatures of inter-
of Ey/kgT versus cRMSD for the three proteins are shownest. The number of configurations sampled g B® for
in Fig. 7 using the cRMSD corresponding to optimal super-2mhu and 10for the larger proteins 1r69 and 2cro. Compu-
position of the two structures. The shapes of the scatter plotstional time for a single run for protein 2mhu is about 10
in Fig. 7 indicate a general correlation between low cRMSDhours on SGI Origin2000 and about four times longer for the
value and energy. However, this correlation is not strongpther two proteingdouble the size of 2mhuTypically, over
since configurations with higlE,, values can also have 90% of the trial configurations are successfully grof\ass
lower relative cRMSD values. In Fig. 8, similar scatter plotsthan 10% are discarded because of dead-end configurations
are shown using the internal enerByas selection criterion Table Il summarizes the standard deviations for various
instead of the free-energy lik&,,. The general trend is simi- calculated thermodynamic quantities at the reduced tempera-
lar to those in Fig. 7. Others have also found comparable oture T* = 1.5, which are expressed as percentages of the av-



J. Chem. Phys., Vol. 113, No. 13, 1 October 2000 Chain growth for proteins 5521

TABLE Il. Standard deviations of excess internal energy,(free energy 2mhu 169 2cr0
(F), specific heat €), and entropy $) per residue, and mean radius of o " ! T " 0 " "
gyration (Rg) and ensemble-averaged dRMSEf( Ddzrms)) at reduced tem- 1t

perature ofT*=1.5 as obtained from 20 runs each for two protefes- S 2

sembles of 5 million configurations for 2mhu and 10 million configurations -2r
for 1r69). The standard deviations are expressed as a percentage of the mea
value and the energy is in units kET, whereT, is the room temperature.

-4t

o 500 1000
0

T E/IN FIN ClkgN  SkgN Rs(A)  (DZ.0 A

1t -1} J

2mhu S

15 30 217 254 2.5 0.9 2.9 -2} -2t ]
1r69 . 30 500 1000

15 35 32 736 4.3 5.6 12.8 3 T T

ug. Y 0 0

erage values; each value was obtained from 20 different runs. -3;——,—0> 3550 1000 -3 550 1000
We have chosen the temperature to lie in the transition re- TIK

ion of thermal curves where fluctuations are most signifi- .
9 9 FIG. 9. Temperature dependence of excess internal ené&iiy)( entropy

cant. As ShPW” in Table II, all quantities except the Sp.e(.:'f'C(S/kBN), and free energyR/N) per residue for three proteins. The symbols
heat capacity have small to moderate standard deviationsre simulation values and the composite curves were obtained via analytic
The heat capacity, reflecting energy fluctuations or the secxtrapolation formula Eq(8) given four configurational ensembles at re-
ond energy moment, is subject to larger numerical uncertainquped temperature's*:_l, 1.25, 1.5, and 2. The energies are expressed in

. . units of kg Ty whereT is room temperature.

ties than, for example, the internal energy.

2. Thermodynamic profiles on cubic lattices calculated by a chain growth algorithm can

In the chain growth approach thermodynamic functionsbe. obtalngd with g“éater efficiency t.ha.n with our more real-
tic protein modet® Here, the statistical fluctuations are

can be calculated using both the direct simulation approacsl‘?‘ma” and the extrapolation technique works well over a wide
and the theoretical extrapolation formu(&). The direct P q

X ) ) . ture range.
simulation approach requires that many points be calculatetc'?mpera . N
PP d yp The excess energy and entropy functions in Fig. 9 show

at different temperatures whereas the theoretical formula of )
. . marked increases when the temperature exceeds about 300
Eq. (8) can rapidly estimate the shape of the curve based OR S .
. We see an initial increase in the temperature range 300—

a few configurational ensembles generated. The extrapola- : .
g g P 3300 K and further increases at higher temperatures as the

tion formula is expected to be most effective in moderate an roteins unfold. The small protein 2mhu tends to show an
high temperature regions. Because the low temperature rer o Al P .
gion is dominated by a few specific configurations moreabrupt transition from native to unfolded state. The transition

configurational ensembles may be needed to obtain accurafe' V€3 of thg _Iargler proteins 1r69 and 2cro are not smooth
nd the transition is spread over a broader temperature range.

thermodynamic curves. To reproduce a thermodynami he larger proteins tend to reach their high temperature satu-
curve, we generate ensemblesTatT,, ..., T, wheren is gerp 9 P

typically small. A composite curve is obtained by extrapolat-
ing known thermal average valuégT;),A(T,), ... ,A(T,)
using Eq.(8). We compare direct simulation results with
thermodynamic curves produced in this way.

The temperature dependence of the excess free energ '3[

2mhu 1r69 2cro
T 20 T T 20 T T

16} 1 18} .
internal energy, and entrop¥gs.(12)—(14), respectivelyis ot _
shown in Fig. 9 for the three proteins 2mhu, 1r69, and 2cro; 19k 1 49t ]
the corresponding results for the radius of gyration and 8 ] * X
ensemble-averaged dRMSD are shown in Fig. 10. For eacl ¢ . . 8 . . 8 . .
protein, the actual simulation values are shown as points ani ¢ 500 1000 0 500 1000 0 00 1000

the curves are derived from E(g). The extrapolated curves

are based on four ensembles at redu@éd=1, 1.25, 1.5,

and 2. We generally note a good fit between computations __
and theory, for moderate and high temperatures. The bes §
agreement is in the free energy curves in Fig. 9. The com-a®[ i
posite curves are discontinuous in the lower temperature re ¥
gion, and there is evidence that simulated points behave 3

similarly. Better agreement can be achieved when the com ¢ 500 1000 %500 1000 o 500 1000
posite curves are constructed based on more configurationa TIK

ens_embles, at the expense OT CompUt_ational COSt_- For Conig. 10. Temperature-dependent studies as in Fig. 9, but for the radius of
parison, thermodynamic functions of simple protein modelsgyyration (Rg) and ensemble- averaged dRMSD, in units of A .
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121 b
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ration value at higher temperatures. This difference is partlfeatures, correlations between energy and RMSD for con-
due to the higher internal energigzer residugfor the larger  figurations, and thermal transition profiles. Our protein
proteins; see Table I. For temperatures less than 500 K, th@odel is more realistic than those in previous studies using
radius of gyration and ensemble-averaged dRMSD in Fig. 1@hain growth algorithm§*2 because it includes all 20 resi-
only change moderately. Large increases for these globalue types, a physical range of pseudobond angles, and the
properties occur when the temperature approaches two #imulation was performed on a refined cubic lattice.

three times the native or room temperature. These tempera- \We show that our model/algorithm combination is ca-
tures correspond to about 2/3 of the internal energy per respable of generating configurations that are reasonably close
due atT* =1. At these temperatures, all degrees of freedomg the native structures. The ensemble-averaged deviations
in the proteins are essentially thermalized, resulting in drafrom the native structures are only about 2 A poorer than the
matic increases in the radius of gyration and thermodynamigest structures obtained, although the dRMSD distributions
curves(Figs. 9 and 1@ Proteins are unfolded under these of the configurational ensembles are fairly broad. In addition,
conditions. we presented an interesting application of the chain growth
3. Relation to other theoretical studies algorithm to the parent and target sequences, and the trans-

Protein denaturation has been rationalized using both th rmed sequence Janus assoua_ted with the solution to the
two-state transiticd and transition via intermediate arac_:elsus challer_lge. Our algorithm reproduced the target
states®38 Recent entropy-sampling Monte Carlo studies byproteln strl_Jcture W|th_ reasc_)nable accuracy based on the best
Hao and Scherad@ on thermal transitions of model pro- structures in the configurational ensembles generatgd for tar-
teins support the view that the transitions are essentially o9&t and Janus sequences. We also introduced weight-based
the two-state character. The entropy sampling method i§Nergy to evaluate energy-RMSp Corrglatlons for conﬁgqra-
similar to the multicanonical sampling approach which hadions; we found that present configurational ensembles yield
been applied to proteirfan this view of protein denaturation ©Only & moderate level of correlation. Collectively, these re-
transition, the protein is either in the native state or the unSults appear to be satisfactory in view of our relatively
folded states with few stable intermediate states. The fregimple C, protein model which does not incorporate any
energy ofstates as opposed to thermodynamic free energysSPecific secondary biases or tertiary restraints. Further im-
is found to have a double-well shape. The free energy oprovements should be possible with more accurate represen-
states cannot be calculated using the chain growth methd@tions of the protein chain and newer chain growth algo-
because the density of states is not determined. Calculatgéithms that are currently being develop®d.
free energy curves in Fig. 9 for all three proteins 2mhu, 1r69,  The thermodynamic curves of proteins complement our
and 2cro are smoothly varying functions of temperatureyesults on structural features and analysis of configurational
which show lack of abrupt changes as seen in energy, erensembles. We showed that the chain growth method can
tropy, and radius of gyration transition curves. reproduce the thermal transition curves with only a few

Protein denaturations associated with heat and acid desimulation runs. This technical advantage should prove use-
naturants are also interpreted in terms of partial unfolding oful in studies of protein transitions. Computed protein ther-
formation of intermediate molten globule stdfeComplete  modynamic functions show that proteins undergo a transition
unfolding occurs only in strong concentrations of urea. Thisto the unfolded state above the room temperature. Tempera-
type of transition is akin to melting of crystals to the disor- ture dependence of the radius of gyration and ensemble-
dered liquid state where the density of molecular packing issveraged dRMSD indicates that the rate of change may be
not greatly changed. Such a theoretical model has been preifferent from that of thermodynamic functions. We dis-
posed for protein denaturatiGiAs remarked before, below cussed our results in the context of current views on protein
500 K the values of the radius of gyration of proteins in Fig.transitions. However, computed specific heat capacity was
10 increase only moderately or by about 10% even thougRypject to significant statistical fluctuations which prevented
the energy and entropy in Fig. 9 show significant changesneaningful comparison to experimental results.

Our results |nd|9ate that below 500 K _the _compgted proteins  The chain growth method of generating configurations is
are far from being fully unfolded. This discussion empha-conceptually distinct from the Metropolis algorithm. En-

sizes that thermodynamic functions and mean radius of 9¥zemples of statistically independent configurations provide
ration do not necessarily increase at the same rate. _ efficient computations of thermodynamic functions for the

Our calculated results are more consistent with the piCiogi cases presented. Furthermore, current developments in

tion that lculat limited t v th Ghe chain growth algorithm may enhance its computational
caution that our caiculations are fimited to only three pro'efﬁciency for realistic protein models which is one of the
teins using a low-resolution model. To support either view of

. : . . als of protein structure prediction research. Our structural
protein denaturation, more protein cases must be examin . . .
and thermodynamic results demonstrate that the algorithm is
and the level of accuracy of the model must be enhanced.

a viable alternative to other Monte Carlo algorithms that are
currently being employed in theoretical studies of protein
structure prediction and thermodynamics. In a forthcoming

We have examined the feasibility of using the chainpaper, we use the chain growth algorithm to evaluate the
growth algorithm for computing the configurational proper-ability of different energy functions to discern nativelike
ties of proteins. The properties analyzed include structurastructures for a set of proteif.

V. SUMMARY AND CONCLUSIONS
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at theith step is
i—1
Ui(Ri+v )= Ui (Ryj)- Ad
APPENDIX: FORMULATIONS OF THE CHAIN (Ritvig) ,Zl i (Ry) (Ad)

GROWTH ALGORITHM In practice, we ensure that the probabilRy given in Eq.

Here we present formulations of the chain growth algo-(A3) is associated with the selected directlqrby consider-
rithm for athermal and temperature-dependent chains basédd several growth directiong; and associated energies
on Rosenbluth and Rosenbluth, Meirovitch? and  Ui(Ri+ Vi) through comparison to a uniform random variate
Grassbergel? The concepts of transition probability, statis- x in [0,1] as follows. We define

tical weight, and importance sampling are described. An K
overview and summary of the algorithm are given in Secs. I = E Pi(R; + V) (A5)
A and 111 B. ' k=1 '

1. Transition probabilities and statistical weights and increasek; from 1 up to the smallest integés that

For a chain molecule wittN+ 1 interaction sites, the Yields the sumJ, >x. The chain growth process is termi-
chain growth process is governed by the transition probabilnated when no vacant sites are available, Ce= 0.
ity P; at stepi that specifies the probability of selecting a The probability of generating a configuration at tempera-
given direction for the next link after—1 links have been ture 8 is now given by
placed. For self-avoiding chains, the new direction must not N
overlap _With any of the previous_ _sites. Thus the transition PA(,B):H Pi(Ri+Ve|Ry, ... Ri:B)
probability P; depends on the position vectdgs, . . . ,R; of i=1 '
sites 1,..,i. We denote byvi<i the lattice vector for the

=exp(— BE)/W , A6
chosen directiolk; at stepi. The transition probabilityp; for = BEIWA(B) (A6)
athermal chains is given by where the statistical weight
N Ci
Pi(Ri+Vg|Ry, ... R)=1/C;, (A1) wag)=11 | 2 exd—pui(Ri+v];- (A7)
whereC; is the number of vacant sites at stepnd P;(R; !N the athermal limit3=0 orE, =0, we recover the Rosen-

+v) is normalized:EEizlPi(Ri+vk_)=1. If n, is the co- blqth transition _prpbabilit){Eq. (A1)]. In fact, the conﬁgu—
' i ' rational probabilities of RosenblutfEg. A2)] and Meiro-

ordination number of a lattice, the maximum valueGfis vitch [Eq. A6)] satisfy the relation

n.—1 for self-avoiding chains and,. for ideal chains with
allowed overlapping sites. For exampte,=6 for a simple PA(B)W,(B)=exp(—BE,). (A8)
cubic lattice and 24 for the refined cubic latti®11). For a
chain withN links, the probability of generating the full con-
figuration of the chaim\=A (R4, ... ,Ry:1) is then

Thus other forms of transition probabilities and associated
weights are possible provided this relation is satisfied. In-
deed, Grassberger and co-workers have used this relation to
design other forms for weights and transition probabilities in
the context of polymers and simple protein mod@ls.

pzd

PA:iI;[l Pi(Ri+Vki|Rli"'rRi):]-/VVAi (AZ)

. N . . 2. Ensemble averaging by importance sampling
where the weighwV, =11;_ ;C; . Configurations of athermal

chains are mostly expanded states, and their average dimen- Once configurations are generated as above, an ensemble
sion (e.g., radius of gyrationobeys well-known scaling IS used to evaluate a thermodynamic propériy canonical

laws. ensemble by a modification of the standard average
To derive the analogous expressions for temperature-
dependent chains, the above transition probability is (A>,g={% Ap eXF(—ﬁEA)/ {% exp(—BE,), (A9)

modified to allow sampling of both open and compact con-

figurations whenB#0 and the potential has a finite range. whereE, is the total potential energy for configuration,
Meirovitch®! proposed a transition probability where a uni- andA,, is the value of property for A.

form weighting of Eq.(Al) is modified by a Boltzmann- A modification of Eq.(A9) is needed to remove the bias
weighted energy factor as follows: inherent in the growth process since the configuration prob-
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