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We present a new application of the chain growth algorithm to lattice generation of protein structure
and thermodynamics. Given the difficulty ofab initio protein structure prediction, this approach
provides an alternative to current folding algorithms. The chain growth algorithm, unlike Metropolis
folding algorithms, generates independent protein structures to achieve rapid and efficient
exploration of configurational space. It is a modified version of the Rosenbluth algorithm where the
chain growth transition probability is a normalized Boltzmann factor; it was previously applied only
to simple polymers and protein models with two residue types. The independent protein
configurations, generated segment-by-segment on a refined cubic lattice, are based on a single
interaction site for each amino acid and a statistical interaction energy derived by Miyazawa and
Jernigan. We examine for several proteins the algorithm’s ability to produce nativelike folds and its
effectiveness for calculating protein thermodynamics. Thermal transition profiles associated with
the internal energy, entropy, and radius of gyration show characteristic folding/unfolding transitions
and provide evidence for unfolding via partially unfolded~molten-globule! states. From the
configurational ensembles, the protein structures with thelowest distance root-mean-square
deviations~dRMSD! vary between 2.2 to 3.8 Å, a range comparable to results of an exhaustive
enumeration search. Though theensemble-averageddRMSD values are about 1.5 to 2 Å larger, the
lowest dRMSD structures have similar overall folds to the native proteins. These results demonstrate
that the chain growth algorithm is a viable alternative to protein simulations using the whole chain.
© 2000 American Institute of Physics.@S0021-9606~00!50337-7#

I. INTRODUCTION

Current equilibrium simulations of proteins are based on
Metropolis algorithms1 and, in more recent years,
multicanonical2 or entropy3–6 sampling schemes. These algo-
rithms generate valuable structural and thermodynamic prop-
erties of peptides and proteins. Despite advances in algorith-
mic development,ab initio structure prediction remains
challenging, and the computation of thermodynamic func-
tions is costly. Thus, it is worthwhile exploring a third alter-
native to these problems based on the chain growth algo-
rithm.

This algorithm was originally developed by Rosenbluth
and Rosenbluth for self-avoiding walk chains7 and extended
by Meirovitch to chains with attractive potentials.8,9 Meiro-
vitch and others later applied algorithmic extensions to
single-chain polymers,8,9 simple protein models with two
residue types~hydrophobic and hydrophilic! or HP models,10

and peptides.11 More recently, Grassberger and co-workers
introduced the pruned-enriched Rosenbluth method for poly-
mers and HP protein models.12 Their method incorporates a
mechanism for favoring the selection of chain growth con-
figurations with high statistical weights over those with low
weights.

An important element of chain growth schemes is that
the transition probability for growing the links is guided by
Boltzmann statistics so as to generate configurations that
contribute significantly to the thermodynamic average at a
given temperature. For example, compact configurations are
sampled more frequently than open configurations at low
temperatures; the reverse is true at high temperatures.
Meirovitch8 developed a scanning method where future con-
tinuations of the chain~involving several links! are searched
before the current growth direction is selected. Meirovitch
and co-workers found that this scanning approach samples
more efficiently peptide conformations.11 In addition, the
thermodynamic free energy of chain molecules11 could be
evaluated efficiently, as well as computation of their thermo-
dynamic transition profiles.10 These features of the chain
growth algorithm offer valuable information when analyzing
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conformations and thermodynamic properties of polymers
and proteins.

Another proposed variant of the chain growth idea is the
configurational-biased Monte Carlo method.13 In this algo-
rithm, a new configuration of the chain is sampled by re-
growing only part of the chain, and the acceptance or rejec-
tion of the new configuration is judged by an appropriately
weighted transition probability. Hao and Scheraga have ap-
plied this configuration sampling procedure successfully to
their entropy sampling Monte Carlo simulations ofb-protein
models with polar~P!, hydrophobic~H!, and neutral~N!3–6

residue types.
Apart from the chain growth approach, simulations of

protein folding with Metropolis Monte Carlo methods have
been found to be quite successful in structure prediction,
especially with distance constraints obtained either from
NMR or theoretical predictions.1,14 Furthermore, Metropolis
methods can yield folding pathway information15 while
chain growth approaches generate statistically independent
configurations. Since the chain growth configurations are not
dynamically connected, they can lead to enhanced explora-
tion of configuration space.

Here we apply the chain growth method to prediction of
protein structure and thermodynamics from the amino acid
sequence. We determine the quality of the algorithm for this
application by analyzing the computed configurational en-
sembles and thermodynamic functions. We use a low-
resolution protein model with the two-body Miyazawa–
Jernigan ~MJ! residue interaction potential.16,17 Although
such a model is not expected to yield accurate folded native
protein structures, it can be used to rapidly compute protein
thermodynamics and assess the ability of the algorithm to
generate nativelike configurations for known test cases.
When additional experimental or theoretical information is
incorporated, such approaches are also viable prediction
tools.

Specifically, we describe results of the chain growth
method guided by the MJ contact potential on Cd-7
Metallothionein-2 protein~30 residues, PDB code 2mhu! and
helical proteins 434 Repressor~63 residues, 1r69! and 434
Cro ~65 residues, 2cro!. Applications are also performed for
Protein G ~56 residues, 1pgb! and ColE1 Repressor of
Primer protein~63 residues, 1rop!, both associated with the
solution to the Paracelsus challenge.18 We analyze the result-
ing configurational ensembles using a novel statistical-
weight-based scheme to select nativelike conformations. We
also calculate several thermodynamic properties such as in-
ternal energy, entropy, and free energy at different tempera-
tures using both simulations and theory, the latter of which is
based on an analytical extrapolation formula. We find a good
agreement between simulated and predicted thermal transi-
tion curves. Moreover, the thermal transition profiles show
evidence of unfolding via molten globule or intermediate
states. From the configurational ensembles generated, the
lowest distance RMSD~dRMSD! structures have the correct
overall folds with dRMSD of 2–4 Å or coordinate RMSD
~cRMSD! of 3–6 Å as compared to native structures. Fur-
thermore, our method can explore these reasonable structures
rapidly, faster than unbiased searches or dynamic schemes

which may be confined to small regions of configurational
space. The results thus demonstrate that the chain growth
algorithm is a viable alternative for protein structure and
thermodynamics studies.

In Sec. II, we present the protein model and associated
lattice and energy functions. The methodology of the chain
growth approach is described in Sec. III, which includes the
process of chain generation, factors affecting the algorithm’s
convergence, thermodynamic functions, and an efficient
method for evaluating thermal averages. Section IV de-
scribes the analysis of configurational ensembles and protein
thermodynamics. We summarize our findings and conclu-
sions in Sec. V. In the Appendix, we elaborate on some
aspects of the chain growth algorithm.

II. PROTEIN MODEL, LATTICE MOVES,
AND POTENTIAL FUNCTION

The choice of an appropriate lattice/protein model repre-
sents a balance between the accuracy of the attainable results
and the overall computational complexity. Lattice geometries
that have been used to simulate protein structures range from
low to high resolution models. Examples of low resolution
lattices include simple cubic19,20 and diamond21 models.
Higher resolution lattices for protein simulations include
octahedral22 and a family of refined cubic15,23,24models. Low
resolution lattices are more efficient in sampling the confor-
mational space—even exact enumeration of all compact con-
figurations for short chains is possible, such as for a diamond
lattice21—but high resolution lattices are necessary to repro-
duce more accurately the secondary and tertiary structural
elements.

Here, we consider a protein model defined on a moderate
resolution cubic lattice that is similar to the family investi-
gated by Kolinski and Skolnick.24 Each residue is repre-
sented by an interaction site and the residues interact via the
two-body MJ potential.16,17 In the following, we describe the
lattice used, the protein model parameters, and the form of
the pairwise interaction potential.

A. Geometry of protein model and lattice moves

In our simplified protein model, the interaction sites are
located at theCa positions; side chains are not modeled. We
reproduce the geometric characteristics of polypeptide chains
by restricting theCa pseudobond angles and by preventing
the overlap of excluded-volume sites. The pseudobond
angles are limited to the range of 63°–143°; excluded-
volume sites will be introduced below after the lattice is
defined. Our objective is to grow configurations of lattice
proteins that satisfy these geometric constraints. Protein con-
figurations on lattices are generally not invariant with respect
to rotations, although the effects of anisotropy are not severe
for refined cubic lattices with high coordination numbers.

The cubic lattice we employ is a~311! model with 24
allowed moves from a given site. On this lattice, the possible
growth directions are given by the direction vectorsv5x î
1y ĵ1zk̂ where (x,y,z)P$(61,63,61),(63,61,61),
(61,61,63)%. We illustrate the related~31! lattice move
directions in 2D in Fig. 1~a!. In the actual chain growth
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implementation, many of these move directions are prohib-
ited by the pseudobond angle restrictions and the excluded-
volume requirements~see below!.

The lattice parameters and mapping accuracy for protein
molecules depend on the type of lattice. Since the distance
between two adjacentCa positions in proteins is 3.8 Å , the
lattice spacing in our~311! lattice isL53.8/Ax21y21z2 Å
51.146 Å . The discrete nature of the formulation leads to an
accuracy for lattice-mapped structures of native proteins of
about 1.5 Å in cRMSD, as found empirically. Better map-
ping resolutions~e.g., cRMSD of 0.7 Å or less! can be
achieved at the expense of computational cost with lattices
that have greater number of move vectors and more sophis-
ticated move protocols.24 Still, our current resolution of 1.5

Å is sufficient to reproduce elements of the secondary struc-
tures and overall protein folds.

The possible move directions on the~311! lattice are
further restricted by the condition that the near neighbors of
Ca sites do not overlap. On the~311! lattice in 3D, there are
26 such near neighbors which are separated from the central
Ca site by the vectors$(61,61,61),(61,61,0),(61,0,
61),(0,61,61),(61,0,0),(0,61,0),(0,0,61)%. Note that
the magnitudes of lattice vectors are in units ofL51.146 Å.
These excluded-volume sites, together with the finite repul-
sive energy at short distances described below, define the
geometric characteristics of protein backbones. We illustrate
in Fig. 1b an allowed configuration of a growing chain on a
~31! lattice in 2D.

B. Potential function

We choose a simple square-well function to parametrize
the residue/residue potential. The attractive interactions are
represented by the residue-based contact energies of statisti-
cal potentials which are derived from solved protein struc-
tures. For eachi and j pair representing two residues, with
distance separationRi j , our potential has the form

ui j ~Ri j !5H e r if Ri j ,4 Å

e i j if 4 Å <Ri j <6.5 Å,

0 if Ri j .6.5 Å

~1!

where e r is a residue-independent finite repulsive energy,
ande i j is a contact-energy value derived from experimental
protein databases. The short-range repulsive energy ensures
minimal overlap between protein cores. The value ofe r is set
simply as:e r55 max$ij %ueij u; we found results to be insensi-
tive to the precise value ofe r within a wide range.

The contact energies$e i j % of statistical potentials are de-
rived from the observed occurrences of residue pairsi , j in
protein structure databases. Statistical potentials assume that
the contact energye i j is related to the observed occurrences
of residue pairs i , j via Boltzmann’s relation: e i j

52kBT ln(Fij /Rij), where Fi j is the observed contact fre-
quency for the pairi , j , andRi j is its corresponding reference
state.16,25,26

The reference stateRi j has been defined based on both
the random or uncorrelated residue pairs and the solvent-
mediated contact pairs in protein structures. For the random
reference state,Ri j }ninj whereni ,nj are the frequencies of
residues in the protein structure database. The solvent-
mediated reference state is calculated as follows:17

Ri j 5nsins j /nss wherensi ,ns j refer to solvent~s! with resi-
due (i or j ) contact numbers in protein structures;nss is
solvent/solvent contact number which is evaluated by using
the estimated number of effective solvent molecules in na-
tive protein structures. The choice of the reference state af-
fects the scale of the residue contact energies. Contact ener-
gies $e i j % calculated with the random reference state reflect
the residual nonrandom preferences for residue/residue con-
tacts in proteins; energies calculated with solvent-mediated
reference state are related to the preferences for residue/
residue over residue/solvent contacts. The MJ energies are
derived using a solvent-mediated reference state and are cor-

FIG. 1. Illustration of the chain growth procedure on a 2D lattice:~a! lattice
vectors of the~31! moves of a growing chain and~b! associated allowed
configuration in 2D. The constant vector length~bond length! determines the
spacing of the underlying square lattice. The growth directions of the al-
lowed configuration~b! are prescribed by~31! lattice moves in~a!. The
chain vertices represent theCa positions with excluded-volume sites placed
at its nearest-neighbor sites~filled circles!. Possible new growth directions
must not overlap with any of the previousCa , the excluded-volume sites,
and the pseudo-bond angle constraints.
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related with experimental hydrophobic energies of
residues.16 Thus they implicitly incorporate effects due to
dispersive, electrostatic, and other interactions that are
present in protein structures. The attractive hydrophobic en-
ergies drive the protein chain toward a folded conformation.
Since the MJ approach models short-range contacts, there are
neither long-range correlations nor specialized terms for he-
lices, sheets, etc.

We represent the pairwise energiese i j by a modified MJ
matrix. The modification involves a simple shift:e i j ←Mi j

12, whereMi j is the MJ interaction matrix as re-evaluated
in 1996;17 the energies are expressed inkBT0 units, wherekB

is Boltzmann’s constant andT0 is the room temperature.
This modification is effectively similar to the statistical po-
tential derived by Skolnick and co-workers27 in modeling the
residue/residue contact energies with a random reference
state that accounts for chain connectivity rather than the
solvent-mediated as in the original MJ formulation.16 Betan-
court and Thirumalai28 have shown that the interaction ener-
gies of Skolnicket al.27 can be related to the MJ energies by
a linear fit ẽ i j ←aMi j 1b where a and b are constants (a
50.37 andb51.26 in Ref. 28! in kBT0 units. Our simple
shift similarly weakens the attractive energies between the
residues and was found to yield reasonable global properties
of proteins in our simulation protocol. To arrive at our con-
stant shift value, we experimented with a range of values;
large shifts favor open structures, and small shifts tend to
result in overcompact structures.

III. METHODS

This section presents the temperature-dependent chain
growth transition probability, thermal averages derived from
the importance sampling procedure, and an efficient tech-
nique for computing thermal curves. This is followed by a
brief discussion on the factors that affect the convergence of
the chain growth algorithm. We also derive thermodynamic
averages for chain growth configurations. Detailed formula-
tions of the chain growth algorithm are found in the Appen-
dix.

A. The chain growth method: Overview

Here we integrate central concepts in the chain growth
algorithm, reported previously for different systems; quanti-
tative formulations are provided in the Appendix. Essen-
tially, the chain growth algorithm generates chain configura-
tions by sequential addition of links until the full length of
the chain is reached. Since each configuration is generatedde
novo, configurations are statistically independent, unlike the
standard Metropolis algorithms. For HP protein models,
comparisons between the Metropolis and chain growth ap-
proaches show that the latter is more efficient for sampling as
well as for computation of thermal curves.10 These main
findings motivate our present application of the algorithm to
proteins.

For chains where the properties are independent of tem-
perature, all possible self-avoiding growth directions have
equal transition probabilities. To treat self-avoiding and
temperature-dependent polymers, Meirovitch8 used the

Boltzmann-weighted transition probability, which is a modi-
fication of the form for athermal chains. This transition prob-
ability favors growth directions with low energy contacts; it
allows generation of both open and compact chain configu-
rations depending on the temperature. This form of the tran-
sition probability is not unique, and other forms have been
used by Grassberger and co-workers to study polymer and
simple protein systems.12 Here we use the transition prob-
ability proposed by Meirovitch.

Greater efficiency in chain growth algorithms can be in-
troduced by adding more than one link at each step. This
procedure confers greater foresight to growth process and
reduces the frequency of ‘‘dead-end’’ configurations~i.e.,
those that cannot be fully grown given the near neighbor
constraints; see below!. Examples of multilink steps are the
scanning8 and double-scanning9 procedures, and multilink
insertion technique.10 Since these procedures require assess-
ment of lattice occupancy and energy evaluations of possible
future configurations, greater computational costs are in-
volved especially for high coordination lattices. For this rea-
son, we use a simple approach of one link per step; see also
Sec. III D on convergence.

After fully grown chains are generated by the chain
growth method, ensemble averages are calculated using an
importance sampling procedure where each contributing
configuration is appropriately weighted.11 The weight is de-
rived from the known probability of generating a configura-
tion. A unique feature of the chain growth algorithm is that
the temperature dependence of ensemble averages can be
efficiently computed using an analytic extrapolation
technique.10 This technique greatly facilitates calculation of
thermal transition curves, often costly to reproduce by other
methods.

B. Chain generation by temperature-dependent
transition probability and computing thermal averages

The direction chosen at each step of the chain growth
process is determined by the transition probability. If the first
i 21 links of a chain withN links have been placed, the
temperature-dependent transition probabilityPi at stepi, as
proposed by Meirovitch,8,11 is given by

Pi~Ri1vki
uR1 , . . . ,Ri ;b!

5exp@2bui~Ri1vki
!#Y (

ki51

Ci

exp@2bui~Ri1vki
!#,

~2!

where the incremental, nonbonded potential energy is

ui~Ri1vki
!5(

j 51

i 21

ui j ~Ri j !. ~3!

Other symbols are defined as follows: temperature parameter
b51/kBT; R1 , . . . ,Ri are position vectors of~interaction!
sites 1,2,. . . ,i ; vki

is the lattice vector for the chosen direc-
tion ki ; andCi is the number of vacant sites at stepi. Since
the growing chain configuration must be self-avoiding, the
transition probability depends on the coordinate vectors of
sites 1,2,. . . ,i ; Pi is also normalized to unity. The above
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temperature-dependent transition probability favors configu-
ration states with large Boltzmann weights and/or growth
directions with favorable energetic contacts. Configurations
thereby generated are compact at low temperatures and more
open at high temperatures.

We generate chains on~311! cubic lattice guided by the
transition probability~2!. The first link can be placed in any
direction, and the move directions for subsequent links are
selected according toPi by a Monte Carlo procedure~see the
Appendix!. This growth process is continued until the entire
chain length (N links! is reached. Each configurationL is
generated with a probability

PL~b!5)
i 51

N

Pi~Ri1vki
uR1 , . . . ,Ri ;b!

5exp~2bEL!/WL~b!, ~4!

whereEL is the energy for configurationL and the statistical
weight

WL~b!5)
i 51

N H (
ki51

Ci

exp@2bui~Ri1vki
!#J . ~5!

If a dead-end configuration, i.e.,Ci50, is encountered be-
fore the chain is fully grown, the growth process is termi-
nated and the chain discarded, the next chain is then regrown
from scratch. In this way, successive configurations are not
correlated. To obtain accurate estimates of thermal averages,
we generate millions of configurations.

Once configurations are generated as above, the average
of a propertyA in canonical ensemble is given by

^A&b5(
$L%

ALWL~b!Y (
$L%

WL~b!, ~6!

whereAL is the value of propertyA for configurationL. We
have used an importance sampling procedure to obtain the
above statistical average, which ensures that the~biased!
chain growth configurations are assigned appropriate
weights.11 All successfully grown configurations are
counted, each with a statistical weightWL . The statistical
weight,

WL~b!5PL~b!21 exp~2bEL!, ~7!

represents a correction of the Boltzmann weight
(exp@2bEL#) of the canonical ensemble. Since each chain
growth configuration is generated with a probabilityPL(b),
the correction factorPL(b)21 in Eq. ~7! removes this bias
~see also the Appendix!. To ensure accuracy and conver-
gence of the averagêA&b , the size of the configurational
sample must be sufficiently large so that configurations with
large weights belong to the sample.

C. An extrapolation technique for calculating thermal
profiles

Temperature-dependent quantities are expensive to com-
pute because many configurational ensembles are often
needed to reproduce thermal profiles. An efficient way of
obtaining thermal curves is by an analytic extrapolative tech-
nique employed by O’Toole and Panagiotopoulos10 where

only a few configurational samples are needed. In this ap-
proach, the thermal average^A&b8 can be computed based on
configurational ensemble generated at the temperature pa-
rameterb as follows:10

^A&b8[(
$L%

ALWL~b8!Y (
$L%

WL~b8!

'(
$L%

ALSL~b8,b!Y (
$L%

SL~b8,b!, ~8!

where

SL~b8,b!5WL~b!exp@2~b82b!EL#. ~9!

In this approximation of ^A&b8 , the statistical weight
WL(b8) is effectively replaced by the Boltzmann-corrected
weight SL(b8,b). Equation~8! is exact whenb5b8 and a
poor approximation of̂ A&b8 for non-negligible values of
ub82bu. The approximation is reasonable because energy
distributions of two configurational ensembles atb8 and b
overlap significantly whenub82bu is small. Hence, the
above extrapolation of thermal averages is justified within a
certain temperature range.

D. Factors affecting convergence

The convergence of the average property^A&b depends
on the size of the configurational ensembleN, the number of
links b placed at each step of the growth process, and the
lattice coordination numbernc . Since the chain growth al-
gorithm explores all available growth directions at each step,
the number of energy evaluations per step is proportional to
(nc)

b. The cost per step must be balanced with the overall
added efficiency possible by the ‘‘scanning’’ approach (b
.1) of Meirovitch8 and its variants such as double-scanning
procedure9 and multilink insertion technique,10 all of which
are generally efficient for polymers when implemented on
low coordination square9 and cubic10 lattices. For our~311!
lattice withnc524, (nc)

b is large even for small values ofb.
We thus chooseb51 but compensate by generating a

large sample size on the order of 10 million. Largerb would
mean reducing the sample sizeN and likely to decrease the
effectiveness of the importance sampling approach to com-
puting thermal averages. As our thermodynamic results
show, our statistical fluctuations are not large, but largerb
values might be considered in the future.

Our simulations are performed on a 300 MHz R12000
SGI Origin2000 computer at New York University. Sam-
pling 5 million configurations for a 30 residue protein re-
quires about 10 CPU hours.

E. Thermodynamic functions

We now present the expressions for the thermodynamic
energy, free energy, entropy, and heat capacity. These ther-
mal averages are computed based on the importance sam-
pling procedure and the analytic extrapolation technique out-
lined in Secs. III B and III C~see also subsection 2 of the
Appendix!. The changes in thermodynamic quantities are
more meaningfully measured with respect to a reference
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state. The reference state for a protein chain molecule is
taken to be the ideal random walk chain on the~311! lattice.

We define the excess free energy as

F~b!52kBT ln@Z~b!/Zref#, ~10!

whereZ(b) andZref are the configuration partition functions
of the protein and reference chains, respectively. For an ideal
random walk chain on the lattice, the number of states is
(nc)

N wherenc524 for the~311! lattice. Therefore, the ex-
act reference partition function is

Zref5 (
L51

N
nc

N5Nnc
N , ~11!

whereN is the number of configurations. As expected,Zref

only depends on the chain and lattice characteristics.
We rewrite the protein partition function,Z(b)

5($L% exp(2bEL), using an importance sampling procedure
for chain growth configurations asZ(b)5($L%WL(b).
When the extrapolation technique is employed to evaluate
temperature dependence ofZ(b), we have Z(b)
5(LSL(b,b8); therefore the excess free energy function is
given by

F~b!52kBT lnF 1

Zref
(

L51

N
SL~b,b8!G . ~12!

Similarly, the excess internal energy is given by

E5^E&b5(
$L%

ELSL~b,b8!Y (
$L%

SL~b,b8!, ~13!

whereEL5( i , j
N ui j and, from thermodynamic relations, the

excess entropy is

S/kB5b~E2F !. ~14!

While we might also evaluate the entropy and free energy by
using the probability of configurationsPL , such estimates
lead to results that are poorer than the weight-corrected for-
mulas above.11

The evaluation of specific heat is of significant interest
because this quantity can be measured in calorimetry
experiments.29,30The specific heat capacityC corresponds to
second energy moment or energy fluctuations, given as

C

kB
5

d^E&b

dT
5b2@^E2&b2^E&b

2 #. ~15!

These thermodynamic functions are expressed in a form that
allows rapid evaluation of thermal transition curves. Below
we compare this method of determining thermodynamic
functions to direct simulation results at different tempera-
tures.

IV. RESULTS AND DISCUSSION

A. Analysis of configurational ensembles

1. Energy distributions

The energy distribution of configurations reflects the na-
ture of the algorithm used to produce it. Below, we charac-

terize the energy distributions, examine average energies in
comparison to native energies, and discuss the relationship
between statistical weights and energies.

Figure 2 shows the energy distributions of protein 434
Repressor~1r69! for ensembles generated at three different
temperatures:T* 5T/T051, 1.5, and 2, whereT0 is the
room temperature~298 K!. No weighting byWL(b) was
done to obtain these distributions. We see that, as expected,
higher temperature distributions are peaked at higher ener-
gies. The distributions are nearly Gaussian and they have
similar widths. The widths can be parametrized by a function
of the form exp$2@E2E0(T)#2/2s2% where E0(T) and s
specify the location of the peak and width of the distribution,
respectively. This characterization arises since configurations
$L% and corresponding energies$EL% of the chain growth
algorithm are statistically uncorrelated.

The energy distributions in Fig. 2 also show that the
energy states at different temperatures overlap significantly.
This suggests that an ensemble generated at a temperature
can be used to approximate thermodynamic averages at
neighboring temperatures according to the analytic extrapo-
lation of Eq. ~8!. Indeed, we show later that only a few
ensembles are needed to reproduce the temperature curves
for various average properties.

Next we assess the energies and configurations of the
chain growth ensemble compared to the native states. Table I
shows that the ensemble-averaged energy,^E&b , of 1r69 is
considerably lower than the value for the native protein,
which is close to the peak of the energy distribution~Fig. 2!
at room temperature. This follows the fact that the larger
weights are associated with the lower energy configurations.
Indeed, observations~data not shown! give an almost linear
correlation between weight lnWL(b) and energy
2EL /kBT at T* 51. Hence,WL(b) approximates the Bolt-
zmann weight at low temperature and, from Eq.~4!, PL is a
constant of temperature and energy. In other words, configu-

FIG. 2. Energy distribution of configurations for a helical protein 434 Re-
pressor~1r69! at reduced temperaturesT* 5T/T051, 1.5, and 2 whereT0

5298 K. Ensembles of 10 million configurations were generated to produce
the curves.E/N is the excess internal energy per residue, expressed in units
of kBT0.
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rations generated atT* 51 are unbiased. By contrast, for
athermal chains or high temperature situations, the open con-
figurations have larger weights than compact ones since
WL;) i

NCi . This predicted lower equilibrium energy of
generated configurations could be attributed to our use of
relatively simple MJ interaction energies and possibly the
protein model as well. The calculated radius of gyration,
however, agrees well with the native value, as also shown in
Table I. Thus, it may be generally more difficult to reproduce
the native energy than the size and overall structure. These
observations also hold for the proteins 2mhu and 2cro~see
Table I!.

2. dRMSD distributions and 3D structures

The RMSD distribution yields a more direct measure of
the quality of configurational ensembles than the energy dis-
tribution. The distance RMSD,Ddrms, is defined by

Ddrms5A 1

N2 (
i 51

N

(
j 51

N

~Di j 2Di j
nat!2, ~16!

whereDi j and Di j
nat are distances between residuesi , j of a

generated configuration and the native protein, respectively.
We use the dRMSD measure to allow rapid evaluation of
deviations of about 10 million configurations from the native
structure. We also computeCa cRMSD, obtained by optimal
superposition of structures using Kabsch’s method.31,32 The
cRMSD value is typically about 40%–50% larger than that
of the dRMSD.

As shown in Fig. 3, the dRMSD distributions for the
proteins 2mhu and 2cro are rather broad, but the peaks are
located at the lower ends of the distributions which means
that most configurations have lower dRMSD values. Con-
versely, a distribution peaked at the high end of the dRMSD
range would indicate a poor algorithm or/and energy func-
tion. Certainly, the goal is to devise a selection criterion to
pick the structures in the ensemble with the lowest dRMSD
values. This is discussed in the next subsection, but now we
examine the best structure or the one with the lowest
dRMSD value in a given ensemble of configurations. We see
in Table I that the best structures have a dRMSD value of 2.2
Å for the small protein 2mhu~30 residues! and 3.8 Å for the

larger proteins 1r69~63 residues! and 2cro~65 residues!. For
comparison, the best dRMSD values obtained by Hinds and
Levitt21 using an exact enumeration method on diamond lat-
tice are in the range of 3.17– 4.01 Å for proteins having 52
to 68 residues. Thus our results are comparable in quality
with those by Hinds and Levitt.

Some of the factors determining the lowest dRMSD
value obtainable include quality of the algorithm and energy
function, the sequence length, and nature of protein fold. For
example, as the sequence length increases the number of
possible configurations grows exponentially, making it much
more difficult to obtain low dRMSD values. By comparing
the best dRMSD values of 2mhu~30 residues! and 2cro~65
residues!, we see that doubling the protein length nearly
doubles the dRMSD value. Moreover, simple protein folds
are expected to be easier to generate than complicated pro-
tein folds, as the comparisons of three-dimensional structures
below illustrate.

Best dRMSD structures~with corresponding cRMSD
value! for the three test proteins 2mhu, 1r69, and 2cro are
compared to their native structures in Fig. 4. These configu-
rations with cRMSD of about 3–6 Å or dRMSD of 2–4 Å
reproduce the rough overall folds of their native structures.
However, secondary structures of 1r69 and 2cro are not evi-
dent in these calculated configurations; specific short range
potentials are needed to reproduce these features.

To further explore the performance of our approach on a
relevant protein with unknown native structure, we consider
the Janus sequence, a solution to the Paracelsus challenge of
Rose and Creamer:33 transform the conformation of a parent
globular protein into a target protein by altering less than
50% of the parent protein sequence. The solution to the chal-
lenge, based on the parent~1pgb! and target ~1rop!
proteins,18 is the Janus sequence that has an experimentally
inferred fold that is similar to the target protein 1rop.18 How-
ever, its experimental three dimensional structure has not
been solved. We use our algorithm to generate the folds of

TABLE I. Comparison of the global properties of chain growth~CG! con-
figurations and native structures for three proteins. Results include excess
internal energy per residue (E/N), mean radius of gyration (RG), ensemble-
averaged dRMSD (A^Ddrms

2 &) and the lowest dRMSD values in the gener-
ated ensembles along with their corresponding cRMSD values. The native
values of energy refer to computed energies ofCa proteins in their native
configurations. The energy is expressed in units ofkBT0 whereT0 is room
temperature and the RMSD values are in Å .

Proteins Size (N) E/N RG ~Å! A^Ddrms
2 &

Lowest
dRMSD

Lowest
cRMSD

2mhu native 30 21.46 8.47
2mhu CG 30 22.93 7.15 3.71 2.18 3.27
1r69 native 63 21.92 10.22
1r69 CG 63 23.90 10.46 5.74 3.82 5.48
2cro native 65 22.11 10.22
2cro CG 65 24.85 10.24 5.37 3.82 5.67

FIG. 3. Distribution of distance root-mean-square deviations~dRMSD! for
Cd-7 Metallothionein-2~2mhu! and 434 Cro~2cro! proteins at reduced tem-
peratureT* 51 as computed from an ensemble of 5 million configurations
for 2mhu and 10 million configurations for 2cro.
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the parent, target, and Janus proteins; 5 million configura-
tions were generated for each of the proteins. Since 1pgb~56
residues! and 1rop~63 residues! proteins do not have the
same number of residues, the last seven residues at the un-
structured C-terminal tail of 1rop are not considered in our
simulations.

Figure 5~a! shows how well the best generated structures
compare with the native 1pgb and 1rop proteins: the cRMSD
for 1rop is 4.9 Å and for 1pgb it is 6.2 Å . Better accuracy is
achieved for the all-a protein because it is topologically sim-
pler than the mainlyb protein 1pgb.

Since the Janus structure is not available, we next com-
pare the configurations generated with this sequence to the
parent and target structures. From the Janus configurational
ensemble, we select two structures where one of them has
the lowest dRMSD with respect to the parent protein and the
other to the parent protein. The two pairs of superimposed
structures are shown in Fig. 5b. The best Janus structure for
the target protein has a low cRMSD of 5 Å , but theequiva-
lent structure for the parent protein has a larger cRMSD of 7
Å . Thus, our approach can approximate the target structure
using its native~1rop! and Janus sequences.

The algorithm’s ability to generate accurate folds is a
prerequisite for predicting protein structures.De novopredic-
tions must be based on some selection criteria such as free
energy. For completeness, we also compare the lowest en-
ergy structure of Janus in our ensemble to the parent and
target proteins in Fig. 5~c!. Disappointingly, the Janus struc-
ture has cRMSD values of 8.1 and 11.8 Å with respect to the
parent b protein and targeta protein, respectively. This
failed prediction may be explained by the fact that the lowest
energy conformation from our model is a compact structure
whereas the 1rop structure is an elongated fold. A better
assessment of a prediction algorithm is to test its predictive
capability on a set of proteins. On this measure, our algo-
rithm’s accuracy of predicted folds generally varies between
6 to 8 Å for a set ofa proteins.34 Recent assessment of blind
predictions~CASP3, critical assessment of structure predic-
tions! from ab initio methods shows that for most target
structures the cRMSD value is about 10 Å , although a few
significantly better predictions are reported.35 While progress
in ab initio approaches has been made, all approaches are far
from being sufficiently accurate to be useful for detailed
functional studies~e.g., prediction of active sites!.

FIG. 4. ~Color! Comparison of native
Ca trace ~red! and the corresponding
structure generated by the chain
growth algorithm~blue! with the low-
est dRMSD or cRMSD. Superposi-
tioning was done using the molecular
graphics program Insight II. The
cRMSD value was calculated using
the optimal superposition method of
Kabsch ~Ref. 31!. Results were ob-
tained using 5 million configurations
for protein 2mhu and 10 million each
for proteins 1r69 and 2cro.
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3. Correlations between RMSD and energy Õweight

Next we assess the quality of configurational ensembles
by displaying the correlation between RMSD and energy for
the configurations. We also introduce the ensemble-averaged
dRMSD and an energylike quantity based on the statistical

weightWL . Energy and statistical weight are different crite-
ria for selecting favorable configurations whereas ensemble-
averaged dRMSD is a global measure of ensemble’s quality.

We define the thermal or ensemble-averaged dRMSD
value for the configurational ensemble at inverse temperature
parameterb as follows:

^Ddrms
2 &b5(

L
Ddrms

2 SL~b,b8!Y (
L

SL~b,b8!, ~17!

whereSL(b,b8) is defined in Eq.~9!. This average is a more
meaningful measure of expected deviations produced by the
model and algorithm than other measures based on specific
configurations, especially for equilibrium configurations with
considerable flexibility. It is also equivalent to the long-time
average of dRMSD in equilibrium molecular dynamics simu-
lations. The dependence ofA^Ddrms

2 & on internal energy
E(T)5^EL&b for the proteins 2mhu and 1r69 is shown in
Fig. 6. In this plot, we have calculated the mean energy per
residue using both direct simulations~points! and an extrapo-
lation technique whose results are shown as composite
curves. The composite curves from the extrapolation proce-
dure were obtained by using formula@Eq. ~8!# with four
configurational ensembles generated atT* 51, 1.25, 1.5, and
2. Figure 6 shows that the ensemble-averaged dRMSD value
is a monotonic decreasing function of the internal energy. It
emphasizes that a low average dRMSD corresponds to a low
average energy, although below a certain threshold energy
the average dRMSD does not seem to improve. For the con-
figurations with the lowest energies~i.e., near room tempera-
ture! their dRMSD values vary between 4 Å and 6 Å .These
values are about 2 Å larger than the best values in the en-
sembles and slightly lower than the dRMSD values at which
the peaks of the dRMSD distributions are found~Fig. 3!.

The average RMSD is a statistical measure of the RMSD
for an ensemble of configurations. Often, it is desirable to
compare specific, favorable configurations to the native
structure; this requires a way of ranking the configurations.

FIG. 5. ~Color! Comparison of nativeCa trace~red! and the corresponding
structure generated by the chain growth algorithm~blue!: ~a! lowest dRMSD
or cRMSD structures in configurational ensembles for 1pgb~left! and 1rop
~right! proteins;~b! two structures from the Janus ensemble with the lowest
dRMSD with respect to 1pgb and 1rop proteins;~c! the generated Janus
structure with the lowest energy is superimposed with 1pgb and 1rop pro-
teins. Note that the last seven unstructured residues of the C-terminal of
1rop are not shown, and the structures superimposed have 56 residues each.
Five million configurations were produced for each of the protein sequences.

FIG. 6. Ensemble-averaged distance RMSD vsE/N, the excess internal
energy per residue, for the two proteins 2mhu and 1r69. The square symbols
denote simulation points, and the composite curves were computed using the
analytic extrapolation formula Eq.~8! given four configurational ensembles
at T* 51, 1.25, 1.5, and 2.
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Most ranking of proximity to the native state is based on the
internal energy by assuming that the entropic contribution is
small. Here we employ both energy and weight-based selec-
tion criteria to display their correlations with RMSD.

The new weight-based selection criterion is rationalized
as follows. Recall that the excess free energyF(b)}
2 ln($L%WL(b). This function cannot be used to rank con-
figurations because a free-energy like function that is con-
figuration specific is required. We achieve this by using the
following weight-based energy for configurationL:

EW~L!52kBT ln WL . ~18!

Here, configurations with large weights correspond to low
energies. Recall that statistical weightWL is related to cho-
sen growth directions which are in turn determined by the
Boltzmann factors in the transition probability. Moreover,
the weight-based energy is correlated with both the internal
and the free energies. In fact, our simulation results show
that 2kBT ln WL is correlated with internal energyEL at
room temperature. It is also apparent thatEW(L) is obtained
from the free energy when a configuration in the ensemble
has a dominant weight. Thus,EW(L) offers a different se-
lection criterion but is still related to the internal and free
energies.

Folded nativelike conformations are expected to have
much lower energies than unfolded conformations. There-
fore, there should be a good correlation between the configu-
ration weight-based energy and cRMSD value. Scatter plots
of EW /kBT versus cRMSD for the three proteins are shown
in Fig. 7 using the cRMSD corresponding to optimal super-
position of the two structures. The shapes of the scatter plots
in Fig. 7 indicate a general correlation between low cRMSD
value and energy. However, this correlation is not strong
since configurations with highEW values can also have
lower relative cRMSD values. In Fig. 8, similar scatter plots
are shown using the internal energyE as selection criterion
instead of the free-energy likeEW . The general trend is simi-
lar to those in Fig. 7. Others have also found comparable or

weaker degree of energy/cRMSD correlations when statisti-
cal potentials are used to compute the protein energy or used
as selection criteria.36 Stronger correlations between cRMSD
and energy are possible with all-atom potentials.37

B. Thermodynamic analysis of temperature-induced
transitions

The native states of proteins are special points in the
thermodynamic phase diagram. Experimental studies of pro-
tein folding/unfolding provide essential information about
the behavior of proteins under a wide range of temperature
and solvent conditions.29,30 The validity of protein interac-
tion potentials and the algorithms designed to find the global
free energy minimum are more fully tested when computed
properties of proteins in various regions of the thermody-
namic phase diagram are assessed with respect to experimen-
tal data. Below we report on the response of thermodynamic
functions to variation of temperature. Since the solvent de-
grees of freedom are not included explicitly, variation of
thermodynamic properties with respect to solvent conditions
cannot be adequately studied here.

1. Statistical fluctuations in thermodynamic
quantities

We begin with a consideration of statistical errors in the
computation of thermodynamic quantities. Statistical errors
in thermodynamic quantities are estimated by performing
different runs for the same protein at a given temperature,
and repeating this process for various temperatures of inter-
est. The number of configurations sampled is 53106 for
2mhu and 107 for the larger proteins 1r69 and 2cro. Compu-
tational time for a single run for protein 2mhu is about 10
hours on SGI Origin2000 and about four times longer for the
other two proteins~double the size of 2mhu!. Typically, over
90% of the trial configurations are successfully grown~less
than 10% are discarded because of dead-end configurations!.

Table II summarizes the standard deviations for various
calculated thermodynamic quantities at the reduced tempera-
ture T* 51.5, which are expressed as percentages of the av-

FIG. 7. Scatter plots of the weight-based energy per residue,EW /N @Eq.
~18!#, vs cRMSD for three proteins. Energy is expressed in units ofkBT0

whereT0 is the room temperature and cRMSD is in Å . Eachplot displays
50 000 randomly chosen configurations.

FIG. 8. Scatter plot as in Fig. 7, but for internal energy per residue,E/N, vs
cRMSD.
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erage values; each value was obtained from 20 different runs.
We have chosen the temperature to lie in the transition re-
gion of thermal curves where fluctuations are most signifi-
cant. As shown in Table II, all quantities except the specific
heat capacity have small to moderate standard deviations.
The heat capacity, reflecting energy fluctuations or the sec-
ond energy moment, is subject to larger numerical uncertain-
ties than, for example, the internal energy.

2. Thermodynamic profiles

In the chain growth approach thermodynamic functions
can be calculated using both the direct simulation approach
and the theoretical extrapolation formula~8!. The direct
simulation approach requires that many points be calculated
at different temperatures whereas the theoretical formula of
Eq. ~8! can rapidly estimate the shape of the curve based on
a few configurational ensembles generated. The extrapola-
tion formula is expected to be most effective in moderate and
high temperature regions. Because the low temperature re-
gion is dominated by a few specific configurations, more
configurational ensembles may be needed to obtain accurate
thermodynamic curves. To reproduce a thermodynamic
curve, we generate ensembles atT1 ,T2 , . . . ,Tn wheren is
typically small. A composite curve is obtained by extrapolat-
ing known thermal average valuesA(T1),A(T2), . . . ,A(Tn)
using Eq. ~8!. We compare direct simulation results with
thermodynamic curves produced in this way.

The temperature dependence of the excess free energy,
internal energy, and entropy@Eqs.~12!–~14!, respectively# is
shown in Fig. 9 for the three proteins 2mhu, 1r69, and 2cro;
the corresponding results for the radius of gyration and
ensemble-averaged dRMSD are shown in Fig. 10. For each
protein, the actual simulation values are shown as points and
the curves are derived from Eq.~8!. The extrapolated curves
are based on four ensembles at reducedT* 51, 1.25, 1.5,
and 2. We generally note a good fit between computations
and theory, for moderate and high temperatures. The best
agreement is in the free energy curves in Fig. 9. The com-
posite curves are discontinuous in the lower temperature re-
gion, and there is evidence that simulated points behave
similarly. Better agreement can be achieved when the com-
posite curves are constructed based on more configurational
ensembles, at the expense of computational cost. For com-
parison, thermodynamic functions of simple protein models

on cubic lattices calculated by a chain growth algorithm can
be obtained with greater efficiency than with our more real-
istic protein model.10 Here, the statistical fluctuations are
small and the extrapolation technique works well over a wide
temperature range.

The excess energy and entropy functions in Fig. 9 show
marked increases when the temperature exceeds about 300
K. We see an initial increase in the temperature range 300–
500 K and further increases at higher temperatures as the
proteins unfold. The small protein 2mhu tends to show an
abrupt transition from native to unfolded state. The transition
curves of the larger proteins 1r69 and 2cro are not smooth
and the transition is spread over a broader temperature range.
The larger proteins tend to reach their high temperature satu-

TABLE II. Standard deviations of excess internal energy (E), free energy
(F), specific heat (C), and entropy (S) per residue, and mean radius of
gyration (RG) and ensemble-averaged dRMSD (A^Ddrms

2 &) at reduced tem-
perature ofT* 51.5 as obtained from 20 runs each for two proteins~en-
sembles of 5 million configurations for 2mhu and 10 million configurations
for 1r69!. The standard deviations are expressed as a percentage of the mean
value and the energy is in units ofkBT0 whereT0 is the room temperature.

T* E/N F/N C/kBN S/kBN RG ~Å! A^Ddrms
2 & ~Å!

2mhu
1.5 3.0 21.7 25.4 2.5 0.9 2.9

1r69
1.5 3.5 3.2 73.6 4.3 5.6 12.8

FIG. 9. Temperature dependence of excess internal energy (E/N), entropy
(S/kBN), and free energy (F/N) per residue for three proteins. The symbols
are simulation values and the composite curves were obtained via analytic
extrapolation formula Eq.~8! given four configurational ensembles at re-
duced temperaturesT* 51, 1.25, 1.5, and 2. The energies are expressed in
units of kBT0 whereT0 is room temperature.

FIG. 10. Temperature-dependent studies as in Fig. 9, but for the radius of
gyration (RG) and ensemble- averaged dRMSD, in units of Å .
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ration value at higher temperatures. This difference is partly
due to the higher internal energies~per residue! for the larger
proteins; see Table I. For temperatures less than 500 K, the
radius of gyration and ensemble-averaged dRMSD in Fig. 10
only change moderately. Large increases for these global
properties occur when the temperature approaches two to
three times the native or room temperature. These tempera-
tures correspond to about 2/3 of the internal energy per resi-
due atT* 51. At these temperatures, all degrees of freedom
in the proteins are essentially thermalized, resulting in dra-
matic increases in the radius of gyration and thermodynamic
curves~Figs. 9 and 10!. Proteins are unfolded under these
conditions.

3. Relation to other theoretical studies

Protein denaturation has been rationalized using both the
two-state transition29 and transition via intermediate
states.30,38 Recent entropy-sampling Monte Carlo studies by
Hao and Scheraga3–6 on thermal transitions of model pro-
teins support the view that the transitions are essentially of
the two-state character. The entropy sampling method is
similar to the multicanonical sampling approach which has
been applied to proteins.2 In this view of protein denaturation
transition, the protein is either in the native state or the un-
folded states with few stable intermediate states. The free
energy ofstates, as opposed to thermodynamic free energy,
is found to have a double-well shape. The free energy of
states cannot be calculated using the chain growth method
because the density of states is not determined. Calculated
free energy curves in Fig. 9 for all three proteins 2mhu, 1r69,
and 2cro are smoothly varying functions of temperature,
which show lack of abrupt changes as seen in energy, en-
tropy, and radius of gyration transition curves.

Protein denaturations associated with heat and acid de-
naturants are also interpreted in terms of partial unfolding or
formation of intermediate molten globule state.30 Complete
unfolding occurs only in strong concentrations of urea. This
type of transition is akin to melting of crystals to the disor-
dered liquid state where the density of molecular packing is
not greatly changed. Such a theoretical model has been pro-
posed for protein denaturation.38 As remarked before, below
500 K the values of the radius of gyration of proteins in Fig.
10 increase only moderately or by about 10% even though
the energy and entropy in Fig. 9 show significant changes.
Our results indicate that below 500 K the computed proteins
are far from being fully unfolded. This discussion empha-
sizes that thermodynamic functions and mean radius of gy-
ration do not necessarily increase at the same rate.

Our calculated results are more consistent with the pic-
ture that proteins denature via partial unfolding, although we
caution that our calculations are limited to only three pro-
teins using a low-resolution model. To support either view of
protein denaturation, more protein cases must be examined
and the level of accuracy of the model must be enhanced.

V. SUMMARY AND CONCLUSIONS

We have examined the feasibility of using the chain
growth algorithm for computing the configurational proper-
ties of proteins. The properties analyzed include structural

features, correlations between energy and RMSD for con-
figurations, and thermal transition profiles. Our protein
model is more realistic than those in previous studies using
chain growth algorithms10,12 because it includes all 20 resi-
due types, a physical range of pseudobond angles, and the
simulation was performed on a refined cubic lattice.

We show that our model/algorithm combination is ca-
pable of generating configurations that are reasonably close
to the native structures. The ensemble-averaged deviations
from the native structures are only about 2 Å poorer than the
best structures obtained, although the dRMSD distributions
of the configurational ensembles are fairly broad. In addition,
we presented an interesting application of the chain growth
algorithm to the parent and target sequences, and the trans-
formed sequence Janus associated with the solution to the
Paracelsus challenge. Our algorithm reproduced the target
protein structure with reasonable accuracy based on the best
structures in the configurational ensembles generated for tar-
get and Janus sequences. We also introduced weight-based
energy to evaluate energy-RMSD correlations for configura-
tions; we found that present configurational ensembles yield
only a moderate level of correlation. Collectively, these re-
sults appear to be satisfactory in view of our relatively
simple Ca protein model which does not incorporate any
specific secondary biases or tertiary restraints. Further im-
provements should be possible with more accurate represen-
tations of the protein chain and newer chain growth algo-
rithms that are currently being developed.12

The thermodynamic curves of proteins complement our
results on structural features and analysis of configurational
ensembles. We showed that the chain growth method can
reproduce the thermal transition curves with only a few
simulation runs. This technical advantage should prove use-
ful in studies of protein transitions. Computed protein ther-
modynamic functions show that proteins undergo a transition
to the unfolded state above the room temperature. Tempera-
ture dependence of the radius of gyration and ensemble-
averaged dRMSD indicates that the rate of change may be
different from that of thermodynamic functions. We dis-
cussed our results in the context of current views on protein
transitions. However, computed specific heat capacity was
subject to significant statistical fluctuations which prevented
meaningful comparison to experimental results.

The chain growth method of generating configurations is
conceptually distinct from the Metropolis algorithm. En-
sembles of statistically independent configurations provide
efficient computations of thermodynamic functions for the
test cases presented. Furthermore, current developments in
the chain growth algorithm may enhance its computational
efficiency for realistic protein models which is one of the
goals of protein structure prediction research. Our structural
and thermodynamic results demonstrate that the algorithm is
a viable alternative to other Monte Carlo algorithms that are
currently being employed in theoretical studies of protein
structure prediction and thermodynamics. In a forthcoming
paper, we use the chain growth algorithm to evaluate the
ability of different energy functions to discern nativelike
structures for a set of proteins.34
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APPENDIX: FORMULATIONS OF THE CHAIN
GROWTH ALGORITHM

Here we present formulations of the chain growth algo-
rithm for athermal and temperature-dependent chains based
on Rosenbluth and Rosenbluth,7 Meirovitch,9 and
Grassberger.12 The concepts of transition probability, statis-
tical weight, and importance sampling are described. An
overview and summary of the algorithm are given in Secs.
III A and III B.

1. Transition probabilities and statistical weights

For a chain molecule withN11 interaction sites, the
chain growth process is governed by the transition probabil-
ity Pi at stepi that specifies the probability of selecting a
given direction for the next link afteri 21 links have been
placed. For self-avoiding chains, the new direction must not
overlap with any of the previous sites. Thus the transition
probability Pi depends on the position vectorsR1 , . . . ,Ri of
sites 1,. . . ,i . We denote byvki

the lattice vector for the
chosen directionki at stepi. The transition probabilityPi for
athermal chains is given by

Pi~Ri1vki
uR1 , . . . ,Ri !51/Ci , ~A1!

whereCi is the number of vacant sites at stepi and Pi(Ri

1vki
) is normalized:(ki51

Ci Pi(Ri1vki
)51. If nc is the co-

ordination number of a lattice, the maximum value ofCi is
nc21 for self-avoiding chains andnc for ideal chains with
allowed overlapping sites. For example,nc56 for a simple
cubic lattice and 24 for the refined cubic lattice~311!. For a
chain withN links, the probability of generating the full con-
figuration of the chainL5L(R1 , . . . ,RN11) is then

PL5)
i 51

N

Pi~Ri1vki
uR1 , . . . ,Ri !51/WL , ~A2!

where the weightWL5) i 51
N Ci . Configurations of athermal

chains are mostly expanded states, and their average dimen-
sion ~e.g., radius of gyration! obeys well-known scaling
laws.

To derive the analogous expressions for temperature-
dependent chains, the above transition probabilityPi is
modified to allow sampling of both open and compact con-
figurations whenbÞ0 and the potential has a finite range.
Meirovitch8,11 proposed a transition probability where a uni-
form weighting of Eq.~A1! is modified by a Boltzmann-
weighted energy factor as follows:

Pi~Ri1vki
uR1 , . . . ,Ri ;b!

5exp@2bui~Ri1vki
!#Y (

ki51

Ci

exp@2bui~Ri1vki
!#,

~A3!

where the relevant incremental, nonbonded potential energy
at thei th step is

ui~Ri1vki
!5(

j 51

i 21

ui j ~Ri j !. ~A4!

In practice, we ensure that the probabilityPi given in Eq.
~A3! is associated with the selected directionki by consider-
ing several growth directionski8 and associated energies
ui(Ri1vk

i8
) through comparison to a uniform random variate

x in @0,1# as follows. We define

Jki
5 (

ki851

ki

Pi~Ri1vk
i8
! ~A5!

and increaseki from 1 up to the smallest integerki that
yields the sumJki

.x. The chain growth process is termi-
nated when no vacant sites are available, i.e.,Ci50.

The probability of generating a configuration at tempera-
ture b is now given by

PL~b!5)
i 51

N

Pi~Ri1vki
uR1 , . . . ,Ri ;b!

5exp~2bEL!/WL~b!, ~A6!

where the statistical weight

WL~b!5)
i 51

N H (
ki51

Ci

exp@2bui~Ri1vki
!#J . ~A7!

In the athermal limit,b50 or EL50, we recover the Rosen-
bluth transition probability@Eq. ~A1!#. In fact, the configu-
rational probabilities of Rosenbluth@Eq. A2!# and Meiro-
vitch @Eq. A6!# satisfy the relation

PL~b!WL~b!5exp~2bEL!. ~A8!

Thus other forms of transition probabilities and associated
weights are possible provided this relation is satisfied. In-
deed, Grassberger and co-workers have used this relation to
design other forms for weights and transition probabilities in
the context of polymers and simple protein models.12

2. Ensemble averaging by importance sampling

Once configurations are generated as above, an ensemble
is used to evaluate a thermodynamic propertyA in canonical
ensemble by a modification of the standard average

^A&b5(
$L%

AL exp~2bEL!Y (
$L%

exp~2bEL!, ~A9!

whereEL is the total potential energy for configurationL,
andAL is the value of propertyA for L.

A modification of Eq.~A9! is needed to remove the bias
inherent in the growth process since the configuration prob-
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ability PL depends on the sequence of selected growth di-
rections. This can be done by using an importance sampling
procedure which assigns a counter-weightPL to eachAL

term. The thermal average in Eq.~A9! becomes

^A&b5(
$L%

ALPL
21~b!exp~2bEL!Y (

$L%
PL

21~b!

3exp~2bEL!

5(
$L%

ALWL~b!Y (
$L%

WL~b!. ~A10!

The configurations$L% above now refer to those generated
by the chain growth method. In this average, all successfully
grown configurations are counted, each with a statistical
weight WL @as defined in Eq.~A7!#. This procedure gener-
alizes the Rosenbluth weighting for statistical averages.7

Naturally, to enhance the accuracy of the estimate of thermal
averages, the configurational sample must be sufficiently
large so that configurations with large weights belong to the
ensemble. Thus, the importance sampling procedure will
generally be ineffective for small samples. An alternative
procedure for ensuring correct weighting of chain growth
configurations for thermal averages is described in Refs. 11
and 39.
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