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Abstract. One hypothesis for why estimators of species richness tend to underestimate
total richness is that they do not explicitly account for increases in species richness due to
spatial or environmental turnover in species composition (beta diversity). I analyze the
similarity of a data set of native trees in Great Smoky Mountains National Park, USA, and
assess the robustness of these estimators against recently developed ones that incorporate
turnover explicitly: the total species accumulation method (T-S) and a method based on the
distance decay of similarity. I show that the T-S estimator can give reliable estimates of species
richness, given an appropriate grouping of sites. The estimator based on distance decay of
similarity performed poorly. There are two main reasons for this: sample size effects and the
assumption that distance decay of similarity exhibits a power law relationship. I show that
estimators based on distance–decay relationships exhibit systematically lower rates of distance
decay for samples with few individuals per site independent of environmental variation.
Second, the data presented here and many other survey data sets exhibit exponential rather
than power law distance–decay relationships. Richness estimators that explicitly incorporate
beta diversity can be improved by beginning from an exponential distance–decay relationship
and adjusting for the systematic errors introduced by small sample sizes.

Key words: beta diversity; distance decay of similarity; Great Smoky Mountains National Park, USA;
species richness estimation.

INTRODUCTION

The assessment of species richness over landscapes

requires ever-increasing sample effort to capture the ever

rarer species (Fisher et al. 1943, Preston 1948). Unless a

landscape is completely surveyed, all samples fail to

record a certain proportion of rare species. Consequent-

ly, in order to estimate total species richness (Strue) at a

landscape scale (103–106 ha), we are forced to extrap-

olate from incomplete surveys of total richness. There is

a long history in ecology of estimating total species

richness (Sest) from sample data, and a wide variety of

techniques for doing so (Chao 2004). Numerous papers

have assessed the bias and precision of any of a number

of estimators for a given taxonomic group and location

(for reviews see Cao et al. 2004, Walther and Moore

2005).

Species richness estimators rely upon the relationship

between species richness and the accumulation of sample

effort or area to estimate the total number of species for

some unmeasured amount of sample effort either as

time, area, or number of individuals sampled. The

relationship between species richness and sample effort

is summarized as a species accumulation curve in which

the x-axis is increasing sample effort or number of

individuals and the y-axis is increasing species richness.

Species richness estimators that use rarefied species

accumulation curves fall into two broad categories:

parametric and nonparametric. The former fit a function

(typically a Michaelis-Menten) to the species accumula-

tion curve (e.g., Plotkin et al. 2000, Jimenez-Valverde et

al. 2006). The latter estimate species richness based on

the frequency distribution of either species among sites

(incidence based) or the number of individuals of each

species (abundance based). These nonparametric esti-

mators have more accurate estimates at small sample

sizes than parametric ones and are typically preferred

(Colwell and Coddington 1994).

An implicit assumption of nonparametric estimators

is that sites are spatially homogeneous (Chazdon et al.

1998) and that the population from which individuals or

species are drawn is stationary. As such, these estimators

are typically used to estimate alpha diversity (Whittaker

1972), which is local species richness in which environ-

ment and other factors that control the species

distributions are relatively constant. Recent evidence

suggests, however, that these estimators are robust to

spatial heterogeneity as long as sample coverage, the

proportion of species observed relative to total species, is

high (Brose et al. 2003, O’Dea et al. 2006). In fact, many

studies that assess the performance (as measured by

bias, precision, and/or accuracy) of these richness

estimators were based on samples that could be
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considered heterogeneous (e.g., Palmer 1990, Chiarucci

et al. 2001).
In spite of their popularity, available nonparametric

estimators typically underestimate species richness
(Chao 1984, Colwell and Coddington 1994), possibly

because they do not explicitly account for increases in
species richness due to turnover in species composition

across gradients. Such turnover, or beta diversity
(Whittaker 1972), is responsible for greater species
richness of large areas than would be suggested by

extrapolating from small areas and is the driving force
behind changes of richness with scale (Preston 1962a, b,

Rosenzweig 1995). Beta diversity may therefore hold the
key to understanding the manner in which richness

scales from small areas that can be completely surveyed
to large areas that cannot. Two recently published

richness estimators (Harte et al. 1999, Ugland et al.
2003) explicitly use beta diversity in calculating Sest. The

T-S estimator of Ugland et al. (2003) relies on grouping
sites into ecologically meaningful subsets and integrating

species richness estimates across different combinations
of these groupings. The estimator developed by Harte et

al. (1999) builds upon the log–log relationship between
richness and area (Arrhenius 1921) to calculate Sest

based on the distance decay of compositional similarity
(Nekola and White 1999). This method has received
attention in the literature for estimating the richness of

microorganisms (Green et al. 2004, Horner-Devine et al.
2004) and landscape-scale vegetation (Krishnamani et

al. 2004).
Here I assess the robustness of species richness

estimators that explicitly incorporate species turnover
relative to other, more popular estimators that do not. I

analyze the relationships between the similarity of
environments, geographic locations, and species com-

position. I demonstrate the sensitivity of turnover-based
estimators to sample size and sample coverage. Extend-

ing this concept with a simulated example, I show that
estimators based on distance–decay relationships exhibit

systematically lower rates of distance decay for samples
with few individuals per site independent of environ-

mental variation. Finally, I show how estimators based
explicitly on turnover and those based on the frequency

distribution of richness among sites can be used in
concert to accurately estimate landscape-scale species

richness.

METHODS

Study site

The study uses data from the Great Smoky Moun-
tains National Park (GSMNP, Tennessee–North Caro-

lina, USA; 358350 N, 838330 W; Fig. 1) to illustrate and
evaluate methods for estimating total species richness.

The Park area is a little over 2000 km2 (39 3 87 km);
95% of the park is forested. Forests range from high-

elevation red spruce–Frasier fir (Picea rubens–Abies
fraseri) and northern hardwood forest dominated by

red maple (Acer saccharum), American beech (Fagus

grandifolia), and yellow birch (Betula alleghaniensis) to

eastern hemlock (Tsuga canadensis) and pine–oak (Pinus

spp.–Quercus spp.) forests on mesic and dry sites,

respectively. At lower elevations, rich cove forests

dominated by tulip poplar (Liriodendron tulipifera),

American basswood (Tilia americana var. heterophylla),

and red maple (Acer rubrum var. rubrum) are present.

Within the Park, 129 native tree species (Strue) have been

documented (165 including exotic species) (White 1982;

P. White, unpublished data; P. White, J. Fridley, and J.

Rock, unpublished data). Nomenclature follows Weakley

(2006).

Data

The data set used for this analysis is a compilation of

vegetation studies conducted in GSMNP spanning

1976–2004 (Fig. 1). Though each study in the compila-

tion had its own research questions, they all record the

presence of vascular plants in an area of 1000 m2. I have

limited this analysis to trees, because the actual number

of species in the Park (Strue¼ 129) is known to within a

few species. I have further limited the species list to only

native trees because of the rapidly changing richness of

exotic species in the flora. In the data set, 103 native tree

species had recorded observations; the mean plot

richness was 14.7 species/plot with a maximum of 34

species/plot. The final data set consisted of 805 plots

after removing those lacking native trees.

Analysis

I generated incidence-based species accumulation

curves (Sobs) (Colwell et al. 2004) for the Park and

parametric and nonparametric species richness estimates

using the software package EstimateS (Colwell 2005).

There are many incidence-based richness estimators, so I

limited this analysis to those that have been reported in

the literature to perform best. Among the parametric

equations, I used a fitted Michaelis-Menten (M-M)

(Raaijmakers 1987, Colwell et al. 2004). The nonpara-

metric estimators were the incidence coverage estimator

(ICE) (Chazdon et al. 1998, Chao et al. 2000), Chao’s

incidence-based estimator (Chao2) (Chao 1984, 1987),

and the second-order jackknife estimator (Jack2) (Burn-

ham and Overton 1978, 1979, Smith and Vanbelle 1984,

Palmer 1991). All these estimators were calculated based

on rarefied species accumulation curves (Sobs) (Colwell

et al. 2004).

Four different measures of site similarity were

generated for the set of plots. For all pairs of sites, I

calculated the Jaccard and Sorenson similarity of species

composition and the Euclidean distance of normalized

environment. The environmental variables included in

the similarity analysis were elevation, hill shade (azi-

muth 135, altitude 45), and relative wetness (as

measured by the topographic convergence index; Moore

et al. 1991, Wolock and McCabe 1995, Yeakley et al.

1998). These variables taken together correspond to the

important ecological gradients of energy flux, tempera-
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ture, and radiation (Jobe 2006; R. T. Jobe, D. L. Urban,

and P. S. White, unpublished manuscript). Since Bray-

Curtis similarity is a rank order measure, each environ-

mental variable had equal weighting. It is unlikely that

species composition varies linearly with these environ-

mental variables or that each variable is of equal

importance for distance decay of similarity. The purpose

of this environmental distance metric, however, was not

to determine the functional relationship between envi-

ronment and composition, but rather to cleanly describe

environmental variation without resorting to an a priori

functional relationship or one derived from the compo-

sitional data itself.

The two turnover-based estimators used in this

analysis are the T-S estimator (Ugland et al. 2003) and

the method of Harte et al. (1999). The T-S estimator

relies upon groupings of similar sites. Given n groups,

mean species accumulation curves are generated for all

combinations of 1, 2, ..., n groups. Each combination

has a mean maximum richness. These maximum values

are then fit to a log linear species–area model. From this

equation the total richness for a given area is calculated.

I generated 10 groups three different ways: by species

composition, by environment, and by geographic

distance. I used the method of partitioning around

medoids (PAM) (Kaufman and Rousseeuw 1990), a

more robust version of k-means clustering, to assign

group membership for each grouping variable.

The method of Harte et al. (1999) relies on the

distance decay of compositional similarity (DDS)

(Nekola and White 1999) to estimate species richness.

The theory behind DDS builds upon Harte and Kinzig

(1997). Beginning with the Arrhenius (1921) power law

species–area relationship S¼ cAz, where S is the number

of species, A is area, and z is the slope of the log–log

relationship, they derive the hypothesis that z is related

to the slope of a log–log distance decay of similarity

(Sorenson similarity) by the function z¼�2d, where d is

the slope of the log–log distance decay. The slope of the

log–log species–area relationship (z) is scale dependent

(Rosenzweig 1995), so the method of Harte et al. (1999)

is only applicable across scales in which z is constant.

Harte has gone beyond this formulation to a model

(HEAP) that does not assume a constant z across all

scales (Krishnamani et al. 2004), but has yet to

formulate a species richness estimator based on this

model.

Analyzing the effect of sample size on the bias of the

DDS estimator is not as straightforward as that for

other richness estimators. Any random subset of sites

can have a unique geographic extent. The DDS

estimator relies on samples whose extent is at least as

great as the square root of the area to which the

extrapolation is made. To correct for this I generated

smaller samples by first selecting a pair of plots

randomly whose interplot distance was at least 40 km

(roughly the square root of the park area). Additional

sites were added randomly up to the desired sample size.

This gave a random subset whose extent was fixed. The

DDS estimator for the park area could be calculated on

these subsets.

RESULTS

Similarity in species composition decreased with

increasing distance between sites. Since distance mea-

sures are strongly influenced by edge effects (Nekola and

White 1999), the smallest linear extent of the Park (the

north-south extent) set the maximum distance for

comparison among sites (40 km; Fig. 2a). This extent

is somewhat larger than the ideal extent for reducing

edge effects (one-half the minimum extent; Palmer

1988), but still reduces edge effects considerably due to

FIG. 1. Map of Great Smoky Mountains National Park (GSMNP), Tennessee–North Carolina, USA, showing the locations of
the 805 tree survey plots used to estimate tree richness for the park.
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the elongated shape of the park. Similarity in species

composition shows a more direct correlation with

environmental similarity than distance (Fig. 2b). The

relationship between environment and compositional

similarity seems to be explained well by a log compo-

sitional similarity and linear environmental similarity.

Distance and environment show a log linear relationship

up to distances of ;20 km, at which point environment

and distance seem uncorrelated (Fig. 2c).

The DDS estimator can only be applied to those

distances ,40 km because of the edge effects described

in the preceding paragraph (Fig. 2d). Since the Park area

is roughly 45 3 45 km2, though, the DDS method can

still be applied to estimate richness for the entire park.

Harte et al. (1999) suggest a correction for rectangular

areas that involves increasing the value of z. Since Sest

from the DDS method was actually much larger than

Strue, this correction was not applied.

The residuals of regressing log(Sorenson similarity)

against log(geographic distance) to 40 km suggest that

errors are not independent and thus violate one of the

important assumptions of linear regression (Fig. 2d).

This also corroborates other evidence suggesting that

the distance decay of compositional similarity is log

linear as opposed to log–log (Nekola and White 1999).

The classic parametric and nonparametric estimators

of species richness underestimated native tree species

richness in GSMNP by ;20% on average (Table 1). The

similarity-based estimators performed better or overes-

timated species richness. Contrary to other results in the

literature (Ugland et al. 2003, O’Dea et al. 2006) the T-S

estimators performed the best of all the estimators. The

DDS estimator was actually the poorest performer of all

the estimators, overestimating species richness by 35%.

The overestimation of species richness was actually

FIG. 2. Distance decay of similarity (mean 6 SD) for species composition and environment for 1000-m2 vegetation plots in
Great Smoky Mountains National Park. Circles are the mean value for each of 10 equal-sized groups of distances along the
abscissa. Comparisons shown are: (a) compositional similarity (Jaccard’s index, J; log scale) by linear distance; this is the standard
distance decay of similarity plot (sensu Nekola and White 1999); (b) compositional similarity (log scale) by environmental similarity
(Bray distance; log scale); (c) linear environmental similarity vs. linear distance (log scale); and (d) Sorenson similarity (S; log scale)
vs. linear distance (D; log scale), whose linearly regressed slope is equal to �2z where z is the exponent of the Arrhenius (1921)
species–area function (sensu Harte et al. 1999).
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worse at small sample sizes, the opposite of all other
estimators (Fig. 3).

DISCUSSION

Similarity in species composition, environment,

and location

Environment tends to dominate changes in species

composition at small scales (Nekola and White 1999),
and this general pattern holds for my data to ;20 km.
Beyond 20 km, species composition remains correlated

with distance beyond that which environment explains,
suggesting that either there exists important, yet
unmeasured, environmental variables that are spatially
autocorrelated at distances greater than 20 km or the

signal of dispersal limitation in trees is present beyond
20 km. It is more likely the former, since I have not here
considered disturbance history. The logging history

within the park is likely to correlate with elevation,
but may be structured at larger spatial grain than the
combined environmental gradients of temperature,

insolation, and relative wetness. For the purposes of
species richness estimation, it is not necessary to tease
apart the relative contribution of measured and unmea-

sured environmental gradients, nor their correlation
with distance, but rather to show that turnover does
occur and that it varies along the selected gradients.
This breakdown of the selected environmental gradi-

ents with distance also illustrates one reason why the
species–area relationship deviates from a power–law
relationship at both large scales and small scales

(Rosenzweig 1995). That is, the slope of the log–log
species area relationship (z) varies at both large scales
and small scales. If the derivation of Harte et al. (1999) is

correct, z is not constant from 13 103 m2 to 23 105 m2.

This limitation is overcome in practice by successively

integrating over small changes in area, where changes in

z are small (Hortal et al. 2006). Species estimates derived

from extrapolation between the plot and some larger

area (smaller than the landscape) are used in the

calculation of Strue. This procedure has two shortcom-

ings. First, since the parameter being estimated (z) is

exponentially related to species number, small errors in

estimating z yield drastic errors in estimating species

number. Second, these errors in the estimation of z are

multiplicative and are propagated when applied sequen-

tially from small areas to large areas. As a result, the

cumulative error in Sest is much larger than that for any

single extrapolation of Sobs at a given scale.

Turnover-based estimators

The classic estimators of species richness (M-M, ICE,

Chao2, Jack2, and their abundance-based counterparts)

have their origin in methods for extrapolating true

population size from mark–recapture sampling (Chao

1984). These estimators attempt to estimate the number

of unobserved species in an unknown stationary

population (of species). As sample coverage (the

proportion of the entire pool of species observed in the

sample) increases, the accuracy of the richness estimator

increases. Brose et al. (2003) have shown that these

metrics are relatively insensitive to environmental

heterogeneity and spatial autocorrelation, so should

perform well with samples that include a lot of

heterogeneity and spatial autocorrelation, but they are

relatively sensitive to sample coverage. In practice,

though, increasing sample heterogeneity by adding new

sites consummately increases the species pool. Sample

coverage is also decreased because the species pool

grows faster than the proportion of species captured in

the sample. So, while gradients may not affect estimator

performance directly, they affect their performance

indirectly by making the universe of species bigger as

dissimilar sites are added (Ugland and Gray 2004).

Turnover-based estimators are plagued by the same

problems, but in a different way. The T-S estimator

performed better than expected based on the results of

other studies. In previous studies, the estimator always

overestimated Strue by a substantial amount. The errors

in species estimation are mainly due to the fact that

choosing the number of groups and the membership in

each group is somewhat arbitrary. Group membership

in particular is important because all of the members are

assumed to have the same species pool. In previous

studies, group membership was decided based on either

making equal-interval divisions across an ordination

axis, an environmental gradient, or categorical habitat

types. None of these methods asks the data which

groupings are appropriate. Assigning group membership

by nonhierarchical clustering (such as PAM) allows

natural groupings of similar sites based on the data set.

This is the likely reason for the better performance of

this estimator, even when using a normalized environ-

TABLE 1. Richness (S) estimates and performance for a variety
of estimators.

Estimator Sest

Sest/
Strue Model

Sobs 103 0.80

Parametric

Michaelis-Menten (M-M) 97 0.75

Nonparametric

Incidence coverage
estimator (ICE)

105 0.81

Chao2 104 0.81
Jack2

Similarity based

Total species accumulation
(T-S)

Environmental distance 121 0.94 14.3ln(A)þ15.7
Geographic distance 125 0.97 12.8ln(A)þ24.2
Compositional similarity 122 0.95 13.7ln(A)þ16.5

Harte et al. (1999) 174 1.35 (14.7)(A/0.001)0.17

Notes: See Methods: Analysis for explanations of estimators.
Strue is 129 species; A is area. Contrary to previous studies, the
total species accumulation method (T-S) estimators outper-
formed any other estimator. The method of Harte et al. (1999)
was the poorest performer.
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mental index that is probably nonlinear with respect to

species composition. O’Dea and others (2006) suggest

that the T-S estimator is unnecessary because the

species–area relationship is implicit in estimators of

species richness. Nevertheless, richness estimators not

based on turnover always underestimate richness due to

turnover between sites. The key to incorporating

compositional turnover explicitly in species richness

estimation lies in separating the differences in species

composition between sites that are due to environmental

turnover from those that are influences because sample

coverage is too small.

The impact of sampling constraints on similarity

The increase of species with area beginning from the

smallest scales and moving upward is a function of two

processes. The first is ecology, that is, the sum total of

dispersal limitation, environmental heterogeneity, and

competition. The second is sampling constraints. That is,

richness at small scale is constrained by the number of

individuals that can fit in a given area (Fisher et al. 1943).

As area increases, the dominance of sampling constraints

becomes less and the ecological forces become greater.

Since both ecological and sampling processes covary

with grain, increasing sample grain is not equivalent to

increasing sample size, especially for plants. The more

individuals that are sampled, the more environmental

heterogeneity is present and the greater the species pool.

The solution proposed by Harte et al. (1999) is to

increase the sample grain until the log–log relationship of

species and area is constant. This area is likely to be quite

large for trees (much greater than 1 ha), though for

smaller organisms sample area is not as constraining

(e.g., Green et al. 2004, Horner-Devine et al. 2004).

Similarity measures are also sensitive to sample

coverage. Sample coverage is itself constrained by

sample size. Smaller samples will systematically exhibit

lower similarities than populations that have large

sample sizes. Thus similarity measured in small samples

is a biased estimator of the true similarity of two sites.

More importantly, this bias is more pronounced for sites

in which true similarity is high (Fig. 4a). As an example,

consider two sites of 10 species each. Each site displays

complete evenness, so the selection probability of species

is equal. They have all species in common, so their

actual Sorenson similarity is 1. The mean Sorenson

similarity of many random draws of one individual from

each site would be 0.1 because the probability of

drawing two individuals of the same species is 1/10.

This occurs purely because sample size is too low. Now

consider the opposite case in which no species overlap

between the two sites. The mean Sorenson similarity for

many random draws of a single individual will be the

true similarity between sites: 0. Sites with high similarity

and low sample size exhibit greater bias toward low

similarities than sites whose similarity is actually low

(Fig. 4a).

The fact that estimates of similarity based on small

samples show greater bias for sites of high similarity

than low similarity has an important implication for the

distance decay of similarity relationship (Fig. 4b). Since

sites that are similar are more likely to be underestimat-

ed than sites that are very dissimilar, the effect of

increasing the numbers of individuals per site would be

to actually increase the rate of distance decay. As

numbers of individuals per site increased, bias would

decrease and similarity would increase. This increase

would be greater for neighboring sites whose similarities

are high than for distant sites whose similarities are low.

FIG. 3. Estimated species richness of trees in Great Smoky Mountains National Park with increasing sample size (no. 1000-m2

vegetation plots) for (a) parametric and nonparametric estimators and (b) the turnover-based estimator of Harte et al. (1999). All
estimators decrease bias with sample size, but the turnover-based estimator tends to overestimate richness at small sample sizes,
while other estimators underestimate richness. For an explanation of abbreviations, see Methods: Analysis.
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If the area of sites were increased, the slope of distance

decay of similarity would also increase. Thus, if sample

size increases, then the DDS estimator should actually

become worse. This is not necessarily the case, however,

because increases in sample size at a particular location

necessitate an increase in the environmental heteroge-

neity of the site, especially for plants. As discussed

above, increasing sample size can actually decrease

sample coverage because the number of species that

could occupy a site, all else being equal, increases faster

than the rate at which species are captured by the

sample. As sample coverage decreases with increasing

area, the similarity bias associated with small sample

sizes returns. One solution to this problem might be to

sum species numbers for a site through time (Adler et al.

2005, Fridley et al. 2006, White et al. 2006) but sites

through time are subject to the same assumption of

stationarity as sites through space, namely, disturbance

or the shifting mosaic of landscape patches can cause the

species pools for any given site to change through time.

Below I describe an alternative to understanding the

distance decay of similarity relationship and similarity-

based richness estimators that accounts for the small

sample effect without increasing the species pool.

Incorporating turnover in species richness estimators

The alternative to incorporating turnover into rich-

ness estimators involves combining the approaches of

the point estimators with turnover-based estimators.

Point estimators of stationary populations need to be

used at scales and locations for which they are

appropriate (i.e., within relatively homogeneous sites).

Employed in this way with abundance data, the true or

asymptotic similarity between two sites can be estimat-

ed. Chao et al. (2005) have developed just such a series

of asymptotic similarity estimators that are analogous to

the ones currently used in distance decay of similarity

analysis. This removes, or at least removes the estimated

effect of, low sample size. Then, using these similarity

estimates for each site, one could apply the approach of

Harte et al. (1999), which relates the distance decay of

similarity to the accumulation of species with area.

Unfortunately, that would only increase overestimation

of Strue because the distance decay of similarity

relationships would become steeper. More likely, the

assumptions of power-law relationships between species,

area, and distance decay of similarity are flawed. The

exponential distribution tends to fit the observed

distance decay of similarity relationships better than

do power-law relationships across a wide array of

FIG. 4. Simulation results showing how sample size influences distance decay of similarity for a region with similar richness to
Great Smoky Mountains National Park trees (129 species). (a) Results from two pairs of sites (low similarity, circles; high
similarity, triangles) sampled at different intensities are compared with the actual similarities (Jtrue, dashed lines). (b) Results from
three sample sizes (solid lines, N¼ 10, 100, 1000) along a hypothetical gradient. As the number of individuals per sample increases,
similarity increases faster for similar sites (triangles) than dissimilar ones (circles). The actual change in similarity between the two
communities (dashed line, b1) is greater than that derived from any small sample (solid lines, b̂1,N).
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ecosystems and taxa (Nekola and White 1999; J. C.

Nekola, personal communication), and the results pre-

sented here support that hypothesis. Exponential

approaches relating species accumulation to distance

decay of similarity and from there to power law species–

area relationships (or even variable functional forms,

e.g., Krishnamani et al. 2004) may be fruitful avenues

for exploring new estimators, but derivations from first

principles are not yet available.

It is important to note that at larger extents than those

I have considered here, historic effects and dispersal

limitation play an important role in compositional

turnover, one that is separate from both environment

and sampling considerations (Cody 1975). Where these

biogeographic effects dominate, estimators that rely

upon environmental turnover or power law species–area

relationships will not predict species richness. At

regional to continental scales species richness estimators

that explicitly incorporate compositional turnover must

address these biogeographic processes.

Conclusions

My results suggest that estimators that incorporate

compositional turnover can provide reasonable esti-

mates of species richness. Estimators that separate

sampling processes from ecological ones offer the most

potential for advances in estimating species richness,

since estimators that do not explicitly include ecological

processes consistently tend to underestimate species

number. Further empirical and theoretical studies are

needed to shed light on the interactions between

similarity, richness, and sampling processes.
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