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Does landscape context mediate the nature of density dependence
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Abstract. Over-harvest and landscape change are two of the greatest threats to marine
ecosystems. Over-harvest may directly affect key population regulation mechanisms (e.g.,
density dependence), with the magnitude of the effects being further influenced by changes in
landscape structure and associated resource availability. Because resource availability and
conspecific density often co-vary within the natural landscape, manipulative experiments are
needed to understand how changes in these two drivers may affect density dependence in wild
populations. We used a common, shoaling, coral reef fish (white grunt, Haemulon plumierii ) as
our model species, and manipulated fish densities and landscape context of artificial reef
habitats to assess the effects of each on fish condition. We found evidence of inverse density
dependence, where individual condition was positively related to conspecific density;
landscape context had little effect. Mean grunt condition on natural patch reefs was similar
to that for our low grunt density treatment artificial reefs, possibly due to differences in fish
densities or landscape context. These findings suggest that over-harvest may have detrimental
effects on wild populations that extend beyond mere reductions in population size, especially
for group-living species.

Key words: artificial reef; competition; condition; food web; group behavior; Haemulon plumierii;
seagrass.

INTRODUCTION

Long-term persistence of wild populations is a

primary goal of resource managers. Populations that

are regulated by density-dependent factors, by defini-

tion, should display enhanced persistence and stability,

as negative feedbacks tend to constrain extreme

population fluctuations (Hanski 1990, Murdoch 1994,

Hixon et al. 2002). Populations of reduced size due to

over-harvest may display weakened density-dependent

regulation and enhanced susceptibility to environmental

fluctuations (Anderson et al. 2008), resulting in height-

ened risk of extirpation or extinction. Population models

of harvested species assume that compensatory density

dependence, or increased population growth rates,

should occur when population densities are reduced

below carrying capacity (Rose et al. 2001). Specifically,

increased reproduction, survival, individual condition,

or somatic growth due to decreased competition, should

offset some of the losses resulting from harvest. For

example, a study by Lorenzen and Enberg (2002) found

compensatory increases in individual growth rates in

response to low biomass of conspecifics in populations

of nine out of 16 fisheries species.

Landscape context has the potential to alter multiple

biological factors, which may affect competition and the

strength of density-dependent interactions. For instance,

landscape characteristics such as patch size, edge : interior

ratios, and structural complexity may affect shelter

availability or predator encounter rates, impacting

predator–prey dynamics for focal species (Power 1992,

Irlandi et al. 1995, Hovel and Lipcius 2001, Chalfoun et

al. 2002). Similarly, habitat heterogeneity within the

landscape may lead to increased availability of food,

diversity of food resources, and trophic flow across

habitat boundaries, which may affect the degree of

competition among conspecifics (Polis et al. 1997, Vickery

et al. 2001). For example, Persson (1983) suggested that

habitat heterogeneity reduced between-age-class compe-

tition for prey resources in perch (Perca fluvaitilis) in

Swedish lakes and may promote faster growth rates and

age-class diversity for this species.

In natural systems, however, variation in resource

availability within the surrounding landscape often leads

to concomitant variation in conspecific abundance, two

factors that have opposing effects on competition. If the

distribution of individuals matched resource availability

across the landscape, there should be no difference in the

strength of competition among patches of varying

densities (Fretwell and Lucas 1970). However, there is

often a spatial and/or temporal mismatch between the

distribution of resources and individuals, which may

Manuscript received 4 December 2013; revised 17 March
2014; accepted 18 March 2014. Corresponding Editor: P. K.
Dayton.

4 E-mail: laurenayeager@gmail.com

1833



lead to differences in the strength of density-dependent

interactions (Wang et al. 2006, Finstad et al. 2009,

Teichert et al. 2013). This covariation makes it difficult

to discern the overall effect of landscape context on

density-dependent competition from field surveys alone.

Experimental manipulations are needed to understand

the link between landscape context and density depen-

dence, and improve our understanding of how a

combination of stressors, such as over-harvest and

habitat degradation, may affect regulation of wild

populations.

The relationship between conspecific density and

resource availability is more complex in group-living

species. This is because individuals must trade-off the

costs (e.g., increased competition for resources, in-

creased risk of disease) with the benefits (e.g., increased

predator vigilance) of associations with higher densities

of conspecifics (Pulliam and Caraco 1984). When

considering foraging, living in larger groups may result

in local resource depletion from increased competition,

causing a density-dependent decline in growth or

condition (Okamura 1986, White and Warner 2007).

Conversely, groups may be better at locating resource

patches (Pitcher et al. 1982), or time spent foraging may

increase due to lower predation risk (Caraco et al. 1980).

As such, the relationship among landscape context,

resource availability, and density dependence may be

fundamentally different for group-living species than

solitary species.

We present four scenarios related to the effects of

landscape context and conspecific density on individual

performance (e.g., growth, condition, survival, etc.) for a

group-living species (other scenarios and outcomes are

also possible). If competition for resources is the most
important factor affecting individual performance and is

strong compared to weak effects of resource availability,
performance should decrease as conspecific densities

increase (e.g., direct density dependence), largely inde-
pendent of landscape context (Fig. 1a). If there is a
benefit to group living, which is again stronger than

effects of resource availability in the landscape, individ-
ual performance should increase with conspecific density

(e.g., inverse density dependence), independent of
landscape context (Fig. 1b). Conversely, if resource

availability is the most important factor driving
individual performance and costs or benefits of group

living are relatively weak (e.g., density independence),
measures of performance should be highest in high

resource landscapes and be independent of conspecific
density (Fig. 1c). Finally, if higher resource availability

within the landscape offsets some of the competitive
effects of increases in conspecific density or further

enhances the benefits of group living, we would expect to
see an interaction between landscape context and

conspecific density (Fig. 1d).
Our objective was to determine if variation in

landscape context has the potential to mediate the
relationship between conspecific density and a metric of
individual performance (i.e., condition) for a group-

living species of coral reef fish. We used artificial reefs as
model habitat patches and manipulated the landscape

context in which they were created, as well as
manipulated conspecific densities on the reefs, to address

this objective. Additionally, we compared condition of
grunts on artificial reefs to that of grunts from natural

patch reefs in the study area. By taking a novel approach
in simultaneously manipulating landscape context and

fish densities, we hope to provide insight into how two
important anthropogenic stressors (i.e., habitat alter-

ation and overharvest) could affect population regula-
tion of marine fisheries.

METHODS

Study site

Artificial reefs were created in the Sea of Abaco,

Abaco Island, Bahamas (Fig. 2). The surrounding
landscape ranges from 2 to 3 m deep and includes

soft-bottom habitat dominated by Thalassia testudium
seagrass beds and a number of natural patch reefs

ranging in size from individual coral heads to ;500 m2.
In May 2011, artificial reefs were constructed from 30

concrete blocks (block size 153 203 40 cm) arranged in
a cuboid shape (Fig. 3a). Blocks were secured together

underwater using polypropylene rope. Seagrass cover
was estimated visually by surveying 1-m2 quadrats

within the landscape. One quadrat was placed directly
at the site designated for reef creation and 100-m
transects (N ¼ 5) were run pentaradially out from the

reef site, on which a quadrat was placed every 25 m (N¼
21 points per reef ). Seagrass cover estimates were made

FIG. 1. Conceptual model of possible relationships between
landscape context (high vs. low resource availability), conspe-
cific density (low vs. high), and individual performance
measures. Possible scenarios include (a) individual performance
shows direct density dependence with the response independent
of landscape context, (b) inverse density-dependent response of
performance independent of landscape context, (c) performance
is density-independent, but varies with landscape context, (d)
performance is density-dependent, but is mediated by landscape
context.
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before reef creation to designate high (HS) and low

seagrass cover (LS) sites. Eight reefs were created in HS

landscapes (range in mean seagrass cover across reefs¼
49–76%, mean 6 SE ¼ 58.2% 6 3.2%) and eight in LS

landscapes (range ¼ 29–42%, mean 6 SE ¼ 36.5% 6

2.4%). Reefs were created at least 80 m from any hard-

bottom habitat and 200 m from other artificial reefs.

Five natural patch reefs were selected for comparison

with artificial reefs (Fig. 3b). Natural reefs were isolated

from each other by at least 70 m and isolated from

artificial reefs by at least 80 m. Patch reef size was

estimated by two snorkelers, assuming an approximate

ellipsoid shape for the reefs and measuring the major

and minor axes with an underwater transect tape to the

nearest m. These reefs ranged in size from 56 to 420 m2

(Table 1). Seagrass cover around natural patch reefs was

surveyed along five 100m transects radiating out from

the reef (N ¼ 20 quadrats per reef ) similar to the

approach described for artificial reefs.

Study species

Grunts (Haemulidae) are a ubiquitous family of coral

reef fishes and represent an important fisheries resource

in the greater Caribbean region (Randall 1963, Appel-

doorn and Lindeman 1985, Grober-Dunsmore et al.

2008). Juvenile white grunts (Haemulon plumierii ) are

known to make nightly foraging movements from their

daytime reef resting sites to surrounding soft-bottom

habitats to feed (Ogden and Ehrlich 1977, Helfman et al.

1982). During these nightly foraging bouts, they travel

between tens to hundreds of meters to reach soft-bottom

habitats where they feed on benthic invertebrates

(Ogden and Ehrlich 1977, Appeldoorn et al. 2009).

Time-lapse photography surveys of the same array of

natural and artificial reefs confirm that grunts leave the

reefs at night, presumably to forage (Zapata 2013).

Juveniles are known to exhibit high site fidelity to resting

habitats, using the same coral head for days to months

(Helfman et al. 1982, McFarland and Hillis 1982). Their

nightly foraging migration routes are also known to be

stable over time, as the same individuals have been

observed following the same foraging routes for months

(Ogden and Ehrlich 1977). Juvenile white grunts are

primarily benthic invertivores and have been observed to

feed nocturnally in seagrass (as opposed to unvegetated

bottom [Ogden and Zieman 1977, Appeldoorn et al.

1997]) and benthic invertebrate densities have been

shown to increase with seagrass cover in our system

(Yeager et al. 2012). This foraging pattern represents

important food web and nutrient subsidies linking reef

and seagrass habitats (Meyer et al. 1983, Clark et al.

2009, Allgeier et al. 2013).

Data collection

White grunts were allowed to colonize reefs from May

to October 2011. In our system, most grunts (1–2 cm

total length) recruit to reef habitats during late spring/

summer months (May to July) and little recruitment

occurs during the fall or winter (L. A. Yeager,

unpublished data). Half of the reefs in each landscape

FIG. 2. Map of the study area with locations of artificial and natural reef sites on Abaco Island, Bahamas. Abbreviations are
HSHG, high seagrass cover, high grunt density; LSHG, low seagrass cover, high grunt density; HSLG, high seagrass cover, low
grunt density; and LSLG, low seagrass cover, low grunt density treatment artificial reefs, Nat stands for natural patch reefs.

October 2014 1835LANDSCAPE EFFECTS ON DENSITY DEPENDENCE



type were randomly assigned to high (HG) and low

grunt density (LG) treatments. Attempts to add juvenile

grunts to artificial reefs failed (grunts would return to

home reefs within 48 hours of translocation, as far as 1

km away); therefore, removals were used to manipulate

densities. During October and November of 2011,

targeted grunt removals using unbaited fish traps were

used on the LG treatment reefs to reduce fish densities to

,50 individuals/reef. Densities (mean 6 SE) on

unmanipulated (HG treatment) reefs in November

2011 were 134.5 6 26.1 grunts/reef.

To ensure that grunts were not moving between reefs,

we tagged a subset of grunts using visible implant

elastomer tags (Northwest Marine Technology, Shaw

Island, Washington, USA). In June 2012, white grunts

from each reef were tagged with a unique color

combination under the skin on the caudal peduncle. A

total of 262 grunts across the 16 artificial reefs were

tagged with elastomer dye, representing ;50 % of all

grunts on reefs. The presence of tagged grunts on reefs

was monitored for one month using trapping and visual

surveys.

In July 2012, eight months after grunt removals, grunt

abundances were surveyed using a roving diver tech-

nique (Schmitt et al. 2002) on artificial reefs, as well as

five natural reefs, on two dates. We used mean white

grunt abundance/reef as our estimate of conspecific

density. Since reef size did not vary among artificial

reefs, counts of white grunts across reefs are directly

comparable. However, natural reefs were much larger in

size and comparisons of grunt abundance per reef vs.

density per unit reef area varied greatly. Although area-

based estimates of grunt density were much lower for

natural reefs (Table 1), grunts often occupy only a small

subset of available shelter on natural reefs (often limited

to select coral heads [McFarland and Hillis 1982]), and

estimates of density across the whole reef likely obscure

higher densities at finer scales. Moreover, while it is

possible that increased competition for shelter affected

white grunt condition in our study, quantity of and

access to food resources within the landscape seems a

more likely driver of differences in condition for juvenile

white grunts. As such, we suggest that comparisons

between natural and artificial reefs based on the number

of individuals per reef, as opposed to density per unit

reef area, are the most meaningful.

Grunts were collected from reefs from 14 to 27 July

2012 using unbaited fish traps. We only collected grunts

larger than 5 cm (fish standard length ¼ 92 6 1.5 mm [

mean 6 SE]), i.e., grunts that had recruited the previous

year. Grunts that recruited during 2012 were generally

,4 cm, at which size they are primarily planktivorous

and would not be competing with larger juveniles for

food resources (Helfman et al. 1982).

We used lipid content as a proxy of individual

condition. Higher lipid stores are known to be associ-

ated with increased survival probabilities and faster

FIG. 3. Photographs of (a) a high seagrass cover, high grunt
density artificial reef and (b) a natural patch reef; note the sand/
halo carbonate bank surrounding the natural reef. Almost all of
the fishes visible are white grunts (Haemulon plumierii).

TABLE 1. Characteristics of artificial and natural reefs used in this study.

Reef type
No.

replicates
Reef area

(m2)
Cover of seagrass
within 100 m (%)

White grunt abundance
(no. fish/reef )

White grunt density
(no. fish/m2 reef habitat)

HSHG 4 0.48 54 6 1 111.4 6 25.2 232.1 6 52.5
LSHG 4 0.48 38 6 4 54.5 6 23.5 113.5 6 49.0
HSLG 4 0.48 62 6 6 24.2 6 7.6 50.4 6 15.8
LSLG 4 0.48 35 6 3 16.9 6 9.3 35.2 6 19.4
Natural patch reef 5 246 6 58 55 6 13 161.5 6 32.5 2.2 6 0.1

Notes: Values represent mean 6 SE for each group. Note that all artificial reefs were created to be the same size. Abbreviations
are HSHG, high seagrass cover, high grunt density; LSHG, low seagrass cover, high grunt density; HSLG, high seagrass cover, low
grunt density; and LSLG, low seagrass cover, low grunt density treatment artificial reefs.
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growth rates in juvenile fish (Post and Parkinson 2001,

Johnson 2008). A subset of grunts (N ¼ 10 fish/reef )

were processed for lipid content in the laboratory at

Florida International University. Lipid content analysis

was performed on a 100-mg subsample of homogenized,

whole fish, after stomach contents were removed,

following the Bligh and Dryer (1959) method modified

for use with the less toxic dichloromethane :methanol

solvent in place of chloroform :methanol (Erickson

1993).

Data analysis

We used our white grunt tagging/recapture data to

opportunistically assess bias associated with using fish

traps as a method to capture and remove white grunts. If

certain phenotypes (e.g., fish of a smaller body size) were

more likely to enter traps, this could have been

problematic as we used traps to remove a subset of

individuals for the LG reefs at the start of the

experiment and could have introduced an unintended

bias into our experimental treatments. We used a paired

t test to compare the proportion of fish captured in traps

that were tagged during our resurveys of the reefs

(representing recaptures) to the proportion of all fish on

the reef that were tagged. If the proportion of fish

caught in traps that represented recaptures was greater

than the proportion of total fish tagged on a given reef,

this may indicate a selection bias associated with

trapping, where certain individuals are more likely to

enter traps than others.

Next, we compared fish lipid content across reefs to

determine if condition varied. To ensure that ontoge-

netic effects were not driving differences in lipid content

among individuals, we used a linear regression to test for

effects of fish size (standard length) on lipid content

across all reefs. To evaluate how condition varied

among our treatments, we used a two-way ANOVA to

assess effects of landscape type (HS vs. LS) and

conspecific densities (HG vs. LG) on mean lipid content

of white grunts on artificial reefs. One HSLG reef was

excluded because only one grunt could be recaptured at

the end of the experiment. Additionally, because there

was variation in fish density and seagrass cover within

our designated treatments (Table 1), we also regressed

mean lipid content on seagrass cover and mean

conspecific density (log-transformed to improve nor-

mality) using a general linear model. We used partial

regression plots to isolate the effects of each of our

independent variables on mean lipid content and we

report g2 (a measure of the amount of unique variation

explained by each independent variable) as a metric of

effect size.

Since we did not find strong effects of landscape

context (see Results) on mean lipid content of grunts on

artificial reefs, we compared lipid content for grunts on

HG and LG artificial reefs to lipid content for grunts

collected on natural reefs using a one-way ANOVA. We

used a similar ANOVA to test for differences in fish size

(standard length) for fish analyzed for lipid content

among reefs to ensure any differences among reef types
were not due to differences in body size. All tests were

performed in SAS software version 9.3 (SAS Institute

2012).

RESULTS

White grunt densities declined throughout the exper-

iment, but remained elevated on HG treatment reefs.

The mean grunt density, averaged between surveys

conducted immediately after removals and at the end of
the experiment, was approximately four times higher on

the HG artificial reefs (78 6 16 fish/reef [mean 6 SE])

compared to the LG reefs (20 6 3 fish/reef ). Grunt

densities for the HG treatment were greater for HS reefs

than LS reefs (Table 1).

Based on four to five surveys per reef, 98 tagged
grunts were resighted/recaptured, with some individuals

potentially sighted on more than one date. All of the

resights were grunts on their original reef, and none were

observed on a reef other than the one on which they
were tagged. Additionally, the proportion of grunts

representing recaptures in traps (26% 6 5% of fish were

tagged) was lower than the proportion of fish tagged on

a given reef (49% 6 4% of fish tagged on a reef, t¼�3.6,
P , 0.001). Since fish that were tagged were originally
caught using fish traps, this may indicate a reticence by

grunts to reenter traps and/or differential mortality of

tagged and untagged grunts. However, these data do not

support a positive selection bias for certain individuals/
phenotypes, which may have resulted in unintended

selection for certain individuals during fish removals.

There was no relationship between lipid content and

fish size (F1, 133¼ 2.4, P¼ 0.1). For artificial reefs, mean

lipid content was higher for grunts on the HG reefs

(F1,14¼ 23.8, P¼ 0.0004, Fig. 4). There was no effect of

FIG. 4. Grunt lipid content (mean 6 SE) for artificial reefs
with varying grunt densities (HG [high grunt density treatment]
vs. LG [low grunt density treatment]) within high seagrass cover
(HS; squares) and low seagrass cover (LS; circles) landscapes.
Grunt lipid content for natural patch reefs (triangles) is
included for comparison. Solid line shows density-dependent
relationship for HS and dashed line for LS reefs.
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landscape context (HS vs. LS) on mean grunt lipid

content (F1,14 ¼ 0.3, P ¼ 0.6). These results were

consistent with the scenario depicted in Fig. 1b (inverse

density dependence, independent of landscape context).

Similar results were found by treating mean conspecific

density and seagrass cover as continuous variables (Fig.

5). There was a positive effect of mean conspecific

density (log-transformed) on mean lipid content for

grunts on artificial reefs (amount of unique variation in

the response variable explained by the predictor variable

(g2) ¼ 0.42, F1,14 ¼ 46.1, P , 0.0001). There was no

effect of seagrass cover within the landscape on mean

lipid content (g2 ¼ 0.07, F1,14 ¼ 0.2, P ¼ 0.7).

Grunt abundances on natural patch reefs were nearly

twice as great as the abundances on HG artificial reefs

(161.5 6 32.5 fish/reef ), although densities based on reef

area were much lower (Table 1; see Discussion for more

on comparisons based on abundance vs. density).

Seagrass cover within the landscape around natural

reefs (55.4% 6 2.7%) was similar to that for HS artificial

reefs (Table 1). However, the natural patch reefs were

surrounded by a carbonate bank and estimates of mean

seagrass cover within 25 m of the natural reefs were

much lower than those surrounding artificial reefs

(23.8% 6 14.1% vs. 50.7% 6 4.3%, respectively). There

was a difference in mean grunt lipid content among

artificial reefs with varying fish densities (HG vs. LG)

and natural patch reefs (F2,19¼ 15.4, P¼ 0.0002, Fig. 4).

Post-hoc comparisons revealed mean lipid content for

grunts on natural reefs was significantly lower than that

for grunts on the HG artificial reefs (P¼0.004) , but was

similar to that for grunts on the LG artificial reefs (P¼
0.6). There was no difference in white grunt size among

artificial reefs with varying fish densities (HG vs. LG)

and natural patch reefs (F2,18 ¼ 1.4, P ¼ 0.3).

DISCUSSION

We found a positive relationship between conspecific

densities and a metric of individual performance (i.e.,

condition) for white grunts on artificial reefs, suggesting

there is a benefit to larger aggregation sizes. This

indicates that lowering conspecific densities through

over-harvest could actually reduce performance for

remaining individuals, instead of the common expecta-

tion of increasing performance by releasing them from

competition. Like white grunts, many other Caribbean

reef species that are targets of fishing pressure (e.g.,

snapper, Lutjanidae) also school/shoal and may display

a similar response to variation in conspecific density

(Wormald et al. 2012). Variation in landscape context

did not seem to affect the nature of the density-

dependent response in white grunt condition. However,

lower condition of grunts on natural patch reefs (where

grunt abundances were greater) suggests that there may

be nonlinear effects of conspecific densities, or that

landscape differences between natural and artificial reefs

alter the relationship between conspecific density and

grunt condition.

While simple competition models may predict that

mean individual condition should be inversely related to

conspecific density, this is not always the case for group-

living species. One advantage to aggregating behavior is

increased predator vigilance, and being associated with

larger groups of conspecifics may allow these groups to

forage in riskier areas. For example, Magurran and

Pitcher (1983) demonstrated that the number of visits to,

and time spent at, an unsheltered foraging patch

increased with group size for goldfish and minnows.

We noticed a similar behavior with grunts; on reefs with

higher fish densities, groups would migrate out from the

reef up to 10 m during the day to make opportunistic

foraging forays in surrounding seagrass (L. A. Yeager,

personal observation). This behavior was not observed

for grunts on LG reefs, where small group sizes may

correspond to higher predation risk when leaving the

reef during the day. Therefore, large group sizes may

lead to enhanced individual performance through

increased foraging opportunities.

FIG. 5. Partial regression plots illustrating the effects of
mean conspecific density (log-transformed; measured as num-
ber of fish per reef ) and seagrass cover within the landscape
(100 m) on mean lipid content (percent) for white grunts on
artificial reefs. Axis values represent residuals and each point
represents a reef. The parameter g2 is the amount of unique
variation in the response variable explained by each predictor
variable.
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Interestingly, white grunts on natural patch reefs

displayed lower mean condition levels than the white

grunts on the HG artificial reefs, even though conspecific

group sizes were largest on natural reefs. These

differences may be due to non-linear effects of group

size, differences in landscape context between the

natural and artificial reefs, or bias in estimating fish

abundance/density due to issues of scale when compar-

ing natural and artificial reefs. First, it is possible that

the larger group sizes of grunts on natural reefs passed

some threshold beyond which increased competition for

resources outweighed benefits of increasing conspecific

density (Pulliam and Caraco 1984). Nightly foraging

migrations in grunts involve collective departure at

twilight, and the larger group subsequently disperses in a

dendritic pattern until solitary individuals are left to

forage over a small area until returning to the reef before

dawn (Ogden and Ehrlich 1977, Helfman et al. 1982,

Burke 1995). Therefore, larger group sizes may result in

individuals dispersing over larger areas each night in

order to reach solitary foraging patches, increasing the

energetic cost associated with these migrations.

Alternatively, the landscape configuration surround-

ing natural patch reefs could be driving differences in the

frequency of feeding or distance traveled to feed,

reducing some of the positive benefit of larger group

sizes on these reefs. Mean seagrass cover within 25 m

surrounding the reef was lower for natural reefs than for

artificial reefs, potentially resulting in lower resource

availability within the adjacent landscape and forcing

grunts to migrate longer distances at night to feed.

Furthermore, natural patch reefs in this area were often

surrounded by a large carbonate bank, separating the

reef structure from soft bottom habitats by up to 15 m.

Therefore, grunts on natural patch reefs may not cross

this larger carbonate bank during the day to forage

diurnally due to the increased associated predation risk,

even if group sizes were larger. Higher predator densities

on natural patch reefs (L. A. Yeager, unpublished data)

could further reduce the willingness of grunts to make

any movements away from the reef structure during the

day. Previous studies on grunt behavior on natural

patch reefs in the Virgin Islands have similarly reported

a lack of foraging activity during the day (Ogden and

Ehrlich 1977, Helfman et al. 1982). However, landscape

context of natural reefs varies, and such a large bank or

halo is not always present. Therefore, opportunistic,

diurnal foraging may occur in other systems, as has been

observed for French grunts (Haemulon flavolineatum;

Verweij et al. 2006).

Third, differences between natural and artificial reefs

may be due to the way in which we surveyed conspecific

abundance (as individuals per reef ). While group sizes of

grunts on natural patch reefs were larger than those on

artificial reefs, density per unit area of resting habitat

were much lower owing to larger reefs sizes. Therefore, if

grunts receive a benefit from living in higher density

groups, lower abundance per unit area on daytime

resting habitat could also explain lower condition on

natural reefs. While many reef fish species are known to

be limited by shelter availability (Hixon and Beets 1993),

white grunt densities on natural reefs in our system were

relatively low and shelter availability on natural reefs

was much higher than that on artificial reefs. Therefore,

we suggest that variation in condition among reef types

is more likely a result of differential access to foraging

resources than competition for shelter in our system.

Higher condition and opportunistic diurnal feeding of

white grunts on HG artificial reefs may have important

implications for nutrient and energy cycling in these

systems. Foraging migrations undergone by grunts may

be critical in translocating nutrients from the surround-

ing landscape to areas around reefs. Specifically,

consumer-driven nutrient cycling (via excretion and

egestion) has been shown to enhance productivity of

corals (Meyer et al. 1983) and seagrass adjacent to reefs

(Allgeier et al. 2013). Additionally, reefs with more

seagrass surrounding them often support higher densi-

ties and increased production of fishes, especially grunts

(Grober-Dunsmore et al. 2009, Yeager et al. 2011, 2012).

Furthermore, the scale of the response in seagrass

growth around artificial reefs has been found to be

positively related to fish densities (Layman et al. 2013).

If larger schools of grunts on artificial reefs have access

to increased foraging resources (perhaps by making

more opportunistic foraging bouts during the day in

adjacent seagrass habitat), they may further benefit from

increased local productivity. In turn, the increased

activity and density of grunts on these reefs may lead

to increased excretion rates, resulting in a positive

feedback between grunt density and local primary

productivity.

While we did not find a strong effect of landscape

context on density-dependent condition for grunts in

this study, this does not mean the landscape context is

unimportant for the regulation and productivity of fish

populations. First, while seagrass availability within the

landscape did vary among our landscape treatments, it

was still moderate throughout most of the study area.

Whether grunts in areas with lower seagrass cover suffer

reduced condition is unknown. Furthermore, the cover

of seagrass within the landscape (within 100 m of the

reef ) has previously been found to be positively related

to white grunt abundance on artificial reefs (Yeager et

al. 2012). If landscape degradation (i.e., loss in seagrass

cover) leads to decreased conspecific densities, this could

also negatively impact fish condition. Therefore, by

positively affecting conspecific densities, higher seagrass

cover in the landscape may still result in higher measures

of individual performance.

In this study, we focused on density-dependent

responses in fish condition as a metric of individual

performance, most likely related to differences in

foraging potential. However, conspecific density and

landscape context may have different effects on alternate

components of fitness. In addition to mediating food
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availability for white grunts, differences in structural

complexity between seagrass beds of varying cover and
unvegetated habitat may also result in differences in risk

for grunts. Much work on reef fishes has shown that
shelter availability within the landscape (although often

limited to the reef itself ) may be an important mediator
of density-dependent mortality for reef species (Hixon
and Webster 2002). Specifically, increasing competition

for suitable shelter may increase predation risk for
individuals as densities increase, and should decrease in

landscapes with more refuges (Hixon and Beets 1993,
Forrester and Steele 2004). Increased shelter availability

within the foraging habitat or differences in predator
encounter rates across landscape types could directly

impact mortality in white grunts. However, if shelter is
not limiting in the landscape, larger group sizes should

reduce mortality risk, especially for group-living species.
In fact, a recent review by White et al. (2010) reports

that mortality is more likely to display inverse density
dependence in group-living species of reef fishes when
compared to solitary species, especially at localized

scales.
The most common form of inverse density depen-

dence recognized by fisheries managers relates to
decompensation, i.e., depressed population growth rate

at low population densities, or a demographic form of
the Allee effect (Myers et al. 1995, Courchamp et al.

1999, Stephens et al. 1999). Herein, we provide another
example of inverse density dependence that is manifest

at population densities that are not extremely low, and
relates to effects on a specific component of fitness.

These results indicate that the direct negative effects of
over-harvest on fish populations may be further

compounded, specifically when reduced densities lead
to declines in individual condition. Our study provides

another example of how over-harvest leads to a
degradation of population regulating mechanisms in
fisheries species and the importance of understanding

these mechanisms to promote effective management of
coastal fisheries.
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