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ABSTRACT. - When elements of a measure-preserving action of R~ or Z~
are selected in a random way, according to a stationary stochastic process,
a.e. convergence of the averages of an LP function along the resulting
orbits may almost surely hold, in every system; in such a case we call
the sampling scheme universally representative. We show that i.i.d. integer-
valued sampling schemes are universally representative (with p > 1) if and
only if they have nonzero mean, and we discuss a variety of other sampling
schemes which have or lack this property.

Key words: random ergodic theorems, random sampling of stationary processes.

( ~ ) Research supported by NSF Grant DMS-9003245 and an NSF Postdoctoral Fellowship.
(~) Research supported by NSF Grants DMS-8900136, DMS-9103656, and DMS-9203489.
(3 ) Research supported by NSF Grant DMS-01524351.
(4) Research supported by NSF Grants DMS-9103656 and DMS-9203489.

Classification A.M.S. : ergodic theory 28 D 05, 28 D 10, 28 D 15.
Annales de l’Institut Henri Poincaré - Probabilités et Statistiques - 0246-0203

Vol. 30/94/03/$ 4.00/@ Gauthier-Villars



354 M. LACEY et al.

RESUME. - Si des elements d’une action de R~ ou 7ld preservant une
mesure sont choisis selon un processus stochastique stationnaire, il est

possible que presque surement les moyennes d’une fonction de classe LP
selon les orbites generées convergent p.p., pour chaque système ; en un tel
cas nous appelons le schema d’échantillon universellement représentatif.
Nous montrons que les suites i.i.d. à valeurs entières forment un schema

universellement representatif (pour p > 1) si et seulement si elles ont

une esperance non nulle. Nous considérons plusieurs autres exemples des
schemas d’échantillon qui ont ou n’ont pas cette propriété.

1. INTRODUCTION

Suppose that elements of a measure-preserving action are applied in a
random but stationary way, and we are interested in the almost everywhere
convergence of the averages of some function along the orbits so generated.
The random sequence of elements is fixed in advance, and the same se-

quence is applied in all actions. If the sequence is very regular, for example
periodic, we will always have a.e. convergence of the averages for all actions
and all integrable functions, because of the pointwise ergodic theorem; it is
natural to ask whether a sequence that is typical in some sense, or sufficiently
chaotic, stochastic, or complex, will produce the same results. We have
found some examples of stationary processes that do produce a.e. conver-

gence in this universal manner, but we also show that in general there exist

counterexamples, even for independent identically distributed sequences.
To establish notation and terminology, let I be a set, which will index

families {Si : i E I~ of measure-preserving transformations acting on

probability spaces (Y, C, v). A scheme for choosing commuting m.p.t.’s at
random in a stationary way will be provided by a shift-invariant measure
P on S2 = Thus if wEn, we will be interested in the a.e. dv (y)
convergence of the averages

for all systems (Y, C, v, {Si : i E I~, g). We have in mind the following
examples:

I = (0, oo): we make measurements of continuous-parameter
stationary processes, the gaps between measurements having been
determined by another, positive-real-valued stationary process; (1)
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I = Z: at each time apply a power of a fixed m.p.t. T chosen in
advance in a stationary way; (2)

I = ~0, 1~: apply commuting m.p.t.’s So and Si, perhaps chosen
independently, perhaps according to some other stationary measure; (3)

I = ~-1, 1 ~: at each time, apply either a m.p.t. T or (4)
I = ~ 0, 1,..., d - 1 ~ : at each time apply one of d commuting

m.p.t.’s perhaps chosen independently; (5)
I = 7Ld: we apply a stationary sequence of elements of a 7Ld action. (6)

We will say that the scheme (H, P) (H = is universally representative
for LP if for e SZ, for every probability space (Y, C, v), every v-
preserving action {Si : i E 1} on Y, and every g E Lp (Y, C, v), the

averages converge a.e. dv (y). (The Random Ergodic Theorem
deals with a weaker property, since it fixes the process being sampled
and states that almost all sampling sequences yield almost everywhere
convergence. This follows immediately from the pointwise ergodic theorem
applied to the skew-product transformation y) --~ SW1 y) on SZ x Y,
where a is the shift on SZ.) The question of mean convergence (in LP (Y)) for

is also of interest; it is answered below (Corollary to Proposition 1)
for examples of type (1) and mentioned from time to time in remarks about
the other examples.

First, we treat the case I = R, random sampling in continuous-parameter
flows. The return-time theorem of Bourgain, Furstenberg, Katznelson, and
Ornstein [8] corresponds to the special case when the sampling times take
values in a lattice in R. This return-time theorem, in the formulation

involving averages of products of pairs of functions, extends to the

real-parameter case (Theorem 1). This implies that any sampling scheme
always works correctly on each function in a dense set in LB namely
those that are smooth in the time parameter (Proposition 1); consequently
convergence always holds in the mean of order p > 1 (Corollary 1). In
general, however, almost everywhere convergence can fail. For example,
if the spacing process has a continuous distribution in some interval, then
with probability 1 the sampling sequence will fail on some function in
any real-parameter process (Example 1). On the other hand, there also
exist nontrivial examples of universally representative sampling schemes.
For example, if the spaces between sampling times take values 1 and
c~, where c~ may be irrational, the selections being made according to
a suitable Markov measure, then the sampling scheme is universally
representative (Example 2). By a modification of this idea, we can also
construct universally representative schemes that allow arbitrarily small
gaps between measurement times (Examples 3 and 4). Given a universally
Vol. 30, n° 3-1994.
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representative sampling scheme, certain kinds of perturbations of it will
produce another universally representative scheme (Example 5). Although
it seems likely that there are universally representative schemes in which
the gaps between measurements are independent and take values in a
countable set clustering at 0, so far we have not been able to construct
a particular example.

The remainder of the paper concerns the random selection of
transformations from a commuting family, perhaps from an aperiodic action
of several commuting transformations or from the set of powers of a single
transformation. The case when the selections are made according to a

Bernoulli scheme (i.e., in an i.i.d way), is already of considerable interest.
Suppose first that we choose either a transformation or its inverse according
to the Bernoulli measure ,t3 ( 1 / 2, 1/2); then because of the recurrence of
the symmetric one-dimensional random walk (in n steps approximately ~
sites are visited, each one approximately vn times), at first glance one
might supose that when we look at the Cesaro averages we are seeing
good weights on powers of a single m.p.t., and so we should obtain a good
sequence with probability 1. We show (Theorem 4), by using Strassen’s
functional law of the iterated logarithm, that in fact this is not the case:
in any aperiodic system, there is always a counterexample. On the other
hand, whenever commuting m.p.t.’s are applied according to the Bernoulli
scheme ,t3 (1/2, 1/2), we have a.e. convergence of the Cesaro averages

along the subsequence 2n log n (Theorem 7); this is proved by the Fourier
method introduced into ergodic theory by J. Bourgain. If powers of a

single m.p.t. are to be applied according to the values of an integer-valued
independent sequence of integrable random variables, then there is always
a.e. convergence of the ergodic averages for LP functions, p > 1, if and only
if the sampling process has nonzero mean (Theorem 5 and 6, combined
with Theorem 4). Choosing among commuting transformations according
to the entries in a certain Sturmian sequence does provide an example of
a universally representative scheme (Theorem 3).

The variety of behavior found in these examples makes the formulation
of a condition that might be necessary and sufficient for a sampling
scheme to be universally representative seem fairly remote at this time. The
difficulty (and interest) of questions of this kind comes from two sources:
inappropriate averaging, either the discrete sampling of a flow or the one-
dimensional sampling of a two-dimensional action; and the need to deal
simultaneously with uncountably many sampled processes, combining un-
countably many exceptional sets of measure zero into a single set of measure
zero. Sampling theorems of a different kind were considered in [14], [4].
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2. RANDOM SAMPLING OF

CONTINUOUS-PARAMETER STATIONARY PROCESSES

Let (cv) : k, = l; 2, ...~ be a positive real-valued integrable stationary
process and Tk (c~) = cSi (c~) + ... (w), To = 0. The Tk (w) form
our sequence of sampling times, and the ~k (c~) are the gaps between

measurements. The sampling scheme f 6k} is universally representative (for
L~) if for a.e. cv, (cc;)} is a good sequence, in the following sense: For
every measure-preserving flow {St : 2014oo  t  ~} on a measure space
(Y, C, v) and integrable function g on Y,

Because of the theorem on ergodic decompositions, we may as well assume
that the sampling process as well as all of the processes being sampled are
ergodic. By subtracting off a constant, we may also assume that the integral
of g is 0. Letting H = (0, oo)N with the measure P generated we

have the representation 8k ( c,~ ) == 8 c,v ) , where a : SZ -~ H is the shift
transformation (0, oo ) reads off the first coordinate of cv.

Discrete samples and return times. - To see how sampling theorems are
connected with return-time theorems in the particular case when 8 is N-
valued (and similarly, with suitable adjustments, when 8 takes values in
a lattice in R), we consider the primitive transformation % : built

over the floor H with ceiling function 8 - 1 (see [15], p. 40). Then Tk (c~)
is the time of the k’th entry of 03C9 ~ 03A9 to H under 03C3. Thus if J = Tn 
then in the first J steps of its orbit under cr, the number of times that 03C9

enters H is Nj (o, SZ) = n, and we have

Vol. 30, nO 3-1994.
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For a.a. 03C9, the first factor converges to 1 where  is the usual extension

of P to S2). That for a.a. cv the second factor converges a.e. dv (y) for all
(Y, C, v, g) is the return-time theorem of [8] (which applies just as well
to bounded measurable functions as to characteristic function like x~).

THEOREM 1. - If (Tt : -~  t  ~} is an ergodic measure-preserving
flow on a finite measure space (X, ,~, ~c) and f E L°° (X, B, then a.e.
x E X has the following property : For each system (Y, C, v, ~St~, g),
where {St : -~  t  ~} is an ergodic measure-preserving flow on the
finite measure space (Y, C, v) and g is an integrable function on Y,

Proof. - We assume that g has integral 0. Moreover, if f is in the
closed linear span in L2 of the eigenfunctions of ~Tt~, then existence and
identification of the limit both follow easily from the Ergodic Theorem, so
by subtracting the projection of f onto this subspace (which is also bounded
since it is a conditional expectation with respect to the corresponding factor
algebra) we may assume that f is in the orthocomplement in L2 of the
eigenfunctions of ~ Tt ~ . In this case we want to show that the limit above
is 0 for almost all y.

It is known that all but perhaps countably many of the maps Tt are
ergodic; rescaling if necessary, we may assume that Ti is ergodic, and
hence is ergodic for each r E N. The set of good x whose existence is
claimed in the theorem is formed by deleting the following sets of measure
0 from X. First, apply the return-time theorem of [8] to f and each of the
maps T l/r, r E N, discarding a bad set of measure 0 for each r. Next,
notice that by the same Fubini argument that proves the Local Ergodic
Theorem,

For each r E N and q E Q, discard the set of measure 0 of those x

which are not generic for the set {u : f ( u ) > q ~ , in the sense that
the orbit of x under fails to visit this set with the correct limiting
frequency.

Supose now that x is in this remaining good set and that

(Y, C, v, ~St~, g) is given. It is sufficient to consider averages over

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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intervals of length t = ~ e N. Upon dividing each interval [jy, ~ + 1]
into r subintervals [k r, k+1 r] we find that

Since f E L°°, we have a maximal inequality for

coming from the Maximal Ergodic Theorem, so it is enough to prove
convergence a.e. for a dense set of functions g E L~ (Y), such as those with
g (Ss y) uniformly continuous in s, uniformly in y. (The familiar functions

with h E L°° (Y) and § E C (R) with compact support have

Dealing now with such a special g, choose r large enough that the second
term in (1) is less than a given IlK for all n.

Since Dh f (u) ~ 0 a.e., we may choose r also large enough that

~c. ~~c : >  1/K. Because the orbit of x under 
visits {Dl/r f > with the right frequency, we can choose n large
enough that

Vol. 30, n° 3-1994.
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Then the first term in (1) is bounded by

which is arbitrarily small for large K.

Finally, since r was fixed first, using the return-time theorem from [8]
for a.e. y we may choose n large enough that the third term in (1) is
also less than 1/K.
Remark. - E. Lesigne (personal communication) has observed that the

argument of [8], when applied to integral averages, also yields this result.
In the case of a general sampling scheme, we may be considering returns

to a set which has measure 0. With the notation above, if 8 : SZ -~ (0, oo )
is the function generating the spacings between sampling times, consider
the flow under the function 8 with base (H, a). That is, we now let

by letting each point 0) flow up at unit speed until it hits the ceiling, at
which point it moves to 0). Then 81 (c,~), 82 (cv), ... are the spacings
between hits of the floor H, so that the Tk (cv) are exactly the return times
of (w, 0) to H under this flow.

In order to have a set of positive measure to return to, we take a narrow
band below the ceiling and work with its characteristic function

For small h, f h has integral very near 1.

PROPOSITION 1. - Any sampling scheme is representative for the (dense) set
D (Y) of functions g E Ll (Y) for which g (Ss y) is a uniformly continuous
function of s uniformly in y.

Proof. - As before, we may assume that g has mean 0. We consider h
taking values in a sequence tending to 0. Suppose cv is such that a.e. point
~ _ (o, t) is good in the sense of the continuous-parameter return-time
theorem (Theorem 1 ) for all the functions f h as above, as h varies in this
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countable set. Suppose further that 03C9 is generic for the function 8 on H, in
the sense of the ergodic theorem and the transformation a. Then

so that if x = (c.,~, 7/) we have

Given c > 0, choose ~ ~ 0 very small so that g has oscillation less than
c/2 on any interval of length r~ (w, r~) is good, in the sense
of Theorem 1, for all the fh with h in our countable set. Then choose h
so small that the second term in (2) is less than c for all n and y. For
large n, the third term is of the order of  this can be made
less than c by choosing h small and n large. The fourth and fifth terms
tend to 0 as n -* oo because they are bounded by Finally,
by Theorem 1 we can choose n also large enough that the first term is
also less than c.

COROLLARY 1. - Let (S2, P) be a sampling scheme as above. Then for a.e.
o, for every measure-preserving flow  t  ~} on a measure
space (Y, C, v), p > 1, and g E LP (Y),

Vol. 30, n° 3-1994.
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Proof. - Always assuming ergodicity and mean 0, for h E D (Y),

which can be made arbitrarily small by choosing first h and then n.

COROLLARY 2. - If a sampling scheme (Q, P) is such that for a.e. c,~,

for all (Y, C, v, ~ St ~ ) the averages satisfy a maximal inequality on LP (Y)
(p > 1), then the scheme is universally representative for LP.

3. EXAMPLES OF BAD AND GOOD SAMPLING SCHEMES

Example 1. - Suppose that the spacing function b is uniformly distributed
in [1/2, 1] and that the spaces are all independent. Then with

probability 1 the sampling times Tk and 1 are linearly independent over
Q, so it follows from [3] that the sampling scheme is not universally
representative in this case: for a set of cv of probability 1, for every
nontrivial (Y, C, v, {Ss}) there is a bounded measurable g on Y for which
the averages An g (y) of the samples at the times determined by cv fail to
converge a.e. It can be argued that this is the type of sampling scheme that
is necessarily employed by actual scientists, and that therefore, in view of
this example and the Corollary to Proposition 1, von Neumann was right
when he argued that the Mean Ergodic Theorem, rather than the pointwise
one, was the real ergodic theorem.

Example 2. - We will show that there are some nontrivial Markov

processes that do give rise to universally representative sampling schemes.

Suppose that the sampling process (H, P, 8) is such that 8 takes values
a ~ for some a > 0 and that the difference between the number of

1’s and the number of seen remains bounded: there is K such that

for all n = 1, 2,... and ~ 03A9 (actually K could also depend on c,v).
Particular examples can be obtained from stationary Markov measures on
run-limited graphs like

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Then the sampling times Tk (cv) are in ZUZ a, a countable dense set in R, but
of course the spaces between them are bounded below. If 0 _ g E L~ (Y),
then

where

and (Si denotes the usual ergodic maximal operator applied to Si Sa .
From this the weak 1,1 inequality for supn An g (y) follows immediately,
for all o E SZ. Since by Proposition 1 yields a.e. convergence of

An g (y) for a dense set of g E Ll (Y), it follows that for almost all w the
sampled averages An g (y) converge a.e. dv (y) for all g E Ll (Y).
Example 3. - We will extend the previous example to one in which the

spacing function 8 takes arbitrarily small positive values, say in a sequence
rj that tends to 0. Under suitable conditions we will obtain a sampling
scheme that is universally representative for LP (Y) for p > 1.

Let each rj E (0, 1), and let P again have memory such that a step of
size rj is always followed immediately by one of size 1 - r j. For example,
such a system can be constructed from an arbitrary measure-preserving
system Po, To) and countable partition A2, ...~ as follows. Let
(H, P, T) be the primitive transformation built by putting a "second floor"
over (no, Po), the second floor being merely a copy (no, Po). (Points on
the first floor are mapped up by the identification map to corresponding
points in the second floor, and points in the second floor are mapped by
To and then to corresponding points in the first). We define ~ ~ ~ on Aj
and 1 - rj on TA.
We claim that if p~ = P (Aj) decreases to 0 sufficiently rapidly, then

for a.e. c,~, for all Y, for all g E LP (Y) the surpremum (over n) of the
averages An g (y) along the times T~ (w) will be finite a.e. dv (y), and
hence, by Banach’s Principle and Proposition 1, the sampling scheme will
be universally representative for LP (Y). (For bounded g a more direct
argument using only the return times theorem is possible). For simplicity,

Vol. 30, n° 3-1994.



364 M. LACEY et al.

let us suppose first that p > 2 and g E LP (Y). Then for m = 0; 1,...,
T2 m (cv) = m and T2 m+1 (cv) = m + b (T2 ~m for all cv on the first floor
of SL, so that for 0 _ g E LP (Y)

The surpremum of the first term is controlled by the ergodic maximal
function To deal with the second term, for each j let x~ = 
and let xi denote the ergodic maximal function of x~ under T2. Then the
surpremum of the second term is bounded by

We claim that it is possible to choose the probabilities pj so that

let us assume this for the moment and note that if g E LP for some p > 2,
then S 1 g2 ) E for each j, by the Dominated Ergodic Theorem,
so that its square root is again in LP C Ll (with Ll norm bounded

independently of j ). Then the above estimate shows that

Therefore the same result also follows for a sequence of sampling times

{k (03C9)} generated by a point 03C9 on the second floor of H.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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It remains to show that one can choose the p~ so as to guarantee the almost

sure convergence of the series ~~ (xi (CcJ))1/2; for example, p~ = 
will work. For then, by the Maximal Ergodic Theorem,

so that ~ P ~x~ > 2-~ ~  oc, and hence with probability 1 we have

2-j for large enough j.
In the case of an arbitrary p > 1 the same argument applies, except

that the appropriate version of Holder’s inequality should be used. The
requirement then becomes ~ ( cv ) ) a  oo a.s., where p > 

Again this can be arranged by choosing the p~ = P (6 = suitably.

Example 4. - Upon deleting the times T~ (cv) that are in 7~ from the

sampling scheme in Example 3, we obtain a scheme that might be
termed an example of random delay: the k’th measurement is taken at

time Tk (w) = k + b ( ~ ~ c~ ) , where 0  b ( cv )  1 for all c~, so that

the size of the gap between the k’th and (k + 1)’ st measurements is

’Y~ (~) = 1-f-b ~) -b ~) _ ’Y ~), if ~y (c,~) = 1+b (cv).
Notice that again ~ (~y 2014 1) w) is bounded for each cv, exposing the
connection of these examples with Example 2. Since Z is universally
representative for LP (Y), this sclieme will be also whenever p and the p~
are chosen so that the corresponding scheme in Example 3 is universally
representative for LP (Y).

Question. - Is it possible to generate a universally representative
sequence of sampling times if the spaces ôk = b o ~~ between times
are chosen independently from a set ~ r~ ~ clustering at 0? Will the sequence
automatically be universally representative if = r~ ~ -~ 0 fast enough?
Example 5. - The idea behind Examples 3 and 4 actually permits

construction of a fairly wide class of examples. Roughly speaking, if

a sampling scheme admits a return-times type theorem, then so does any
countable-valued stochastic perturbation of the scheme, if its tail distribution
vanishes sufficiently quickly. To make this precise, let ~T~ (cv) ~ be a

sequence of sampling times, i.e., an increasing sequence of nonnegative
real-valued functions on a probability space (H, ~’, P); we say that the
sequence has return times for p ( > 1 ) in case for all f E L°° (H), for
almost all cv, given a continuous-parameter measure-preserving flow ~ St ~
on a probability space (Y, C, v) and g E LP (Y),
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For example, the sequence Tk = k has return times for each p > l. As

usual, let q denote the index dual to p.

THEOREM 2. - Let p >_ 1. Suppose that ~T~ ~ has return times for p and
that SZ --~ ,~32, ... ~ is a countable-valued measurable function for
which there is a sequence of positive reals such that ~  oo and

J

Then + also has return times for p.

Remarks.

1. Similarly, for any measurable function 1 on H, (cv) = Tk {c~) +
,~ (Tk w) - 1 (w) also has return times.

2. The situation of the theorem can be generalized still further. For

example, in the definition of "has return times", we may suppose that
instead of transformations STk (w) sampled from a measure-preserving flow,
we are dealing with a random sequence of contractions {cv) ~ on

LP (y). The perturbation is formed by taking a sequence of contractions
Vi, V 2 , ... on LP (Y) and a measurable function j : S2 -+ N and replacing
~~ {cv) = by Wk (w) = U~ Under the

condition that £ an  oo, the sequence ~W~ (cv)~ will

also have return times in this sense. (A particular case might involve the
deflection of the action of a combination of commuting m.p.t.’s (ST) off
course, by applying powers of either S or T at random.)

3. If we are concerned only with g E L°°, we can dispense with the
assumption involving the sequence {aj}.
Proof of Theorem 2. - We may assume without loss of generality that

f , g > 0. Let x; = x ~ ~_,~~ ~ , and abbreviate h~ = g~ = g 5,~~ , and
g~, ~ = g~ STk ~W). The good set of c,~ will consist of all those points for
which (1) there is a jo (c,~) such that for j > jo (cv) we have

where * denotes the ergodic maximal function for T (this is a set of full
measure, since by the Maximal Ergodic Theorem and hypothesis,

(2) c~ is good, in the sense of the return-times hypothesis, for each h~ .
Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Notice that also for each k there is a set of full measure of y for which

there is a jo (y) such that for j > jo (~/).

in what follows, we will consider only those y that are in these sets of full
measure for all k. Also, we let jo (w, y) = max {jo (w), jo (y)}. For p > 1
the interchange of limit and sum in the calculation

[in which the limits inside the sum exist a.e. dv (y) for each j, by pro-
perty (2)] is justified by the Dominated Convergence Theorem, since (using
Holder’ s Inequality)

If p = 1, then the hypothesis  oo only allows j3 to take

finitely many values, and the interchange of limits is again permissible.

4. RANDOM APPLICATION OF COMMUTING M.P.T.’S -
A GOOD EXAMPLE AND A KEY COUNTEREXAMPLE

In this section we investigate the problem of a.e. convergence of averages
when the transformations being applied at each integer time are selected
from an arbitrary set of commuting m.p.t.’s, not necessarily from a one-
parameter flow. This is already an interesting question in the very simple

Vol. 30, n° 3-1994.
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case when at each time we choose independently one of two commuting
m.p.t.’s, such as either a m.p.t. or its inverse; we will show below that
sometimes this scheme admits pointwise ergodic theorems, but not always.
If the two transformations are chosen according to a general shift-invariant
measure, the principles that make possible the convergence of random
averages are not at all clear; for two-dimensional averages (summing over
rectanges in 7l2) one can prove return-time theorems, but here we are
dealing with something different - again some inappropriate averages, this
time a sort of one-dimensional sampling, by means of a random walk, of
a two-dimensional situation.

It will develop that for independent sequences (i.e., if P = p°° for a
probability measure p on I) there is a difference between examples of the
kinds (2) and (4) (powers of a single transformation) and those of kinds
(3) and (5) (general aperiodic higher-dimensional actions). The first kind
produces good schemes for a.e. convergence of the if and only if the
expectation of the powers is not zero. The second kind never produces good
schemes; there is always, however, a.e. convergence of a fixed subsequence
of the An .

Sturmian samples. - We begin by considering a good scheme of type
(3), in which two commuting m.p.t.’s chosen in a certain stationary (but
highly dependent) way produce a good sampling scheme: we will show that
whenever two commuting m.p.t.’s are applied according to the entries in
certain Sturmian sequences, we will have a.e. convergence of the resulting
ergodic averages for all functions in L I. Fix an irrational a in (0, 1), let
J = [0, ( j a)] for some nonzero integer j (where ~x~ denotes the fractional
part of x), and for each x E [0, 1] define § (x) E ~0, 1~~ by

When sampling a pair of commuting m.p.t.’s So, Sl, at each time k we
will apply ~x) ~~_ 1) .

THEOREM 3. - Each x E [0, 1] generates a good ~0, 1~-sequence, in the
following sense: Given any probability space (Y, C, v), commuting m.p.t.’s
So and Sl on Y, and g E L1 (Y), the averages
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Proof - Given any system (Y, C, v, So, Si), by considering the skew-
product transformation (x, y) 2014~ (x + a, S~j J (~) y) of the rotation by a
on [0, 1] with (Y, So, Si) we can obtain, for each fixed g E L~ (Y),
convergence of the averages for a.e. (x’, y). We will use this
to show that in fact for all x E [0, 1], these averages converge a.e. on

Y if g E L°° (Y) .
Given x E [0, 1], notice that if x’ is very near x, and say to the right of

x, then x + k a and x’ + k a are either both in J or both not in J, except
when x + k a hits a very short interval to the left of an endpoint of J.
However, if the length of J is a, when we create a discrepancy at time
k by hitting the first of these intervals, we immediately correct it at time
k + 1; if the length of J is ( j a) , the resynchronization occurs after finitely
many steps. Therefore (y) - (g) ~ is bounded times the

frequency of visits of x -f-1~ a to a short interval, and so will be very small
if x is close to x’. Thus, given g E L°° (Y), choose a countable dense set
of x’ for each of which there is a full set of y E Y with convergence of the
associated averages; then given x E [0, 1] and c > 0, if we choose one of
our countably many x’ sufficiently close to x, on the intersection of these
countably many sets of y we will have

In order to lift convergence from L°° (Y) to all of LI (Y), we will again
use a bounded-deviation type of trick to establish a maximal inequality.
Since k al is bounded (see [16]), we may write

where m is bounded (say by M) and integer-valued. Let St be the suspension
(flow under the constant function 1) of Si on Y = Y x [0, 1 ) and define
T (y, r) = (So y, r) on Y and S = Si; then T and St commute. Extend
functions g on Y to Y by 9 (y, r) = g (y) for all r E [0, 1). Let g be
nonnegative and integrable on Y, and define
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Then

since gM (y, t) = gM T~ y) or gM T’~ S y) depending
on whether the fractional part of k c~ is to the left or right of 1 - t. Then
the Maximal Ergodic Theorem applied to the transformation TS03B1 on Y and
Fubini’s Theorem yield a maximal estimate for the averages An g.
Now we consider the problem of applying two commuting m.p.t.’s

according to a Bernoulli (independent identically-distributed) sequence on
two symbols. We will see that this sampling scheme is always universally
representative for a fixed subsequence of the sequence of averages; but
when the transformation are a m.p.t. and its inverse, it is universally
representative if and only if the distribution is not symmetric.

First we show that making independent choices of 1 and -1, each

with p robabilit y 1 2 does not form a universally representative scheme (for
applying a m.p.t. and its inverse).

THEOREM 4. - Consider a sequence c.~ E ~ -1, chosen according to the

Bernoulli measure ,~3 1 2 ’ 1 - 2 that is, ’ ~ ~ ~ c,~ is a sequence of in dependent,

identically-distributed choices and 1 each being chosen with

probability 1 2. As usual, for each k = 1 2, ... let Sk ( cv ) = 03C91 + ... + ok

denote the position at time k of the random walk whose increment at time
j is Then with probability 1, c,~ is a bad sequence for U and in
the following sense: given any ergodic m.p.t. U on a nonatomic probability
space (Y, C, v), there is g E L1 (Y; C, v) such that the averages
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diverge a.e. In fact, with probability 1 the sequence c,~ will have strong

sweeping out: given c > 0, we can choose g to be the characteristic

function of a set of measure less than ~, yet have

lim sup (y) = 1 a.e. and lim inf An g (y) = 0 a.e.

Proof. - The idea is to use Strassen’s Functional Law of the Iterated

Logarithm (see [11]) to find long stretches where the averages along
the powers Sk (cv) involved look like the averages along a sequences
that is constant for very long stretches, except for relatively small

fluctuations, and then to follow the approach used for example in [13],
making slight adjustments so as to avoid any possible ameliorating
effects of the fluctuations, to construct a small set that is visited too

frequently.
It is enough (see [9]) to find, for a.e. o, for each c > 0, and N E N, a

set E of measure less than c for which > 1- ~ ~ . Because of
n>_N

the standard methods for transferring counterexamples by use of Rokhlin
towers, we may work with the translation action of Z on itself and find

g : Z -~ ~ 0, 1 ~ that takes the value 1 only infrequently yet still achieves

large values of the averages for most initial points (cf. [13]).
Given c > 0, choose q E N with 4/q  c, and fix a large positive

integer n. Take a, !3 E (0, 1) with 1 ) q 1  1, let = 0 and for

z = 0, ... , q - 1 let ,~Z = ( q + 1 ) /3. We define a continuous function F on
[0, 1] by F (0) = 0, F = (i + 1) c~ on the interval +!3 (q + ,C32]
for 0 ~ i ~ q - l, linearly in between, and constant elsewhere. The constant

c~ is chosen small enough so that ( F’ ~ 2 _ 1.
By the theorem of Strassen (see [11]), for there are large values of

n for which the rescaled graph of the symmetric random walk uniformly
approximates the graph of this function F: if wn = 2 n log log n, then
we can find arbitrarily large n with

Fix such an wand n.

For each i = 1,..., q, let Ii = [(i - 1 ) a wn , We now define

g (x) = 1 if x (mod q a wn) E Iq U Ii U 12, g (x) = 0 otherwise. (We are
mainly interested in x E Z, but it is convenient to work for the moment
with R.) Notice that if (a part of) g is transferred by means of the Rokhlin
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lemma to any aperiodic action of Z, we will have = 1 ~  4 / q  ~ .
Moreover, if x E Z, choosing i so that x (mod q a wn) E Iq-i+i shows that

(dropping off contributions from the rise of F)

since x + i 03B1 03C9n E Ii and a wn .

Remarks.

1. By a similar technique, if powers of a single transformation are

applied independently according to an integer-valued (not just ±1-valued)
i.i.d. process with finite second moment and mean 0, then we do not always
have a.e. convergence. (We will show in the next section that such processes
are universally representative if they have nonzero mean.)

2. This counterexample implies that sampling a flow by an i.i.d. sequence,
for example applying S 1 or S a with a irrational (members of a measure-

preserving How {S~}) according to whether the entries in a fixed i.i.d.

(mean zero or not) Bernoulli sequence o are 1 or -1, will not always
produce a.e. convergence. (Contrast with Example 2 of Section 3, where
the sampling process has some memory.) For otherwise we could deduce a
maximal inequality in 7L2 for sampling according to 03C9~R (p, 1 - p) ; but
in the flow Ut f (~y) _ f (p + t) or R, we can construct a counterexample
w above for Ui and Ua if the expectation p + (1 - p) a = 0.

3. For the same reason, for an i.i.d. sampling scheme of type (3) (choosing
one of a pair of commuting m.p.t.’s according to the entries in a mean 0
Bernoulli sequence 1}), we cannot have a.e. convergence of the
full sequence of averages in any a periodic Z~ action (S"2 Tn =f- S~ Tl
unless (m, ~) == (k, l)). We will see in Section 7 that we do always have
a.e. convergence of a fixed subsequence of the averages.
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5. SAMPLING WITH INDEPENDENT INTEGER-VALUED

SEQUENCES WITH DRIFT - THE FOURIER ARGUMENT

In this section we show that schemes of type (2) (I = Z), in which

powers of a single m.p.t. are applied according to an i.i.d. sequence with
nonzero mean, are universally representative for Lp for each p > 1. The

proof uses the Fourier method - estimation of trigonometric sums, with a
simplification and improvement by means of an exponential inequality for
martingales. It is similar to the method used by Stout (see [11]) to prove
an exponential inequality and law of the iterated logarithm for martingales.
A previous argument along these lines due to Blum and Cogburn [5] yields
mean convergence.

THEOREM 5. - Let I = Z, H = and P = p°, where p is a probability
measure on Z such that 03C91 has finite second moment and nonzero means 03BE
(that is, cv2 , ... is a sequence of i. i.d. integer-valued random variables
with finite second moment and nonzero mean). Then the scheme (S2, P) is
universally representative for LP for each p > l.

Proof. - We need to show that for every (a-finite) invertible measure-
preserving system (Y, C, v, U) and g E LP the averages

converge a.e. We can assume that the greatest common divisor of the
essential range of cv~ is 1. We are going to compare AN to another sequence
of (nonrandom) operators VN for which we already know a.e. convergence.
Let p~ = = I~ ~ , and let the L °° contraction R be defined by

and let

By Hopf’s ergodic theorem for positive contractions, for each g E LP and
for a.e. x there exists

The limit function g* is the projection of g onto the space of R-invariant
functions. (In fact, using the assumption that the g.c.d. of the essential
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range of the cv~ is 1, it is not hard to see that the R-invariant functions

coincide with the U-invariant functions.)
For each r > 1 let Ir = ~ ~rnl : n = 1, 2, ... ~. The proof of our theorem

consists of showing that for (independently of the choice of Y) and
for each r > 1 we have

For (1) implies that for E SZ and each r > 1 we have, for a.e. x,

and then convergence to g* along the full sequence follows from a

well-known argument (see, for example, [12]).
We proceed by a sequence of reductions. We can assume that 1  p  2.

By the triangle inequality (1) will follow from

But this in turn follows if we show that there is 03B8 > 0 such that

Since we can interpolate between L2 and (2) follows from an estimate
of the form

with a positive a. An application of the spectral theorem shows that (3)
follows from

00

Using the notation e (/3) = e~~ and letting (~ (~) = ~ pk e (k a) (the

characteristic function of the Fourier transforms A~ and VN (into

[-1/2, 1/2)) are
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and

~L=1

The estimate in (4) will be proved in two parts. First we will work with
small a, showing that

and then we will obtain bounds for the rest of the a’s, namely

and

Proof of (5). - First we write

By the (Hartman-Wintner) law of the iterated logarithm there is a set

of full measure Hi C S2 so that if 03C9 E 521 then ISn (03C9) - n . 03BE| ~
C~ (n log log n)1~2. It follows, using N-3/4, that

Next we show that we have the estimate
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To see this first note that § (a) is twice continuously differentiable (since
cv~ has finite second moment); hence

We also have

We can now estimate that

since a2  N-3/2. By (9) and (10) we can finish the estimation in (8):
~  CW (log log 
The above proof did not use the assumption that ~ ~ 0. On the other hand

this is the only part of the theorem where we used that w~ had finite second
moment. From now on we will use only that cv~ has finite first moment.

Proof of (6). - We continue with the notation of the previous proof. By
( 11 ), since ~ 7~ 0, there are 8 > 0 and c > 0 so that 1 - ~ ( a ) ~ > c I a I

whenever  8. On the other hand, on the compact set 1 2 ~
we have 11 - ~ (a)~ > ~ for some positive ry. This is because the gcd
of the essential range of w~ is 1, and hence for -1/2 ~ a  1/2 we
have § (a) = 1 if and only if a = 0. To sum up: there is C > 0 so

that ~1 - ~ (a)~ > C ~~~ whenever 1/2. Now we can estimate that
for N-3/4

Proof of (7). - We shall prove that there is a constant K (independent
of N) so that for each 0 1/2

Let us see how (12) implies (7). During the course of the proof of (6)
we have shown that
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Therefore for N-3/4 (12) implies

If follows that if we define HN = {a~l/2 >_ N-3/4, a = k/N2 for
some integer l~}, then

since / HN ~ N2. By the Borel-Cantelli lemma, for a.e. w, for every N

Now to get the estimate in (7) (in which the surpremum is taken over all

1/2 ~ N-3~4) we just use the fact that for a.e. w for every N we
have the following uniform estimate for the derivative of AN (a) :

(for a.e. w, sup ~Sn  x).
n

So let us prove (12). We can assume that

We need to prove that
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or, with the notation A FN = (S..),
~=1

We can estimate the left-hand side of (14) as

We see we just need to have the estimate

because then we just have to choose K >_ C + 4. Let RN and IN denote
the real and imaginary parts of FN respectively. We can write, using
ab  1/2(a2 + b2);

We will only show

the proofs of the other bounds being entirely similar. For m ~ 1 let us
denote by 8m the sub a-algebra of B generated by ~cvl , ... , and
let Bo = ~ SZ, ~ ~ . We define the (finite) martingale ((Fm, B~) : : m =
0, 1,..., N} and its real part {(Rm, ,~3~.,-~ ) : m = 0, 1,..., N} by setting

where EBm denotes the conditional expectation operator with respect to
Bm. We will show the estimates

and
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Then we would get (16) as follows: by (19) and (18) we have

and hence

with the last inequality following from (17).
So let us prove (17)-(19). We need explicit formulas for F m. By the

(complete) independence of the 

and therefore
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Now ( 17) follows immediately from (13) and the above expression for Fo.
Using independence of 03C9m and we also have the following estimate
for m = 1, 2,..., N:

since . I ~~( ~)~I 2 is bounded uniformly in a (not an integer). This implies
( 18).

Finally we prove (19). Let = 2 (R"L - Then

This is because by ( 13)

Now by (20)

which finishes the proof.
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Remarks. - 1. Combining this theorem with the counterexample that

precedes it, we see that a square-integrable integer-valued i.i.d. process
provides a universally representative sampling scheme if and only if it has
nonzero mean.

2. The equivalent of Theorem 5 holds if the transformation U being
sampled is a positive contraction of LP, not necessarily a m.p.t. [12].

6. SAMPLING WITH ANY INTEGER-VALUED STATIONARY

SEQUENCE WITH DRIFT - THE TOWER ARGUMENT

In this section we use a more ergodic-theoretic viewpoint (towers,
orbit equivalence) to show that any (ergodic) integrable integer-valued
stochastic process with nonzero mean is universally representative for
bounded stationary processes. For the positive integer-valued case, the
reduction of universal representation to the return-times theorem (by means
of towers) was made in Section 1; with some more effort, we can accomplish
the same thing in the positive expectation case.

THEOREM 6. - Let I = Z, S2 = I~, and let P be an ergodic shift-invariant
probability measure on Q. Suppose that f = 03C91 is integrable and has nonzero
mean ~. Then the scheme (SZ, P) is universally representative for L°°.

Proof. - Assume that ~ > 0. We use the notations

Also, for U a m.p.t. on a probability space (Y, C, v) and g a bounded
measurable function on Y, continue to denote

Define
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and

We abbreviate Z (c,~) = N (w, 0) = 1. Then

Assume that g ~ 0. We will show that for ~ 03A9 (with the set of
measure 0 not depending on (Y, C, v, U, g)),

h-1

Now 
’ ~

(3) M (w, n) -~ oo as n -~ oo;
(4) for each 03C9, m (o, n) is bounded as r varies;

(5) Nn (~~ k) = N~ (~~ k) + N- (cc;, k) and N- (c~, k) = 0 

(6) By the Ergodic Theorem, given E > 0 for large n we have
Sn E ~(~ - E) n, (~ -I- E) n~ . Thus for large n (and n)), the
difference between BM and

is bounded by

using (2), this can be seen to be on the order of E.
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In view of (3)-(6), in order to prove the theorem it is sufficient to

establish (1) and (2).
To prove (1), take the sequence n 1  n2  ... of record times, i.e. such

that M (w, n;) = Sn~ (w) for each j, and Sn (c~) ~ M (w, n) = M (w, n;)
for n~  n _ Given E > 0, choose J large enough that for n > nJ,
Sn (w)/n is within E of ~. Then for n >_ nJ, say with n  

we have

all of which are within E of ~.
To prove (2), we will express the averages involved as those found in an

application of the return-times theorem to another transformation related to
the shift a on H. The tower will have for its base

with a column of height

above each point 03C9 E A. Notice that A has positive measure (for example,
it contains the set A, for the transformation as defined in [15], p. 83).
Our set A is a section of the following equivalence relation: 03C9 ~ 03C9’

if there is j E Z with w’ S~ (cv) = 0. The cardinal of the
equivalence class of w is Z (cv); define Z (cv) = 0 for A. If we let

then

is a measure-preserving transformation A -+ A. We define the measure-
preserving system (X, T) to be the tower over (A, ~) with height
function h. Our result will be obtained by applying the return-times theorem
to this system (X, T), the function Z, and the points of A.

Fix 03C9 E S2 and spread out the a-orbit of w in Z x N as follows. Over
each integer i in {Sk (cv ) : 1~ E (the range of the cocyle) place a column
(of height N (o, z)) of the points in the orbit of w arrived at when this
value is assumed (i.e., include c,~ in the stack over i if Sk (cv) = i),
ordered from bottom to top according to the order that the orbit of 03C9 inherits
from Z. (This picture may usefully be arrived at by plotting the random
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walk {Sk (c,~ ) : 1~ E Z} as a "snake graph" over Z). There are a few neat
things to notice about this array of points:

(7) Any sum between a pair of elements in a stack is 0: If j  l~ and
S~ (cv) = Sk (c,~) = i, then (aj cv) = 0.

(8) The bottom element of each stack is in A.

(9) If cv is replaced by another point in its orbit, we obtain essentially
the same picture, just translated horizontally.

(10) The horizontal distance from the stack over ~~ c~ E A to the next
one to the right of it is 

Further, looking at this array of points also allows one to see that h is
integrable. Consider the region under the graph of ( f ( on S2 to be made
up of segments D ( x ) of length f (x) over the point x E H. We will cut
up and rearrange this region in a measure-preserving way. Fix 03C9 ~ 03A9 and
spread out the orbit of cv in the array described above. For x in the orbit
of cv, lay out a horizontal segment (of length from the stack

including x to the one including a x. This segment crosses a certain set of
points z E A, where "crosses" means that z lies under the left closed, right
open segment. For each such z crossed by a segment, we cut off that part of
the segment, of length h ( z ) , that extends from tiie stack over z to the next
stack to its right, and we assign this piece of the segment to z E A. Looking
at the entire graph of the random walk, we see that in this way each z E A
gets assigned to it the number of segments that cross its stack, which is

is nonpositive and the other is positive}.
Since the cutting is done measurably and the rearranging (the assigning
of pieces of D (x), for each x E H, to certain z E A) is accomplished
by powers of a in the first coordinate and translation in the second, this

process is a measure-preserving transformation of the region in H x Z under
the graph of to the region in A x Z under the graph of n ( z ) h ( z ) . Thus

and in particular, since n (z) > 1 a.e., the integrability of f implies that of h.
Now we define a map T : H -+ S2 as follows. Given o E SZ, form the

array corresponding to it as above. If c~ is not the top element in a stack, let
To be the point immediately above it; otherwise, let To be the point on the
bottom of the next stack to the right. Then T is a well-defined, measurable,
one-to-one, onto map of the form T (cv) = aj (w) (cv) which has the same
orbits as does a; therefore T is an ergodic m.p.t. on H.
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Let 03C8 : A -+ A be the first-return map (under T) to A. Thus for each
z E is the element on the bottom of the stack to the right of z. Further,
for any x E H, let be the bottom element of the stack to which x belongs
(this is independent of the starting point in the a-orbit of x used to form
the array). Finally, as mentioned above, (X, T) is the measure-preserving
system obtained by building a tower with height function h over (A, 
and we are interested in the function Z (cv) = card ~ j E Z : S~ (cv) = 0~
on X. Then

By the return-times theorem, for almost all and hence for almost all

w, for any measure-preserving system (Y, C, v, U) and any g E L°° (Y)
these averages converge a.e. dv (y).

Remark. - If Z E LP (A) for some 1 ~ p _ oo, and - + - =1, then- - 

p q

for we will obtain a.e. convergence of for all systems
(Y, C, v, U) and all g E Lq (Y). This follows from the above argument
and the LP, Lq version of the return-times theorem.

7. INDEPENDENT APPLICATIONS OF ELEMENTS OF A HIGHER-

DIMENSIONAL ACTION - CONVERGENCE OF A SUBSEQUENCE

In this section we consider sampling schemes of type (6), applications
of elements of a higher-dimensional measure-preserving action selected
at random independently (for example, at each time we apply one of a
finite set of commuting m.p.t.’s): d is a positive integer, p is a probability
measure on 7~d with finite second moment (i.e. ~ ~ 1~ ~ 2 p (k)  oo), and

(H, P) = the product measure space of infinitely many copies
of p). We continue to let Sn (cv) = 03C91 + ... + on, where 03C9j is the

projection of 03C9 onto the j’th coordinate space of H = The p-th
coordinate of a vector v E I~d is denoted by v~p~. We use the absolute value
sign two (not really different) ways: ~x~ means the absolute value of the
real number x, but for a vector x E (~d we understand = max 

The Fourier-transform variables a, 13 E I~d always satisfy ~,~ ~  1/2.
The constants mentioned below can depend on the dimension d.
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THEOREM 7. - For t = 1, 2, ... let Nt = ~2 t log t~. Then a.e. has
the following property : for every measure-preserving action U of l~d on a
a-finite measure space (Y, C, v) and every g E L2 (Y), the limit

exists for a.e. y E Y.

Remarks.

(1) We will see from the proof that if the support of p generates (with
respect to addition) the whole of then the above limit is v-a.e. equal to
the projection of g on the space of U-invariant functions.

(2) Probably the methods of [2] can be used to prove a.e. convergence
for g E LP (Y), p > 1, but we do not know what happens for g E LI (Y).

(3) U can be replaced by a Zd-action of positive L2-contractions. (The
spectral theorem is valid for L2-contractions, not just for isometries.)

(4) There is an L2-dense class of g’s for which the averages converge
along the full sequence N = 1, 2, ..., and not just along the subsequence
Nt. (Take the ranges of the images of the spectral measures of the d-torus
with a neighborhood of the origin removed. The Fourier transforms of the
kernels involved tend to 0 uniformly on each such set. If the support of p
fails to generate, we may need to remove a finite number of d-dimensional
cubes.)

(5) If we had convergence along the sequence Nt = 2t then we would
also have convergence for the full sequence. (This is because, for positive
operators, existence of a maximal inequality along such a subsequence
implies the maximal inequality along the full sequence, and we have

convergence on a dense set.)

(6) It is easy to modify our proof below to get a.e. convergence of the
averages along the subsequence Nt = t! or Nt = [2ct log t], where c is any
fixed positive constant. The secret is that ~Nt ~ should satisfy: Nt > 1 and

should be greater than a fixed positive power of log (Nt). Any
such sequence has the following three key properties:

(i) There is a positive integer s so that for any given nonnegative to,
if t 2: to -I- s then
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(ii) For each to,

(iii) If Mt = log Nt/Nt, then

(7) We have mean convergence along the full sequence N = 1, 2...
(since we have a.e. convergence for a dense set).

Proof of Theorem 7. - The ideas are similar to the proof of Theorem 5.
We can assume that the support of p generates (Otherwise consider a
subaction of Z~ which is necessarily isomorphic to a -action for some
d’  d.) For 03C9 e SZ, continue to denote

We are going to compare AN to another sequence of operators VN. First
we define

and then we let

By the Hopf ergodic theorem, for each g E L2 and a.e. y we have

where g* is the projection of g on the space of R-invariant functions.
In fact, it is not hard to see that the R-invariant functions coincide with
the U-invariant functions. We want to show that there is SZ’ C_ H with
P (H’) = 1 such that if 03C9 E 0’ then 

_

An application of the spectral theorem shows that (8) follows from
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where the Fourier transforms A~; (a) and if; (a) are

and

and § (~) = ~~ p ( k ) e ( k . c~).

The inequality in (9) will be a consequence of the following estimates
(compare with inequalities 5-7 in the proof of Theorem 5):

and

Let us deduce a single inequality that is a consequence of (10)-(12)
(using the fact that the square root of a number less than one is greater
than the number):

Note that for fixed N the above estimate gives only the trivial bound 2 if

This is the main cause of difficulty; however, along the highly lacunary
subsequence ~Nt ~, each c~ is in this undesirable region for only a finite
number of steps, uniformly bounded in a. Before we prove the estimates
(10)-(12), let us see how they-that is, (13)-imply (9). We will use the

properties mentioned in Remark (6).
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Fix a ~ 0. Let to be the largest positive integer t satisfying 

~ Nt log log Nt . (If there is no t like this then we take to = 0.) Note that

Using the s from Remark 6 (i), we now split the sum on the left of (9)
into three subsums:

Using (13) and the definition of Nt we can estimate the first sum as

then the second as

and finally the third as

which implies (9).
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Proof of (10). - Let us ~ k p (k), the mean element of the
random action. First we write

By the law of the iterated logarithm there is a set S21 C S2 of full measure
such that if 03C9 E Hi then ISn (cv) - n03BE| ~ C03C9 n log log n for all n. (The
d-dimensional estimate follows by using the one-dimensional one on each
coordinate.) As in the proof of (5.5) we get

Next we show that

To see this first note that (since p has finite second moment)

We also have

As in the proof of (5.5) the above two estimates imply (15). By (14) and
(15) we can finish our proof:

(using ( N log log N  2 and that the square root of a number less

then one is greater than the number).
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Proof of (11). - We can assume that c~ ~ 0. It follows 1,
since the support of § generates lLd. Summing the geometric progression,
we get

We see that we just have to prove that

with C independent of a and N. (Recall the two meanings of ] . ].) As
in the proof of (5.6) it is enough to prove (16) in a neighborhood of 0.
First we write

since p has finite second moment.

We see we just need to show that

Let us define the quadratic form Q on R~ by

Since the support of § generates Z~ it follows that Q is positive definite,
and ( 17) is just a norm equivalence result on R. By classical results, there

is a of IRd, and positive numbers ~ 1, ... , ~d, so that
d

if x = ~~ x(q) vq then
q=1 a

Therefore

To prove (17) we just need to prove that C max 
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wd) be the orthonormal basis for which we defined the
coordinates a(p). We have

It follows that

and we are done.
Proof of (12). - An argument identical with the proof of (5.7) gives a

constant K so that for every a and every N

(just choose K large enough, d being fixed). By the estimate in (16) this
implies that (with a different K)

Let HN = {ala(p) = p = l, ... , d, for some k E l~d~. By (18)
we have

By the Borel-Cantelli Lemma there is a set O2 ç H of full measure so
that if cv E 03A9 2 then for a E HN

But we want ( 19) to hold for every a. An application of the Law of Large
Numbers shows that there is a set SZ3 ç 0 of full measure so that if 03C9 E S23
then for ,~ ~  N - 2
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(estimate the differences of exponentials, or take the gradient). Now (19) and
(20) imply ( 12), since the right-hand side of (19) is at least Cw log N/N
and we may assume that C03C9 lo g N / N 1  1.
THEOREM 8. - G SZ has the following property : for every measure-

preserving action of Zd on a a-finite measure space (Y, C, v) and every
g E L2 (Y),

Proof - We may assume that the support of p generates Denote

Fix r > 1 and let Nt = Nt (r) = lrt J. It is enough to prove that for
each r > 1,

We are going to compare BN to

where R is as in the proof of Theorem 5. By Hopf’ s theorem, for each
g G L2 and a.e. y we have

As before, it is enough to show that for E 0

where the Fourier transforms of the kernels are

and
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with (~ (a) as before. If

and

then the estimate (13) gives

This time we obtain the "trivial" bound uN when a is inside a small cube

but outside a really small cube at stage N ~N 1 c ~ ~ "~ 2014 )- .Y g 
v N 

_~ I
Again, along the lacunary sequence ~Nt ~, the two sequences of squares
pass each other after a fixed delay: there is an s such that.

and so we may again select to to be the largest t with

and decompose the sum into three pieces as before.
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