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SUBGROUPS OF CONTINUOUS GROUPS
ACTING DIFFERENTIABLY ON THE HALF-LINE

by J.F. PLANTE

1. Introduction.

We consider groups of diffeomorphisms of the closed half-line
[0,90). Denote the group of ck diffeomorphisms 1 < k <o by
Diff* [0, ) and the group of homeomorphisms by Homeo[0, o).
Clearly, Homeo[0, o) is isomorphic to the group of all orientation
preserving homeomorphisms of the line since (0,<°) is homeo-
morphic to the full-line. In the case of diffeomorphisms, the situa-
tion is different in that the differentiability at O can be expected
to play a role in determining the structure of the group. If I' is a
subgroup of Diff¥[0,), we would like to determine necessary
and/or sufficient conditions for I' to be a subgroup of a Lie group
which acts at least continuously on [0,<). More precisely, is
there a Lie group G, an embedding I'— G, and an action
G — Homeo[0, ) such that the following diagram commutes ?

r

\

Diff* (0, )

inclusion

v v

G Homeo[0, )

\

Recall that the affine group of the line is the group of diffeomorphisms
of the line of the form x +—— ax + b(a # 0). This group has two
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components. Denote the identity component (a2 >0) by &*. Up
to isomorphism, @* is the only non-abelian connected 2-dimensional
Lie group.

THEOREM A. — Let G be a simply connected Lie group which
acts in a C” effective manner on [0,). If 0 is the only fixed
point of the action (thus, G is transitive on (0,)), then G is
isomorphic (as an abstract group) to a subgroup of .

The proof of Theorem A, which rests mainly on a classical result
of Lie, is given in Section 2. At this stage, it is worth observing that
the result is not vacuous by constructing a C~ action of &* on
[0,90) with only 2 orbits. The only problem is achieving differen-
tiability at O since @* acts on the line which is diffeomorphic to
(0,). Let ¢: R—> R* be a C” diffeomorphism such that

1
)= —— —oo<<t<0
o(1) = — t

o(t) =t 2<t<oo,
Computation shows that for # < 0,

Al dl_r—pl.
d’*[at] © oy end ¢*[’at] =073

Thus, the standard action of @* on R induces an action of &% on
[0, ) whichis C” evenat O.

Theorem A suggests what to expect as a sufficient condition
that a subgroup of Diff[0,) embed in a continuous group of
homeomorphisms. Since @' is solvable, it seems reasonable to
consider groups which are solvable and occur as subgroups of Lie
groups. When the group I' is discrete, this can be done. It is known
[11] that the groups which occur as discrete subgroups of solvable
Lie groups are precisely the polycyclic groups.

THEOREM B. — If T' C Diff?[0, ) is a polycyclic group which
has O as its unique fixed point, then T embeds in a continuous
action of & on [0,%) whose restriction to (0,) is topolo-
gically equivalent to the standard action of &* on R.
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The proof of Theorem B is given in Section 3. In Section 4, we
describe some applications of these results to codimension one fo-
liations and Lie group actions.

The author is grateful to R. Gardner for helpful discussions
about Lie algebras of vector fields on the line which provided the
stimulus for writing this paper.

2. Proof of Theorem A.

It is a classical result of Lie that the only simply connected Lie
groups which can act transitively on the line are R, @, and §L(2 ,R)
(see for example [1] page 333). The proof given in [1] assumes that
the (infinitesimal) action is real analytic. This smoothness assumption
can easily be reduced to C” by the following result which was com-
municated to the author by R. Bryant.

LEMMA. — Let § be a finite dimensional Lie algebra of C” vec-
tor fields on the line such that for every point p € R there is a vector
field X € @ such that X(p) #0. If ZE€ § vanishes to infinite
order at some point, then Z=0.

Proof. — For pER, let §,C g be the subalgebra of vector
fields which vanish to infinite order at p. Let S, CR be the set
of points where every element of S vanishes. S, is a non-empty
closed set since §, is finite dimensional. The proof of the lemma
will be completed by showing that S, is also open. Let g € S, and
X € g such that X(q) # 0. Choose coordinates for an open interval

0
containing q so that X = YR Let Z,,...,Z, beabasisfor §,.
There are functions f,,...,f; which vanish to infinite order at ¢

9
such that Z; = f; 3 i=1,...,k. §, contains the vector field

s
[X,Z,.]—[  Ji at]—f‘ ot

Therefore, there exist constants Cij such that

[X9Zi]= c:.: L. .

L7 |
1

=
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In other words, on an interval containing g the functions f,,..., f;
are the (unique) solutions to the linear initial value problem

dx, & .

d—t-'=12=‘lciix/ i,j=1,...,k

x,(9)=0.

Therefore, f;=0 in a neighborhood of g for all i which means
that S, isopen.

We return now to the proof of Theorem A. In this case, we have
a simply connected Lie group G acting on [0, o) which acts tran-
sitively when restricted to_ (0,%). Since (0,0) is diffeomorphic
to the line, G is either SL(2, R) or a subgroup of Q" . However,
an action of SL(2,R) on R" cannot be extended to [0, ) in
even a C! iashion by Thurston’s generalized Reeb Stability Theo-
rem, since SL(2, R) has a uniform discrete subgroup I' such that
Hom(I'; R) = 0, and the action by I' doesn’t extend [10]. There-
fore, G must be isomorphic to a subgroup of &*.

3. Proof of Theorem B.
We begin with a result which suggests how the proof is organized.

LemMA. — If T C Diff?[0, ) is a polycyclic group, then pre-
cisely one of the following possibilities occurs

(i) T is a finitely generated free abelian group.

(ii) ' has exponential growth and a subgroup of finite index
'y, which in turn has a normal subgroup N such that N is a free
abelian group of rank =22 and T /N is a free abelian group of
rank = 1.

Proof. — If T has polynomial growth, then it is finitely generated
and free abelian by (4.6) of [9]. The only other alternative according
to [11] is that ' has exponential growth. Since I' is polycyclic,
there is a subgroup I'; of finite index and a finitely generated nil-
potent subgroup N which is normal in Iy such that T'y/N is
finitely generated free abelian [11]. Since N C Diff?[0, ), (4.5)
of [9] says that N is actually free abelian. We assume that I', and
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hence I'y, have exponential growth. N and I';/N must be non-
trivial since nilpotent groups have polynomial growth [11]. It remains
to be shown that rank N > 1. If this were not the case, N would
be generated by a single element 2 and for g €T, we would have
either ghg~!=h or ghg~' =h~'. Let I'; be the subgroup of
index at most 2 in TI'; consisting of those g such that ghg~! =
Then N is central in I'y; and Iy/N is abelian which implies that
I'; is nilpotent and that I'; and I' have polynomial growth. Since
this is not the case, rank N = 2 and the lemma is proved.

In order to prove Theorem B, it suffices to show that the res-
triction of I' to (0,<°) is conjugate to an action by a subgroup
of @*. According to (4.6) of [8], any polycyclic group of homeo-
morphisms of the line which acts minimally (every orbit dense) is
conjugate to a sub-group of the affine group of the line. Further-
more, if the group preserves orientation, it is conjugate to a subgroup
of @*. Because of the endpoint 0, I' preserves the orientation
of (0,%). Since (0,0) is homeomorphic to the line, we see that
I' embeds in a continuous action of @* on [0,) whenever I
is polycyclic and the restriction to (0,<) is minimal. The proof
of Theorem B will be completed by showing that, in most cases,
the action on (0, <) is minimal. This requires the differentiability
hypothesis and the hypothesis that 0 is the only fixed point.

Suppose I' C Diff2[0,) is a free abelian group of rank > 1
which has no fixed points other than 0. We claim that each element
of I' fixes only 0. Suppose otherwise. Since rank I' > 1, let s > 0
and g, hETD be elements such that g(s) =s, h(s)<s. Let
so = lim Ah"(s). Clearly, s, is fixed by both g and h (since g

n—>oo

and & commute). The points A"(s) are fixed by g and converge
to s,, and & has no fixed points in some interval of the form
(59,80 +€). Since g and h are C?, this contradicts a result
of Kopell [5] so the claim is proved.

We now claim that rank I' > 1 implies that it acts minimally
on (0,0). Select a fixed gET" and let (g) be the infinite cyclic
group generated by g. The quotient group I'/(g) is non-trivial,
finitely generated, free abelian, and acts in the obvious way on the
quotient space (0, )/t ~ g(t). Since no element of I' has fixed
points in (0, ) this quotient space is C? diffeomorphic to the
circle, and T/{(g) acts freely and of class C?>. By a result of
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Denjoy [3], this action is minimal and so, therefore, is the original
actionof I' on (0,).

Theorem B is now proved in case (i) of the Lemma when
rank I’ >1. In case (ii), we consider instead the free abelian
group N. As before, we find that N acts minimally on (0, ).
Since N is a subgroup of I', I' itself acts minimally on (0, )
so Theorem B is proved in case (ii).

The only remaining case is case (i) with rank I’ =1. In this
case, I' is infinite cyclic generated a diffeomorphism g which
clearly fixes only 0. Suppose, without loss of generality, that
g(t)>1t for all +>0. Fix s >0 and select a homeomorphism
h:[s,g(s))— [0,1). h extends in an obvious way to a homeo-
morphism (0,%) — R such that hgh~' is the translation
t—> t+1. Thus, I' embeds in a continuous action of @* on
[0, %) and the proof of Theorem B is complete.

Remark. — Theorem B can be extended in a manner which
will be useful in the next section. Call a group I' virtually polycyclic
if it has a polycyclic subgroup of finite index. Theorem B is valid
for virtually polycyclic subgroups of Diff2[0,). To see this,
let ', be a polycyclic subgroup of finite index in I' andlet I'; CT
be the intersection of all conjugates of I'y in I'. I', is a poly-
cyclic normal subgroup of finite index in I'. This means that
virtually polycyclic groups are contained in the class $ of groups
allowed in (4.6) of [8] and so the proof given above also works
for virtually polycyclic groups.

4. Applications to codimension one foliations and Lie group actions.

Let & be a transversely oriented codimension one foliation
and L a compact leaf of % which is isolated from other compact
leaves on a side. We say that L has affine holonomy (on the side
in question) if there is an arc 7 transverse to & which intersects
L in a single endpoint x, such that the holonomy maps of 7
determined by some generating set of m,(L,x,) are affine in
suitable coordinates. By this, we mean that there is an embedding
f:intt — R such that lim f(f)=—o and if A is a holo-

t=>Xxo
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nomy map (a homeomorphism between neighborhoods of x, in
7), then fuf~! (which is defined on an interval of the form
(—oo,b)) is affine. The arguments used to prove Theorem B can
be easily adapted to prove the following.

THEOREM. — If & is a transversely oriented codimension one
foliation of class C*, L isa compact leaf of % which is isolated
from other compact leaves on a side and w,(L) is virtually poly-
cyclic then L has affine holonomy on that side.

COROLLARY. — Let G be a connected amenable Lie group
which acts locally freely of class C?* on an orientable manifold so
that the orbit foliation has codimension one. If L is a compact
orbit which is isolated on a side then L has affine holonomy on
that side.

The corollary follows immediately from the theorem and the
following result from [6] which also helps explain the hypothesis.

LeMMA. — If G is a connected Lie group, then the following
statements are equivalent:

a) G is amenable.

b) Every discrete subgroup of G is virtually polycyclic.

c) G contains a solvable normal subgroup with compact quotient.

When G is nilpotent, the holonomy in the conclusion of the
corollary is actually equivalent to translations (2, 4, 9]. Using the

construction from Section 1, we now show that codimension one
solvable group actions do not always have such simple holonomy.

Let ¢ : R—> (0,1) bea C” diffeomorphism such that

1
1) = — — <<t —2
V(D) T
V(= —  2<i<w
T 1+t = '

The standard action of @* on R induces, via ¢, a C” action
of @ on (0,1) which extends to be C” on [0,1]. In this case,
0 and 1 are fixed and the action is transitive on (0,1). We will
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construct a C” codimension one foliation of M x [0,1] where
M is a compact 3-manifold such that the only compact leaves are
M x {0} and M x {1} and all other leaves are dense. The leaves
of the codimension one foliation will be everywhere transverse to
the arcs {x} x [0,1]. Countably many of the leaves will have
infinite cyclic holonomy groups and the foliation can be parame-
trized by the action of a 3-dimensional solvable Lie group.

Let M be the quotient of R® by the fixed point free group
I' of transformations generated by A, B, C, where

Ax,y,2)=2x+y,x+y,z—1)
B(x,y,z2)=(x+1,y,2)
Cx,y,z2)=(x,y+1,2).

Let X,Y,Z be vector fields on M defined by
X(x,y,2) =N, G/S5—DX %0
Y(x,y,2) = (—2N, (/5 +1) \*,0)
Z(x,y,2)=1(0,0,1)

where A = —;— a3 + \/§)_ These vector fields satisfy the relations

[X,Y]=0

[X,Z] = (logM) X

[Y,Z] =(—logN) Y
which implies that M is a solvmanifold.

I' is the group of covering transformations of R® over M.
Welet I' act affinely on R as follows:

A: t— At
B:t——t+5b
C:t—t+c

where b,c are positive numbers such that b% +c?2=1,
(/5—1)b =2c. We leave it to the reader to check that the
appropriate relations are satisfied

(ABA™'B = BC = CB, ACA™!C™! = B).

Now ¢ induces an action of I" on [0,1]. The combined action
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of " on R®x [0,1] preserves the codimension one foliation having
leaves of the form R3? x {¢} and, hence, induces the desired foliation
g of Mx[0,11=R3*x[0,1)/T. The vectors fields X,Y,Z lift
to vector fields tangent to the leaves of & which generate a solvable
Lie group action having & as orbit foliation.

Remarks. — (i) This example shows that the orbit foliations
of codimension one locally free actions by unimodular solvable
groups need not be «almost without holonomy » which is in sharp
contrast with the nilpotent case [2, 4]. The theorem of this section
shows that the phenomenon of this example occurs whenever the
action is C? and has an isolated compact leaf whose holonomy
group has exponential growth.

(ii) It is probably the case that C? codimension one actions
by amenable Lie groups can’t have exceptional orbits. When there
are no compact orbits and the group is unimodular, if follows
from [7] that every orbit is dense. In the non-unimodular case,
the same conclusion may follow from unpublished results of Duminy.
When there are compact orbits (in which case the group must be
unimodular), the results of the present paper should be useful.
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