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Natural Populations of Woodchuck Hepatitis Virus Contain Variant Precore and Core
Sequences Including a Premature Stop Codon in the Epsilon Motif
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We have determined a consensus sequence and the type and the frequency of spontaneous sequence variations in the
woodchuck hepatitis virus (WHV) precore gene and the 5* region of the core gene in 101 serum samples from 53 naturally
WHV-infected woodchucks by polymerase chain reaction sequencing. Twenty of the 53 woodchucks were found to have
variant sequences. Ten patterns of variant sequences were identified in these 20 animals. WHV sequences from 4 wood-
chucks had 1 nucleotide change, 3 had 2 nucleotide changes and 3 had 3 nucleotide changes. The nucleotide changes
were not randomly distributed, but were limited to only 8 sites. Four sites were in the epsilon motif of the precore gene
and four were in the 5* region of the core gene. Sixteen of the 53 (30%) woodchucks had precore sequence variants. All
altered sites were analogous to previously described mutations in hepatitis B virus. There was a nucleotide change at
nucleotide 2016 in codon 29 of the precore region that produced a stop codon in 4 animals. This site is analogous to a
common hepatitis B virus e antigen mutation. The sequence from the initial blood samples from 3 of 4 animals with this
stop codon producing variant appeared to be the consensus sequence; however, in later samples the variant occurred as
a mixed infection with the consensus sequence. The mixed infections were chronic and the proportion of the variant
sequence was maintained or increased in the course of infection. In the fourth animal only the variant was found and it
persisted for over 14 months of infection. WHV appears to be a valuable model for the study of the structure and function
of the hepadnavirus precore region. q 1996 Academic Press, Inc.

The precore gene of hepadnaviruses is an in phase rum is associated with viral replication in the liver. Once
antibodies to HBeAg are detected, liver injury diminishescontiguous open reading frame that precedes the core

gene. The sequence of this gene is well conserved in and viral DNA is cleared from the serum. A relatively com-
mon mutation at nucleotide (nt) 1896 of HBV produces ahepatitis B virus (HBV) and in the other mammalian hepad-

naviruses, woodchuck hepatitis virus (WHV) and ground stop codon which prematurely terminates the translation of
the precore gene and leads to HBeAg-negative mutants.squirrel hepatitis virus. Since there are several important

sequences within the gene, such as the encapsidation HBeAg-negative mutants have been associated with acute
fulminant hepatitis or severe chronic hepatitis, in some stud-signal (e) which is involved in the packaging of the RNA

pregenome into the virus core, as well as DR1, a short ies, but an association with increased liver disease has not
always been found (6–9).direct repeat involved in the replication of minus-strand

DNA (1–5), mutations are not well tolerated. However, Woodchuck hepatitis virus (WHV) has been a valuable
model for studying HBV pathogenesis. Although there isspontaneous mutations in the precore region of HBV have

been found throughout the world (6–9). an extra codon in the WHV precore region, there is over
Normally, the precore protein is targeted to the endoplas- 90% sequence identity in the stem–loop region of the e

mic reticulum and then to the Golgi apparatus by an en- signal of HBV and WHV (2, 14). Numerous isolates of
coded signal sequence where it undergoes proteolytic HBV have been sequenced, but only 5 WHV sequences
cleavage at the amino and carboxy terminals and is glyco- are available (14–17). In order to determine the type and
sylated to produce a soluble extracellular protein known as frequency of naturally occurring sequence variations in
e antigen (HBeAg) (10–13). The presence of HBeAg in se- the WHV precore and 5* core region, we examined 101

serum samples from 53 naturally WHV-infected wood-
chucks from Pennsylvania and North Carolina. From1 To whom correspondence and reprint requests should be ad-

dressed. Fax: (919) 829-4455. these data we have developed a consensus sequence
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FIG. 1. Consensus sequence of woodchuck hepatitis virus precore and 5* core region from 101 blood samples from 53 chronically infected
woodchucks. Sequencing primers are indicated by the open arrows. The sequences of the primers are shown in the text. Sites between the 5*

primer and consensus sequence are left blank. The DR1 sequence is indicated by an underline. The e stem–loop sequence is indicated by an
open box. Positions where variants occurred are designated by lower case letters. The amino acid sequence is shown under the nucleotide
sequence. Abbreviations: DR1, direct repeat sequence 1; e, epsilon stem–loop sequence of the pregenome encapsidation signal; X, x open reading
frame; PC, precore open reading frame; C, core open reading frame.

for the WHV precore region and used it to assess se- AATTCTAGGAGGCTGTAGGCATA and 3* GCGAATTCA-
AGGTCAGGAAAGAAGTC. Independent PCR-reamplifi-quence variants.

The strategy for sequencing and the consensus se- cation and resequencing (including forward and reverse
DNA strands) were done with 12 precore variant se-quence that was developed are shown in Fig. 1. A com-

mercial DNA purification kit (QIAGEN. Chatsworth, CA quences to verify the sequencing results.
The precore region of 33 of the woodchucks was91311) was used to purify DNA from serum. WHV precore

and 5* core region DNA was amplified by polymerase identical and defined of the consensus sequence. Our
consensus sequence was identical to 4 of the 5 se-chain reaction. The 5* primer and 3* primer were CGG-

AATTCGTAAGGACCTTTGGACTCC (WHV2 nt 1802 – quenced WHV strains (WHV 2, 7, 8, 59). There was a
single nucleotide difference between the consensus1819) and CGGGATCCACAAGGCAGTACGACTGTC

(WHV2 nt 2132–2114), respectively (15). PCR amplifica- sequence and WHV1. Twenty of the 53 woodchucks
were found to have variant sequences in the precoretion was performed according to manufacturer’s instruc-

tions. To prevent contamination, DNA extraction was per- or 5* core region. Sixteen had variant sequences in
precore with or without changes in 5* core and 4 hadformed in a hood, and pre-PCR and post-PCR steps were

carried out in separate rooms. PCR reactions were car- changes in the 5* core region only. The nucleotide
changes were not randomly distributed, but were lim-ried out in a room in which WHV was not otherwise

present. Sequencing was performed with a commercial ited to only 4 sites in the precore region and 4 sites
in the 5*-core region (Table 1). Ten types of variantkit (PCR-Product Sequenase, United States Biochemical,

Cleveland, OH 44128). The primers used were 5* GCG- sequences were identified in these 20 animals. Four
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TABLE 1

Sequence Variations in Precore and 5* Core Region of Woodchuck Hepatitis Virus Genome Found in 20 of 53 Naturally Infected Woodchucks

Percore region (nt) Core region (nt)
Bleed

Woodchuck interval 1982 2008 2016 2019 2035 2050 2053 2089
(Sex) (month) T A G G C T A C

HC134 (F) 0 C
6 C
9 C

17 C
HC135 (F) 0 G

6 G / A
9 G / A

15 G / A
17 G / A
17.5 A

HC150 (M) 0 G T
6 G T
9 G T

17 G T
HC140 (M) 0 G

6 G
9 G / A

17 G / A
17.5 G / A

HC116 (F) 0 T
13 T
22 T

HC073 (F) 0 A T
2 A T

14 A T
HC080 (F) 0 T

11 T
HC066 (M) 0 T

6 T
HC072 (F) 0 G G T

1 G G T
3 G G T

CW801 (M) 0 G
4 G / A

CW912 (F) 0 G G / A T
3 G G / A T
5 G G / A T
9 G G / A T

CW1063 (F) 0 G T
CW1068 (M) 0 G T
CW1064 (M) 0 G C T

2 G C T
CW1061 (M) 0 G C T

1 G C T
HC042 (F) 0 G T

12 G T
HC161 (F) 0 G T

5 G T
HC186 (M) 0 G T

6 G T
11 G T

HC181 (F) 0 G T
6 G T

HC157 (F) 0 G T
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FIG. 2. Naturally occurring sequence variations in codon 29 of the WHV precore region. The sequence of the precore and 5* core region of WHV
from nt 2006 to nt 2023 is shown. (A) wild-type precore sequence, the sequence of nt position 2013 to 2019 is indicated to the right of the panel,
the consensus sequence base in codon 29 (nt 2016) is indicated by an asterisk. (B) HC135, note that the relative proportion of A to G in position
2016 changes during the course of infection. The band corresponding to A is light and the band corresponding to G is relatively dark at the first
bleed. In subsequent bleeds A becomes the predominant nucleotide in this position. (C) HC140, the abundance of A in position 2016 increases
over time as seen in animal HC135 although to a lesser extent. (D) HC073, the mutation at nt 2016 was present in the initial sample and was
maintained over 14 months of infection. (E) CW801, a band at nt 2016 corresponding to A becomes apparent within 4 months of the initial bleed.
In B through E, 1 indicates initial bleed. The months following the initial bleed are represented as follows: in B, 2 Å 15, 3 Å 17; in C, 2 Å 9, 3 Å
17; in D, 1 Å 14; in E, 2 Å 14.

of them had 1 nucleotide change, 3 had 2 nucleotide HC140, the levels of the variant sequence were main-
tained at a low level during 9 months of infection. Inchanges, and 3 had 3 nucleotide changes.

The frequency of sequence variation in the precore CW 801 the variant sequence was apparent 4 months
following the initial bleed in which only the consensusregion of HBV and WHV appears to be similar. In two

studies of patients from Hong Kong, precore mutations sequence was detected. In HC073, the variant sequence
predominated and was maintained over 14 months ofoccurred in 32–38% of HBV-infected patients (6, 18). In

our series we found precore sequence variants in 30% infection.
Only acute infections resulted when neonatal wood-of WHV-infected woodchucks.

One of the more common precore mutations in HBV chucks were infected with a mutant WHV-8 containing
an experimentally produced mutation in nt 2016 pro-results in a base change at nt 1896 from G to A in codon

28 that produces a stop codon and leads to HBeAg nega- ducing a stop codon in codon 29 (19). This nucleotide
change is identical to the naturally occurring se-tive infections. The mutation at nt 1896 occurred in 10 –

17% of all HBV-infected patients from Hong Kong (6, 18). quence variant we detected in four animals. Our re-
sults indicate that this sequence alteration alone is notPrecore mutations at this same site have also been de-

scribed in patients from Japan and the Mediterranean sufficient to inhibit chronic infection since naturally
occurring mutants persisted for 6 to 14 months withoutregion (8, 9). We found an analogous stop codon-produc-

ing variant in WHV in 4 of the 53 (7.5%) WHV-infected being eliminated. It is possible that concurrent infec-
tion with wild-type virus may provide some benefit towoodchucks (Fig. 2). Because there is an extra codon in

the WHV precore region the sequence variation occurred these presumably WHeAg-negative variants because
the wild-type virus produces WHeAg that may affordin the 29th codon (14). The mutation was also a G to A

transition at the corresponding nucleotide site in HBV. some protection from the host immune response, as
has been postulated in mixed HBV infections (20).In 3 of the 4 animals the sequence from the initial blood

sample appeared to be the consensus sequence; how- However, in mixed precore mutant and wild-type pre-
core HBV infections, the virus with the analogous mu-ever, in later samples the variant occurred as a mixed

infection with the consensus sequence. The ratio of the tation often predominates and becomes the only virus
detectable (6, 20 – 22). We observed this pattern in onetwo sequences changed during the course of infection.

In animal HC135, the relative abundance of viral DNA woodchuck (HC135) in which the variant strain be-
came the only detectable sequence and this evolutionwith the variant sequence gradually increased relative

to the consensus sequence over 12 months. In animal may have occurred in HC073 in which only the variant
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TABLE 2A This suggests that there may be geographic variation in
WHV sequences.Nucleotide and Cognate Amino Acid Changes in Variant WHVs

The WHV 5* core sequence variations occurred at fourand Corresponding HBV Precore Mutants
positions (Table 1). All these sequence variations oc-

Precore Prevalence curred in the third base of the codon and did not change
condon Amino in study the amino acids encoded (Table 2B).

Position Nucleotide acid animals
Certain areas of the stem–loop structure of the e signalWHV (HBV) (nt) change change (%)

in HBV are regarded as critical for viral replication (2, 24,
18a (17) HBV 1862b GTT to TTT V to F 25). Spontaneous mutations have not been described in

WHV 1982 TTT to GTT F to V 6/53 (11.2) these sequence specific areas (6, 7, 21). These areas
26 (25) HBV 1888b GGG to GGA G to G are the 3* loop (5*-GUGC-3*), the unpaired U region, the

WHV 2008 GGA to GGG G to G 6/53 (11.2)
lower portion of the right upper stem, and the 3* bulge29 (28) HBV 1896c TGG to TAG W to stop
(5*-UUC-3*) (Fig. 3). Our data support this view in that weWHV 2016 TGG to TAG W to stop 4/53 (7.5)

30 (29) HBV 1899c GGC to GAC G to D did not detect sequence variation in any of these sites.
WHV 2019 GGC to GAC G to D 1/53 (1.9) Base pairing and possibly primary sequence are im-

portant in the upper portion of the upper stem and uppera WHV has an extra codon in precore region, compared to that in
portion of the lower stem of HBV (2, 25). In our study weHBV.
found no sequence variations in the upper part of theb Laskus et al., 1993.

c Lok et al., 1994. upper stem. Two sequence variants at positions nt 2016
and 2019 were detected in the upper portion of the lower
stem that would be consistent with increased strength
of base pairing in the lower stem region (6). Tavis andstrain was evident at the time of the first blood sample.

In contrast, precore mutant duck hepatitis B virus Ganem recently reported that the upstream region (5*-
AAU-3*) of DR1 and the 5* region of DR1 (5*-UACA-3*)(DHBV) was outgrown by wild-type DHBV in mixed

infections in day-old ducklings which probably do not are a critical acceptor element for the minus strand DNA
transfer of DHBV (26). In this study, we found no se-develop an effective immune response to hepadnavi-

rus infection (23). quence variations in DR1 and the upstream region of
DR1 up to the termination codon of the X gene. It isWe found three other WHV precore sequence varia-

tions in twelve animals (Table 1). The changes occurred conceivable that part of this region may play a role in
accepting minus-strand DNA primer in the initiation ofat sites analogous to nucleotide positions of HBV muta-

tions. The first was at WHV nt 1982 in the bulge region, minus-strand DNA synthesis or play a role as a cis-acting
element for transcription factors in precore protein ex-nt 2008 in the upper stem, and nt 2019 in the lower

stem of the e signal (Table 2A) (Fig. 3) (6, 7). One of the pression.
Lok and coworkers indicated that HBV precore mu-mutations, WHV nt 2019, involved an identical G to A

base substitution in WHV and HBV. In the other two sites tations occur mainly at the 4-nt segments in the upper
part of the lower stem region of the e signal and postu-the base change in WHV was the opposite of the change

in HBV. In WHV the change is T to G at nt 1982 and in lated that the primary function of the mutations in the
precore region is to enhance the stability of the stem –HBV a G to T occurs. G replaces A at nt 2008 in WHV

and A replaces G in HBV. In both WHV and HBV the loop structure by increasing the number or strength
of the base pairs that occur in the e signal to improvemutations in the upper and lower stem regions retain the

ability to form base pairs within the proposed secondary viral replication (6). Mutations at nt 1896 and 1899 of
HBV frequently occurred together and were proposedstructure of the e signal (Fig. 3). The sequence variation

in the bulge region at position 1982 of WHV, which is to increase stability by the introduction of new or
stronger base pairs. Our study also found the samethe same sequence of the precore region of WHV1, is

not likely to alter viral replication, since this area does sequence variations at the corresponding positions
(nt 2016 and 2019) in WHV. The substitution of G withnot form base pairs in the proposed model of e. Several

experimentally induced mutations of the bulge region of A in each of these sequence variations could increase
the strength of base pairing in the upper part of thethe stem–loop of HBV, including altering nt 1862 (analo-

gous to 1982 of WHV) from a G to a U did not alter lower stem. However, in our study these two sequence
variations did not associate with each other. We didencapsidation significantly (2, 24).

A novel sequence (1 nucleotide change in precore and not find strong evidence for a greater growth capability
of the variant isolates. There were five animals that1 in the 5* core region) was found in all five woodchucks

from North Carolina (HC042, HC157, HC161, HC181, were infected with viruses containing these sequence
variations. In one animal (HC073) the variant se-HC186) compared to the consensus sequence devel-

oped from the woodchucks from Pennsylvania (Table 1). quence was the only isolate detected. In three of them
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FIG. 3. (A) Diagram of proposed structure for the e stem–loop of HBV. Sites of previously described mutations are indicated by arrows. The base
changes and nucleotide positions are also indicated. (B) Consensus sequence of WHV e stem–loop with sites of sequence variants indicated by
arrows. The corresponding base changes and nucleotide positions are indicated.

(HC140, CW801, CW912) the variant was present or liver disease and the host immune response. Areas of
particular interest include the effect on the viability ofappeared, but did not increase significantly. In one of

them (HC135) the variant sequence became predomi- WHV by mutations in e signal region and inhibition of
WHeAg synthesis.nant.
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