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Abstract

We consider surface singularities inC3 arising as the total space of an equisingular deformation
of an isolated curve singularity of the formf (x, y)+ zg(x, y) with f andg weighted homogeneous.
We give a criterion that such a surface is a free divisor in the sense of Saito. We deduce that the
Hessian deformation defines a free divisor for nonsimple weighted homogeneous singularities, and
that the failure of this property “almost” characterizes the simple singularities. The criterion also
yields distinct deformations of the same curve singularity, exactly one of which is free, showing that
freeness is not a topological property. 2002 Elsevier Science B.V. All rights reserved.
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Introduction

Saito [14] introduced the notion of free divisorV,0 ⊂ Cp,0 as a hypersurface for which
the module of logarithmic vector fields Derlog(V ) is a freeOCp -module (necessarily
of rankp). Most examples have concerned universal objects such as: the discriminants
of the versal unfoldings of isolated hypersurface and complete intersection singularities
by Saito [14] and Looijenga [12, Chapter 6]; bifurcation sets associated to the versal
unfoldings of isolated hypersurface singularities, Bruce [4] and Terao [16], and more
generally forA-versal unfoldings of a well-defined class of complete intersection germs [5]
and see references therein; Coxeter arrangements, by Terao [15]: the discriminant of the
versal deformation of a space curve singularity, by Van Straten [18]; creating free divisors
from images of stable germs by adding either adjoint divisors Mond [13] or other natural
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divisors [5]; and more generally discriminants ofKV -versal unfoldings of sections of
certain free divisors [5,6], which subsume many of the preceding.

If we seek to identify and understand free divisors which fall outside such classes of
universal objects, there are only two known special results. One concerns special free
divisors arising as hyperplane arrangements, using a criterion of Terao [15], including
special discriminantal arrangements, Falk [10], Bayer and Brandt [2,3]. A second general
result of Saito [14] shows that all isolated plane curve singularities are free divisors.
Unfortunately freeness fails for all higher dimensional isolated singularities. For example,
isolated surface singularitiesV,0 ⊂ C3,0, require at least four generators (see, e.g., [11]).

The purpose of this note is to consider a general class of surface singularities inC3 and
characterize by simple conditions those which are free divisors. Consider a nonisolated
surface singularityX,0⊂ C3,0 with singular set a smooth curve. If we intersectX with a
plane transverse toX (as a Whitney stratified set) we obtain an isolated curve singularity
X0,0, andX can be viewed as the total space of an equisingular deformation ofX0,0. We
consider when such equisingular deformations have a total space which is a free divisor.
We shall concentrate on equisingular deformations of weighted homogeneous curve
singularities of the formF = f (x, y)+ zg(x, y) with z the deformation parameter andg
also weighted homogeneous with wt(g)� wt(f ). We shall give a necessary and sufficient
condition that such a deformation defines a free divisor in terms of a homomorphism

Ψ : Derlog(F )→ (
J (f ): g

)
,

where Derlog(F ) denotes the module of logarithmic derivations which annihilateF and
J (f ) is the Jacobian ideal off .

We shall see that the image Im(Ψ ) ⊂ (J (f ): g) represents first order information
regarding the logarithmic derivations ofX. Our first theorem characterizes free divisorsX

in terms of algebraic and numerical properties of Im(Ψ ). An important special case occurs
when all of the elements of(J (f ): g) lift via Ψ to logarithmic derivations (we refer to
g as being fully extendable). We give a simple numerical condition (Proposition 2) which
ensures this. In this special case, Theorem 3 gives a necessary and sufficient condition
in terms of the ideal(J (f ): g) for X to be a free divisor. As a first consequence
we deduce that Hessian deformations of nonsimple (weighted homogeneous) curve
singularities always define free divisors. Second, we are able to exhibit distinct equisingular
deformations of the same curve singularity, one of which is free and the other not free. As
the surfaces are topologically equivalent, this shows that freeness is not a purely topological
notion. This contrasts with the situation for arrangements where Terao has conjectured that
whether the arrangement is free is determined by its lattice structure.

Moreover, all of these equisingular deformations have smooth singular set. This
contrasts with the result of Alexandroff, Theorem 1 in [1] which characterizes the freeness
of a divisorX,0 for which Sing(X) has codimension 1 at all points in terms of Sing(X)

being Cohen–Macaulay. Since smooth sets are Cohen–Macaulay, these results seem to
contradict the theorem of Alexandroff. In fact, there is some “fine print” in Alexandroff’s
theorem which asserts that Sing(X) being Cohen–Macaulay concerns a specific associated
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ideal structure rather than the intrinsic geometric structure. Our examples show that the
intrinsic geometric structure does not by itself determine whetherX,0 is free.

Finally, from the results on Hessian deformations one might suspect the freeness of the
Hessian deformation characterizes nonsimple weighted homogeneous curve singularities.
This is almost true. In fact we show there are exactly two simple singularities whose
Hessian deformations define free divisors: the simplest singularityA1 (whose Hessian
deformationx2 + y2 + z defines a smooth surface which is trivially free) and the “most
complicated” simple singularityE8.

1. Freeness of surface singularities

Let f (x, y) define an isolated weighted homogeneous curve singularityX0,0 ⊂ C2,0.
We let wt(x, y)= (a, b), wt(f )= d (soa, b, d > 0) and letJ (f ) denote the Jacobian ideal
of f . Also, we letg(x, y) be a weighted homogeneous germ. We consider the deformation
of f given byF(x, y, z) = f (x, y)+ zg(x, y). If wt(g) = s � wt(f ), thenF defines an
equisingular deformation off . If we view F as a function of three variables, it defines,
in general, a nonisolated surface singularityX = {(x, y, z) ∈ C3: F(x, y, z)= 0}. If F is
an analytically trivial deformation, thenX �X0 × C is a free divisor. We determine more
generally whenF defines a free divisor.

First, F is weighted homogeneous if we assign the weight wt(z) = c = d − s. If
wt(g) � wt(f ), then wt(z) � 0. Even with nonpositive weight forz, there is the Euler
vector fielde = ax∂/∂x + by∂/∂y + cz∂/∂z. Also, a basic object of interest is the module
of vector fields annihilatingF .

We letθp denote the module of germs of vector fields onC
p,0. Quite generally recall

that forX,0 ⊂ Cp,0 a hypersurface, the module of logarithmic vector fields is defined by

Derlog(X)= {
ζ ∈ θp: ζ

(
I (X)

) ⊆ I (X)
}
,

whereI (X) denotes the ideal of germs vanishing onX,0. Then,X,0 is a free divisor
if Derlog(X) is a freeOCp,0-module, necessarily of rankp. If F is a reduced defining
equation forX,0, we also define

Derlog(F )= {
ζ ∈ θp: ζ(F )= 0

}
.

Then, it is easily seen, e.g., by [9, Lemma 3.1],

Derlog(X)= Derlog(F )⊕OCp,0{e}.
Hence, in the special case whereX,0 ⊂ C3,0 is a surface singularity, Derlog(X) is a free
OC3,0-module of rank 3 iff Derlog(F ) is a freeOC3,0-module of rank 2. To determine
when this is true, we consider the homomorphism

Ψ : Derlog(F )→ (
J (f ): g

)
(1.1)

defined byζ 
→ ζ(z)|z=0. To see thatΨ maps to(J (f ): g), let ζ = a1(x, y, z)∂/∂x +
a2(x, y, z)∂/∂y + a3(x, y, z)∂/∂z. Then,

ζ(F )= a1(x, y, z)
∂F

∂x
+ a2(x, y, z)

∂F

∂y
+ a3(x, y, z)

∂F

∂z
= 0. (1.2)
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Since∂F/∂z = g, if we evaluate (1.2) atz = 0 we obtaina3(x, y,0) · g ∈ J (f ). Also,
ζ(z)|z=0 = a3(x, y,0), so the map is as defined.

We note for later use thatΨ increases weight bys − d and is a module homomorphism
over the ring homomorphismi∗ :OC3,0 → OC2,0, for i(x, y) = (x, y,0). As the ring
homomorphism is surjective, Im(Ψ ) is an ideal inOC2,0. We further note that the definition
of Ψ extends to Derlog(X); however,OCp,0{e} would always be in ker(Ψ ) so we instead
restrict consideration toΨ as defined in (1.1). However, in this more general form we
can viewΨ as identifying first order information of a logarithmic derivation. We will see
precisely how this limited information actually determines the freeness ofX,0.

The main criterion characterizing whenF defines a free divisor is given by the following
which also applies to non-equisingular deformations.

Theorem 1.1. Suppose that f (x, y) defines an isolated weighted homogeneous curve sin-
gularity in C2,0. Also, let g(x, y) /∈ J (f ) be a weighted homogeneous germ. Then the sur-
face singularityX,0 ⊂ C3,0 defined by F(x, y, z)= f (x, y)+zg(x, y) is a free divisor iff:

(1) Im(Ψ ) is a complete intersection ideal generated by weighted homogeneous gener-
ators {h1, h2} such that

(2) wt(g)+ wt(h1)+ wt(h2)= 2d − a − b.

As we did in Theorem 1.1, in all of the results that followwe assume that f (x, y) defines
an isolated weighted homogeneous curve singularity in C2,0 (with weights as already
given).

For the theorem to be useful we wish to identify Im(Ψ ) without first determining
Derlog(F ). We do this in an important general case.

Definition 1.2. Given f , we shall say thatg is fully extendable if for the deformation
F = f + zg, the mapΨ is surjective.

Remark 1.3. If F = f + zg is analytically trivial (for right equivalence), then since
J (f ) = TRe · f , we concludeg ∈ J (f ). Moreover, differentiating the equation for the
analytic trivialityF = f ◦ ϕ with respect toz yields∂F/∂z= ζ ′(F ) for ζ ′ = a1(x, y, z)×
∂/∂x + a2(x, y, z)∂/∂y. Hence,ζ = −ζ ′ + ∂/∂z ∈ Derlog(F ). Thus, 1= Ψ (ζ ) and hence
Ψ is onto.

Conversely ifg is fully extendable (forf ) with g ∈ J (f ), then 1∈ (J (f ): g). Then,g
being fully extendable allows us to reverse the previous argument to solve the infinitesimal
equation for analytic triviality∂F/∂z = ζ ′(F ). Thus,F is analytically trivial. As the
freeness of analytically trivial deformations holds, ifg is fully extendable we need only
consider the caseg /∈ J (f ).

A sufficient condition ensuring that a germg is fully extendable is given by the
following.

Proposition 1.4. Suppose the curve singularity defined by f (x, y) is not a simple
singularity. Also, let g(x, y) be a weighted homogeneous germ with wt(g) � wt(f ).
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Suppose that there is a set of weighted homogeneous generators {h1, . . . , hk} of (J (f ): g)
which satisfy

2wt(g)+ wt(hi) > 3d − 2(a + b) for i = 1, . . . , k (1.3)

Then, g is fully extendable.

We shall prove this proposition in Section 2 after we have deduced several consequences.
First, we note that in the caseg is fully extendable Theorem 1.1 takes the following
form.

Theorem 1.5. Suppose that g(x, y) is a weighted homogeneous germ which is fully
extendable for f . If the surface singularity X,0 ⊂ C3,0 defined by F(x, y, z)= f (x, y)+
zg(x, y) is not analytically trivial, then X,0 is a free divisor iff

(1) (J (f ): g) is a complete intersection ideal generated by weighted homogeneous
generators {h1, h2} such that

(2) wt(g)+ wt(h1)+ wt(h2)= 2d − a − b.

The first consequence of the theorem is for Hessian deformations. Consider the Hessian
of f , H(x,y)= det(∂2f/∂xi∂xj ) with (x1, x2) denoting(x, y). The Hessian deformation
of f is given byF(x, y, z) = f (x, y) + zH(x, y). If f is not a simple singularity, then
wt(H) = 2(d − a − b) � d , so d � 2(a + b). Then,(H : J (f )) is generated by{x, y},
and

2wt(H)+ min
{
wt(x),wt(y)

} = 3d − 2(a + b)+ (
d − 2(a + b)+ min{a, b})

> 3d − 2(a + b)

so by Proposition 1.4,H is fully extendable for nonsimple singularities. Moreover,

wt(H)+ wt(x)+ wt(y)= 2d − a − b.

Thus, by Theorem 1.5, we obtain the following corollary.

Corollary 1.6. Suppose that f (x, y) defines a nonsimple curve singularity. Then the
Hessian deformation F(x, y, z)= f (x, y)+ zH(x, y) defines a free divisor in C3,0.

The converse of Corollary 1.6, that for simple curve singularities the Hessian deforma-
tion does not define a free surface divisor, is “almost true”.

Theorem 1.7. The Hessian deformation of a simple curve singularity f (x, y) in C2,0
defines a free surface singularity in C3 only for A1 and E8 but in no other cases.
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For example, the cuspf (x, y) = x3 − y2 has Hessian deformationF(x, y, z) = x3 −
y2 − 12zx which is a Morse singularity, and hence not free by earlier comments. See
Section 4 for the proof in the general case.

Remark 1.8. In fact, the numerical conditions in Theorems 1.1 and 1.5 and in Proposi-
tion 1.4 can be naturally rewritten in terms of the weight of the HessianH . Condition (2)
for Theorem 1.1 becomes for the set of generators{h1, h2}

wt(g)+ wt(h1)+ wt(h2)= wt(H)+ wt(x)+ wt(y)

and the condition (1.3) in Proposition 1.4 becomes

2wt(g)+ wt(hi) > wt(f )+ wt(H).

Written in this form it is at first surprising that anyg other than the Hessian satisfies the
conditions. In fact, quite a few do. For example, we generally have for Pham–Brieskorn
curve singularities

Corollary 1.9. For the curve singularity defined by f (x, y) = xb + ya , suppose that
g(x, y) = xky% is fully extendable and wt(g) � wt(f ). Then the monomial deformation
F(x, y, z)= xb + ya + zxky% defines a free divisor in C3.

Proof of Corollary 1.9. By Remark 1.3, we may assumeg /∈ J (f ). We have wt(x, y)=
(a, b), wt(f ) = ab and wt(H) = 2(ab − a − b). SinceJ (f ) = (xb−1, ya−1), we see
(J (f ): g) = (xb−1−k, ya−1−%), and up to a constant factor the HessianH = xb−2ya−2.
Then, condition (2) follows from

wt
(
xky%

) + wt
(
xb−1−k

) + wt
(
ya−1−%

) = 2ab− a − b.

By assumption,g is fully extendable, so Theorem 1.5 implies that the deformation defines
a free divisor. ✷
Example 1.10 (Free equisingular deformations). For the homogeneous germf (x, y) =
x10 + y10, (a, b) = (1,1) andd = 10. We haveJ (f ) = (x9, y9). Any g = xky% /∈ J (f )

with min{k, %} � 6 satisfies (1.3), and so is fully extendable. By Corollary 1.9 such
monomial deformationsx10 + y10 + zxky% define free divisors.

Example 1.11 (Non-Pham–Brieskorn free equisingular deformation). Consider the
weighted homogeneous germf (x, y)= x8 + xy5, with (a, b)= (5,7) andd = 40. Since
J (f )= (8x7 + y5,5xy4), for g = x6y2 we have(J (f ): g)= (x2, y2). We observe that

2wt
(
x6y2) + min

{
wt

(
x2),wt

(
y2)} = 88+ 10> 3 · 40− 2(5+ 7)

sog is fully extendable by Proposition 1.4. Also,

wt
(
x6y2) + wt

(
x2) + wt

(
y2) = 44+ 10+ 14= 68= 2 · 40− 5− 7

shows that condition (2) of Theorem 1.5 is satisfied. Thus,F(x, y, z)= x8 + xy5 + zx6y2

also defines a free divisor.
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Thus, freeness can hold for non-Hessian deformations not of Pham–Brieskorn type. Both
the condition thatg is fully extendable and the conditions in Theorem 1 hold much more
frequently then one would first expect.

Example 1.12 (A nonfree equisingular deformation). Consider again the homogeneous
germf (x, y)= x10 + y10 from Example 1.10. This time we consider insteadg = x7y5 +
x5y7. We have(J (f ): g)= (x4, x2y2, y4), and (1.3) is easily seen to be satisfied so thatg

is fully extendable. Since(J (f ): g) is not a complete intersection ideal, by Theorem 1.5,
F(x, y, z)= x10 + y10 + z(x7y5 + x5y7) does not define a free divisor.

Remark 1.13. By considering the preceding examples, we see that condition (1) of the
theorem and condition (1.3) can both fail for certaing /∈ J (f ) with wt(g) � wt(f ).
However, all examples indicate that for suchg, if bothg is fully extendable and(J (f ): g)
is a complete intersection ideal, then condition (2) is satisfied. We ask whether this is
always true?

2. Properties of Derlog(F ) and Ψ

In this section we establish properties ofΨ , including a proof of Proposition 1.4 and an
additional lemma needed for the proof of Theorem 1.1. We also establish simple weight
properties of Derlog(F ) needed to prove Theorem 1.7.

Proof of Proposition 1.4. We recall F is weighted homogeneous if we assign the
nonpositive weight wt(z)= c = d − s where wt(g)= s � wt(f )= d . Lethi be a weighted
homogeneous generator satisfying

2wt(g)+ wt(hi) > 3d − 2(a + b).

BecauseΨ is a module homomorphism overi∗ :OC3,0 → OC2,0, it is sufficient to show
that a set of generators of(J (f ): g) are in the image ofΨ . We shall use the notationFx
for ∂F/∂x, etc. Becausehi ∈ (J (f ): g), we may solve

hi · g = ϕi1fx + ϕi2fy, (2.1)

where we may assumeϕij is weighted homogeneous. Then, by (2.1)

hi · Fz = ϕi1Fx + ϕi2Fy + zRi, (2.2)

where

Ri = −ϕi1gx − ϕi2gy. (2.3)

We easily check from (2.3)

wt(Ri)= 2wt(g)+ wt(hi)− wt(f ). (2.4)

By assumption, 2wt(g)+ wt(hi) > 3d − 2(a + b). Hence, by (2.4) wt(Ri) > 3d − 2(a +
b)− d . Since the HessianH has weight 2(d − a − b), we conclude wt(Ri) > wt(H) and
soRi ∈ J (f ) for i = 1,2.
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We letw· denote the weight filtration onOC2,0 (with wk generated by monomials of
weight� k). Also, letw̃· denote the induced weight filtration onOC3,0 by w̃k =wkOC3,0.
Likewise we have an induced weight filtration on the modulesθ2 = OC2,0{∂/∂x, ∂/∂y}
andθ(π2) = OC3,0{∂/∂x, ∂/∂y} by defining wt(∂/∂x) = −a and wt(∂/∂y) = −b. With
respect to this weight filtration, we have initial parts

in(F )≡ f, in(Fx)≡ fx and in(Fy)≡ fy modmz ·OC3,0.

Then, the mapβf : θ2 → OC2,0 defined byζ 
→ ζ(f ) maps θ(%+c)
2 onto w% for all

% > wt(H) (recallc = d − s � 0). Hence, in the terminology of [7],βf is graded surjective
in filtration > wt(H). Then, asF is a “deformation off of nonnegative weight”, we can
apply the filtered version of the preparation theorem [7, Lemma 7.4] (or see the related
filtered Nakayama’s Lemma [8, Lemma 1.1]) to conclude that the corresponding map
βF : θ(π2)→ OC3,0 (sendingζ 
→ ζ(F )) with the induced filtrations, maps

βF
(
θ(π2)

(%+c)
) = w̃% for all % > wt(H). (2.5)

Thus, by (2.4) and (2.5) there existζ ′
i ∈ θ(π2) such thatζ ′

i (F )=Ri . Moreover, asRi is
weighted homogeneous, we may assume thatζ ′

i is weighted homogeneous (with respect to
(x, y, z)). Now we define the weighted homogeneous vector fields

ζi = ϕi1
∂

∂x
+ ϕi2

∂

∂y
− hi

∂

∂z
+ zζ ′

i . (2.6)

By (2.2), (2.3), and (2.6),ζi(F )= 0; thus,ζi ∈ Derlog(F ). ✷
For the proof of Theorem 1.1, we also need two simple properties of the image and

kernel of the homomorphismΨ . For these we consider the determinantal vector fields.
If {u,v} denote any pair ofx, y, z. Then, we note that the determinantal vector field
ηu,v = Fv∂/∂u− Fu∂/∂v ∈ Derlog(F ).

Lemma 2.1.
(1) J (f )⊂ Im(Ψ )

(2) ker(Ψ )≡OC3,0{ηx,y} modmz · θ3.

Proof. For (1),Ψ (ηx,z)= −fx , Ψ (ηy,z)= −fy , and Im(Ψ ) is an ideal.
For (2) we may writeξ ∈ ker(Ψ ) as

ξ = a1(x, y, z)
∂

∂x
+ a2(x, y, z)

∂

∂y
+ a3(x, y, z)

∂

∂z
. (2.7)

Then, arguing as in (1.1),Ψ (ξ) = 0 implies thata1(x, y,0)fx + a2(x, y,0)fy = 0. As
{fx,fy} forms a regular sequence, there exists aψ ∈ OC3,0 such that

(
a1(x, y,0), a2(x, y,0)

) =ψ(fy,−fx)≡ψ(Fy,−Fx) modmz ·OC3,0

implying the conclusion of the lemma.✷
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3. Proof of Theorem 1

Sufficiency

To prove freeness we shall use one form of Saito’s criterion [14] for freeness of
a hypersurface. Suppose thatX,0 ⊂ Cp,0 is a hypersurface. Letζi ∈ Derlog(X) for
i = 1, . . . , p. If ζi = ∑

aij ∂/∂xj , then we letA = (aij ) denote the matrix of coefficients.
For such a situation, Saito gives the following criterion forX to be free.

Saito’s criterion 3.1. If h = det(A) definesX with reduced structure, thenV is a free
divisor, and{ζ1, . . . , ζp} generate Derlog(X).

To prove the theorem we shall construct the vector fields in Derlog(X) and prove they
satisfy Saito’s criterion 3.1.

Construction of generators for Derlog(X)
We letX be the hypersurface singularity inC3 defined byF = 0. We first construct three

vector fields in Derlog(X). We have the Euler vector fielde = ax∂/∂x+by∂/∂y+cz∂/∂z.
To construct the other two vector fields we use the generators of Im(Ψ ). By assumption, it
is a complete intersection ideal generated by weighted homogeneous generators{h1, h2}.
Thus, there are vector fieldsζi ∈ Derlog(F ) for i = 1,2 of the form

ζi = ϕi1
∂

∂x
+ ϕi2

∂

∂y
− hi

∂

∂z
+ zζ ′

i . (3.1)

Furthermore, asΨ preserves the weight decomposition (it increases weights bys − d), we
may assume the vector fields are weighted homogeneous.

Verification that X is free
We have constructed three vector fieldse, ζ1, ζ2 ∈ Derlog(X). It remains to show that

they freely generate Derlog(X). We do this using Saito’s criterion 3.1. LetA denote the
matrix of coefficients, andh= det(A). As the 3 vectors are linearly dependent onXreg, h
vanishes onXreg and hence onX. SinceF is a reduced equation for(X,0), thenh= α ·F
for a germα ∈ OC3,0. It is enough to show thatα is a unit. As bothh andF are weighted
homogeneous, then so isα. We can calculate its weight

wt(α) = wt(h)− wt(F )= wt(x)+ wt(ϕ12)+ wt(h2)− d

= a + b+ wt(g)− d + wt(h1)+ wt(h2)− d = 0 (3.2)

by condition (2) in the theorem. Since wt(α) = 0, to show thatα is a unit it is sufficient to
show thatα(x, y,0) �= 0.

If we setz= 0, the matrixA takes the form


ax by 0

ϕ11 ϕ12 −h1

ϕ21 ϕ22 −h2


 . (3.3)
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From (3.1), we obtain from the equationsζi(F )|z=0 = 0 for i = 1,2

h1 · g = ϕ11fx + ϕ12fy, h2 · g = ϕ21fx + ϕ22fy. (3.4)

If we apply Cramer’s rule to (3.4) we obtain

Φ · fx = g(ϕ22h1 − ϕ12h2), Φ · fy = g(−ϕ21h1 + ϕ11h2), (3.5)

whereΦ = det(ϕij ). Then, expanding (3.3) along the top row, and using (3.5) and the Euler
relation, we evaluate

det(A)|z=0 = ax(−ϕ12h2 + ϕ22h1)− by(−ϕ11h2 + ϕ21h1)

= Φ/g(axfx + byfy)= d · (Φ/g) · f.
Thus,α(x, y,0)= d · (Φ/g). Finally,Φ �= 0, otherwise by (3.4) we would obtain first that
g · (−ϕ12h2 + ϕ22h1) = 0. As g �= 0, this implies−ϕ12h2 + ϕ22h1 = 0. Since(h1, h2) is
a complete intersection ideal,ϕ12 is divisibleh1. Using insteadg · (−ϕ11h2 + ϕ21h1)= 0
implies thatϕ11 is also divisible byh1. By (3.4), this impliesg ∈ J (f ), a contradiction.
Hence,α is a unit andX is a free divisor.

Necessity

Suppose Derlog(F ) is generated as anOC3,0-module by two elements{ζ1, ζ2}. Because
Ψ is a module homomorphism overi∗ :OC3,0 → OC2,0, we conclude that Im(Ψ ) is
generated as anOC2,0-module by{h1, h2} wherehi = Ψ (ζi). As g /∈ J (f ), (J (f ): g) �=
OC2,0. Also, by Lemma 2.1, Im(Ψ ) containsJ (f ) and hence has finite colength. It follows
that Im(Ψ ) is a complete intersection ideal.

Even though wt(z) � 0, we still claim, as in the case of positive weights, that the
weighted homogeneous module Derlog(F ) has a set of weighted homogeneous generators.
Before saying more about this, we first finish the argument.

Let the weighted homogeneous generators be{ζ1, ζ2}. From these generators together
with e, we may construct the matrixA as in the proof of sufficiency. Again by Saito, det(A)

is a unit timesF . On the other hand, we can compute the weight wt(det(A)) in terms of
the weights wt(hi) as for (2.3) to obtain

wt
(
det(A)

) = a + b + wt(g)− d + wt(h1)+ wt(h2). (3.6)

Since (3.6) must equald , we obtain condition (2) in the theorem.✷
To justify the assertion that we may choose weighted homogeneous generators for

Derlog(F ), we consider generally a weighted homogeneous submoduleM ⊂ (OCn,0)
p ,

where we allow nonpositive weights for the coordinates(x1, . . . , xn) of C
n and a weight

wt(εj ) = cj is assigned to eachεj = (0, . . . ,0,1,0, . . . ,0) (with 1 in thej th position).
If all weights of thexi were positive, there is a straightforward algebraic argument to
show thatM has a set of weighted homogeneous generators. To prove the result allowing
nonpositive weights, we use the Artin approximation theorem.
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Lemma 3.2. Let M ⊂ (OCn,0)
p be a weighted homogeneous submodule, where we

allow nonpositive weights for the coordinates of Cn. Then there exist a set of weighted
homogeneous generators for M .

Proof. Let M0 denote the submodule ofM generated by all weighted homogeneous
elements ofM. Then,M0 is a finitely generated submodule ofM. Moreover, if{ζ1, . . . , ζr }
denotes the generators ofM0, then

ζi =
∑
j

gij γij

with γij weighted homogeneous. Replacing{ζ1, . . . , ζr} by the set ofγij gives a set of
weighted homogeneous generators forM0. Thus, we may assume theζi are weighted ho-
mogeneous.

We claimM0 = M. Considerξ ∈ M. If ξ = ∑
j ξj denotes a decomposition ofξ into

componentsξj of distinct weightsj , then the weighted homogeneity ofM implies each
ξj ∈M. Hence, eachξj ∈M0. Thus, we may writeξj = ∑

k ψjkζk, where asξj and theζk
are weighted homogeneous, we may assume theψjk are weighted homogeneous. Then, if
ψk = ∑

j ψjk is the formal sum of terms of different weights, we haveξ = ∑
k ψkζk in the

formal power series ring. Hence, the analytic equation

ξ =
∑
k

ykζk (3.7)

has the formal solutionyk = ψk . By the Artin approximation theorem, e.g., [17, Theo-
rem 4.2], there is an analytic solution to Eq. (3.7). Thus,ξ ∈M0, so we haveM =M0. ✷

4. Hessian deformations of simple curve singularities

To prove Theorem 1.7, we will apply Theorem 1.1. For this, we must determine Im(Ψ )

for each simple curve, and in the cases for which it is a complete intersection ideal, we must
determine whether condition (2) is satisfied. In Table 1 we give for each simple curve, its
Hessian deformation, where we absorb stray constants intoz to simplify the form of the
Hessian deformation. We also give a set of generators for Im(Ψ ), and finally to determine

Table 1
Simple curve singularities and their Hessian deformations

Simple Hessian Im(Ψ ) ∆

curves deformations

A1 x2 + y2 + z (x, y) 0

An−1, n� 3 xn + y2 + zxn−2 (x2, y) 2

Dn+1, n� 3 xn + xy2 + z
((n

2
)
xn−1 − y2

)
(x2, xy, y2)

E6 x3 + xy3 + z(4x2y − y4) (x, y2) 2

E7 x3 + y4 + zxy2 (x, y2) 3

E8 x3 + y5 + zxy3 (x, y) 0
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whether condition (2) is satisfied, we list∆ which is the difference of the two sides of the
equation for condition (2)

∆= wt(g)+ wt(h1)+ wt(h2)− (2d − a − b). (4.1)

Once we have justified the results in this table, we can apply Theorem 1.1 to complete the
proof of Theorem 1.7. ForDn+1, Im(Ψ ) is not a complete intersection ideal so the Hessian
deformation is not free. ForAn−1, n � 3, E6, andE7, Im(Ψ ) is a complete intersection
ideal, but∆ �= 0 so for none of these is the Hessian deformation free. Finally, forA1

andE8, Im(Ψ ) is a complete intersection ideal and∆= 0 so the Hessian deformations are
free.

To establish the results in the table for Im(Ψ ), we use either determinantal vector fields
or vector fields found with the assistance of the program Macaulay to show the image is
attained. To show that we have not missed any generators, we use the map

β ′
F : θ3 → OC3,0

which sendsζ 
→ ζ(F ). It increases weight by wt(F ), and hence preserves the weight
decomposition. Also, Derlog(F ) = ker(β ′

F ). Hence, ifM(k) denotes the weightk part
of M, then Derlog(F )(k) = ker(β ′

F |θ3(k)).
An−1, n� 3: First,Ψ (ηyz)= 2y andζ = x∂/∂x − (nx2 + (n− 2)z)∂/∂z ∈ Derlog(F )

with Ψ (ζ ) = −nx2. Moreover, a calculation of ker(β ′
F ) shows Derlog(F )(−2) = ker(β ′

F |
θ3(−2))= 0, so Im(Ψ )(2) = 0. Hence,x /∈ Im(Ψ ); and it is as claimed.

Dn+1, n� 3: To begin,Ψ (ηyz)= 2xy andΨ (ηxz)≡ y2 modm3
x,y . In addition, let

ζ = −2(n− 1)(x − z)x
∂

∂x
+ (

(n+ 1)x + (n− 1)2z
)
y
∂

∂y

+ (
4x + 2(n− 1)2z

)
(x − z)

∂

∂z
.

Then, it is easily checked thatζ ∈ Derlog(F ), and we seeΨ (ζ ) = 4x2. Moreover, a
calculation using ker(β ′

F ) in weights 0 andn − 3 shows thatx, y /∈ Im(Ψ ). Hence,
Im(Ψ )= (x2, xy, y2).

E6 andE7: For both of these, a computation of ker(β ′
F ) using Macaulay yields three

generators for each, which underΨ map tox, xy, andy2. Thus, Im(Ψ )= (x, y2).
A1: Ψ (ηyz)= 2y andΨ (ηxz)= 2x, and it is easily checked∆= 0.
E8: Let

ζ1 = y2z
∂

∂x
+ (−x − 1/5yz2) ∂

∂y
+ (

5y + 3/5z3) ∂
∂z

,

ζ2 = y3 ∂

∂x
+ (−1/5y2z

) ∂

∂y
+ (−3x + 3/5yz2) ∂

∂z
.

It is straightforward to checkζ1, ζ2 ∈ Derlog(F ). Then,Ψ (ζ1) = 5y andΨ (ζ2) = −3x.
Hence, Im(Ψ )= (x, y) and a calculation shows∆ = 0. This completes the verification of
the table, so Theorem 1.7 follows.
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