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Abstract

We consider surface singularities(ﬁfg arising as the total space of an equisingular deformation
of an isolated curve singularity of the foryf(x, y) +zg(x, y) with f andg weighted homogeneous.
We give a criterion that such a surface is a free divisor in the sense of Saito. We deduce that the
Hessian deformation defines a free divisor for nonsimple weighted homogeneous singularities, and
that the failure of this property “almost” characterizes the simple singularities. The criterion also
yields distinct deformations of the same curve singularity, exactly one of which is free, showing that
freeness is not a topological properity2002 Elsevier Science B.V. All rights reserved.
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Introduction

Saito [14] introduced the notion of free divisBr 0 ¢ C?, 0 as a hypersurface for which
the module of logarithmic vector fields Derldg) is a free Ocr-module (necessarily
of rank p). Most examples have concerned universal objects such as: the discriminants
of the versal unfoldings of isolated hypersurface and complete intersection singularities
by Saito [14] and Looijenga [12, Chapter 6]; bifurcation sets associated to the versal
unfoldings of isolated hypersurface singularities, Bruce [4] and Terao [16], and more
generally for4-versal unfoldings of a well-defined class of complete intersection germs [5]
and see references therein; Coxeter arrangements, by Terao [15]: the discriminant of the
versal deformation of a space curve singularity, by Van Straten [18]; creating free divisors
from images of stable germs by adding either adjoint divisors Mond [13] or other natural

E-mail address: jndamon@math.unc.edu. (J. Damon).
1 Partially supported by a grant from the National Science Foundation.

0166-8641/02/$ — see front mattér 2002 Elsevier Science B.V. All rights reserved.
Pll: S0166-8641(01)00040-2



32 J. Damon / Topology and its Applications 118 (2002) 3143

divisors [5]; and more generally discriminants kf,-versal unfoldings of sections of
certain free divisors [5,6], which subsume many of the preceding.

If we seek to identify and understand free divisors which fall outside such classes of
universal objects, there are only two known special results. One concerns special free
divisors arising as hyperplane arrangements, using a criterion of Terao [15], including
special discriminantal arrangements, Falk [10], Bayer and Brandt [2,3]. A second general
result of Saito [14] shows that all isolated plane curve singularities are free divisors.
Unfortunately freeness fails for all higher dimensional isolated singularities. For example,
isolated surface singularitigs, 0 c C3, 0, require at least four generators (see, e.g., [11]).

The purpose of this note is to consider a general class of surface singularifiésird
characterize by simple conditions those which are free divisors. Consider a nonisolated
surface singularity, 0 c C3, 0 with singular set a smooth curve. If we interscwith a
plane transverse t& (as a Whitney stratified set) we obtain an isolated curve singularity
Xo, 0, andX can be viewed as the total space of an equisingular deformati&p, &. We
consider when such equisingular deformations have a total space which is a free divisor.
We shall concentrate on equisingular deformations of weighted homogeneous curve
singularities of the formF = f(x, y) + zg(x, y) with z the deformation parameter agd
also weighted homogeneous with(gt > wt( f). We shall give a necessary and sufficient
condition that such a deformation defines a free divisor in terms of a homomorphism

¥ :Derlog(F) — (J(f): g).

where DerlogF) denotes the module of logarithmic derivations which annihifatand
J(f) is the Jacobian ideal of.

We shall see that the image () C (J(f): g) represents first order information
regarding the logarithmic derivations &f. Our first theorem characterizes free divisars
in terms of algebraic and numerical properties of¥m. An important special case occurs
when all of the elements af/ (f): g) lift via ¥ to logarithmic derivations (we refer to
g as being fully extendable). We give a simple humerical condition (Proposition 2) which
ensures this. In this special case, Theorem 3 gives a necessary and sufficient condition
in terms of the ideal(J(f): g) for X to be a free divisor. As a first consequence
we deduce that Hessian deformations of nonsimple (weighted homogeneous) curve
singularities always define free divisors. Second, we are able to exhibit distinct equisingular
deformations of the same curve singularity, one of which is free and the other not free. As
the surfaces are topologically equivalent, this shows that freeness is not a purely topological
notion. This contrasts with the situation for arrangements where Terao has conjectured that
whether the arrangement is free is determined by its lattice structure.

Moreover, all of these equisingular deformations have smooth singular set. This
contrasts with the result of Alexandroff, Theorem 1 in [1] which characterizes the freeness
of a divisor X, 0 for which SindX) has codimension 1 at all points in terms of Siky
being Cohen—Macaulay. Since smooth sets are Cohen—Macaulay, these results seem to
contradict the theorem of Alexandroff. In fact, there is some “fine print” in Alexandroff’s
theorem which asserts that S being Cohen—Macaulay concerns a specific associated
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ideal structure rather than the intrinsic geometric structure. Our examples show that the
intrinsic geometric structure does not by itself determine whexhéris free.

Finally, from the results on Hessian deformations one might suspect the freeness of the
Hessian deformation characterizes nonsimple weighted homogeneous curve singularities.
This is almost true. In fact we show there are exactly two simple singularities whose
Hessian deformations define free divisors: the simplest singuldritywhose Hessian
deformationx? + y2 + z defines a smooth surface which is trivially free) and the “most
complicated” simple singularitfs.

1. Freenessof surfacesingularities

Let f(x, y) define an isolated weighted homogeneous curve singul&igtp c C2, 0.
We let wt(x, y) = (a, b), Wt(f) =d (s0a, b, d > 0) and letJ (f) denote the Jacobian ideal
of f. Also, we letg(x, y) be a weighted homogeneous germ. We consider the deformation
of f given by F(x,y,z) = f(x,y) + zg(x, y). If wt(g) = s > wt(f), then F defines an
equisingular deformation of . If we view F as a function of three variables, it defines,
in general, a nonisolated surface singulafity= {(x, y,z) € C3: F(x,y,z)=0}. If Fis
an analytically trivial deformation, theki >~ X x C is a free divisor. We determine more
generally wherF defines a free divisor.

First, F is weighted homogeneous if we assign the weightzWw&= ¢ =d — s. If
wt(g) > wt(f), then wiz) < 0. Even with nonpositive weight far, there is the Euler
vector fielde = axd/dx + byd/dy + czd/dz. Also, a basic object of interest is the module
of vector fields annihilating-.

We letd, denote the module of germs of vector fields©h, 0. Quite generally recall
that for X, 0 c C?, 0 a hypersurface, the module of logarithmic vector fields is defined by

DerlogX) = {¢ €6,: ¢(I(X)) S 1(X)},

whereI(X) denotes the ideal of germs vanishing &n0. Then, X, 0 is afree divisor
if Derlog(X) is a freeO¢r o-module, necessarily of rank. If F is a reduced defining
equation forX, 0, we also define

Derlog F) = {¢ €6,: ¢(F)=0}.
Then, it is easily seen, e.g., by [9, Lemma 3.1],
Derlog(X) = Derlog(F) & Ocr ole}.

Hence, in the special case whefe0 c C3, 0 is a surface singularity, Derl¢) is a free
Ocs o-module of rank 3 iff DerlogF) is a freeO¢s o-module of rank 2. To determine
when this is true, we consider the homomorphism

¥ :Derlog(F) — (J(f): g) (1.1)
defined bys — ¢(z);=0. To see tha¥r maps to(J(f): g), let ¢ = ai(x,y,2)3/0x +
az(x,y,z)9/dy +az(x,y,z)d/dz. Then,

oF oF oF
((Fy=a1(x,y,2)— +ax(x,y,2)— +azx,y,2)—=0. (1.2)
0x dy 0z



34 J. Damon / Topology and its Applications 118 (2002) 3143

Sinced F/dz = g, if we evaluate (1.2) at = 0 we obtainaz(x, y,0) - g € J(f). Also,
¢(2))z=0=a3(x, y, 0), so the map is as defined.

We note for later use that increases weight by — d and is a module homomorphism
over the ring homomorphisni*: O¢s g — Ogz,, for i(x,y) = (x,y,0). As the ring
homomorphism s surjective, If#) is anideal inO¢2 . We further note that the definition
of ¥ extends to DerlogX); however,Oc» o{e} would always be in kéi) so we instead
restrict consideration t@ as defined in (1.1). However, in this more general form we
can viewY as identifying first order information of a logarithmic derivation. We will see
precisely how this limited information actually determines the freeness of

The main criterion characterizing whéndefines a free divisor is given by the following
which also applies to non-equisingular deformations.

Theorem 1.1. Supposethat f(x, y) defines an isolated weighted homogeneous curve sin-
gularityin C2, 0. Also, let g(x, y) ¢ J(f) be aweighted homogeneous germ. Then the sur-
facesingularity X, 0 ¢ C3, 0definedby F(x, y, z) = f(x, y) +zg(x, y) isafreedivisor iff:
(1) Im(¥) isa complete intersection ideal generated by weighted homogeneous gener-
ators {h1, ho} such that
(2) wi(g) +wt(hy) +wt(hp) =2d —a —b.

As we did in Theorem 1.1, in all of the results that follows assumethat f (x, y) defines
an isolated weighted homogeneous curve singularity in C2,0 (with weights as already
given).

For the theorem to be useful we wish to identify (#r) without first determining
Derlog(F). We do this in an important general case.

Definition 1.2. Given f, we shall say thag is fully extendable if for the deformation
F = f + zg, the map¥ is surjective.

Remark 1.3. If F = f + zg is analytically trivial (for right equivalence), then since
J(f)=TR.- f, we concludeg € J(f). Moreover, differentiating the equation for the
analytic triviality F = f o ¢ with respect tq yieldsd F/9z = ¢/(F) for ¢’ = a1(x, y, z) x
9/9x +az(x,y,z)d/dy. Hencef = —¢’' + 9/9z € Derlog(F). Thus, 1= ¥ (¢) and hence
¥ is onto.

Conversely ifg is fully extendable (forf) with g € J(f), then 1€ (J(f): g). Then,g
being fully extendable allows us to reverse the previous argument to solve the infinitesimal
equation for analytic trivialityd F/0z = ¢/(F). Thus, F is analytically trivial. As the
freeness of analytically trivial deformations holdsgifis fully extendable we need only
consider the casg¢ J(f).

A sufficient condition ensuring that a gerg is fully extendable is given by the
following.

Proposition 1.4. Suppose the curve singularity defined by f(x,y) is not a simple
singularity. Also, let g(x, y) be a weighted homogeneous germ with wt(g) > wt(f).
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Supposethat there is a set of weighted homogeneous generators {h1, ..., hg} of (J(f): g)
which satisfy

2Wi(g) +Wt(hi) > 3d — 2(a+b) fori=1,....k (1.3)

Then, g isfully extendable.

We shall prove this proposition in Section 2 after we have deduced several consequences.
First, we note that in the casg is fully extendable Theorem 1.1 takes the following
form.

Theorem 1.5. Suppose that g(x, y) is a weighted homogeneous germ which is fully
extendablefor £. If the surface singularity X, 0 c C3, 0 defined by F(x, y,z) = f(x,y) +
zg(x, y) isnot analytically trivial, then X, 0 isa free divisor iff
(1) (J(f): g) is a complete intersection ideal generated by weighted homogeneous
generators {h1, ho} such that
(2) wi(g) +wt(hy) +wt(hp) =2d —a —b.

The first consequence of the theorem is for Hessian deformations. Consider the Hessian
of f,H(x,y)= del(azf/ax,-axj) with (x1, x2) denoting(x, y). The Hessian deformation
of fisgiven byF(x,y,z) = f(x,y) +zH(x,y). If fis not a simple singularity, then
Wt(H) =2(d —a — b) > d, sod > 2(a + b). Then,(H: J(f)) is generated byx, y},
and

2wt(H) + min{wt(x), wt(y)} = 3d — 2(a + b) + (d — 2(a + b) + min{a, b})
> 3d —2(a +b)

so by Proposition 1.4H is fully extendable for nonsimple singularities. Moreover,
Wt(H) +wt(x) + wt(y) =2d —a — b.

Thus, by Theorem 1.5, we obtain the following corollary.

Corollary 1.6. Suppose that f(x,y) defines a nonsimple curve singularity. Then the
Hessian deformation F (x, y,z) = f(x, y) + zH (x, y) definesa free divisor in C3, 0.

The converse of Corollary 1.6, that for simple curve singularities the Hessian deforma-
tion does not define a free surface divisor, is “almost true”.

Theorem 1.7. The Hessian deformation of a simple curve singularity f(x,y) in C2,0
defines a free surface singularity in C2 only for A1 and Eg but in no other cases.
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For example, the cusp(x, y) = x3 — y2 has Hessian deformatiafi(x, y, z) = x3 —
y2 — 12zx which is a Morse singularity, and hence not free by earlier comments. See
Section 4 for the proof in the general case.

Remark 1.8. In fact, the numerical conditions in Theorems 1.1 and 1.5 and in Proposi-
tion 1.4 can be naturally rewritten in terms of the weight of the HesBia€ondition (2)
for Theorem 1.1 becomes for the set of generaflorsho}

wi(g) + Wt(h1) + Wi(h2) = Wt(H) + wi(x) + wt(y)
and the condition (1.3) in Proposition 1.4 becomes

2Wt(g) + Wt(h;) > Wi( f) + Wt(H).

Written in this form it is at first surprising that ayother than the Hessian satisfies the
conditions. In fact, quite a few do. For example, we generally have for Pham—Brieskorn
curve singularities

Corollary 1.9. For the curve singularity defined by f(x,y) = x? + y“, suppose that
g(x,y) = x¥yt is fully extendable and wt(g) > wt( f). Then the monomial deformation
F(x,y,z)=x?+ y? 4+ zxky* defines a free divisor in C3.

Proof of Corollary 1.9. By Remark 1.3, we may assurgez J (f). We have wtx, y) =
(a,b), Wt(f) = ab and W{H) = 2(ab — a — b). Since J(f) = (x*~1, y*~1), we see
(J(f): g) = (xP~17k ya=1=6) "and up to a constant factor the Hess#n= x?—2y—2,
Then, condition (2) follows from

Wt(xkyl) + Wt(xb_l_k) + Wt(y“_l_l) =2ab—a —b.

By assumptiong is fully extendable, so Theorem 1.5 implies that the deformation defines
afree divisor. O

Example 1.10 (Free equisingular deformations). For the homogeneous gerfi(x, y) =
x104+ 410 (4, b) = (1,1) andd = 10. We have/ (f) = (x°, y9). Any g = xKy¢ ¢ J(f)

with min{k, ¢} > 6 satisfies (1.3), and so is fully extendable. By Corollary 1.9 such
monomial deformations® + y10 + zxk y¢ define free divisors.

Example 1.11 (Non-Pham-Brieskorn free equisingular deformation). Consider the
weighted homogeneous gerfitx, y) = x& + xy®, with (a, b) = (5, 7) andd = 40. Since
J(f) = (8x" + y° 5xy%), for g = x8y2 we have(J (f): g) = (x2, y?). We observe that

2wt(x®y?) + min{wt(x?), wt(y?)} =88+ 10> 3- 40— 2(5+ 7)
sog is fully extendable by Proposition 1.4. Also,
wt(x®y?) + wt(x?) + wt(y?) = 44+ 10+ 14=68=2.40-5-7

shows that condition (2) of Theorem 1.5 is satisfied. THUS;, y, z) = x8 + xy° 4 zx8y?
also defines a free divisor.
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Thus, freeness can hold for non-Hessian deformations not of Pham—Brieskorn type. Both
the condition thag is fully extendable and the conditions in Theorem 1 hold much more
frequently then one would first expect.

Example 1.12 (A nonfree equisingular deformation). Consider again the homogeneous
germ £ (x, y) = x19+ y10 from Example 1.10. This time we consider instgag x’y° +
x2y7. We have(J (f): g) = (x* x%y2, y%), and (1.3) is easily seen to be satisfied so that
is fully extendable. SincéJ (f): g) is not a complete intersection ideal, by Theorem 1.5,
F(x,y,z) =x04 y104 7(x7y% + x®y7) does not define a free divisor.

Remark 1.13. By considering the preceding examples, we see that condition (1) of the
theorem and condition (1.3) can both fail for certaing J(f) with wt(g) > wt(f).
However, all examples indicate that for sughf both g is fully extendable andJ (f): g)

is a complete intersection ideal, then condition (2) is satisfied. We ask whether this is
always true?

2. Propertiesof Derlog(F) and ¥

In this section we establish propertiesdof including a proof of Proposition 1.4 and an
additional lemma needed for the proof of Theorem 1.1. We also establish simple weight
properties of Derlo@F) needed to prove Theorem 1.7.

Proof of Proposition 1.4. We recall F is weighted homogeneous if we assign the
nonpositive weight W) = ¢ = d — s where wtg) = s > wt(f) =d. Leth; be a weighted
homogeneous generator satisfying

2Wi(g) +Wt(h;) > 3d — 2(a + b).

Becausel is a module homomorphism ovét: O¢s g — O¢2 g, it is sufficient to show
that a set of generators 6f (f): g) are in the image o&. We shall use the notatioR,
for 9 F/dx, etc. Because; € (J(f): g), we may solve

hi - g = @irfx +gi2fy, (2.1)
where we may assumg; is weighted homogeneous. Then, by (2.1)

hi - F, = @i1Fx + ¢i2Fy + zR;, (2.2)
where

Ri = —¢i18x — pi2gy- (2.3)
We easily check from (2.3)

WE(R;) = 2Wt(g) + Wt(h;) — Wt(f). (2.4)

By assumption, 2wg) + wt(k;) > 3d — 2(a + b). Hence, by (2.4) WiR;) > 3d — 2(a +
b) — d. Since the HessiaH has weight 24 — a — b), we conclude WiR;) > wt(H) and
SOR; e J(f)fori=1,2.
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We letw" denote the weight filtration 02 o (with w* generated by monomials of
weight> k). Also, let@" denote the induced weight filtration @3 o by @ = w*Os g.
Likewise we have an induced weight filtration on the modulgs- Oz {d/dx, 3/dy}
andf (m2) = O¢s p{d/dx, d/dy} by defining wtd/dx) = —a and wid/dy) = —b. With
respect to this weight filtration, we have initial parts

in(F)=f, in(Fy)=fx and in(Fy)= fy modm;-Ocs .

Then, the mapBy:02 — Oz defined by¢ — ¢(f) maps@é”c) onto wt for all

¢ > wt(H) (recallc =d —s < 0). Hence, in the terminology of [7g r is graded surjective

in filtration > wt(H). Then, asF is a “deformation off of nonnegative weight”, we can
apply the filtered version of the preparation theorem [7, Lemma 7.4] (or see the related
filtered Nakayama’s Lemma [8, Lemma 1.1]) to conclude that the corresponding map
BF:0(m2) = Ogs o (sendings — ¢ (F)) with the induced filtrations, maps

Br(0(r2) 1)) =% forall € > wt(H). (2.5)

Thus, by (2.4) and (2.5) there exigte 6 (2) such that/(F) = R;. Moreover, ask; is
weighted homogeneous, we may assumeghatweighted homogeneous (with respect to
(x,y,2)). Now we define the weighted homogeneous vector fields

0 0 0
) . . h; — 4+ z¢]. 2.6
gi i15- +<p128y i3 + 2¢§; (2.6)

By (2.2), (2.3), and (2.6); (F) = 0; thus,;; € Derlog F). O
For the proof of Theorem 1.1, we also need two simple properties of the image and
kernel of the homomorphisn¥. For these we consider the determinantal vector fields.

If {u,v} denote any pair of, y,z. Then, we note that the determinantal vector field
Nu,v = F,d/0u — F,0/9v € Derloy(F).

Lemma?2.1.
1) J(H CIm@)
(2) ken¥) = Ocs p{nx,y} modm; - .

Proof. For (1), (1x,2) = — fx, ¥ (y,2) = — fy, and Im(¥) is an ideal.
For (2) we may write¢ € ker(¥) as

0 0 0
E=a1(x,y,2)— +ax(x,y,2)— +az(x,y,2)—. (2.7)
ax ay 9z

Then, arguing as in (1.1} (&) = 0 implies thatai(x, y, 0) fy + a2(x,y,0) fy = 0. As
{fx, fy} forms aregular sequence, there exists @ O¢s ( such that

(a1(x,y,0), a2(x, y,0)) = ¥ (fy, = f) = ¥ (Fy, —Fy) modm; - Ocs o

implying the conclusion of the lemma.C
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3. Proof of Theorem 1
Sufficiency

To prove freeness we shall use one form of Saito’s criterion [14] for freeness of
a hypersurface. Suppose th&t0 c C?,0 is a hypersurface. Let; € Derlog(X) for
i=1...,p. It =) a;jd/dx;, then we letA = (g;;) denote the matrix of coefficients.
For such a situation, Saito gives the following criterion fbto be free.

Saito’s criterion 3.1. If h = det(A) definesX with reduced structure, thevi is a free
divisor, and{¢y, ..., ¢,} generate DerlogX).

To prove the theorem we shall construct the vector fields in DeXld@nd prove they
satisfy Saito’s criterion 3.1.

Construction of generators for Derlog(X)

We let X be the hypersurface singularity@? defined byF = 0. We first construct three
vector fields in DerlogX). We have the Euler vector field= axd/0x +byd/dy +czd/0z.
To construct the other two vector fields we use the generators@f ) nBy assumption, it
is a complete intersection ideal generated by weighted homogeneous gengratoss.
Thus, there are vector fields € Derlog(F) for i = 1, 2 of the form

0 0 0
i — i — /. 3.1
gi 90118x +90128y laz + 2§; (3.1)
Furthermore, ag’ preserves the weight decompaosition (it increases weighis-by), we
may assume the vector fields are weighted homogeneous.

\erification that X isfree

We have constructed three vector fieldg1, 2 € Derlog(X). It remains to show that
they freely generate Derlog). We do this using Saito’s criterion 3.1. Ldt denote the
matrix of coefficients, and = det(A). As the 3 vectors are linearly dependentdag, 4
vanishes orXeg and hence oX. SinceF is a reduced equation foX, 0), thenh = o - F
for a germa € O¢s o. It is enough to show that is a unit. As both: and F are weighted
homogeneous, then sods We can calculate its weight

wt(a) = Wt(h) — Wt(F) = Wt(x) 4+ Wt(p12) + Wt(ho) — d
=a+b+wt(g) —d+wt(hy) +wt(hp) —d =0 3.2)
by condition (2) in the theorem. Since @) = 0, to show thatr is a unit it is sufficient to

show thaix(x, y, 0) #0.
If we setz =0, the matrixA takes the form

ax by 0
p11 @12 —hi|. (3.3)
Y21 @22 —h2
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From (3.1), we obtain from the equatiof)$F)|,—o=0fori =1, 2

hi-g=we11fx +012f5, h2 - g =@o1fx +@22fy. (3.4)

If we apply Cramer’s rule to (3.4) we obtain

D - fr = g(p2oh1 — @12h2), @ - fy = g(—g21h1 + @11h2), (3.5)

where® = def(y;;). Then, expanding (3.3) along the top row, and using (3.5) and the Euler
relation, we evaluate

det(A)|.—0 = ax(—p12h2 + @22h1) — by(—@11h2 + @21h1)
= @/glaxfx +byfy)=d-(P/g)- [.

Thus,a(x,y,0 =d - (®/g). Finally, ® # 0, otherwise by (3.4) we would obtain first that
g - (—@12h2 + @20h1) = 0. As g # 0, this implies—g12h2 + @2oh1 = 0. Since(hs, ho) is

a complete intersection ideal; > is divisible h1. Using insteaq; - (—p1142 + @21h1) =0
implies thaty1, is also divisible byhj. By (3.4), this impliesg € J(f), a contradiction.
Hencegw is a unit andX is a free divisor.

Necessity

Suppose Derlog@”) is generated as afi¢s o-module by two elementg, ¢2}. Because
¥ is a module homomorphism ovéf :Ocs g — O¢zo, We conclude that Iitw) is
generated as a2 -module by{hi, ho} whereh; =W (5). Asg ¢ J(f), (J(f): &) #
O¢2o. Also, by Lemma 2.1, Irf¥) contains/ (f) and hence has finite colength. It follows
that Im(¥) is a complete intersection ideal.

Even though wt) < 0, we still claim, as in the case of positive weights, that the
weighted homogeneous module Dell6y has a set of weighted homogeneous generators.
Before saying more about this, we first finish the argument.

Let the weighted homogeneous generatorgzheso}. From these generators together
with e, we may construct the matrix as in the proof of sufficiency. Again by Saito, déj
is a unit timesF. On the other hand, we can compute the weighiletA)) in terms of
the weights wtz;) as for (2.3) to obtain

wt(det(A)) =a + b +wt(g) — d + Wt(h1) + Wt(ho). (3.6)
Since (3.6) must equal, we obtain condition (2) in the theoremO

To justify the assertion that we may choose weighted homogeneous generators for
Derlog(F), we consider generally a weighted homogeneous submadute (O¢- o)?,
where we allow nonpositive weights for the coordinates . .., x,) of C* and a weight
Wwt(e;) = c; is assigned to each; = (0,...,0,1,0,...,0) (with 1 in the jth position).
If all weights of thex; were positive, there is a straightforward algebraic argument to
show thatM has a set of weighted homogeneous generators. To prove the result allowing
nonpositive weights, we use the Artin approximation theorem.
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Lemma 3.2. Let M C (Ocn0)? be a weighted homogeneous submodule, where we
allow nonpositive weights for the coordinates of C". Then there exist a set of weighted
homogeneous generators for M.

Proof. Let Mp denote the submodule a¥f generated by all weighted homogeneous
elements oM. Then,My is a finitely generated submoduledf. Moreover, if{¢1, ..., ¢}
denotes the generators &, then

t&i= Zgij Vij
J

with y;; weighted homogeneous. Replacifig, .. ., {-} by the set ofy;; gives a set of
weighted homogeneous generators#y. Thus, we may assume tlgeare weighted ho-
mogeneous.

We claimMp = M. Considert € M. If &£ = Zj &; denotes a decomposition finto
componentg; of distinct weightsj, then the weighted homogeneity & implies each
£; € M. Hence, each; € Mp. Thus, we may writé; = >, ¥« {x, where ag; and theg,
are weighted homogeneous, we may assumethere weighted homogeneous. Then, if
Y = Z,- ¥« is the formal sum of terms of different weights, we hgve ), ¥ ¢ in the
formal power series ring. Hence, the analytic equation

E=) nb 3.7
K

has the formal solution; = . By the Artin approximation theorem, e.g., [17, Theo-
rem 4.2], there is an analytic solution to Eq. (3.7). Thus,Mp, so we haved = Mp. O

4. Hessian deformations of simple curve singularities

To prove Theorem 1.7, we will apply Theorem 1.1. For this, we must determig)m
for each simple curve, and in the cases for which it is a complete intersection ideal, we must
determine whether condition (2) is satisfied. In Table 1 we give for each simple curve, its
Hessian deformation, where we absorb stray constantg itdasimplify the form of the
Hessian deformation. We also give a set of generators fo¢hnand finally to determine

Table 1

Simple curve singularities and their Hessian deformations

Simple Hessian Infw) A
curves deformations

A1 x2+y2+z (x,y) 0
Ap_1,n>3 x4 y2 4 7x1 2 *2,y) 2
Dyi1,n>3 3 02 42 ((p)an 1 - y2) (2, xy,¥2)

Eg x3 4 xy3 + 242y — yH (x, %) 2
E7 234yt 4 zxy? (x,¥?) 3

Eg X3+ y5 + zxy3 (x,y) 0
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whether condition (2) is satisfied, we ligtwhich is the difference of the two sides of the
equation for condition (2)

A =Wt(g) +Wt(h1) +Wt(hp) — (2d — a — b). 4.1)

Once we have justified the results in this table, we can apply Theorem 1.1 to complete the
proof of Theorem 1.7. Fab,, 1, Im(¥) is not a complete intersection ideal so the Hessian
deformation is not free. Fad,,—1, n > 3, Eg, and E7, Im(¥) is a complete intersection
ideal, butA # 0 so for none of these is the Hessian deformation free. FinallyAfor
andEg, Im(¥) is a complete intersection ideal arid= 0 so the Hessian deformations are
free.

To establish the results in the table for(kn), we use either determinantal vector fields
or vector fields found with the assistance of the program Macaulay to show the image is
attained. To show that we have not missed any generators, we use the map

/3;; 103 — O(C3,0

which sends; — ¢(F). It increases weight by wWF), and hence preserves the weight
decomposition. Also, Derldd’) = ker(8y). Hence, if M, denotes the weight part
of M, then DerlogF) ) = ker(B}|03x))-

An—1, n >3 First, ¥ (n,,) = 2y and¢ = xd/dx — (nx? + (n — 2)2)d/dz € Derlog(F)
with ¥ (¢) = —nx?. Moreover, a calculation of kes).) shows DerlogF)—2) = ker(}|
03—2)) =0, s0 IM¥)2) =0. Hencex ¢ Im(¥); and it is as claimed.

Dut1. n > 3: To begin¥ (ny;) = 2xy and¥ (i,;) = y?> modm? . In addition, let

=-2n—Dx— z)xi + ((n +Dx+ (n— 1)22))1i
0x ay
+ (4x +2(n — 1?%2) (x — z)a%.

Then, it is easily checked that € Derlog(F), and we see¥ () = 4x2. Moreover, a
calculation using ke&pBj) in weights 0 and: — 3 shows thatx, y ¢ Im(¥). Hence,
Im(¥) = (x%, xy, y2).

Ee andE7: For both of these, a computation of kgf) using Macaulay yields three
generators for each, which undgrmap tox, xy, andy?2. Thus, Im¥) = (x, y?).

A1 ¥ (n,,) =2y and¥ (n,;) = 2x, and it is easily checked = 0.

Eg: Let

_2. 9 N N
Cl—yzax+( X 1/5yz)8y+(5y+3/52)az,

d d a
3 2 2
= y°— + (-1/5y“z) — + (—3x + 3/5 —.
t2 y8x+( /yz)ay—l—( x~|—/yZ)8Z
It is straightforward to checky, ¢> € Derlog(F). Then, ¥ (¢1) = 5y and ¥ (¢2) = —3x.
Hence, ImiY) = (x, y) and a calculation shows = 0. This completes the verification of
the table, so Theorem 1.7 follows.
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