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ELEMENTARY ZEROS OF LIE ALGEBRAS OF VECTOR FIELDS

J. F. PranTE®T
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WE CONSIDER a finite dimensional Lie algebra & of €* (k > 1) differentiable vector ficlds on
a finite dimensional manifold M. A point pe M is a zero for £ if X(p) = O for every X e 7.
For the classical special case of (the Lie algebra spanned by) a single vector field X, the zero
p is said to be elementary (or simple) if the derivative at p of the principal part of X is
invertible. The equivalent coordinate-free formulation of this definition is that the vector
ficld. regarded as a map X: M — TM, be transverse to the zero section at p [1]. From this
point of view it can be seen that elementary zeros are stable, ie. they persist under
perturbation of X. In addition, such zcros can be assigned an index of + 1 or — 1 and,
when all zeros are elementary and M is compact, the vector ficld satisfies the Poincare -Hopf
index formula. It is reasonable to ask how these notions should be formulated for zeros of
an arbitrary Lic algebra. The correct definition turns out to involve the first Lic algebra
cohomology of the linear part of £ at p. That the first cohomology is relevant is suggested
by results of Hirsch [S, 6] and Stowe [14], which relate stability of stationary points of
group actions with the group cohomology of the lincar action, and the relationship between
the cohomologies of Lie groups and Lie algebras [15]. Scction | reviews basic results
concerning cohomology of Lie algebras. Section 2 applies these results to the definition and
description of elementary zeros for a Lie algebra of vector fields on a manifold. Section 3
contains examples and a result, concerning commuting vector ficlds on a compact surface,
which illustrate limitations to defining an index for a zero of a Lie algebra of vector ficlds.

1. PRELIMINARIES CONCERNING COHOMOLOGY OF LIE ALGEBRAS
Suppose ¢ is a Lie algebra, V is a vector space, and p: % — ¢/ (V) is a Lic algebra
homomorphism, ie., p[X, Y] = p(X)p(Y) — p(Y)p(X). If Xe %, ue} we will usually
write p(X)u more simply as Xu. We define H%(%, V') to be the subspace of V¥ which is
annihilated by p.
H(%,V)={ueV|Xu=0forall Xe #}.
A lincar map f: & — Vis a I-cocycle if, for all X, Ye?
JULX, YD) = Xf(Y) = Y[(X)
If, in addition, there exists ue ¥ such that f(X) = Xu for all Xe % then f is said to be
a I-coboundary. The coboundaries constitute a subspace of the linear space of cocycles and
the quotient space is the cohomology space H'(%. V') (p suppressed as usual). Sufficient

background on cohomology of Lie algebras may be found in [4, 7]. The first cohomology
depends both on the structure of the Lie algebra of # and the action p. For example, if p is
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trivial (Xu = 0 for all X, u). then the first cohomology is easily seen to be the linear space
Hom(Z [#. £]. V). When Z is l-dimensional. H'(#, V') is isomorphic to coker p(.X)
where X is a generator of . On the other hand. the Whitehead Lemma asserts that
whenever & is semi-simple, H!'(%, V') = 0 for any p.

We now insist that % and ¥ be finite dimensional and real. In this context the set of all
actions of # on Fis a closed subset of a finite dimensional space. The following result says
that triviality of H' is stable under perturbations of the action.

1.1 ProposiTioN. If for some action p of ¥ on V, HY(¥, V) = O then this condition also
holds for all actions sufficiently close to p. Furthermore, H°(¥, V') will have the same
dimension for the perturbed action as it does for p.

Proof. Let B be the linear space of skew symmetric bilinear maps from V" x } to
V(W = 112 where | = dim #). Denote by L(%, V') the space of linear maps from
% to V. Define maps 2: V' — L(Z, V)and f: L(ZL, V)= W by

a(uf X)=Xu XeP, ueV
and

BUDX, Y) = X[(Y) = Y(X) - f([X. ¥

where X, Ye and fe L(#. V). By definitions, H(Z, V) = kerx and HY(Z, V) =
ker /image a. For an action p’ sufficiently close to p having corresponding lincar
maps a2’ and fI” we have

dim image 2 < dim image o' < dim ker i < dim ker fi.

IfHY (2, V) = 0 for p then image « = ker f8. This implics that ker #” and image «” have the
same dimension and therefore, coincide, that is, H' (2, V') = 0 for p'. The last statement of
(1.1) follows since kera and kera’ have the same dimension.

We now proceed toward a description of the significance of the vanishing of the first
cohomology when the Lic algebra is nilpotent. Analogous results for the case of cohomol-
ogy of groups may be found in Hirsch [6]. The only general tools needed are the usual long
exact cohomology sequence associated with a short exact sequence of modules {4] and the
following result.

1.2 ProrosiTiON. If ¥ < % is an ideal and p: & — ¢/ (V) is an action then there is an
exact sequence

inf res
0= HY(Z/H H N V) — H(L, V)— H' (X, V).

The inflation map sends a cocycle f: /X — H(X', V) to the composition i-f~r where
n is the quotient projection and i is inclusion. The restriction map sends a cocycle f: £ — V
to its restriction to X',

The proof of (1.2) is a straightforward adaptation of the corresponding proof for group
cohomology [2]. Onc application of (1.2) is when ¥ = ker p. In this case H(x', V)=V
and (1.2) says that H'(Z, V) is non-trivial whenever H' is non-trivial for the effective part
of p.

1.3 LemMa. If there exists Z e 4 such that p(Z) is invertible and central in p(Z’) then
HY(Z. 1)y =0.
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Proof. The cocycle condition gives, for any X € .# and cocycle f.
0=S([X.Z))= Xf1Z) - Zf(X)

or
(Xy=Z"'Xf12)=XZ"'[1Z)

which says that f1s a coboundary.

1.4 LemMa. If & is nilpotent and dim £ > 2 then dim (% [¥. £]) = 2.

Proof. This is true in dimension 2 since % is abelian in that case. Assume the lemma is
true for dimensionn — 1 (n > 3). If dim ¥ = n, let § < & be a central 1-dimensional ideal.
Since &/ # has dimension (n — 1) it has an abelian quotient of dimension at least 2 and.
therefore, so does &.

1.5. LemMma. If p: & — 4/ (V) is a non-trivial action such that every element of p(£) is
nilpotent then H'(Z. V) # 0.

Proof. The result is clearly true when dim % =1 and V is arbitrary. It is also true,
vacuously, when 2 is arbitrary and dim ' = 1. We assume dim % > 2 and that the result is
true wheneverdim 1= n — | (n = 2). In view of (1.2) we may assume p is effective (injective)
and ¢ is nilpotent. In fact, we may sclect a basis for 1 which puts every clement of p(#') in
nilpotent upper triangular form [7]. Let b, be the subspace of Fspannced by the first (n — 1)
basis vectors (17 1, = R)and let ¥ < ¢ be the ideal consisting of all clements of & whose
restrictions to Fy, are zero. Since p s effective HO(X, V) = b, T # £ then (1.2) gives

O~ HY /X V)—=H (L V)
and the result follows since the middie term is non-zero by the inductive hypothesis. On the
other hand, if . = ¥ then 2 acts trivially on }; and the short exact sequence
0=,V =R-0
leads to an exact sequence containing
HY 2 R = HY P V) H' (L V)
The sccond term is Hom (/[ &, &°], V,,) which has dimension > 2 by (1.4). Since the first

term has dimension < 1, it follows that dim H'(¥, 1’y > 1 and the proof of (1.5) is
complete.

1.6 ProrosiTiON, If p: & — 4/ (V) is an action with [£, ] # % and H' (¥, V) =0
then H(#, V) = 0.

Proof. Let V, be the largest subspace of V on which every element of p(#) is nilpotent.
Since H(, 1) < },, the proof will be completed by showing that }/, = 0. The short exact
sequence

OV, - V-sV/V,-0

yields the cohomology exact sequence containing

HY L. V/V,)=»HY (L. V,) > H' (2, V).
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In this case H°(#, }'/},) = 0 so the hypothesis H' (%, }'}) = 0, together with (1.5), imply
that & acts trivially on V, (1, = H°(%#. }')) and, therefore, since

H'Y(Z,V,) =~ Hom(Z/[ ¥4, £]. V,)

we conclude that V, = 0.

The type of Lie algebra most similar to the one-dimensional Lie algebra is nilpotent. In
this case there are several equivalent conditions. By “almost all” points in a real finite
dimensional space we shall mean a subset that remains after removal of finitely many
subspaces of lower dimension.

1.7 ProposiTion. For a nilpotent Lie algebra & and representation p: £ — 4/ (V') the
Jollowing are equiralent.

iy H(£.V)=0

(i) HY(L, V)=0

(i) For almost all Xe€ ¥, p(X) is invertible.
(iv) For some X e, p(X) is invertible.

Proof. That (i) implies (i) follows from (1.6), (iii) implies (iv) is obvious, and (iv) im-
plics (ii) follows from the definition of H°. The proof will be completed by showing that (it)
implics (iii) and that (ii) implics (i).
Since  is nilpotent the complexification of p has a special form [7. Chapter I1].
Specifically, the complexification of Vis a dircct sum W, @ . . .@ W, of invariant subspaces
such that for any X € 2 the matrix of the restriction of p (X)) to W, is the sum of a scalar
matrix and a nilpotent upper triangular matrix. The map which sends X to the scalar is
a Lie algebra homomorphism h; and, assuming (ii), kerh; is a closed subspace of lower
k

dimension (than ). For every Xe(.’/’ - U kcrh,.). p(X) is invertible since all its
i=1

cigenvalues are non-zero. This shows that (ii) implies (iii).

In order to complete the proof of 1.7 assume (i) H(Z, V) = 0 and equivalently, (iii)
p(X) is invertible for almost all X e 2. It must be shown that (i) H'(#, V)= 0. This
assertion is true for abelian 2 by (1.3). In particular it is true whenever dim 2 < 2. Assume
it is true whenever dim % <n (n> 3). If dim % = n, then by (1.4) and (iii) there is
a codimension-one idecal & < ¥ which contains an invertible element. Since
HO ', V)=0and H' (X', V) =0,(1.2) implies that H'(#, V) = 0 and the proof of (1.7) is
complete.

2. ELEMENTARY ZEROS

Consider the linear space 2 "(M ) of 6" (r = 1) differentiable vector fields on a manifold
M. If & is a Lie algebra then an action of 2 on M is a linear map A: & — 4"(M ) such that
AL X. Y] =[A(X), A(Y)] whenever X, Ye #. A point pe M is said to be a zero of A if
X(p) = 0forall X € . Note that if 4 were integrated to give a local Lie group action then
p would be a stationary (or fixed) point of the local group action.

Supposc now that pe M is a zero for A. For each X € 7, the derivative of A(X) at p is
a lincar map from T,M to T, (TM) (T denotes tangent spacces, 0, is the zero vector at p).
Identifying these spaces in the standard way we regard the derivative of A(X) at p as an
element of ¢/ (T,M). The map & — 4/ (T ,M) which sends each X € Z to the derivative of
A(X)at pis alincar action, of the type considered in the previous section, which is called the
linear part of A at p.
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Definition. The zero p of the action A is elementary if, for the linear part of A at p,
HY (¥, T,M)=0.

2.1 THeoreM. If p is an elementary zero of an action A then in some nighborhood N of
pall zeros of A are elementary and the set of zeros in N is a submanifold whose tangent space at
pis HO(Z. T,M).

Proof. Since the situation is local we may assume, by taking local coordinates, that M is
an open subset of V" and that T M is identified with V. Since p is elementary we have (from
the proof of (1.1)} the exact sequence

viLen)iw

where a is determined by evaluation of the linear part of 4 at p. Denote by S the subspace
a(¥) =kerf of L(Z, V). Select a complementary subspace for S and denote by n the
corresponding projection of L%, V) onto S. Using an ordered basis { X, ..., X|)of & we
identify each fe L(%Z, V) with (f(X,),....f(X,))e V' Define op: M — S by

@(x) = m(AX )(x), . .., AX)(x))

We have @(p) = 0 and Do(p) = n(DA(X,) (p). ... DA(X,)(p)) = n~ax, where D denotes
derivative. Since De(p) is surjective there is a neighborhood N of p such that
{xeN|o(x) =0} is a submanifold tangent at p to ker Do(p) by the implicit function
theorem. But ker Do(p) is simply the set of vectors which are mapped to zero by every
DA(X,)(p). that is, ker Do(p) = H°(Z, T,M). Finally, it follows, from (1.1) and the assump-
tion that 4 is ¢, that restricting suitably the size of N will insure that every zero of
A contained in N will be elementary. This completes the proof of (2.1).

2.2. CorOLLARY, Suppose A: &£ — X' (M) is an action.

() If [, %) # & then the elementary zeros of A are isolated.
(i) If & is semi-simple then every zero of A is elementary. In particular, the set of zeros of
A is a submanifold of M.

Proof. (i) follows from (1.6) and (2.1). (i) follows from (2.1) and the Whitehcad Lemma
[4. 7] which says that H' (%, V) = 0 whenever & is semi-simple.

The last statement in (ii) of (2.2) was proven by Stowe [14] in the more general context of
%" Lic group actions. For real analytic actions Guillemin and Sternberg [3] have shown
that the semi-simple action can actually be linearized in a neighborhood of any zero.

The following result is equivalent to Theorem A of [10].

2.3 COROLLARY. Suppose A: & — X' (M) is an action where [, ¥ ] = 2. If peM is
a zero for A at which the linear part is trivial, then the action A is trivial on the connected
component of M which contains p.

Proof. The hypothesis on & and p imply that, for the lincar part of A at p,
H°(%, T,M)=T,M and H'(Z, T,M) = 0. Now (2.1) says that the zcro sct of 4 includes
a ncighborhood of p. Therefore, the set of points in M at which both A and its linear part are
trivial is open in M. Since this set is also closed it must contain the connected component
of p.
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For later use we state the characterizations of elementary zeros for a nilpotent Lie
algebra.

2.4 PropostTiON. If & is nilpotent and p is a zero of the action A: & — 4 '(M) then the
Sfollowing are equiralent.

(i) p is an elementary zero for A.

(i) If DA(X)(p)v) =0 for every Xe £ then v = 0.

(iii) For some X € %, p is an elementary zero for X.

(iv) For almost all X € &, p is an elementary zero for X.

Proof. (2.4) follows from (1.7).
The following result is an analogue for Lie algebras of the stability theorem of
Stowe [14].

2.5 THEOREM. Suppose p is an elementary zero of an action A: L — X' (M ). Then yiven
a neighborhood N of p, there is a neighborhood U of A in the space of ¢ actions such that for
every A'e U there is a p'e N which is an elementary zero of A'.

Proof. I1{X,...., X,}1is an ordered basis for &, the topology on the space of actions is
such that a net {4, } of actions converges if A,(X;) and DA (X)), i=1,..., I, converge
uniformly on compact scts. We retain the notation from the proof of (2.1). For an action A’
ncar A there will be a map ¢’ (determined by the original p and #) which is uniformly 4
close to ¢ on some neighborhood N of p. Since ¢(N) contains a ncighborhood of 0 we may
suppose ¢ doces as well, that is, ¢'(p’) = 0 for some p’e N. In view of (1.1} we may also
suppose that restriction of # to 8’ (= image o' = ker /) is an isomorphism onto S. This
implics that p’ is an clementary zero of 4’

2.6 COROLLARY. Suppose A: &L — (M) is an action where [, )= 2. If peM is
a zero for A at which the linear part is trivial then there is a neighborhood U of A such that
A(X)p) = 0 whenever Xe ¥, A'eU, and p’ is in the same connected component as p.

Proof. The hypotheses imply that H( %, T,M)=T,M and H!'(<, T, M) =0 for the
lincar part of A at p, so (2.6) follows from (1.1) and (2.5) by the argument used for the proof
of (2.3).

3. COMMUTING VECTOR FIELDS ON SURFACES

In [9] it is shown that when a nilpotent Lic group acts without fixed points on
a compact surface M, the Euler characteristic of M is zero. This suggests the possibility of an
index theorem for actions by nilpotent groups in the spirit of Poincaré -Hopf. On the other
hand, it is also shown in [9] that the solvable, non-abelian, two-dimensional group acts
without fixed points on every compact surface so there is no hope of this type of result for
solvable groups. In this section we consider actions of abelian Lic algebras on compact
surfaces without boundary.

3.1 THEOREM. Suppose A: £ — X*(M) is an action where ¥ is abelian and M is
a compact surface. Assume that every zero of A is elementary. Then there is a set ¥ < ¥ such
that & — & has measure zero and for Xe &
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(i) The set of isolated zeros of X coincides with the ( finite} zero set of A.
k

(i) If py.. ... py are the zeros of A then ) index X(p,) = y(M).

i=1

Remark. The vector field X €.¥ may also have zeros which are not isolated. For
example, consider the commuting vector fields on the plane

¢ . ¢
X = (cos 2nx)—, Y = (sin2nx) .
¢y iy
They induce commuting vector fields on the torus T2 = R?/Z% Every vector in the Lie
algebra £ < IY(T) spanned by X and Y is a scalar multiple of some
X, = (cos2rt) X + (sin2nt) Y = cos 2n(x — t) &/éy. The zero set of X, consists of the two
circlesx =t +4x=t+2

In proving (3.1), we will make use of the following result which follows immediately from
Theorem | of [12]. By an orbit of an action by a Lie algebra we mean an orbit of the
integrated Lie group action.

32 LeMMA. If A1 ¥ = A3 (M)is as in (3.1) and dim & > 2 then for almost every 2-plane
P < ¥ (in the sense of measure on the Grassmanian) the restriction of A to .# has precisely the
same orbits as does A.

Proof of (3.1). In view of (3.2) we only need to prove (3.1} when dim & = 2. Assume the
action is spanned by commuting vector fields Y, Z. If cvery orbit of the action has
dimension 2 (Y, Z everywhere lincarly independent) then M is a finite union of toral orbits
50 x(M) = 0 and (i) and (i1) are true. Now suppose the action has a non-empty (compact)
subset consisting of all zero and one-dimensional orbits. Let pe M be a point having
a one-dimensional orbit and suppose that ¥(p) # 0. Sclect a local coordinate system (x, y)

1] D
for a neighborhood U of psuch that ¥ = 5‘; In U we have Z =_f(:~t + g Y where fand g are

%' functions on U. Since Y and Z commute it follows that fand ¢ depend only on x since
Al
[§ .. . - .

(Y. Z]=/, 5= + ¢, Y. The restriction to U of an arbitrary vector ficld in 2 has the form
ax

)
aY + bZ = bj'ﬂ(~ +(a + by)Y.
X

For real numbers a, b we define G(a, b, x) = a + by(x). The real valued map G has 0 as
a regular value, so for almost all (¢, b)€ R? the map x+— G(a, b, x) has zero as a regular value
[1]. For such (a, b) the zcro sct of aY + bZe ¥ in U is a subset of the I-dimensional
submanifold {(x, y)e U|G(a, b, x) = 0}. Since this zero sct is Y-invariant and Y is never zcro
in U, the zero set of aY + bZe & in U is itsclf a 1-dimensional submanifold. The set of
1-dimensional orbits of ¥ may be covered by a countable collection {U, } of open subsets of
M —{p,.....p} Thisyiclds a subset ¥, < & such that ¥ — ., has measure zcro and
X €., implies that the zero sct of X consists of {p,.. .., p.} together with a 1-dimensional
submanifold of M — {p,,....p,}. By (2.4) there is a set ¥, « ¥ such that ¥ — ¥, has
measure zero and X € ¥, implies that X has all of p,.....,p, as elementary zeros. In
particular, p,,. ..., p, are isolated zeros of any X € ¥,. For Xe ¥ = ¥, n ¥, the zero
set of X consists of p,,....,p, together with a compact I-dimensional submanifold of
M which must be a finite union of embedded circular orbits. The circular orbits of X have

TP 30:2-4
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pairwise disjoint tubular neighborhoods (each either a cylinder or Moebius band) such that
X is transverse to the boundary of each neighborhood. Removal of the open tubular
neighborhood leaves a compact surface (with boundary) having the same Euler characteris-
tic as M such that the restriction of X is transverse to the boundary and has zero set
{P1.-- ., pu} (i1) of (3.1) now follows from the Poincaré~Hopf formula [11].

The transversality argument in the proof of (3.1) was used by Simen [13] in proving that
any compact manifold of dimension 2n which admits an abelian action with every orbit of
dimension at least n must have Euler characteristic zero. That result was apparently
rediscovered in [8].

One might hope that it would be possible to generalize the notion of index to a zero of
an action by a nilpotent Lie algebra #. It is clear from the following example that one
cannot take the index of a generic vector field. Define commuting vector fields on
T2 =R?*Z* by

¢
X =cos2nx— + cos2ny—
ix qy

0 ¢
Y = cos2nx - — cos 2ny
X

( al

ay

The common zeros of X and Y are at the four points (1. 4). (3. ). (3. 1) (3. ). At each of
these points either X or Y has a saddle point and the other is a source or sink. Therefore,
index (X, p) = —index (Y, p) = + Uor cach zero p of the action spanned by X and Y. It is
also clear that the restrictions of the action to a ncighborhood of cach zero are equivaient,
so if an index formula were possible, the index of the action would have to be zero at cach p.
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