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SUMMARY

In designing mutagenesis experiments, it is of-
ten crucial to know how certain mutations will
affect the structure and thermodynamic stabil-
ity of the protein. Here, we present a methodol-
ogy, Eris, to efficiently and accurately compute
the stability changes of proteins upon muta-
tions using our protein-modeling suite, Me-
dusa. We evaluate the stability changes upon
mutations for 595 mutants from five structurally
unrelated proteins, and find significant correla-
tions between the predicted and experimental
results. For cases when the high-resolution pro-
tein structure is not available, we find that better
predictions are obtained by backbone structure
prerelaxation. The advantage of our approach
is that it is based on physical descriptions
of atomic interactions, and does not rely on pa-
rameter training with available experimental
protein stability data. Unlike other methods, Eris
also models the backbone flexibility, thereby
allowing for determination of the mutation-in-
duced backbone conformational changes. Eris
is freely available via the web server at http://
eris.dokhlab.org.

INTRODUCTION

Protein engineering is an invaluable tool for molecular bi-

ologists. Mutagenesis is used to probe functional (Obara

et al., 1988; Fersht et al., 1985; Pakula and Sauer, 1989),

structural (Matouschek et al., 1990; Serrano et al., 1992),

and folding kinetic (Fersht et al., 1992; Jackson and

Fersht, 1991) roles of specific protein sites. However,

the extent to which a given set of mutations affects protein

stability is difficult to estimate due to the complex nature

of the physical interactions. A measure of protein stability

is the difference between the free energies of the folded

and unfolded states (DG). Change in this free energy dif-

ference (DDG = DGmutant � DGwild-type) upon mutation is

a measure of protein (de)stabilization by mutations. Due

to a large number of degrees of freedom associated with

proteins and solvent(s), computational estimation of free
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energies is an extremely challenging problem (Beveridge

and Dicapua, 1989).

The DDG values can be calculated from simulations of

proteins with detailed atomic models with physical force

fields (Bash et al., 1987; Dang et al., 1989; Duan and Koll-

man, 1998; Kollman et al., 2000; Vorobjev and Hermans,

1999; Khare et al., 2006). Such methods, although rigor-

ous, are computationally too intense to be applied to

a large number of mutations in a course of protein engi-

neering. Alternatively, knowledge-based potentials de-

rived from known protein structure databases have been

used to estimate DDG with reasonable accuracy (Gilis

and Rooman, 1996, 1997, 2000; Ota et al., 2001; Zhou

and Zhou, 2002; Hoppe and Schomburg, 2005). Gilis

and Rooman first applied database-derived backbone po-

tentials to study the change of thermodynamic stability

upon point mutations (Gilis and Rooman, 1996, 1997,

2000). They found that torsion angle-based potentials pre-

dict DDG accurately for mutations of solvent-exposing

residues, and distance-dependent statistical potentials

are necessary for buried residues. They obtained correla-

tion coefficients of 0.55–0.87 for their whole dataset of 238

mutations. Zhou and Zhou (2002) developed distance-

scaled finite ideal-gas reference states based on statisti-

cal potentials and calculated DDGs for 895 mutants,

which agree reasonably well with experimental measure-

ments (r = 0.67). Using direction- and distance-dependent

statistical potentials, Hoppe and Schomburg (2005)

trained their parameters on 646 mutants, and were able

to predict DDG of 747 mutants in the test set, with a corre-

lation of 0.46. Guerois et al. (2002) developed FOLD-X en-

ergy function to study the stabilities of 1088 mutants, and

obtained a correlation of 0.64 for the blind test set after

training their parameters on 339 mutants. Kortemme and

Baker (2002) successfully used an energy function similar

to ours to estimate the DDG for both protein stabilities and

protein binding affinities. However, they did not model the

backbone flexibility, thereby limiting their study to muta-

tions of smaller or the same side-chain sizes. Khatun

et al. (2004) utilized contact potentials to predict DDG of

three sets of 303, 658, and 1356 mutants, and their predic-

tion correlations varied between 0.45 and 0.78. Bordner

and Abagyan (2004) used a combination of physical en-

ergy terms, statistical energy terms, and structural de-

scriptor with weight factors scaled to experimental data

for DDG predictions. Saraboji et al. classified the available

thermal denaturing data on mutations according to
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substitution types, secondary structures, and the area of

solvent accessibilities, and used the average value from

each category for the prediction, and obtained a correla-

tion of 0.64 (Saraboji et al., 2006). Capriotti et al. (2005a)

introduced machine-learning techniques for DDG predic-

tions. They trained a support vector machine (SVM) using

temperature, pH, mutations, nearby residues, and relative

solvent-accessible area as input vectors. The SVM, when

applied on a test set, gives a prediction correlation of 0.71.

However, there are two significant drawbacks in train-

ing-based studies (Yin et al., 2007). First, the improvement

of the prediction accuracy relies on the available experi-

mental stability data for parameter trainings. It is question-

able whether parameters obtained from these trainings

are transferable to other protein studies (Khatun et al.,

2004), since the experimentally available data may be bi-

ased toward mutations from large to small residues,

such as in alanine scanning experiments. Second, some

mutations introduce strains in proteins’ backbones. In

order to properly estimate the DDG values, it is necessary

to simulate the structure relaxation that a protein may

undergo to release the strains. To our knowledge, protein

dynamics and flexibility have not been explicitly modeled

in previous DDG prediction methods. Ignoring protein flex-

ibility limits the application of current prediction methods

to a small range of mutations (Guerois et al., 2002; Zhou

and Zhou, 2002).

Here, in order to address both of these caveats, we

propose a novel method, Eris, for accurate and rapid eval-

uation of the DDG values with the recently developed

Medusa modeling suite (Ding and Dokholyan, 2006). Eris

features an all-atom force field, a fast side-chain packing

algorithm, and a backbone relaxation method. The force

field parameters are independently trained with high-res-

olution protein structures (see Experimental Procedures).

The DDG values of 595 mutants from 5 structurally un-

related proteins are calculated and compared with the

experimental data from the Protherm database and other

sources (Guerois et al., 2002; Edgell et al., 2003; Bava

et al., 2004; Khatun et al., 2004) (Table S1, see the Sup-

plemental Data available with this article online). We find

significant correlations between the calculations and the

experimental measurements. The Pearson linear regres-

sion coefficient between actual and predicted DDG values

is z0.65 over the whole dataset without disregarding out-

liers. After taking into account corrections to the reference

energies, the correlation coefficient further improves

to z0.75. Given the difficulty in the DDG estimation, such

an agreement between DDG estimations and experimen-

tal measurements is reasonable for guiding experimental

efforts in delineating effects of point mutations on protein

structure, stability, and function. Additionally, Eris auto-

matically identifies and efficiently relaxes the strains in

the backbone when clashes and backbone strains are

introduced by a small-to-large amino acid substitution.

Importantly, when high-resolution structures are not avail-

able, Eris adopts a prerelaxation procedure to relax possi-

ble strains in the structure, which yields higher estimation

accuracy.
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We built a web-based Eris server (Yin et al., 2007) for on-

line DDG estimations. The server is freely accessible at

http://eris.dokhlab.org. We expect applications of Eris to

a wide range of protein engineering problems.

RESULTS

We test our protocol on a dataset that consists of 595

mutations and compare the results with experimental

measurements. Wild-type structures of these proteins,

which are required in our DDG calculations, are retrieved

from the Protein Data Bank (PDB; Berman et al., 2000).

The mutants are of five structurally unrelated proteins:

FK506 binding protein (PDB ID: 1fkj), apomyoglobin

(PDB ID: 1bvc), staphylococcal nuclease (PDB ID: 1stn),

chymotrypsin inhibitor 2 (PDB ID: 2ci2), and a spectrin do-

main repeat 16 (PDB ID: 1u5p). In all proteins, the muta-

tions are distributed throughout primary sequences and

secondary structures (Figure 1). These proteins also

have diverse secondary structures: FK506 binding protein

is mainly composed of b sheets (Figure 1C); apomyoglo-

bin (Figure 1F) and a spectrin (Figure 1O) are mainly a

helical; and staphylococcal nuclease (Figure 1I), chymo-

trypsin inhibitor 2 (Figure 1L) have mixtures of different

secondary structure elements. In order to assess the

importance of backbone-flexibility modeling in DDG

evaluation, we compute the DDG values of mutants using

both fixed-backbone and flexible-backbone methods (see

Experimental Procedures).

Eris Predicts DDG in Agreement
with the Experiments
The calculated DDG values for all the five proteins signifi-

cantly correlate with the experimental measurements (Fig-

ure 2 and Table 1). The Pearson linear regression correla-

tion coefficients between the calculated and experimental

DDG values for the aggregated 595 mutants are 0.64 and

0.66 by fixed and flexible backbone methods, respec-

tively. The null hypothesis probabilities (the probabilities

of observing the correlation by chance) of the correlations

are 3.1 3 10�71 and 1.2 3 10�75, respectively. These cor-

relations between the predicted and the measured DDG

values is comparable to those of previous methods (Gilis

and Rooman, 1996, 1997, 2000; Ota et al., 2001; Guerois

et al., 2002; Zhou and Zhou, 2002; Bordner and Abagyan,

2004; Khatun et al., 2004; Capriotti et al., 2005a, 2005b;

Hoppe and Schomburg, 2005; Cheng et al., 2006; Sara-

boji et al., 2006). The slopes from the linear regression fit

are 0.91 (±0.04) and 0.95 (±0.04) for fixed and flexible

backbone methods, respectively. For each individual pro-

tein, the correlation coefficients vary from 0.47 to 0.73,

and the slopes from the linear regression fit range from

0.7 to 1.4 (Figure 1 and Table 1).

To test if Eris is limited to single-site mutations (i.e., with

one amino acid substitution), we separate all the multiple-

site mutations (with more than one amino acid substitu-

tions) from the dataset and compare the performance of
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Figure 1. Correlations between the Calculated and Measured DDG For 595 Mutations on 5 Proteins by Both Fixed-and Flexible-

Backbone Prediction Methods

(A–O) Fixed-backbone method is presented in the first column and flexible-backbone in the second column. The corresponding protein structures are

shown in the third column. The mutation sites are color-coded according to the average experimental stability changes of the mutations at these sites

(color bars on the right; units are kcal/mol). The straight lines correspond to the linear regression fits of the data. Some mutants are marked where

significant differences are found in the DDG calculations by fixed- and flexible-backbone methods.
Eris protocol on the divided datasets (Table 2). We do not

observe loss of prediction accuracy for multiple-site muta-

tions. The correlation coefficients for all single-site muta-

tions using fixed and flexible backbone methods are

0.65 and 0.66, respectively. For multiple-site mutations,

the correlations are 0.69 and 0.64, respectively.
Structure 15, 1567–1576
The Flexible-Backbone versus
Fixed-Backbone Method
From the correlation coefficients over all datasets, there

is no significant difference between the flexible- and

fixed-backbone modeling methods. For individual protein

datasets, the flexible- and fixed-backbone methods also
, December 2007 ª2007 Elsevier Ltd All rights reserved 1569
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Figure 2. The Calculated and Experimental DDGs for All 595 Mutations by Fixed- and Flexible-Backbone Methods

(A) Fixed- and (B) flexible-backbone method. The color of the point corresponds to the number of data points in the 0.25 kcal/mol 3 0.25 kcal/mol bin,

which ranges from 1 (blue color) to 10 (red color). The lines correspond to linear regression fits to the data points. The overall correlation coefficients

are 0.64 and 0.66 for fixed- and flexible-backbone estimations, respectively.
perform similarly. For example, the flexible-backbone

method performs better for FK506 binding protein (1fkj)

and apomyoglobin (1bvc), while the fixed-backbone

method results in higher correlations for the other four pro-

teins (see Table 1). However, a closer examination sug-

gests that the flexible-backbone method is superior to

the fixed-backbone method in certain cases. For instance,

in FK506 binding protein (1fkj), mutant W59F is experi-

mentally determined to be more stable than the wild-

type, and the measured DDG is �2.72 kcal/mol (Fulton

et al., 2003). While neither of the prediction methods esti-

mates this stabilization, the flexible-backbone method

yields better prediction (Figures 1A and 1B). Additionally,

for apomyoglobin (1bvc), mutants A130K and A130L de-

stabilize the protein by 3.7 and 2.3 kcal/mol, respectively

(Hughson et al., 1991). Our fixed-backbone calculations

for these mutations yield unrealistic destabilizing values

(which are screened out), because there is no space to

accommodate the larger lysine or leucine side chains

between the two helices in the wild-type structure. In con-

trast, by the flexible backbone method, one of the helix
1570 Structure 15, 1567–1576, December 2007 ª2007 Elsevier
bends outward slightly to fit these larger mutation side

chains (Figure 3C), and the calculated stability changes

are in agreement with the experimental measurements

(Figures 1D and 1E). Therefore, allowing for backbone

flexibility during calculations effectively resolves atomic

clashes and offers more accurate evaluation of the DDG

values.

Backbone Prerelaxation Improves
Prediction Accuracy
Eris protocol evaluates a protein’s free energy by its three-

dimensional structural information. When a protein struc-

ture is of low resolution or has some poorly resolved frag-

ments, the accuracy of DDG calculation could be affected.

We counter this problem by providing a prerelaxation step

in the Eris protocol, in which the protein’s backbone struc-

ture is optimized to have the least strain throughout the

whole protein (see Experimental Procedures). In our test

on the protein a-spectrin domain R16, we find that, if a

nuclear-magnetic-resonance (NMR)-derived structure

(PDB ID: 1aj3) is used in the energy evaluation, the overall
Table 1. The Correlation Coefficients between the Calculated and Experimental DDG for Various Proteins by Fixed-
and Flexible-Backbone Methods

Fixed Backbone Flexible Backbone

Protein Nres DGwt (kcal/mol) Nmut r p Value Slope r p Value Slope

1fkj 107 6.11 34 0.48 3.9 3 10�3 0.7 0.66 1.3 3 10�5 1.0

1bvc 153 5.80 31 0.47 8.6 3 10�3 0.9 0.67 2.7 3 10�5 1.3

1stn 136 5.40 371 0.70 7.7 3 10�57 0.9 0.68 4.2 3 10�52 0.9

2ci2 65 7.53 91 0.57 2.3 3 10�9 0.9 0.55 1.1 3 10�8 0.8

1u5p 98 6.30 68 0.73 6.5 3 10�13 1.4 0.69 8.4 3 10�11 1.2

Nres is the number of residues in each protein. DGwt is the measured DG of the wild type. Nmut is the number of mutations of each

protein in our dataset. r is the correlation between the calculated and measured DDG. The p value is the null hypothesis probability
of the correlation (the probability of observing the correlation by chance). Slopes are of the linear regression fittings lines shown in

Figure 1.
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correlation with experiments is only 0.09. When an NMR-

derived structure has multiple models, we select the first

model, which is often the lowest energy conformation. A

closer examination shows that the disagreement is mainly

due to mutations located in the protein core (Figure 3A).

However, if we calculate DDG using the prerelaxed back-

bone structure, the overall correlation increases to 0.70. In

this case, the calculated DDG for both surface and core

mutations are in line with experiments (Figure 3B). We

find that the prerelaxed backbone has an rmsd of about

0.77 Å from the original NMR-derived structure. Such

a prerelaxation step significantly improves the side-chain

packing of the protein core, which, consequently, leads to

more accurate DDG evaluations. Hence, by relieving

backbone strains, the prerelaxation step enables Eris to

tolerate imperfections in the input protein structures and

improves the accuracy of stability evaluation.

DISCUSSION

Using the Medusa force field and modeling suite, we esti-

mate protein stabilities in agreement with previous exper-

iments (Guerois et al., 2002; Bava et al., 2004; Khatun

Table 2. The Correlation Coefficients between the
Calculated and Experimental DDG for Single-Site
and Multiple-Site Mutations

Mutation
type

Fixed Backbone Flexible Backbone

Nmut r p Value r p Value

All 595 0.64 3.1 3 10�71 0.66 1.2 3 10�75

Single-site 573 0.65 1.7 3 10�69 0.66 3.6 3 10�73

Multiple-site 22 0.69 3.9 3 10�4 0.64 1.5 3 10�3
Structure 15, 1567–1576
et al., 2004) (Table S1). Our approach does not rely on

fitting or training force field parameters using stability

measurements, yet it yields comparable accuracy with

heuristic methods. This success, in return, validates the

Medusa force field.

Further Medusa Force Field Improvement
In the original Medusa force field, there is a reference

energy term for each amino acid, which is optimized to

recapitulate native amino acid sequences during protein

sequence search (design) for the optimal one for a given

backbone structure (see Experimental Procedures).

Thus, the optimized reference energy of each amino

acid is comprised of two components: its free energy in

the unfolded state, and the effective energy that corre-

sponds to the natural occurrence of this amino acid. The

second component is irrelevant to protein stability, but is

required for molecular evolutionary studies (Saunders

and Baker, 2005). In order to accurately predict the protein

stability, we need to separate the second component from

the reference energies. Since the relative contributions of

the above components are not known, it is not straight-

forward how to separate them. We propose to adjust the

amino acids’ reference energies in the force field by reca-

pitulating the experimentally measured DDGs. When we

adjust the reference free energies of the 20 amino acids,

we indeed find that the correlation coefficient significantly

improves from 0.64 (0.66) to 0.74 (0.76) for fixed (flexible)

backbone DDG calculations (Figure 4). As we expected,

we find that the recapitulation rate of the native sequence

decreases at the same time. This observation is in agree-

ment with the current understanding that protein stabilities

are not necessarily evolutionary optimized (Kuhlman and

Baker, 2004). To show that these reference energy adjust-

ments are indeed related to protein stability, we apply
Figure 3. Flexible-Backbone Modeling Helps to Relieve Backbone Strains

(A) The DDG values of a-spectrin mutants are obtained with a protein structure from NMR experiments (PDB ID: 1aj3). The correlation is 0.66 for sur-

face mutations (solid circle) and only 0.28 for core mutations (cross).

(B) The DDG values of a-spectrin mutants are calculated with a backbone prerelaxed structure. Significant correlations are obtains for both surface

(solid circle) and core mutations (cross).

(C) Backbone structures of the apomyoglobin protein and its mutant, A130L, from a flexible-backbone calculation. Part of the backbone of A130L

bends slightly outward to fit the larger mutated side chain, which is highlighted in yellow. Other parts of the A130L and the wild-type structure are

shown in gray.
, December 2007 ª2007 Elsevier Ltd All rights reserved 1571
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Figure 4. Scatter Plots of the Calculated

and Experimental DDG for All Mutations

after Adjusting Reference Energies

The new DDG values from (A) fixed- and

(B) flexible-backbone calculations are plotted

against experimental values. The straight

lines are the linear regression fits; the line

corresponds to (A) y = 1.5x + 0.30 and (B)

y = 1.4x + 0.21.
these parameters to each individual protein, and find that

the correlation coefficients are all significantly improved

(Table 3). Additionally, we randomly divide the mutation

dataset into a training set and a test set. The parameters

obtained from the training set are nearly identical to those

from the whole dataset. The new parameters also signifi-

cantly improve the prediction accuracy when they are ap-

plied to the test set. These crossvalidation tests indicate

that the adjusted parameters are indeed relevant to pro-

tein stabilities. In the following discussions, and also on

the Eris server, we use the new set of reference energies.

Fixed versus Flexible Backbone
We demonstrate that the flexible-backbone method can

successfully resolve atomic clashes by relaxing the back-

bone conformations. Why, then, is the average perfor-

mance of the flexible-backbone method not better than

that of the fixed-backbone approach? We notice that

most available mutation experiments are often biased to-

ward large-to-small mutations to prevent incurring severe

backbone perturbations. In order to assess the advantage

of backbone flexibility modeling in an unbiased manner,

we divide all the single mutations into three classes based

Table 3. Comparison between the Correlation
Coefficients of DDG Estimations with the Original
and the Improved Reference Energies

Fixed Backbone Flexible Backbone

Protein r r* r r*

All 0.64 0.75 0.66 0.75

1fkj 0.48 0.70 0.66 0.77

1bvc 0.47 0.55 0.67 0.69

1stn 0.70 0.78 0.68 0.77

2ci2 0.57 0.69 0.55 0.70

1u5p 0.73 0.83 0.69 0.76

r and r* are the correlation coefficients between the calculated

and experimental DDG with and without using the trained pa-
rameters. Significant improvements are found for all the pro-

teins using the new reference energies.
1572 Structure 15, 1567–1576, December 2007 ª2007 Elsevie
on the change of number of side-chain c angles (Dnc) of

the mutation, and compare the performance of the fixed-

and flexible-backbone methods on these three classes

separately (Figure 5). The mutations with Dnc < 0 are asso-

ciated with large-to-small mutations; therefore, the protein

backbone is expected to be minimally altered—those with

Dnc R 0 correspond to mutation to residues of the same

or larger sizes, and backbone adjustment is expected if

the mutation site is buried.

Among the 573 single-site mutations, 439 mutations

have decreasing nc, 103 mutations have the same nc,

and 31 mutations have increasing nc. The uneven distribu-

tion of the dataset over Dnc clearly reflects the bias of the

currently available experimental data toward large-to-

small mutations. The fixed and flexible backbone predic-

tion methods perform equally well for Dnc < 0. However,

the flexible-backbone DDG prediction method correlates

Figure 5. Correlation Coefficients between the Calculated

and Experimental DDGs for All Single-Site Mutations of Dif-

ferent Classes of Dnc

The flexible-backbone method predicts with higher accuracy than the

fixed-backbone method for mutations of Dnc R 0.
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better with experiments for Dnc R 0 cases. We believe

that the superior performance of the flexible-backbone

method in the latter cases is due to its ability to resolve

possible side-chain clashes. Hence, unlike previous

methods that are often limited to large-to-small mutations

(Guerois et al., 2002; Zhou and Zhou, 2002), our flexible

backbone approach is applicable to any type of muta-

tions, thereby opening wide opportunities in protein

engineering applications.

Does the Eris estimation accuracy depend on the sol-

vent exposure of a mutated site? We compute the corre-

lation coefficients between computationally estimated

and experimentally measured DDG based on the extent

of solvent exposure of mutated residues. A residue is de-

fined as buried if its solvent-accessible surface area

(SASA) is less than half of its total surface area, and a

residue is exposed if its SASA is larger than half of its total

surface area. Interestingly, we find that Eris predicts the

DDG more accurately for the buried residues than for the

solvent-exposed residues (Table S2). We believe such

a difference in the DDG estimation accuracy is attributable

to solvent-exposed residues having higher side-chain en-

tropies in the folded state than buried residues, which is

not explicitly considered in Eris. We also compute the cor-

relation coefficients between computationally estimated

and experimentally measured DDG values based on dif-

ferent types of the secondary structures where the mu-

tated residues locate. However, we do not observe any

significant trends of the estimation accuracies for muta-

tions at different types of secondary structures, except

loops and isolated b bridges (Table S3). These two types

of secondary structures are often solvent exposed. There-

fore, we expect the improvement of Eris prediction by

including entropic effect in future studies.

Backbone Prerelaxation
We find that the Eris protocol is more accurate when high-

resolution protein structures are used for DDG evaluation.

Guerois et al. (2002) also found that more reliable pre-

diction is obtained using high-resolution X-ray protein

structures (resolution < 1.5 Å). They performed the prere-

laxation of the initial protein structure, but failed to improve

the prediction accuracy, which is possibly due to the fact

that they used different force fields in structure relaxation

and in stability estimations. On the contrary, our structure

relaxation seems to improve the prediction accuracy for

most proteins, one extreme example of which has been

demonstrated earlier for a-spectrin domain R16 protein.

Here, the advantage of the Eris protocol is that the same

force field is used for both structure modeling and for

free energy evaluations. Such force field transferability is

usually not available for statistical potential- or empirical

parameter-based DDG evaluation methods.

Comparison with Other Methods
Compared with other DDG prediction methods, the Eris

protocol is a unique approach that combines physical

and statistical energies with effective atomic modeling,

resulting in fast and accurate side-chain packing and
Structure 15, 1567–157
backbone optimization. We compare our Eris server with

other available online prediction servers for protein 1fkj.

As shown in Table 4, all the servers we tested show

impressive prediction accuracy; the correlations range

from 0.41 to 0.64 for all the mutants of 1fkj. Our Eris flex-

ible-backbone protocol outperforms all other servers

mainly, due to its ability to model backbone conforma-

tional changes induced by some mutations.

Strengths and Limitations of the Eris Method
Due to a large number of degrees of freedom associated

with protein and solvent molecules, precise estimations

of DDG values through ‘‘brute force’’ simulations are virtu-

ally impossible, unless certain assumptions are made to

simplify the problem. For example, direct simulation ap-

proaches often assume that structural changes associ-

ated with mutations are small, so that short simulations

(�10 ps) can provide sufficient sampling of the protein’s

conformational space (Dang et al., 1989). Statistical

potential-based approaches rely on the assumption that

total free energy can be decomposed into additive pair-

wise functions and/or dihedral angle-dependent poten-

tials, which are obtained from statistical analysis of solved

protein structures. In Eris, we use a physical approach, in

which we reduce the complexity of the sampling problem

by following several approximations. First, we avoid sam-

pling of the solvent by utilizing an implicit solvent model,

so that the free energy contribution from the solvent

is replaced by an average hydration effect (Lazaridis and

Karplus, 1999). Second, we postulate that the protein con-

formational entropy is not significantly changed upon mu-

tation. Third, we use a rotamer library (Dunbrack and

Cohen, 1997) to efficiently model side-chain conforma-

tions, and we use statistical potentials associated with the

backbone-dependent rotamer distributions to model the in-

ternal interactions within amino acids. With such simplifica-

tions, the sampling efficiency is significantly improved,

which allows Eris to model structural changes associated

with both side-chain and backbone motions. When the

structural change upon mutations is modest, the structural

perturbation is accounted for by the side-chain repacking

and the backbone relaxation. The statistically significant

Table 4. Comparison of Eris DDG Predictions
with Other Servers

Server (Reference) Correlation

Eris flexible backbone 0.77

Eris fixed backbone 0.70

FoldX (Guerois et al., 2002) 0.41

Dmutant (Zhou and Zhou, 2002) 0.46

I-Mutant (Capriotti et al., 2005b) 0.58

MutPro (Cheng et al., 2006) 0.64

The calculations of DDGs for all mutants of protein 1fkj are

submitted to some publicly accessible servers and the result-

ing correlation coefficients are compared with those from the
Eris server.
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agreement between Eris estimations and the experimental

measurements suggests that these assumptions are

reasonable and the method can capture major factors

that govern the mutation-induced stability changes,

DDG. In the future, the Eris method will benefit from the

continuing development of the physical force field and

the implicit solvent model. Better estimations of the pro-

tein conformational entropy may dramatically improve

the DDG calculation accuracy.

Is the Eris method restricted to particular protein fami-

lies? The five proteins we tested belong to different fold

families. The mutations are distributed throughout both

solvent-exposed and buried sites, and are located on dis-

tinct secondary structure fragments (Figure 1). Since our

method is based on physical interactions between atoms,

it is expected that it does not significantly depend on the

protein choice. We also find that the Eris method does

not have decreased accuracy for small-to-large muta-

tions. The consistent performance of the Eris method on

such a structurally diverse test set is sufficient to verify

that both the force field and the sampling algorithm are

functioning properly. Therefore, we believe that the Eris

method is valid for any other proteins at the claimed

accuracy.

Does the accuracy of the prediction depend on protein

size? For the proteins we study (length ranges from 65 to

153 residues), we do not observe any length dependence

of the correlation between DDG estimations and experi-

mental measurements. As the protein size increases

(e.g., to over 1000 residues), the Eris’ sampling may be-

come insufficient. In such cases, the side-chain packing

and backbone relaxation algorithms may not be able to ef-

ficiently find the minimal energy structure. Therefore,

larger uncertainty is possible for large proteins. In certain

cases, when the structural change upon mutations is

limited only to residues in the vicinity of the mutation

site, the Eris method can be applied to the fragment of

the structure that contains only neighboring residues,

thereby circumventing the sampling problem.

In Eris, we do not consider posttranslationally modified

proteins. Eris uses a statistically derived rotamer library to

account for the internal energy of an amino acid at a given

backbone conformation, and to increase the side-chain

conformational sampling efficiency. Unfortunately, there

are no statistically sufficient experimental data to evaluate

a rotamer library for modified residues. Hence, we only

include the 20 natural amino acids in the current Eris pro-

tocol. In principle, as more experimental data become

available, Eris could be extended to include posttransla-

tionally modified and nonnatural amino acids.

It is important that Eris is statistically correct and should

be used as a statistically predictive tool. The overall agree-

ment between DDG estimations and experimental mea-

surements indicates that Eris results can provide DDG

estimation in the proximity of the actual stability change

with a high probability. Hence, the Eris results will help de-

cide on a set of candidate mutations for experimentalists

who aim to probe protein stability, structure, and function

with mutations (Yin et al., 2007).
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Medusa Force Field

The Medusa force field is based on a united atom model that includes

all the heavy atoms and polar hydrogen atoms in the protein. We use

the backbone-dependent rotamer library (Dunbrack and Cohen,

1997; Ding and Dokholyan, 2006) to model the local interactions and

express the free energy of the protein as a weighted sum of van der

Waals (VDW), solvation, hydrogen-bonding, and backbone-depen-

dent statistical energies (Dunbrack and Cohen, 1997). Mathematically,

the DG of a protein is calculated as:

DG = Wvdw attrEvdw attr + Wvdw repEvdw rep + WsolvEsolv

+ Wbb hbondEbb hbond + Wsc hbondEsc hbond + Wbb sc hbondEbb sc hbond

+ Waajf;jEaajf;j + Wrotjf;j;aaErotjf;j;aa � Eref

(1)

Here Evdw_attr and Evdw_rep are the attractive and repulsive parts

of the VDW interaction, respectively; Esolv is the solvation energy;

Ebb_hbond, Esc_hbond, and Ebb_sc_hbond are the hydrogen bond energies

among backbones, among side chains, and between backbones

and side chains, respectively. Eaajf,j and E rotjf,j,aa correspond to

the internal energy for an amino acid (aa) in its rotamer state (rot) given

the backbone dihedrals, phi (f) and psi (c). Eref is the reference energy

of the unfolded state, which is calculated as a linear sum over the ref-

erence energies of all the amino acids (Ding and Dokholyan, 2006).

Since the parameters for the energy terms come from different sour-

ces, we use weight coefficients to balance their contribution to the total

free energy. The weight coefficients and the reference energies are

trained on 34 high-resolution X-ray protein structures so that the native

amino acid sequences will have the lowest free energy (Ding and

Dokholyan, 2006; Kuhlman and Baker, 2000).

Fixed-Backbone Method

In a fixed backbone calculation, we read the native structure and

mutate the specified amino acids. After the mutation, the amino acids’

rotamer states are first randomized and are subsequently minimized

using a Monte Carlo (MC) simulated annealing procedure. In each

MC simulation step, one amino acid is randomly selected and trans-

formed to another rotamer state. This trial step is either accepted or re-

jected according to the Metropolis criterion, depending on the change

of total free energy. To sample subrotamer space, for each step, devi-

ations from the average values of the rotamer states are allowed within

the tabulated standard deviations in the rotamer library (Dunbrack and

Cohen, 1997). We start the simulation at high temperature and gradu-

ally decrease the temperature. Additionally, at the last annealing tem-

perature, we apply a quench procedure, where each rotamer state

change is followed by a conjugate-gradient minimization on the subro-

tamer state, and the trial step is accepted only if the new energy is

lower. Because of its stochastic nature, we run the simulation 20 times

and take the average free energy as the final calculated DG for the pro-

tein. We run the DG calculation for both mutant and wild-type proteins,

and calculate the DDG value as the difference between the DG of the

mutant and that of the wild type (DDG = DGmutant � DGwild type).

Flexible-Backbone Method

The flexible-backbone method is similar to the fixed-backbone one,

except that we allow the backbone dihedrals to relax if backbone

strains are detected. This is implemented by allowing a conjugate-

gradient minimization of the total free energy with respect to all back-

bone dihedral angles if the total acceptance rate during an MC loop is

below a predefined threshold. Such a low acceptance rate usually

indicates strains on the backbone induced by mutations. In the Eris

flexible-backbone protocol, the threshold is taken to be 0.05.

Backbone Prerelaxation

The backbone prerelaxation is implemented by performing the flexi-

ble-backbone calculation 20 times with the wide-type protein structure

and sequence. The output structure with the minimum free energy is

selected as the prerelaxed structure.
r Ltd All rights reserved
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Correlation Coefficient

We evaluate the DDG estimation accuracy by comparing the Pearson

linear regression correlation coefficients between the calculated and

experimental DDG values. The Pearson linear regression correlation r

between two datasets, xi and yi, is calculated as,

r =
n
P

xiyi �
P

xi

P
yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

x2
i � ð

P
xiÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

y2
i � ð

P
yiÞ2

q : (2)
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