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A random process X(t), t€[0, 1], is sampled at a finite number of appropriately designed points. On
the basis of these observations, we estimate the values of the process at the unsampled points and we
measure the performance by an integrated mean square error. We consider the case where the process
has a known, or partiaily or entirely unknown mean, i.e., when it can be modeled as X (¢) = m(¢)+ N(1),
where m(¢) is nonrandom and N(¢) is random with zero mean and known covariance function.
Snecifically, we consider (1) the case where m(t) is known, (2) the semiparametric case where m(t) =
Bifilt) +- - -+ 8,5, (1), the B;’s are unknown coefficients and the f;’s are known regression functions,
and (3) the nonparametric case where m(t) is unknown. Here f;(1) and m(t) are of comparable smoothness
with the purely random part N(t), and N(t) has no quadratic mean derivative. Asymptotically optimal
sampling designs are found for cases (1), (2) and (3) when the best lincar unbiased estimator (BLUE)
of X (t) is used (a nearly BLUE in case (3)), as well as when the simple nonparametric linear interpolator
of X (¢) is used. Also it is shown that the mean has no effect asymptotically, and several examples are
considered both analytically and numerically.

sampling designs * interpolation of random processes * effect of the mean

1. Introduction, results and examples

This paper deals with the following problem of estimating a random process from
a finite number of observations, which arises in statistical communication theory
and signal processing as well as in geology (Journel and Huijbregts, 1978) and
environmental science (Christakos, 1991).

Suppose a random process X(t), t€[0,1], is sampled at a finite number of
appropriately designed points. On the basis of these observations, we want to
estimate the values of the process at the unsampled points and we measure the
performance by an integrated mean square error (IMSE).

The process can be modeled as

X(t)=m(t)+ N(t), te[0,1]. (1.1)
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here m(1t) is known or, eamvalgntlv equals zero; (2) the semiparametric
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where the 8;’s are unknown coefficients and the f’s are known (regressnon) functions;

and (3) the nonparametric case where the macroscopic mean structure m(t) is
unknown. N(t) is the small-scale random structure which models the temporal
dependence and has zero means and known covariance function R(t,s)=
EN(t)N(s). The centered process N is assumed to have no quadratic mean deriva-
tive and the functions m(t) and f(t) are of comparable smoothness with the
microscopic purely random part N(t) (specifically, m(t) and f(¢) are of the form
Jo R(t,5)¥(s) ds).

There are three findings. The main one is that simple sampling designs are found

e Q

which are asymptotically o

done far a varietv of ectim
of X (t) is used in cases (1) and (2) and a nearly BLUE in the nonparametric case
(3) (Theorems 1, 2 and 4). The second finding is that asymptotically the mean has
no effect on the overall performance and can therefore be neglected (Theoren:s 3
and 4). This quantifies the discussions in Journel and Rossi (1989) and Sacks et al.
(1989, p.415). However, an example (Example 2) shows that the mean function
may cause some perturbation on the optimal sampling design points. The third
finding is that the very simple nonparametric linear interpolation also leads to an
asymptotically optimal performance (Theorem 6).

If the centered process N(t) has exactly k (k=1,2,...) quadratic mean deriva-
tives, the convergence rate of the IMSE for the corresponding BLUE estimators is
likely to be n~***" (compared with Theorem 1), but we do not investigate further
this conjecture.

The basic setup
For the model (1.1), data
Cr,, = (X(tn.l), veey X(tn,n))

are observed ut - mpling points T, = {t,,;}}, t,.€[0,1],i=1,..., n, and it is desired
to estimate X (t) at every (unsampled) point r€[0, 1] by a linear estimator

X7, ()= Y C()X(1,,) 2 Cr () A,
i1
with coefficient functions C;(1), i=1,..., n, where C%. (1) =(C,(1),..., C,(1)). The
mean square estimation error of X (¢) by Xt () can be written as
MSEr, (1) = &{ X1 (1) = X ()} = V. (1) + B (1),
where

Vi, ()= R(1, 1) =2C (Drr () + Cr (D Ry, Cr, (1),
By (1)=C'r (tymy, —m(t)
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are the variance and bias of the estimator X7 (¢), respectively, and the following
notations are used:

r'T,,(t) = (R(tn.la t)a R R(tn,na t)),
m’T,, = (m(tn,l), L m(tn,n))a RT,, = (R(tn,i, tn,j))nxn-

For every fixed sampling design T, the best linear unbiased estimator corresponds
to those coefficients éT"(t) which minimize the variance V7 (t) subject to some
unbiasedness condition which takes different forms in cases (1), (2) and (3). Con-
sequently, the BLUE and its MSE have different expressions depending on the form
of the mean, which will be specified for these three cases later in this section.

For fixed ¢, the MSE, (t) will of course vanish for any choice of sampling points
T, containing the point t. However, we are interested in designing sampling points
T, with small estimation error over the entire interval [0, 1] of estimation. We thus
use as performance criterion an integrated mean square error (IMSE) with weight
function W(t),

1

IMSET"(W)=j- MSE (£) W(¢) dt

0
i

=J VT,,(t)W(t)dt+J B () W(1) dt

0 0
Ly, +BY, (1.2)

where W(t) is a positive continuous probability density function on (0, 1), and the
sampling points T, are so chosen that the IMSE is as close to zero as possible.
(Sacks, Schiller and Welsh (1989) found numerically two-dimensional sampling
design points which minimize IMSE+ (1) for the semiparametric regression model
(2) with Ornstein-Uhlenbeck error process and certain values of the sample size n
and also provided some interesting discussion. However, here we consider only the
one-dimensional case.)

For fixed n, it is not generally easy to find n design points T, which minimize
the IMSE 1 (W). To avoid this problem we adopt the techniques of Sacks and
Ylvisaker (1966) to find an asymptotically optimal sequence of sampling designs
{T¥}Y satisfying

llp; IMSE 7( W)/Hirll:fn IMSE; (W) =1, (1.3)
where the infinimum is taken over all designs T, of sample size n.

Recall that the regular sampling designs determined by a density function # on

[0,1] are T,(h)={t,;}] with 1,,=0 and

J"""“h(t)dz=1/(n—1), i=1,....n—1, (1.4)

namely, the regular sampling design points divide the area enclosed by h (equal to
one) into n—1 subregions each with area 1/(n—1).
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Conditions on the covariance function

We consider centered random processes N(t) with no quadratic mean derivative,
such as Wiener and Ornstein-Uhlenbeck processes, and need the following technical
assumptions on their covariance function.

Assumption (C1). The centered process X (t) —m(t)= N(t) has no quadratic mean
derivative (i.e., R"'(¢, s) does not exist at the diagonal) but its covariance function
R(t, 5) has continuous and bounded mixed derivatives up to order two off the
diagonal, at the diagonal the limits R™(u, u+) =lim, ;). u+) R"(t, 5) from below
(t>s) and from above (t<s) exist for 0< p+ g =<2 and are continuous functions
of ue[0,1], and the continuous jump function

a(t)=R™(t,t=)— R™\(t, t+)

is nonnegative and not identically zero on [0,1]. Also the matrix Ry =
(R(ta5 1n))nxn is invertible for every T, ={t,;}}.

Assumption (C2). For each [0, 1], the function R**(-, t) belongs to RKHS(R),
the reproducing kernel Hilbert space of R(-, ), and its RKHS norm ||R**(-, t)||&
is bounded over [0, 1].

Assumption (C1) contains the usual regularity conditions needed in the asymptotic
analysis of sampling design problems (Cambanis, 1985; Sacks and Ylvisaker, 1966).
Assumption (C2) simplifies the proofs of Lemma 2 and Theorem 2 in the next
section, but as Sacks and Ylvisaker (1966) point out, it is a rather restrictive
assumption in the presence of (C1) and it is not clear whether it is necessary for
our results.

The simplest examples of zero mean processes which satisfy Assumptions (C1)
and (C2) are Wiener process with R(t, s) = o’ min(t, s), for which a(¢) = o’ and
R°?(-,1)=0; tF . rrocess with triangular covariance function R(t,s)=1-—u|t—s|
if |[t—s|<1/u and K(t,s)=0, otherwise, for which a(t)=2x and R**(-,1)=0;
and Ornstein-Uhlenbeck process with R(t, s)=0c%e *"*| for which a(t) =2u0’
and R**(t,s)=pu’0 e " *I= u2R(1,s). Sacivs and Ylvisaker (1966) discuss some
further interesting classes of examples.

(1) Zero mean (m=0)

Here, the mean square error contains only the variance term Vr. (t) and the minimum
variance estimator X“Tn(t) of X (t) has coefficients r'T"(t)R'}: , which minimize V7, (1)
for any fixed sampling design T,, i.e.,

X5.()=rr (HRT X7, (1.5)
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where the superscript ‘0’ indicates the zero mean model. The corresponding MSE
and IMSE are

MSET, (1) = Vi (1) = R(t, 1) = 't ()RT'rr. (1), (1.6)
1

IMSEY. (W) = J {R(t, 1) —rr.()RT rr. (1)} W(t) dt. (1.7)

0

We have the following results.

Theorem 1. When m =0 and Assumptions (C1) and (C2) hold, the following are true.
(i) If the function (aW)"? is Riemann integrable, then

1

lim n ITlrll_fn IMSEY, ( W)=% {J

n->o00 0

2
(a(t)W(t))"zdt} :
where the infinimum is taken over all sampling designs of size n.

(ii) If the function aW/h is Riemann integrable, then

lim n IMSES, uy( W)=%j i;—% W(1) d. (1.8)

(iii) The regular sequence of sampling designs {T,,(h,)}\ determined by the density
Junction

1
ho(t) = {a(t)W(t)}'/z/J— {a(u)W(u)}'/? du
0
is asymptotically optimal, provided (aW)"? is Riemann integrable.

When W(t) =1 and the process is stationary, the asymptotically optimal sampling
design is uniform, as one would have expected.
(2) Semiparametric (regression) model

Here, the mean m(t) is specified as follows. For some finite integer g,

m(0)= Y. Bf(1), (19)

where the B;’s ure unknown coefficients and the known (regression) functions f; are
of the form

fi(t)= jl R(t,s)¢;(s)ds, te[0,1], i=1,...,q, (1.10)

(W)
where each ¢,(-) is a continuous function on [0, 1]. Then the BLUE of X(1) is

X4 (1) ={rp () =[Fr R7' rr. () - F()1(F'r,R7 Fr,) ' Fr.}R7, X,
(1.11)
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where

F'(t)=(fi(1), ..., (D))
and

Fr,={fi(t.)}2ima = - Jor,) = (Ftan)s -, F(1,0))
(see Stein, 1989). The error can be written as

V& B Yo 2

(1.i12)

Note that the first term i brackels is the same as the estimation error in case (1)
and r' (1)R7! Ny, is the projection of N(t) onto the linear space of Nr,. Thus, the

two terms in (1.12) are orthogonal. It then foilows that the MSE of X‘{T (1) is
T

MSEY (1) = 8[X (1) - X% ()] = MSE"T"(t)+GT"(t)

BT wassBY L el s £ o el 2t T L\ tlen bnieian £ 17\

we will snow that for reguiar sampiling designs [,(n), the term Gr, (W)
converges to zero with rate n~*. Thus, asymptotically, IMSE}. (W) is the dominant
term of IMSE%, (W). More specifically, we have the following resuits.

Theorem 2. When the mean m(t) is as in (1.9)-(1.10) and Assumptions (C1)-(C2)
hold, the following are true.
(a) Theresult ® (ii) and (iii) in Theorem 1 remain valid for the estimator X . (t).
(b) If the function o> W?>/h* is Riemann integrable, then

H [IRAQEY {987 _ IRAQRV £ 47\,
I 7T (UVISE 7, )\ W — IIVESE T, (U W iy
n—x

— - 4/‘ -5 U AN

SHmMn Uyr )\ W)

n-»X
i ['a’(n)
=5 ) 7 (0SB W) (1.15)
t
0

-

o~
[T
T
)

N’
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where ¢'(t) = (¢\(1),..., ¢,(1)) and S =(s;),x, is a q X q matrix with elements

1 i
s,-,~=j J di(1)R(1, s);(s)dtds, i,j=1,...,q.

Remark 1. The results in Theorem 2 can be extended to more general (regression)
functions than those specified by (1.10), namely of the form

1 J,

fi(t)= J' R(t,s)¢i(s)ds+ Y b R(t,a;;), i=1,...,4q, (1.10)’
0 j=1

where the b, ;’s are known coefficients and the a,;’s are known points in [0, 1]. For

the model (1.10)’, the results in Theorem 2 still hold for the estimator X% (1) as

in (1.11) with the sampling points 7, augmented by the set of points {a,;;i=

1,...,q;j=1,...,J;}.

From (a) of Theorem 2, it follows that even though the mean structure (1.9) enters
prominently in the expression (1.11) of the estimator X% (), asymptotically it has
no contribution to its performance. This suggests exploring what happens if we use
the simpler estimator X OT"(t), which is the best linear unbiased estimator of X (1)
for the zero mean model, that is, if we proceed as if m(t)=0.

Here, XOT"(t) is biased in the presence of the mean as in (1.9). In view of (1.5)
and (1.11), we can write

X$(0)=XT()+M% (1)
where the term due to the mean is
M5 (t)= —[F'T"R}:rrn(t)—F(t)]'(F’T"R}:FT")"F'T"R}:XT".

It is straightforward to verify that M¥% (¢) is orthogonal to X(t) —-XUT"(I):
ELU(X(1)— X%, (1))M% (1)]=0. It follows that the MSE of X% (t) can be written as
follows:

MSE% (1) =&[X(t)- X% ()]’ = €[ X (1) - X%, () + E[M%. (D]

Hence, even though X 0T”(t) is a biased estimator of X (t) it nevertheless has smaller
MSE than the BLUE X% (t). Its MSE, by direct computation, is

MSE$(1) = E[X(1)— X T,(1)} = MSEY%, (1) + Hx, (1), (1.17)

where the doub!e superscript (g, 0) indicates the MSE of the estimator X (¢) for
the model (1.9)-(1.10) with g unknown (regression) parameters, MSEY. (¢) is as in
(1.6) and

Hy (1) ={§I Bilrr,(OR7 fi, —f.-(t)]} :
and its IMSE is

IMSE$)(W)=IMSE%,(W)+ H, (W) (1.18)
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where ¢, =§(', y(e(nd, Y, | @i <00, and the series converges in L,[0, 1] as well
as for all te[0,1]. The functions f(1)=A}"e(r), i=1,2,..., form a complete
orthonormal set in RKHS(R) and putting B; = J:A/* we also have

m(0)= 3 BA0, (122)

where the series converges in RKHS(R) and for all rin[0,1],and ¥, B?A[' <o0.
Note that ¢/(1) =Y. , B:A['*ei(t) where the series converges in L,[0, 1]. As in (1.22)
the functions {)5(1)}} are known based on the covariance function (else some other
complete set in RKHS(R) could be used) and the coefficients {8;}] are unknown,
this nonparametric case can be viewed as an extension of the semiparametric case
to g =00,

As examples, we list the eigenvalues and eigenfunctions for Wiener process, the
process with triangular covariance function and Ornstein-Uhlenbeck process. For
the Wiener process with R(t, s) =min(¢, s),

e(t)=V2sin(i—wt, A =[(-H=]>, i=1,2,....
For the process with triangular covariance function R(t,s)=1—|t—s|if |t—s|<1

and R(t, s) =0, otherwise,

1
e,(l)=‘—{25in V,'I+V,' COS V,'t}, Ai=2/l/$,

where v; solves the following equation:
tan(%vi)zz/yis er[(l—%)’n-a(i_l_%)’n‘]’ i=05 1,""

(see Kailath, 1966). The eigenfunctio~s and eigenvalues of the Ornstein-Uhlenbeck
process with R(1, s) =e "l are

2 /2
e,-(t)=(u§+3) {sin u;t +u; cos u;t}, A, =2/(1+u?),

where u; solves the following equation:
tan u; =2u;/(ui—1), w,el(i—3m, (i+3)w], i=0,1,...

(see Hawkins, 1989).

For the model (1.22) with an infinite number of parameters {8,}; it makes no
sense to attempt o estimaie all of them on the basis of a finite number of observations;
instead, for sample size n, we estimate a finite number g of parameters and derive
the asymptotic performance of the corresponding estimator.

For fixed sampling designs T, and coefficients Cr, (1), write the bias term By, (¢)
as

Br()= 3 BACT(fir,~ (O} 3 BACH (Ofir,~f(D}

i=qg+1
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Then, minimizing the variance Vi (t) subject to the constraints CT (¢)f. r, = f(1),
i=1,...,q, yields, as in the derivation of the BLUE for the model (1.9), the same
estimator X% (¢) as in (1.11), except that here X% (1) is not an unbiased estimator
of X (t). In order to emphasize that this estimator is applied here to the case where
(1.9) is replaced by (1.22), i.e., the number of parameters is g = in (1.22), we
denote its IMSE as IMSET:? which can be written as

IMSETY(W) =IMSEYT (W)+ G (W)+Qr, (W) (1.23)
where IMSEY. is given by (1.7), Gr,(W) by (1.14) and

QT"(W)ZJ'{ E 3:[6},,(t)ﬁ,r,,—f.-(t)]} W(r)dt,

0 li=g+1

where érn(t) are the coefficients of X% (¢) (cf. (1.11)). For the above setup, we
have the following results.

Theorem 4. Under Assumptions (C1) and (C2), if the estimator X% (t) is used in the
model (1.21)-(1.22), then the results (i), (ii) and (iii) in Theorem 1 hold. Furthermore,
if the function o> W?/h* is Riemann integrable, then for g =1,2, ...,

lim n*{IMSET:{,,( W) — IMSEY. ,,( W)}

n-a¢

_ 1 ey < —1/2 i P
—IZOJ 4(1){ Y A'e -(f)+[¢’(t) kz::lﬁk/\k ek(‘)] }W(f)dt,
(1.24)

and when h = h,, the asymptotic constant is

1—;6{-’[0 (a(t)w(f))l/zdt} { Y AR+ Z Bitx } (1.25)

k=g+1

Letting ¢ =0 in (1.25), i.e., using the simpler estimator X9 , ,(f) in the model
(1.22), yields the following asymptotic constant:

L{ ™, '(t)W(t))'/zdt}4 > B!
120 LJ,, E B

By comparing this with (1.25), one can see that if ¥7_, BiAc'<¥?  A;', then
1., (1) has a better asymptotic performance than X% , (), while if the reverse
inequality holds, X% (hy(t) is better than X, io(t;. Therefore, when the mean
function m is of the form (1.21) for some (unknown) continuous function ¢, i.e.
m € Range(R), the simpler estimator X T (i) is recommended since there may not
be any benefit from using the more complicated estimator X T.(n,(1), which requires
the evaluation of the eigenvalues and eigenfunctions of R(1, s).
For a mean function m € Range(R), it is not clear whether the simpler estimator
X7,(1) is still asymptotically optimal. Here, by using the estimator X% (1) and letting
q. increase appropriately as the sample size n tends to infinity, we show that for a
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certain class of mean functions belonging to an infinite dimensional subset of

RKHS(R), the estimator X 7 (1) is asymptotically optimal. Note that m e RKHS(R)
iff it is of the form (1.22) with ¥ B7 < 0.

Theorem 5. Under Assumptions (C1) and (C2) and for the class of mean functions
given by (1.22) with ZZ, |Bil <0, if the estimator X ‘%',',(t) is used and g, tends to
infinity in such a way that q,/n remains bounded and

q,
limn> Y A;'=0, (1.26)
n-oo i=1

then the results (i) and (iii) in Theorem 1 hold. Furthermore, if the function (a W/ h*)(t)
is boundzd on [0, 1], then (ii) in Theorem 1 also holds.

Condition (1.26) provides a constraint on the number of parameters g, to be
estimated on the basis of n observations. For Wiener process,

q q
Y AT =Y (i -)nP ~in’q’,
i=1 i=1

and thus, the constraint (1.26) is equivalent to n g} -0, i.e., g, = o(n). Similarly,
one can justify that for a process with triangular covariance function and an
Ornstein-Uhlenbeck process, (1.26) is equivalent to g, = o(n).

Linear interpolation

The BLUE's, considered so far, involve the evaluation of the inverse of a covariance
matrix and more significantly, require the precise knowledge of the covariance
function. This leads us to try a simpler nonparametric estimator. Here we consider
the sample function of the stochastic process as a real valued function and we
estimate its values in between consecutive samples by linear interpolation, i.e.
estimate X (t) over each interval ¢, t,:+,], k=1,...,n—1, by

X{",(t) = {(tn,k+l - t)X(tnk)+ (t - trr,k)X(In,k+l)}/(tn,k+l - tn,k)- (1-27)

It turns out that this procedure has an asymptotically optimal performance when
the regular sampling designs 7,,(h,) are used! This happens, even though for each
fixed n the linear interpolator X ‘fﬂ(t) is generally different from the ELUE.

Here, we do not assume a specific form for the mean structure as in (1.21). Instead,
we assume the mean function m(r) satisfies a Holder condition

|m(t)—m(s)|<Clt-s|, tse[0,1], (1.28)

where pe (3, 1) and 0< C <. For this setup, we have the following results.

Theorem 6. If the mean m(t) satisfies (1.28), the covariance function R(t, s) satisfies
Assumption (C1) and aW/h is Riemann integrable, then for the linear interpolator
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X{f,,(,,,(t) as in (1.27) we have

1 ['a(r)
1 w = - _— W’ t dt !»29)
’]l]_‘l‘{ln IMSET"([,)( ) 6{0 h(t) ( ) ’ ( ;

and clearly X% ;. (1) is asympiotically optimal.

Theorem 6 implies that, when the centered process N is not quadratic-mean
differentiabie, a linear interpolator as in (1.27) has the same asymptotic performance
as the BLUE with the same sampling density. In particular, when the centered
process is stationary, the asymptotically optimal estimator X ’}"(,,o,(t) is entirely
nonparametric, namely, completely independent of the covariance function R.

Remark 2. For the linear interpolator it is possible to identify the higher order terms
of the IMSE under additional smoothness assumptions. (This is rather complex for
the BLUE’s.) For instance the second order term can be identified, and is in fact
shown to vanish, when in addition to the assumptions made in Theorem 6, the
functions m(¢), a(t), h(t) are continuously differentiable and the functions ah"’ h >,
(a/h)K™" are Riemann integrable; namely as n - we have

IMSE . (1,)( W)=6(nl—l) L :8 W(t)dt+o(n~?), (1.29)

i.e. the coefficient of the term (n—1)"? always vanishes. The higher order terms
(n—1)7", etc. (under appropriate additional smoothness assumptions) generally do
not vanish, as is seen in Example 3 (equation (1.46)).

Examples

We first consider an example with mean m =0, triangular covariance and weight
function W(t)=1. Here, for certain values of the parameter u in the covariance
function, we are able to compute numerically the optimal design for every finite
sample size n. For other values of the parameter u, the MSE is worse near the edges
of the interval, and we will show how to seleci a weight function to reduce this

discrepancy in the MSE of approximation between the edges and the middle of the
interval.

Example 1. Zero mean process with triangular covariance. We consider the model
(1.1) with triangular covariance function R(f,s)=1-u|t—s| if |t—s|<1/u and
R(t,5) =0, otherwise, where u is a positive parameter.

When u <1, for any sampling designs 7, ={t,,}}, :he BLUE estimator XOT“(I) is

rI:Z“f'g'(tn,n - t)]X(tn‘l)_““(tn,l - t')X(tn.w)

f0st=zy,,,

z_ﬂ(ln,n_tn‘l) ’
Lk — DX ()t —1,,) X (1, if 1, <t<t,1e1,
X‘;—"(t)=4 (fnas1 = 1) X (1) +( )X ( ,k+l), I 1, K+ 1 (1.30)
tn,k+|—tn,k k=1,...,n—1,

[2—41'([— tn.l)]X(tn.n)'i—lL(tn,n - t)X(tn,l)
& 2—I-L(tn_n_tn,l) ’

if 1,, <t<1,
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and ciearly, it is a linear interpolation of observations between successive sampling
points except for  in the two end intervals. When the weight function W(t)=1,
for every fixed sample size n (=2) the optimal sampling designs are TS = {r2,}7 with

t?w,l =1 “f(,),_,,_-:%[l —-(n-—l)p,,],

1.31
thi=tht(i-1p,, i=2,...,n-1, (1.31)
where p, € (1/n,1/(n—1)) satisfies the following equation:
4n(n—1)’u’ps—(n—1D){3(p +6)n—(2+3u)}up?
(1.32)

+4{3(p +2)n -2+ 3u)}p, —pu’+6u —24=0,

i.e. the points f3,,. .., t, , are periodically spaced with period p,, while the equal
edges t, ,, 1—1;, have length smalier than }p,.

Since both the weight function W(t) and the jump function «/(r) here are constant,
the regular sampling designs determined by the asymptotically optimal sampling
density (h, = 1) are uniform including the end points, i.e., T,(h,) ={(i—1)/(n—1)}}.
To see the difference between T, and T,(h,), we plot for n =35, the corresponding
points in Figure 1, with X’s denoting the regular sampling points and dots the
optimal sampling points, which are tabulated in Table 1. The MSE of X ‘%«,;(t) is

(2 (5, - O2— (5, — DI/ [2—p(n—-1)p,], fO<t=<t3,,

¢ 40 o
if tn,k sts tn,k+l ]

k=1,...,n—1,

(=5 )[2—n(t—t5 )1/ [2—u(n—1)p,], if 15, <t<],
(1.33)

MSESe (1) ={ 2 (t — 15, ) (0141 — 1)/ Pps

and its IMSE is

M 2 3
IMSE%(1) = {—2n(n—-1 ’
T e v e

+Bu(n—1)+6n-2n—1)p2i—-12(n—1)p,+6—u}. (1.34)

[V R— X
x + Al

) v X
ol X A

Fig. 1. Optimal () and regular (x) sampling design of size 5.

Table 1

Uniform Optimal
sampling points sampling points

0.00 0.075
0.25 0.288
0.50 0.500
0.75 0.712

1.00 0.925
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The BLUE of X(t) with the regular sampling design T,(h,) and its IMSE take
simpler forms:

Tt =Tk~ (n—l)f]X(k 1)+[1—k+ n—l)t]X( kl)

—1s(n-t<k k=1,...,n-1, (1.35)
IMSE, 1,,(1) = u/[3(n = 1)]. (1.36)

We plot the IMSE‘-(1), denoted by IMSE(opt), and the IMSEY. (,, (1), denoted by
IMSE(reg), in Flgure 2(a) for sample size up to 20 and for w =1. It should be
pointed out that all values of u in (0, 1] produce a similar picture to the one in
Figure 2(a). From this figure, one can see that IMSE(reg) approaches IMSE(opt)
quickly. To achieve the same IMSE error (107", 107", 10™"), the sample sizes needed
for the optimal sampling design and for the regular design are listed in Table 2.

When p > 1, it is more complicated to obtain the optimal sampling points T, for
fixed sample size n. Thus, in this case we use the regular sampling designs T, (h,),
i.e. uniform sampling with period 1/(n—1). For the sampling design T,(h,) and
fixed parameter u, if there is an integer k satisfying

ki(n—-1)=1/p, (1.37)

then the BLUE X7, .,(t)=r7 () RT 1, X1, takes a much simpler form.
Indeed, if (1.37) holds, then the elements of the vector ry, (,, ,(t) are either 0 or linear

10°

Lot —
Do)
- IMSE(req)
- 4 5 5 10 2 11 6 s 20
SAMipaty Lize
Fig. 2(a). IMSE vs. sample s _e.
Table 2
IMSE Preg Nopt
107! 5 4
1072 35 34

1073 335 334
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functions of 1, and, as a result, the cocfficients r'r, ., ,(1)R7),, of X5, (1) are
either 0 or linear functions of r. By the uniqueness of the linear interpolation
satisfying the conditions X7, ,(1,,) = X(t,,), i=1,..., n, it follows that

X0 =(n=D{[i/(n=1) = (]X[(i-1)/(n—1)]
= -1/(n-DIX[i/(n- 1]},

wheni—-1s(n—-1)t<i i=1,...,n—1, namely, X"Tn(,,",(t) is a linear interpolation
of observations of X (t) between adjacent sampling points. As expected, the pattern
of MSE‘»’rn(,,n)(t) is of the same form in each subinterval {(i—1)/(n—1), i/(n-1)],
i=1,...,n—1.

To see the pattern of MSEY. , (1) when (1.37) is not satisfied, we plotted it for
# =4.56, which makes the MSE relatively larger, and for a variety of sample sizes
n. We found that the plots of MSE7 (, (1) display some variability. When the
condition (1.37) is approximately satisfied, i.e. (n —1)/4.56 is very close to an integer,
the variability in the pattern of MSEY. ., ,() is not significant; for instance when
n=15,(n—-1)/4.56=3.07=3 and the pattern of MSE7, (1) is close to periodic
as shown in Figure 2(b); and likewise when n =6 for which (n—1)/4.56=1.096=1
and when n =24 for which (n—1)/4.56=5.043 =5, etc. We also plotted in Figure
2(c) the MSE for n =12 for which (n—1)/4.56 =2.412. One can see that the peaks
of the MSE over the two intervals near the end points are about 12% higher than
the peaks over the middle intervals. The corresponding IMSE is 0.1048.

AR
|| /H' L
I

Sampling Times

Fig. 2(b). MSE vs. time with regular sampling design (n =15).

If it is desirable that the peaks of MSE"TI:(,,“,(t) should be more uniform over the
entire interval, then one could select a sample size n nearly satisfying (1.37) or else
one could consider a non-constant weight function. For instance, by looking at
Figure 2(c), it appears that a weight function of the following form is suitabile, i.e.
a continuous function W(r) taking a constant value (x) over say {0, 3] and [, 1],
a constant (y) over [, %], and linear over [, ] and [&, ], where f; W(#) dt =1
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Fig. 2(c). MSE vs. time with regular sampling design (n=12).

0.12

0.08 0.16
_,-—/)
T
-
=
[ ——

0.04

0.6 0.2 1.0

Sampling Times

Fig. 2(d). MSE vs. time with regular sampling design (n = 12).

gives y in terms of x: y=¢(11—-5x). We plotted the corresponding MSE(¢) for
several values of x and found that when x is close to 1.062, the high and low peaks
are closer, ind.eu, the high peaks of the MSE are only about 5% higher than the
low peaks. The plot corresponding to x = 1.064 is shown in Figure 2(d). The pattern
is now more oscillatory and the low peaks wre higher but the corresponding IMSE
is 0.1053, a slight increase of about 0.5%.

Nexi, we consider an example of linear regression in Wiener noise. Here, we are

avle to compute the optimal sampling design for every sample size n when the
weight fuction W(t)=1 is used.

Example 2. Linear regression in Wiener noise. Consider the modei (1.1), (1.9) with
R(1,s)=min(4,s), g=1, and the regression function f(¢) = =min(t, 1), which is
in the form (1.10)' with J=1, ¢(1)=0, b,=1 and a,=1.
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For any sampling design T,, the BLUE of X (1) is

[t
— X(t,,), ifo<r<t

n,l

nlo

t—n ifln St<l,k+1,
X5 (1) =4 X () + "= { X (1)) — X (.1}, o kot
tn,k+i tnl\ k=1,...,n-1,

t
X(tn.n), if t” n =sIs ]

nn
\

(1.38)

which is a linear interpolation over (0, ¢, ,,), and the corresponding MSE and IMSE
are, with t,,=0,

(t_ tn.k)(tn,k+l —t)/(tn_l\+l—tn,k)a if tnk == tnl\+la

MSE7} (1) = k=0,1,...,n—1, (1.39)
t(t_ tn,n)/ tn,na if tn,n st= ls
n—1
IMSE!I',,(]) 6 Z (tnl\+l nl\) +6tn 11(2+tn n)(l n,n)z- (]'40)

k=0
For every sample size n, the optimal sampling design is T, = {1}, with
fox=kin*(n+ 1)}, k=1,...,n (1.41)
Replacing T, by T, in (1.40), yields
IMSER(1)=3(1+n"")" " =1}=¢n"'—Fn " +o(n™).

When W(t)=1, then h,(t)=1, and hence the regular sampling design generated
by h, is peridodic T,(h,)={(k—1)/(n—1)}{. By (1.40) we obtain

IMSEY, ,(1)=[6(n—1)]""=¢n""+gn"*+o(n"?),
which implies that
IMSEY. (1, ,(1) —IMSE (1) =3n""+o(n"?).

For n =35, the optimal sampling points and the regular sampling points are plotted
in Figure 3 as dots and X’s, respectively. The MSE corresponding to T, is a periodic
function of t except for the last interval and the MSE of T,(h,) is periodic over
[0, 1] as expected. They are plotted in Figure 4(a) and (b), respectively, and their
IMSE’s are 0.0147 and 0.0167. To see the difference in performance between the
optimal and the asymptotically optimal designs, we plot the IMSE with the optimal
design T, IMSE(opt), and the IMSE with the regular sampling design T, (h,),
IMSE(reg), in Figure 4(c) from which one can see that IMSE(reg) quickly
approaches the IMSE(opt). To achieve the same IMSE error &7, the sample size

" " “ —_—
ey ] At [ad

Fig. 3. Opiimal (-) and regular (x) sampling design of size 5.

x
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0.04

MSE
0.02

1.0

0.4 0.6 0.8
Sampling Times

0.00

0.0 0.2

Fig. 4(a). MSE vs. time with optimal sampling design (n =10).

0.04

MSE
T
’_/
R

0.C0

0 02 04 0.6 0.8 1.0
Sampling Times
Fig. 4(b). MSE vs. time with regular sampling design (n =10).

o
9 T 1
T
oF \
N
w ~.
U>3 \\ IMSE(re )
= MSE(opt) T T
b: ) T ]
7
2 10 >
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Fig. 4(c). IMSE vs. sample size.
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Table 3

IMSE Mo Preg
107! 2 3
1072 17 18
1073 167 168

needed for the optimal design is ny,(e”) =1/[(1+2£%)*~1] and the sample size
needed for the regular sampling design is n,.,(¢*) = 1+1/(6¢). For some values of
£”, these sample sizes are listed in Table 3, which show how efficient the equidistant
regular sampling design is in this case.

To see the impact on the sampling designs of the mean function, we take f(1) =0
here. Then, the IMSE is

n—1

IMSEY. (1) =1 I (g = tai)’+3(1-=1,,)°,
=0

and the corresponding optimal sampling design is T3 ={t},}} with
tfc=3k/(3n+1), k=1,...,n

Note that for k=1,...,n,
k= =kK[{n+1)n*1""*~3/(3n+1)}

1 1 2 i 1 1
=k}{i—-——+———+——<+o0(n?
{n 3n7 9n® n 3n° 9n’ otn )}

1 -
= k{g—;_;*f' o(n 3)},
so that a linear mean function perturbs the kth optimal sampling points by k9™ 'n~"+
o(n7?).

Example 3. Random processes wiih stable-type covariance. We consider a random
process with covariance function R(1,s)=e *"*" with parameters x>0 and
0<wv=<2. When v=1, it is an Ornstein-Uhlenbeck process. The asymptotically
optimal regular sampling design has h,= 1, namely T, (h,)}={(i —1)/(n—1)}], when
the constant weight function W(¢)=1 is used.

First, consider the case where the mean is zero. To see the pattern of the
MSEY. (1.,(1), we plotted it for a variety of values of » and u and found that u has
no impact on its shape but » does. Specifically, when » is between 0 and about 0.5
the pattern of the MSE(’TH‘,,“,(t) is as shown in Figure 5{a) for »=0.15 and u = 1.5,
with some, but not significant, variabiiity. When v is approximately between 0.5
and 1.5 the pattern of the MSEY. ,, (1) is very close to periodic and exactly periodic
when v=1. And when v is approximately between 1.5 and 2 the pattern of the
MSEY. (,.,(¢) is similar to the plot in Figure 5(b) which corresponds to » =1 82 and
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Fig. 5(a). MSE vs. time with regu'ar sampling design (n=10), »=0.15, u = 1.5.
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MSE
0.0008
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Scmpling Times

Fig. S(b). MSE vs. time with regular sampling design (n=10), »=1.82, u = 1.5.

m =1.5 and 2';0 shows the near periodicity except for the two end intervals where
the MSE is more peaked; here the magnitude of MSEY. (, (1) is negligible, i.e. less
than 1.2x 10",

Next, we consider only the importai. ..:se of Ornstein-Uhlenbeck covariance
function, i.e. u = v =1, with an unknown constant -nean m(f) =, which is of the
form (1.10) with g =1 and
f.(1) !l

JIVE

_~—
-

t 1\1_
J

} R(t,s)ds+R(1,0)+R(1, 1)

In this case, we have three candidate estimators, the BLUE estimator X} (1) given
by (1.11), the estimator given by (1.5) which is the BLUE when the mean is zero
but is biased here, and the simple linear interpolator X’T"(t) as in (1.27). We will

Nl—-
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compare their performance when the asymptotically optimal (uniform) sampling
design T, (h,) ={(i—1)/(n—1)}] is used.
The estimator X7, ,(¢) is given for re[t,,, t, 1], k=1,...,n—1, by

(e'n.k ! _.eh“n,kolf”)X(["‘k)+(e’—’n.l\ ....e—(lilu.!.))X(tn'kNH)

0 _
XT,,(h“)(I)_ el/'m—ib_e—l/(n~h >
(1.42)
and its IMSE is
IMSEY, (4,(1) = Vr, )+ B’ BT, n,), (1.43)

where
Vi, =" +1)/ (" = 1) = (n-1),
BZTH(I'”):{(4_3H)e.’!,’(nf!!_*_4el/ln l|+3n_2}/(l+el/(nfl))2'

The BLUE X, (1) is given by (1.11), and can be simplified for r€[t,, t,. 1],
k=1,...,n—1, as

s~ o= U= P F R Y
Xrl (t)_' 0 (t)— € mhi € WAl +e . e -k
Tath,) = A T,(h,) _1/(n—1) —1/(n—1) -1
\ [~ —€

X))+ (A= ) T X (1) + X ()

(n—2)(1—e V" 1)42 s (1.44)
where X(},,u,.,»(t) is as in {1.42), and its IMSE is
1+el/(n—l) .
IMSE T, ,,(1) = Vi, i+ 55 7= 5 B
_1{ AT +0("“‘)} (1.45)
3ln=1 (n—-1) 5(n-1)° \ ’ .

where Vr ., and BY.,, are as in (1.43).
Here the linear interpolator given by (1.27) is also unbiased, and through some
straightforward calculations, its IMSE is

IMSE{ (1) =H6(3—2n)+[12(n—1)°—1](i—e" """}

_1{ 1 1
3ln—1 15(n-1)°

To see the pattern of convergence (to zero) of the IMSE for these three estimators,
we plotted their IMSE’s versus the sample size n up to 20 for different values of
the mean B and found that when B8 is small, say B <5, nearly no difference is
displayed and the plot corresponding to B =3.5 is shown in Figure 5(c) with
IMSE' ;. (1), IMSEY. , (1) and IMSEY ,,, ,(1), denoted by IMSE7, , IMSEY, and
IMSEY , respectively; and when B is large the estimator X'y, (1) has poor perform-
ance for small sample sizes while the other two estimators have, approximately, the
same performance, indeed, IMSE%. —ISME}, = -3 'n""+0(n "), and the plot cor-
responding to B =25 is in Figure 5(d).

+O(‘n“4)}. (1.46)
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Fig. 5(c). IMSE vs. sample size ((beta=3.5)
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Fig. 5(d). IMSE vs. sample size (beta =25).

So far, we have considered examples with covariances having constant jump
function a(r). In the following example, we consider an error process with a
non-constant ju.o; “unction in order to illusirate the difference in performance

between the uniform sampling design and the regular design determined by the
asymptotically optimal sampling density.

Example 4. A process with independent but nonstationary increments and non-constant
Jjump fuinction. Hers we consider the model (1.1) with mean zero, i.e. m(t)=0, and
covariance function

[‘min(l,s’)

R(t,s)rJ g(u)du

where g(-) is a nonnegative Riemann integrable function on [0,1]; i.e. X(t)=
JovVe(u) dW(u), where W(-) is a Wiener process with convariance function
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min(¢, s). Clearly, when g(u) =1, X{r) is the Wiener process discussed in Example
2 with R(1, s) =min(¢, s).
It is straighiforward to obtain the jump function

a(t)y=g(t), te[0,1]

For simplicity, we choose g(t) = t* where B >0 is a constant, in which case
R(t,s)={min(t, s)}*"'/(B+1).

For any sampling design T,, the corresponding BLUE of X(t) is

(B =P NX () (P =t X ()

1 M
tﬁkﬂptﬁ.k

X% (n=

(1.47)

if t <t<t,,k=0,1,...,n—1, where t,,=0,and X% (1) = X(t,,),if t,,<t<
1. This is (B + 1)-power interpolation: linear interpolation when 8 =0, quadratic
interpolation when B =1, etc. Here, the asymptotically optimal sampling density
function is h,(t) = (1+B8/2)t*/* and the regular sampling designs determined by h,
are T, (h,)={t,,}\ with

tix ={(k—=1)/(n=1)}’*"# k=1,...,n

To compare the performance of the uniform design T,(1) and the regular design
T,.(h,), we plotted the IMSE of XOT"“,(t), denoted by IMSE(unif), and the IMSE
of X% (1), denoted by IMSE(reg), versus the sample size n for vaiues up to 20
and for a variety of values of the parameter 8. We found that the larger 8, the more
significant the improvement of T,,(h,) over T,(1) is, which is intuitively clear because
when B is small the regular design 7,:,) is close to uniform. For g =2, the plots
are shown in Figure 6, from which one can see the considerable improvement of
T,(h,) over T,(1).

10'

\
2l
© .
L) N
n
s AN
= \ ‘
\
i . N
ot ~ IMSE(unif)
20 4 6 8 10 12 14 16 18 20

Sampling Size

Fig. 6. IMSE vs. sample size.
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2. Proofs

For any positive weight function W({(t) and random process X(t) in (1.1), the
random process Y (1) =v W(t) X(t) has a mean function v W(t) m(t) and centered
component v W(t) N(t). It is easily verified that the BLUE of Y(r) is vW(t) times
the BLUE of X(t) and furthermore, the weighted IMSE of the BLUE of X (¢) with
the weight function W(¢) equals the unweighted IMSE of the BLUE of Y(¢) (i.e.
with weight=1). Thus, without loss of generality, we can take W(t)=1 in the
following proofs. For notational simplicity we will write IMSE for IMSE(1)
throughout the proofs.

Before turning to the proofs of the theorems, we establish the following lemmas.

Lemma 1. Under Conditions (C1)-(C2), if T, ={t,.;} is a sequence of designs, then
IMSEY, -0 implies

max . (tn’j-{-l - t".,‘) d 0. (2-1)

Isisn-
Proof. Write

f(t)=J R(t,s)ds=%N(t)|. N(s) ds.

0 o )

Then it follows from the Cauchy-Schwarz inequality that

1 1
IMSEC’THJ j R(1,5) dt ds
0 O

1

= %{N(t)-—r’rn(t)R}:NT"}zdt%(J.

JO 0

-

1

N(s)ds)

!

> {%S(N(t)-— P ()R7 Ny ) J N(s) ds}“ dt

J 0

1

= {A(O)=rr (DR fr} di

a{j <f(:>—r;~,,mse;:fr,,>dr}éNf—PT,,flr;

where P, is the projection of f onto span{R(-,1t,;), i=1,...,n}. This together
with Lemma 3.3 in Sacks and Ylvisaker (1966) establishes (2.1). [J

Lemma 1 implies that any asymptcticaily optimal sequence of designs satisfies
(2.1). Therefore, it suffices to consider sequences of designs saiisfying (2.1).
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Let ](/T”(t) be the projection of N(t) onto span{N(t,,), i=1,...,n}and N =
(N(t,,),..., N(t,,)). Then
Ny, (1) =y (ORINy, 2 Ch ()N,

where C7,(1)=(C\(1), ..., (1)) =7, (DR
Define

p(t)=R(t, 1),
pr. (1) = E(Nr.(0)) = rr (DR rr (8) = Cr (1) rr (1),

Then, (1.7) can be written as

IMSEY = ¥ j [p()=pr.(1)]dt. (2.2)

i=1

ni

Since IQT”(t,,,,-) = N(t,.), we have

p'r,,(tn,i)zp(tn,i)a tn‘ie’-rns i“—'l,...,", (23)

and since each é,-(t) is a linear combination of R(¢,,;,t),i=1,..., n, it follows that
C;(t) is piecewise continuously differentiable up to order two with knots 1,;,
i=1,...,n
Moreover, it follows from Ny (t,;) = N(t,;) and the invertibility of Ry, that
1, when j=i,

Ci(t,,)= Cij=1,...,n 2.4
i) {0, otherwise, hJ " (2.4)

Note that for each t€{0, 1),

p(t+) =jimo{R(t+At, t+At)— R(t, 1)}/ At
™

. R(t+At, t+At)—R(t1+A4t,t) R(t+At, t)—R(i,?)
~ U At * At

ArNO

— RU,I(I’ t_)+Rl.0(t+’ t)___ R(),l(t’ t_)+R0,|(r, §+)

where the third equality follows from Assumption (C1) and the last one from the
symmetry of R(i, s). Likewise, for each 1€ (0, 1], we find

p'V(t-) =Alir]n( {R(t+At, 1+ A1) = R(t, 1)}/ At = R™ (1, =) + R™'(1, t-+).
i1 )

Thus, p(t) is differentiable at each t€(0, 1) and
p'V(1)=R™\(1,1-)+ R"'(¢, t+). (2.5)
By direct calculations, we have, for 12 T,

p(0)=2C4 (1)r'it)
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and by (2.4),
p('l!,,)(tn,i-*-) = 2 Z éi(tn_.-‘)RO.l(th’ tu,i+) = 2izo.l(tn,ia tn,i+)-
i=)

Thus,
p“)(tn,i) —p"l!,,)(tn.i—l') = Ro'l(tn,h 'n.i—) - RO’I(tn,i’ tn,i+) = a(tn.i)- (2-6)

The second derivative of pr (¢) is expressed in the following lemma.

Lemma 2. Under Assumptions (C1) and (C2), we have, for any te(t,;,t,.+1),
p(’rz,,)(t)zza(tn,i)/(tn,i+l—tn,i)+0(l)s i=1:--~,n—1, (2.7)

where O(1) is uniformly bounded in t and n.

Proof. For convenience, we denote t,; by ;. Note that for te (¢, t;,,),

PR(1)=2d[Chr(D)rP(n)]/dt
=2 % COR™ (4, 0+2 ¥ G(HR™ (1, 1). (2.8)
j=1 j=1
For the first term, using the Taylor expansions

R(t;, t;)=R(1;, 1)+ R>'(1;, 1)(t, - t)+j (- u)R>*(1;, u) du,

1

t
i

R(t;, t;xy) = R(t;, 1)+ R™' (4, £)(t;4, — r)+f "t - u)R**(1;, u) du,

1
we have

’l

Rm(’j, t)d, = {R(tja tiiy) "R(’j, ti)}_{J " (tie1— u)RO'Z(tj, u)du

1

_J | (tl— u)RO*Z(tia u) du}a (2'9)
where d, = t,,, - t;, and similarly,
é;(‘”(t)di:{éj(tne)" C;(")}
—{J C (f - u)(‘f}z’(u)du-—J (1, =) CO(u) du}. (2.10)

For the second term in (2.8), as well as for the three of four terms resulting from
multplying out (2.9) and (2.10), we proceed as follows.
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By Cauchy-Schwarz inequality, for re (1, t,,,), s€[0, 1],

n Y I
1 ? .{‘ — 1) O‘ZI!_ u\rln.f“(o\
I“ it ] L E AN \ijs B) QG \,J\J]l
j=1Jd1

M
x
—
Fond
+
|
=~
el
‘A
~ N
—_
1N
S
P~
hall
‘
o
—
2
=
(=R
=

I

(e =P )R PR (W) - iy ()R7 Fr ()} du

(i —w)||R™(-, u)|r du- R'*(s, s)

M

JI

<3 sup |R™(-,0)||g- sup R"(s,s)-(t,,,—t)’<const.d?, (2.11)
O=s1=1 O=s=<1

VY AEiWw 17 3 lld 1§13 AAN, Ui 11 | 4 %) vy 1 ER1 AL a1€aL T" )l\ " T"
ic tha narm ~AF tha saeniantinm ~f DOV 4) nmtn comanl Dis ) 2 _1 1 .. N A
1> wial AUl O ulC projiiuiil O1 v (7, ¢) OO Spaniyn\i;, " J, I 1,...,lif, V=V, <,
rem il ale o Vo L O aLl o __at __ . L DS N\ e A . A TS _ 0~
dlld LIC adt OIIC 1TOII UIC COMIIUItY O R °, ) dIAd ASSUIIIPUON (LUZ). LIKCEWISC, 10T
all te (1, t;11), s€[0, 1],
n [t |
0,2 A 2
¥ | (6—u)R™(t;, u) du- Ci(s)| <const. d;,
=t Jy 1
n fa i
Y (a—u)Cj7(u) du- R(t;, s)| <const. d;, (2.12)
j=1 1 I
n " a "h I
<« ! A\ 02/, N AL Iy \A(Z!/ '] < cranct A
2 (a—u)R™ (i, u)du J (o —v)(; U/)GVI\COHSI a,
=1 J¢ g1 :

where a,b=1, or t;,,. By (2.8), (2.9)-(2.12) and (2.4),

pP(w)d2=2Y dCV(u) - AR (1, u)+2d? Y C(u)R(t;, u)

i=1 j=1
=2 ) {éi(’.‘ﬂ)'"é,'(ti)}{R(tj, i)~ R(t, )} +d;0(1)
i
=2{R(t;sy, ;1) — Rty 1) = R(1, 1., + R, 6)}+d70(1).

TES i T17

Using Taylor expansions and Assumption (C2) repeatedly, we obtain
> Y . \ s, Ly __ om0l N T 1 J2ng1) _\
Rilivg, L) T RUG, )= 007 UGy, LA, T A UL = R UG, )4 T

and likewise,

R(t;, t;y)) — R(1;, t;) = R™'(1;, t;+)d, + d7;0(1).
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Therefore,
pA(0)di =2{R" (1, ;=) — R™'(1,, t,+)}d;+ d;0(1) = 2a(1;)d; + d;O(1),

from which (2.7) follows. [

Proof of Theorem 1. The IMSE is given by (2.2). By Taylor expansion, (2.3) and
(2.6), we have for te(t;, t;1,),

p(t)—pr,,(t)={p‘”(t,-)—p‘r',,’(t,-+)}(t—r,-)+J (t—u){ p**(u)—pF(u)} du

I

= a(ti)(t—ti)+J-

f

i (t—u)p'(u) du— J’ (t—u)p'P(u) du.

Proceeding as in the derivation of (2.5), we can show that p(-) has a second
derivative at each t€(0, 1) given by
p2(t)=R% (1, t=)+2R"'(t—, t+)+ R*(1, t+). (2.13)
By (2.13), the boundness assumption in (C2) and Lemma 2, we obtain
p(t)=pr, (1) = a(t)(t = )+ (1= 1)°0(1) = (1 = ;) a(1,)/ d;,
which yields

j'”[p(r)-pr.,uudr=%a<r,->d$—_%a<r,->d3+d?om=éa<:i>d%+dfo<1>

and then by (2.2),

IMSEY. =¢ ¥ a(t)d}+
1

i

S d°0(1), (2.14)
=1

!

where O(1) is bounded uniformly in n and t. By Hélder’s inequality, for large n,
n n 2 1 2
ny mt,-)dfz{ y \/a(t,.)d,-} ={[ \/a(t)dt} +o0(1)
=1 P J0

and

Thus,

1
liminf n IMSE", 51 {J Va(1) di}
n 0

2
’

(2.15)

=)}
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which provides the asymptotic lower bound of n IMSEY. . On the other hand, it
follows from (1.4) and the mean value theorem of integrals that d, = 1/[h{w;)(n—1)],
where w,€[t;, t;1,], i=1,..., n—1. By (2.14), we can write IMSE%. as

1 -1 a(t,)

6(n—1) E. h(w;) di+0(n ).

Then, by the Riemann integrability of the function (a/h)(-), we have

] 1 (' a(r)
I IMSE® ,=—J = dr
amn T = ¢ § h(t)d

IMSEY. () =

Hence, (ii) holds.

Replacing h by h,, then clearly,
1{'ar) 1”' }
lim n IMSEY. , =—J di==11| V ds
pn e IMSEL o =6 ) o @ s U, Y

The results (i) and (iii) follow from (2.15) and (2.16). O

2

(2.16)

Proof of Theorem 2. By (1.13), since Gy, =, we have the following inequality
inf IMSET < lTlrllf IMSE4. <IMSEY. (1, + Gr,)

|Tn|=n
and thus using Theorem 1 and taking h = h,, we obtain

lim n IMSEY, ;, ,=lim n_inf IMSE%, <Ilim n_inf IMSE%,

n-oo n->x T,|=n n—->x T, \=n

< lim n IMSEY. (. ,+ lim n Gr ).
n—-x

n—->oxc

Therefore, to show Theorem 2, it suffices to show (1.15).
Note that the (i, j) element of the matrix F; R7'Fr is i+ R7. f,r, and as n -,
it tends to s; =], f, #:R¢; as follows from

f: ﬂ,Ri:ﬁ.T,,_J J’ ¢iR¢j

1 1
= '%( ;.T,,R;',:NT,,_J’ Nd’i) J- N‘Jb,‘l

1 1 1/2
<|fi-Prf R(j. J cﬁ_,-Rd;,—) <const. ;s)/° max d,, (2.17)
( 0

) 1<~ k=n-1

where the last inequality follows from Lemma 3.1 in Sacks and Ylvisaker (1966)
and o, = supo-,-, |#:(1)|. Furthermore, if the regular sampling design T, (h) is used,
(2.17) implies

l fl 1/2 -1 1

J() ¢,K({)’ = O(I)O',S” (n - 1) (E’lIa;XI m

=0(1)o;s)/*(n—1) ', (2.18)

! -1
i.T,,(h)R T,th )ﬁ,T,,(h ) T J

0

. . . . . . . -1
where O(1) is uniform in i, j and n, which means the convergence rate 1s n .
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By using the inequality |[A™' = B™'|<[|A7"|’|A- B[{1+O(||A- B|)}, where A
and B are two invertible matrices and |- || denotes the usual matrix norm, for
instance || A|| = max; ¥, |a;| with A = (a,), and (2.18) we can conclude that the matrix
(F onR7 ) Frm) ™' tends to the matrix (s;)"'=S"" elementwise, as n - .

By Assumptions (C1)-(C2), similar to the derivation of (3.43) in Sacks and
Ylvisaker (1966), we have, for every k=1,...,n—1,i=1,...,q and te(t, t;+;),

Vir, (1) &7 (DRT fir, = fi(1)

1 -1.(2
=—2' {_(ad)i)(ai.k)'}'f;,‘r"RT: r‘f")(a,.‘k)

_J’ R*(a;,, s)i(s) ds}dk(t — 1)

)

1
E{(ad’ )(T:A)+f:T,,RT| ’(T:A)

—J- RZ'O(Tf,k,S)cbi(S)dS}(t—tk)z, (2.19)
0

where a;,, 7, €(#,t) and depend continuously on t. Since for every te[0,1],
R™(-, t)e RKHS(R), thereis a random varnable & espan{N{s), <5< 1}suchthat
R (- t)=&N(-)¢ and ||R™(- . Then by usmg Cauchy Schwarz’s
in:quality, Assumptions (C1)-(C2) and Lemma 3.1 in Sacks and Ylvisaker (1966),
we have, for each te (t, t,4,),

'f'T RTI (’) t)— J Rz'"(t,s)qﬁi(s)ds

(4]
1

= I?gf,(f,‘.nR'r}f Nr, “Jr

0

3( 1 1 1/2
S{Vj:- J' J. iR, — §.n,R?;:ﬁ,n,>}

=|R** (-, O|x I fi— Pr.filr<const.o;, sup d,, (2.20)

1= =n-1

N(S)¢.-(S)d5)

where the const. is independent of i, k and ¢ and o, is as in (2.17). From (2.19) and
(2.20) we have, fut each k=1,...,n—-1,i=1,...,q and re (1, t,s,),

Vir,(1)= —'%(a‘bi)(ai.k)dk(t — &)

+3(ad)(r ) (1= 1) +O()od; sup d, (2.21)

t==j~n—-1

where a;,, 7, € (1, t,.;) and O(1) is independent of i, k and . Thus, fori, j=1, ..., g,
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1
f Vir,an() V(1) dr
0

n-1 ha f
=ZJ' {—%(afbs)(ai,k)dk(t—ik)+%(a¢,-)(1'.~,k)(t‘°!k)2+0(1)0,-di sup d,}

k=1 1=<l<n-1
-{—%(a¢,-)(a,~,k)dk(t — 1) +3ad) (1)t - 1)’ +0()aid sup d:}
1=l=n-1

= Z {Tli(a¢i)(ai.k)(a¢j)(ai,k)di "Tlé(ad’i)(ai,k)(a(ﬁj)(”};k)di

k=1

—16(ad) (i) (@) (@) di +26(ad (7.1 ) (@) (74)di +O(1)di  sup d:}

I1slsn-1

n-1

= él {Tli(aqsi)(ai,k)(ad?i)(ai.k)"T]B(a‘bi)(ai,k)(aﬁbj)(fi,k) _TIS(a(bi)(Ti,k)(a(bj)(aj,k)

1 | G
+a(ad)(r)(ad;)(7,) +O(1) sup d’} ()

and by the Riemann integrability of the function aqu,(ty,h"‘,

1
n j Vi, (0) Vi 1,um(t) dt

0

*J @ (DGDG(Ds—s =1+ b e

77

di

—_1_ Ia?.(t)
=120 L W) di(t) (1) dt. (2.22)

Finally, writing $™' = (v;;),x,, yields
ijgxq

' Gr Y Y vy— f @ (1) 4 (1) di

i=1j=1 ii—l_—2~6 o (1)
1 "a (1) .
=—\ 5= ¢ 2.23

and (1.15) follows. [

Proof of Theorem ». Note that by putting A ={(B,8;),x4, W€ can write

Hy,(6) = (F'7,R7)re (1) = F())'A(F'r, Ry, rr, (1) = F(1)),



78 Y. Su, S. Cambanis | Sampling a process

which is of the same form as Gy, (t) except that here the matrix A is constant (i.e.
does not depend on n). Thus, (1.19) follows immediately from (2.23). O

Proof of Theorem 4. If we can show that

lijgn‘tGmh) 120J. ng{i Ale i(t)} ds, (2.24)
and
1 1 2 q , 2
im ' Qr =125 | S o)~ 3 B e(n] a (229)

then (1.24) follows. Indeed for the regular sampiing design T, (h), by Theorem 1,
(1.23) and (2.24)-(2.25), we have

lim n IMSEY, 5., = lim n_inf IMSEY. < lim n inf IMSE7;

n-co |Tul=n nooxc|T,l=

< lim n IMSEY,;,, + lim nGy. (,,+ lim nQr.
n—-o n—-o¢

n—->o0

= lim n IMSEY. ),

n-—->9oG

which implies that (i) in Theorem 1 holds for the estimator X% (1). The results (ii)
and (iii) follow from (1.23) and (2.24)-(2.25). Therefore, it remains to show (2.24)
and (2.25).

Proof of (2.24). By the orthonormality of the f;’s in the RKHS(R), we have, for
ihj=1,...,49,(f, fi)r = 8;, and moreover, by putting ¢,(t) = A, '"*¢,(t) in (2.18) and
usmg

sup |é(0)|=A;"7 sup |Aie;(1)|

0= 1= 1 O=¢- 1

=AY sup I%N(!)J N(s)e(s)ds

011

<A sup RY tr‘{[ J eRe} =const. A; ',
O r=1 Lvo

we have
f;.T,.(h»RT,f(hLﬂ.T,,(h) -8, =0(1)A, l(“ -1) 1, (2.26)
which implies, as in the proof of Theorem 2, that

T i )
(F'r,onR o Fr,on) ——— [ elementwise. (2.2

Now using (2.22) with ¢,(t)=A;"2e,(t), (2.24) follows.
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Proof of (2.25). By the unbiasedness constraints on the parameters 8;,i=1,...,4q,
and the form of Cy, (,,(t) as in (1.11), we can write

1

QT,,(ln = J {é’T,,(h}(t)mr,,(h)- m(’)}2 di

0

1
= j {r’T,,(h»(t)R;",:(h)mT,,(h)—m(t)}2 dt
(

)

1
-2 J {r'T,,lh)(I)R;',:(!:)mT,,(h)— m(t)}
(

)

-1 '
AFT,mRTumrr,u(t) — F(1)}

-1 -1 -1
“(Fr.mR7mFr,m)  FrmRz,mmr,m di

1
+J {(F,T,,(h)R;',!(h}rT,,(h)(t)— F())
{

)

' -1 g - >
“(Fr,omRT,mFr,on) FronRrmmr,un} di
A
=Dl,T,,(h)+D2.T,,(h)+D}.T,,(h)-

For the first term D, 1 ), by using (2.22) with ¢, =4, we have

1 ('a¥(t) ,
4 — 2(1) dt.
h Dl.,T,,(h)—)lzo '[) h4(t) l/I ( )

For the second term D, ; ,,, note that by the orthonormality of f's, as n >,
TR T mmr,un=> (Bi, .-, By)'  elementwise,

and then from (2.22) and (2.27) with ¢, =¢ and ¢; = A]"ze.-,

’

12 g
"4D2.T..(h)’) 2 J o (1) l//(‘){k Bk/\;l/zek(’)} di.

—1_2_0 0 174(1) =1
Likewise,
1 Ia2(t){ q o }2
4 — A Pe(n) g dr.
n D.‘.T,,(h)_) 120 j() h4(t) [‘Z,—;IB’\ k el\( )
Therefore,
1 laz(t){ d —-1/2 }2
4 ->— 1) — A e () dr. O
n"Qr.n) 120 J[o n(1) (i) ;‘Zxﬁk v Te(t)

Proof of Theorem 5. By a similar analysis as at the beginning of the proof of
Theorem 4, it can be verified that to show Theorem 5, it suffices to show the
following:

:l':!_i:i:l nGT”(;,) =0, (2.28)
lim nQx,,),=0. (2.29)

n-»>x
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By the orthonormality of f;’s and the following inequality,
'f:.T,,(h)R;_,j(h)f/“.T,‘(h)I = {f;,T,,(h)R;‘,’(h)ﬁ.T,,(h) 'Vf;.T,,(h)R"_r:(I: )f}"ﬁ.(ll)}!/z
<|fille lfillx =1,

we have for i, j=1,..., g, as n >0,

f;,T,,(h)R;',t(h)f,}."ﬂ,(h)= 5.;,"*'0(1), (2.30)

where o(1) is uniform in i and j. By (2.30) and straightforward computations, it is
verified that

(FrumR7unmFr,m) ™' =(I+o(1)UU') "' =T —{o(1)/[1+0(1)q,]} UV,

where U =(1,...,1)". Thus, Gr,, can be written as

q,

GT,,(h)= X J‘ V'?.T,,(h)(t) df“{O(l)/[1+0(1)q,,]}J (gll ‘/i,T,.(h)(t)>~dl

which together with (2.24) and the boundedness of >/ h*, imply that for large n

£

nGr, )= ?2_0 il'\ J-a423 HOKL

+o(1)n‘3J. : E:)(Z A7 e(t))~dt+o(n—3)

(I”
=const.(1+0(1))n* ¥ A;',
i=1

thus (2.28) foilows from (1.26).
By use of (2.30) and the matrix inversion formula above, we have for i = g+1

. () for,am—fi(1)

90y

q,
=V '“(t)+kZ Vk.T,,(h)(t)f;f.7‘,,(lx)R;',E(h)f;.T..(h)
~,
a, q,
+[o(1)/(1+0(1)g,)] ¥ V. o (f)( > f;.'r,,(h»R}:(mﬁ,r,,un)
k=1 1=

L’II
= Vi +o(1) Y, Vi a(t)

k=i

+o%(1)g,/(1+0(1)g)] T Vim0

‘I'l

‘/i,T,,(hD(t)-,—O(l) Z V/\‘.T,,(h)(t)s
k=1
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where o(1) is uniform in i. Thus Qy, (4, can be written as

1 X d, 32
QT,,(h)"_"J' { 2 Bi[Vi.T,,(h)(t)+0(l)k2_:1 Vk.T,.un(')]} dt

» Vi=gqg,*i

=j { i 3.'Vi.T,.(m(t)}hdf

0 i=q,+1

+20(1) i Bi"-{ ;{‘ BJV},T.,(m(t)}ké, Vior,an(t) dt

i=qg,+1 0 Jj=qut1

x 2 L q, 2
+02(1)( > B:) j {kz-:l Vk,T,,(h)(t)} dt

'-:qll"'l ) -
iy
- EI,T,,(h)+ EE,T,,(h)+ E3,T,,(h)'

For the first term E, 1, ), we use the inequality

0

1
"/i,T,,(h)(t)|= ’ig[r’T,,(h)(I)R;‘,:(h)NT,.(h)_N(’)JA:VZJ Ne;

1 1 1/2
<{R(1, 1)“"'T,.(h)(t)R;',!(h)"T,,(h)(f)}l/z : {/\i_l J J eiRei}

0 0
={MSE(;”,,(h)(t)}]/29
to produce
nEl,T,,(h)g{ > |.3i|} '”]MSEOT,,(:;J"’O
i=q,+1

asn -0, since Y ,_, |B;| <. Using the Cauchy-Schwarz inequality and |V, 1 (1)<
{MSEY. (,,(1)}'/* we obtain
s 1 o 2
"lEz,T,,(h)|$0(1)" > |B-|{J ( > 3nVi.T,,(h)(t)) di
(

i=q,+1 ) \j=g,+1

1 g, 2 1/2
: J ( > VA,T,,un(f)) df}
0 k=1

So(l)( Z Iﬁil)h{" IMSEOT,M)}”:

i=q,+1
1/2

9, 4, (1 1
'{" > Zj Vk,T,,(h)(I)V,;T_.,un(t)dIJ

k=1j=14J0

Then

nE; 7,01~ 0
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will follow if we show that n ¥, ¥ f| V.V, is bounded. From (2.21)-(2.22) it
follows that

i nA4 lal .

VvWV=—7| — +o(n oo,

j() kYj 120 ,[) h ¢k¢’_; ( ) kY,
and since o, < Const. A;'/* and a/h’ is bounded we have

q, q, 1 q, d, , 2

ny ¥ J’ V.V,<n*Const. ¥ A,:’-!—o(n“‘){ y A;”‘} .
k=1j=1Jo k=1 k=1

The first term tends to 0 by (1.26), and the second is upper bounded by
o(n g, ¥ AL', which also tends to zero by (1.26). Similar to the derivation of
(2.28), it is shown that

nE.z,T,,(h)"’O-

Thus (2.29) holds. [

Proof of Theorem 6 and Remark 2. For k=1,..., n—1, introduce the notation
a()=0—-1)/di, telty, tinl
Then the linear interpolator (1.27) can be written as
X5 (1) =X (1) +a(O{X ()= X (6}, 1€ty ],
its MSE is
MSET.,U)={m('k)—m(’)"’ak(f)[m(fku)_m(fk)]}2
H{R(t, ) —2R(t, 1)+ R(¢, 1)}
+2{R(ty, tie1) = Rty 1) = R(1, t10) + R4, )}ar (1)
+{R(tx 11, tie1) = 2Rty tiy) + R(1, 1) }ai(1)

3
2AL(D+ Y Bir (1), telt, tinl,
=1

and its IMSE is

! 3

1 Kj
IM)::,;J Ar(t)de+ Y J By (Hdt2Ar+ Y By . (2.31)
0 j 0 =1

j=1
For the bias term, using (1.28), we have

n-1

Ar, < X J {CHt =) +2C a (Dt = 1) (G — 1"

k=1

+Cai( )t — 1)} di
n—1i

U
<y C{di”“%—Zdi”J a,\.(t)dt+di”j
k=1t !

A I

ty

‘ai(f)dt}

n—1 n--1

=C* ¥ di"{di+d+5d}=3C ¥ dir!
k=1 k=1

b
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which yields

n:r nil d,
(n—1)* =, h*’(int.)

2p 72
n AT,,(h)s,?C

1

dt

7 2

->§C‘J > as n- 0o,
o h7"(1)

Since 2p>1,
nAr, >0 as n-oo. (2.32)
Moreover, if m(t) is continuously differentiable, simple calculations show that
n’*Ar,m=>0 as n-oo. (2.33)

We will establish Remark 2 (instead of the simpler Theorem 6).
For the terms involving the covariance function R, we Taylor-expand around the
point t,. Then, for te[#, t;+,], we have

R(ty, t) = R(ty, t)+ R (ty, i +)(t — 1) +3R™(te, w (1)) (1 —1,)° (2.34)
and using Taylor expansion twice and (2.34), we obtain
R(t, tiiy) = R(ty, t)+ R>'(ty, ty+)di+ R™' (1, t,—)(t — 1)
+3R%*(t,, we)di+ R“ (1, e +)di (t— ;)
+3R* (0 (1), tin )t — 1), (2.35)

where t, <u(t), v (1)<t and 1, <w,<t., and both u(t) and v, (t) depend
continuously on t. Also, for te[t, t,.,],

R(t, t)=p(t)=p(t)+p ()t — ) +3pP (D)) (1 = )7, (2.36)

where 1, < y,(t) <t depends continuously on t and p‘"’, p'*’ are given in (2.5) and
(2.13) respectively.
In light of (2.34)-(2.36), we have

By (1) = a(t)(t— t) +H{ p (3 (1) = 2R (b, w ()} (1 = 1), (2.37)
B, + (1)/[2a, ()] =—a(t) (1 — 1) = R"' (4 —, ti+)di (1 — 1)

+HR" (1, w (1)) = R™ (v (1), e )N — 1), (2.38)
Bs 1. (1)/ai(t) = a(t)d + ¥ pP (ni(fe)) = 2R (1, wi (1 N}y (2.39)

If a function g(¢) is differentiable on [0, 1] and g'"'(7)/ h(¢) is Riemann integrable,
then for regular sampling designs T,(h) ={t}, we have

n-—1 3 __rz;‘ lg(!)(t) . 240
k;g(tk)dk—[) g(t)dt 5 J-O _—h(t) dt+o(n ). (2.40)
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If h is differentiable, then Taylor expansion at the point t, gives h(t)=
h(t,)+ h"(int.)(t — t,), which together with the definition of regular designs yield

2 0
_1_ :

h'V(int.)d; +2h(t,)d, -
Solving this equation, we have
1 1 h'"(int.) 1
d = - +0[(n—-1)""].
“Th(t,) n—-1 20%t) (n-1)? [(n=1)"]
1,2, 3. Employing (2.37) and the mean

Now we derive the asymptotics for B;,,j=1,2,
value theorem of integrals, yields, for any sampling design T,

B = Ail {a(tk) f =1 dr
1 U . 0.2 . _)
j [P (y()-2R ‘"(lk,uk(f))](t—tk)'df}

(2.41)

+-—
2

=% Ha(di+p™ () - 2R (1, w))d3)

and then using (2.41), yields,
" a(t) _, ! h'"(int.)
B h=3(n—1)" —d, -1 1 ) ————
1T, (h) 3(n ) k‘-élh(tk) k —a(n— ) gla( %) h3(t,‘.)
1 -2 ! 2 2 d 2
+e(n=1)7 ¥ [pP(yi) —2R™(t, uj+)]1 -5 —+o(n7?).
K21 h*(1)
Finally, by Riemann integrability of the functions a/h, ah'"/h*, p**’/h* and
R%*(-,-+)/h*(-) and putting g = a/h in (2.40), we have, for large n,
| lj 1 1 a n
B, 7+ m=3n-1)""| =(t)dt—- —1‘2_[———(—) t) dt
17,0 =2 ) . (t)dt—3(n—1) oo \n (r)d
1 (l)
—é(n—l)*f a(n =4
0 ( )
! dt
+},(n—1)_3J‘ {p*'(1)=2R*(1, t+)} —5—+o(n?). (2.42)
0 h=(1)
Likewise, by (2.38) and (2.40)-(2.41), we obtain
. 1 1 o (n)
Born=—3n-1)"| () di+in- 1 j ——-—(~)
Tulh) : ) h in- 1) o h(O\h (1) dt
dt
h*(1)

+i(n—=1)7 1 {R™(1, t+) = R™ (1, 1-)} hgi(tt)+o(n”2) (2.43)

v 1 h“’(t) . . 1
+3(n—-1)" ja(t)h() di—3(n-1) LR
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and by (2.39)-(2.41),

1 1 (1)
By oy =4(n—1)" f %(t)dt—},(n—l)‘zj ;(‘—5(%) (1) d

=17 | atn® ’(')’

+in-1)"1 {p(1)-2R"(4, t+)} 0

Therefore, by (2.42)-(2.44) and (2.13), we find

+o(n %). (2.44)

3 (1 z\ (D)
jgl T, () = 6(" )n]J:)%(f)dt"nl‘?(n 1) J’” h(t )(E) (t)dt

—s(n—1) j a(t) (t)

h(t )
+ia(n—1)7 I {R*(t, =) = R™(1, 1+)} hf('t)+o(n‘3),
=é(n—1)"4[ %(r)dt+o(n’2), (2.45)

which together with (2.31)-(2.32) yield (1.29). O

Proof of (1.30)-(1.34). It is straightforward to verify that the inverse of the
covariance matrix Ry, is R7 =(a;).x. With

1
== {1/dy+1/b}, @m=co 1/(Zuby), @m=——1{1/d,+1/b,},
2u 2u

1
a;=—A{1/d;+1/d,,\}, i=2,...,n—-1,
2u

dii-1=aj1,i~ -1/(ud), i=2,...,n,

a; =0, all other i, j,
where d.=t,—t,_,, i=2,...,n and b,=2/u—(t,—t;). This yields that for =1y
functions f and g,

FrRgn =5 & AT ) =)~ (= 0)

+H )+ () Hg() + g(L)H [2— p(t, — 1)) (2.46)
Letting for fixed t, f(s) = R(t, s) and g(s) = X(s) in (2.46), yields (1.30).
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or fixed ¢, taking f(s) = g(s) = R(t, 5) in (2.46), we obtain the MSE for the BLUE
{ ),

~.|¢ l-n

X

Py

(2t~ D[2-p(t, = DY 2-plt,—1)], FO<r<1,

MSET. () ={ 2p(t— te)(trsr — 1)/t — 1),

L2.u—‘(1-tn)[2-.u'(t_t!)]/[z_.“'(tn - t!)}e if h,<t<l,

(2.47)
which gives the IMSE with the uniform weight function W(t)=1,
n-1
IMSE?rﬁ(l) =1 ‘é_ﬂ«([n - tl)+%l-" Y (tin— ti)z
i=1
—~—{2 p(t, — )1+t — 1)}
3u
12—,"[,“' e N2V s 200 a
- LT T Q) 7o T y,)
6u
pi(t+ 1,7}/ [12=p(t,— 1)] (2.48)
To find the minimizer of IMSE (1), set 3 IMSEY. (1)/3,=0, i=2,...,n—1,
which viald the fallawino sanationg:
Vviiliwvii IWiIW Lidw UV YY llls V\iuutlullo-
d2= =dnépns or I(tl l+ti+l) l=2’ ,n_ls (2 49)

— 1 Vi AN (12 \_Lm_ VO R | & T I S R |
= A T\ T )Py \1 T 30,) 3 (O AV b O VAU A G N LAV B 1Y )
-~ r RE) - Ira E DS Or -~ 2
—pAp il —p)j-outiZhrin—1)p,Jriut) 2t +U1—1)P,,J
Iz 2-u(n—-1)p,
To determine ¢+ and » lat A IN QE() (1)Y/A+ —0N and DIK‘QE() (1Y/23nr =0 whin
AV Nwiwiliiiiilw ‘] CLRANG ny 1WL U ll'lUl.;TI\ 11 Ull v Qiliiua v llVlLJl_J'r”\l[/ U'J" U, ywiliwvil
together with (2.48) and t,<1leadto t,=1—1t,=31—(s—1)p,] and the following
equation
2.2 3 ' 2
4n(n =1 w’py—(n—D{3(p +6)n—(2+3u)}up;
+4{3(p+2)n—(2+3,u,}p,,—,u,‘+6p.—24=0, (2.50)
pn€(1/n,1/(n—1)).

It is straightforward to verify that the second derivative of IMSEY, (1) with respect
to t is positive everywhere and with respect to p, is positive at the point specified
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by t,=3[1—-(n~1)p,). The uniqueness of the solution to the eq. (2.50) is justified
by the following arguments. Denote the cubic polynomial in p, in (2.50) by G(p,).
Then G(1/n)=-2-p)[2n(1—pn)+ux]/n°<0 and G(1/(n—1))=4(n-2)>>0,
which implies that there is a solution to the equation in (1/n,1/(n—1)). Moreover,
the equation G'"'(p,) =0 has two distinct roots and the smaller one is [3n(u +2) —
(2+3u)]/[opn(n—1)], which is greater than 1/(n—1). Thus, G'"(p,) is positive
in (1/n,1/(n—1)) and G(p,) is strictly increasing in (1/n, 1/(n —1)), which guaran-
tees (2.50) has a unique solution. Thus, for any 0<u <1 and every sample size n
(=2), the optimal sampling designs are specified by (1.31)-(1.32).

The expression (1.33) follows from (2.47) and (1.31), and (1.34) follows from
(2.48) and (1.31). O

Proof of (1.38)-(1.41). It is known that for any functions u and v and any sampling
designs T,

u(tl)v(t.)+"“ Lu(tiy) —u(h) L o(ty) —v(1)]

! -1 -
ur, Ry, vr, =
1 k=1 b1 — I

(2.51)

Taking u(t) = v(t) =f(t) =t in (2.51), we obtainf’T"R}:fT" =t,, and taking for fixed

t, u(s)=R(s,t) and v(s)=s, we have r’T"(t)R}:fT"=min(t,,,t). By using these

results, (1.11) and (2.51) with u(s)=R(s, t) for fixed ¢, v(s)=X(s), we obtain

(1.38). Similarly, (1.39) can be obtained, and by direct integration (1.40) follows.
To find the optimal design, set  IMSEY. /a1, =0, k=1,..., n. This yields

2t — (i, +1,4,)=0, k=1,...,n—1, and 2t,—t,"—1t,,=0,

where t,= 0. One more calculation yields 3" IMSEY. /313 =2>0,k=1,...,n—1and
8° IMSEY. /a1, =241, >0, which imply that IMSE}; achieves its minimum in the
region 0<1,<t,<---<t,<1 and the minimizer of IMSE'T" is given by the solution
to the above equations. By solving these equations, we obtain (1.41). [

Proof of (1.42)—(1.46). Here, it is known (see Anderson, 1965) that for any functions
u and v and any sampling design T, ={t;}},

, ooor. u(t)o(ty) u(t,)o(t,)

u—rnRTann—l_e*z(t:—lli l_e—z(l”—l

)

no1

n—1 ll(f,-)U(l,-)[l—e‘:'”'“i"*l’]

+ 2 >
Fali—e e o)
n—1 . ) ) . (=1,

- X [u(t')v(t'“l)+:~(ztff’)_v,(f')] £ (2.52)
i=1 - [E2 B

For fixed ¢, putiing u(s)=R(s, t) and v(s)=X(s) in (2.52) and through some
straightforward calculations, X9, (, ,(t) can be simplified as in (1.42).
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By direct calculations, the MSE of X7, (1) is

Z/(n=1) 2n-1)g =201, , ~1) -2t-1,)
e +1-e (e """ +e )
0 —
MSE7, (1) = e/ _|

Lot =t 1) 1t BTETR) R
eAH --e A+1 +e A_e A
2 —_
+B{ eV/in-D_ o=1/tn-D 1} s (2.53)

if t, <t<t,,,, which yields (1.43).
By (2.52), we have for f(t)=1,

etk“—t —e‘““""+e'“'* —e‘“_'k’

r,T..(t)R}:fT.._l= el/(n—l)_e—l/(n—l) -1, (2.54)

and putting u(¢) = v(t) =f(t)=1, in (2.52), yields
fr.RT fr,={2+(n-2) (1 - V" ")}/ (1+e V"), (2.55)
Putting u(¢)=f(¢t)=1 and v(r) = X (t) in (2.52), gives

X(t)+(1—e /")y cht)+X(r.,)
l+e—l/(n 1)

fr R Xy = (2.56)

Then, (1.44) follows from (1.11) and (2.54)-(2.56). By using (1.44) and through
some straightforward calculations, (1.45) follows.
Through direct calculation, we obtain for k=1,...,n—1 and te[t, t,.,],

7MSET”(t)—( firy t) (1- —“"“)-i-( - ) (1—e (hn")
k

k+17 [P

— ¢\ —
+( tl\‘+l t)( t t'\ )(1_e-(l—lk)_e_‘(’L+|A’)+e_(’lx+l_’k)),
bovr— W) \ ey — I,

which yields (1.46). O

Proof of (! "™ . It can be verified that for any functions u and v and any sampling
designs T, ={t}; with t,>0,

f n—1 ( h ) )=
Ry, =M 5! ) sl o) Zo0)),

Then, by taking for fixed ¢, u(s)= R(s, 1) and v(s)= X (s), we obtain (1.47). O

References

T.W. Anderson, Some stochastic process models for intelligence test scores, in: K.I. Arrow et al., eds.,
Mathematical Methods in the Social Sciences (Stanford Univ. Press, Stanford, CA, 1960) pp. 205-220.



Y. Su, S. Cambanis / Sampling a process 8¢

S. Cambanis, Sampling designs for time series, in: E.J. Hannan et al., eds., Handbook of Statistics,
Vol. 5: Time Series in Time Domain (North-Holland, Amsterdam, 1985} pp. 337-362.

G. Christakos, Random Fields Models in Earth Sciences (Academic Press, San Diego, CA, 1992).

D.L. Hawkins, Some practical problems in implementing a certain sieve estimation of the Gaussian
mean function, Comm. Statist.—Simulation Comput. 18 (1589) 481-500.

A.G. Journel and C.J. Huijbregts, Mining Geostatistics (Academic Press, New York, 1978).

A.G. Journel and M.E. Rossi, When do we need a trend model in kriging?, Math. Geclogy 21 (1989)
715-739.

T. Kailath, Some integral equations with “nonrational” kernels, IEEE Trans. Inform. Theory IT-12
(1966) 442-447.

J. Sacks, W.J. Welch, T.J. Mitchell and H.P. Wynn, Design and analysis of computer experiments, Statist.
Sci. 4 (1989) 409-435.

J. Sacks and D. Ylvisaker, Designs for regression problems with correlated errors, Ann. Math. Statist.
37 (1966) 66-89.

M.L. Stein, Asymptotic distributions of minimum norm quadratic estimators of the covariance function
of a Gaussian random field, Arnn. Statist. 17 (1989) 980-1000.



