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A random process X(t), t E [O, 1 J, is sampled at a finite number of appropriately designed points. On 
the basis of these observations, we estimate the values of the process at the unsampled points and we 
measure the performance by an integrated mean square error. We consider the case where the process 
has a known, or partially or entirely unknown mean, i.e., when it can be modeled as X(t) = m(t) + N(t), 
where m(t) is nonrandom and N(t) is random with zero mean and known covariance function. 
Specifically, we consider (1) the case where m(t) is known, (2) the semiparametric case where m(t) = 

&f,(t)+ o * - + pJ,( t), the pi’s are unknown coefficients and the A’s are known regression functions, 
and (3) the nonparametric case where m(t) is unknown. HereJ( t) and m(t) are of comparable smoothness 
with the purely random part N(t), and N( t j has no quadratic mean derivative. Asymptotically optimal 
sampling designs are found for cases (I), (2) and (3) when the bes t linear unbiased estimator (!?LiJE) 
of X( t) is used (a nearly BLUE in case (3)), as well as when the simple nonparametric linear interpolator 
of X(t) is used. Also it is shown that the mean has no effect asymptotically, and several examples are 
considered both analytically and numerically. 

sampling designs * interpolation of random processes * effect of the mean 

uction, results and exam 

This paper deals with the following problem of estimating a random process from 

a finite number of observations, which arises in statistical communication theory 

and signal processing as well as in geology (Journel and uijbregts, 1978) and 

environmental science (Christakos, 199 1). 

Suppose a random process t), I E [O, 11, is sampled at a finite number of 

appropriately designed points. the basis of these observations, we want to 

estimate the values of the process at the unsample eas e 

erformance by an integrate 

he process can be modeled as 
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ere m(t) is the nonr~ndom large-scaJe mean structure and we consider (I) the 

CM where m(t) is known or, equr ‘valently equals zero; (2) the semiparametric 

(regressions model where the mean can be modeied as m(t) = &f;(t) + l * = + &.fJ t), 

where the pi’s are unknown coefjlicients and theA’s are known (regression) functions; 

and (3) the nonparametric case where the macroscopic mean structure m(t) is 

(f) is the smalJ-scale random structure which models the temporal 

dependence and has zero means and known covariance function R( t, s) = 

~~( t)~(~). The centered process N is assumed to have no quadratic mean deriva- 

tive and the functions m(t) and J(t) are of comparable smoothness with the 

microscopic purely random part N(t) (specifically, m(t) and A(t) are of the form 

II: W, ~!~(~! ds!. 
There are three findings. The main one is that simpfe sampling designs are found 

which are asyn~ptoticaJJy optimal as tJ;e sample size increases to inanity. This is 

done for a variety of estimators. First the best linear unbiased estimator (BLUE) 

of X(t) is used in cases (1) and (2) and a nearly BLUE in the non~arametric case 

(3) (Theorems 1, 2 and 4). The second finding is that asymptotically the mean has 

no effect on the overall performance and can therefore be neglected (Theorem, 3 

and 4). This quantifies the discussions in Journel and Rossi (1989) and Sacks et al. 

(1989, p. 415). FLowever, an example (Example 2) shows that the mean function 

may cause some pe~urbation on the optimal sampling design points. The third 
finding is that the very simple nonparametric linear interpolation also leads to an 

asymptotically optimai performance (Theorem 6). 

If the centered process N(t) has exactly k (k = 1,2, . . .) quadratic mean deriva- 

tives, the convergence rate of the IMSE for the corresponding BLUE estimators is 
likely to be pl-(ki-” (compared with Theorem 1), but we do not investigate further 
this conjecture. 

The basic setup 

For the model (H), data 

{t,,,;};’ ‘I tt8.i E [0, 11, i = 1,. . . , n, and it is desired 
(t) at every (unsampled) oint t E [O, l] by a linear estimator 

C’,,(t) = (C,(t), *. .) C-Jr)). 
an be written as 

zT,,( 0, 
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are the variance and bias of the estimator X,,(t), respectively, and the following 

notations are used: 

r>,,(t) = (Rbl,,, 09 l l l 9 Jw,,, N9 

mk,,= (m(tn,l>9 l - l 9 m(ftl,n))9 RT,, = CRttn,t9 tn,j))nxrl- 

For every fixed sampling design T,Z, the best linear unbiased estimator correspon 

to those coefficientc E,,(t) which minimize the variance V*,,(t) subject to some 

unbiasedness condition which takes different forms in cases (l), (2) and (3). Con- 

sequently, the BLUE and its MSE have different expressions depending on the form 

of the mean, which will be specified for these three cases later in this section. 

For fixed t, the MSE,,(t) will of course vanish for any choice of sampling points 
T, containing the point t. However, we are interested in designing sampling points 

T,, with small estimation error over the entire interval [0, 11 of estimation. We thus 

use as performance criterion an integrated mean square error (IMSE) with weight 

function W(t), 

1 

IMSE,,( W) = MSE,J t) W(t) dt 

where W(t) is a 

sampling points 

(Sacks, Schiller 

Jo 

I 
I 

I 
1 

= b,,(t) W(t) dt+ %-,,o W(t) dt 
0 0 

4 b,, + s,, 9 (1.2) 

positive continuous probability density function on (0, I), and the 

T, are so chosen that the IMSE is as close to zero as possible. 
and Welsh (1989) found numerically two-dimensional sampling 

design points which minimize IMSE,,(l) for the semiparametric regression model 

(2) with Ornstein-Uhlenbeck error process and certain values of the sample size n 

and also provided some interesting discussion. However, here we consider only the 

one-dimensional case.) 

For fixed n, it is not generally easy to find n design points T, which minimize 

the IMSET,,( W). To avoid this problem we adopt the techniques of Sacks and 
Vlvisaker (1966) to find an asymptotically optimal sequence of Sam 

{ Tz}‘;” satisfying 

where the infinimum is taken over all designs T,, of sample size n. 

ecall that the regular sampling esigns detesmined by a density 

[Q, I] are T,(h) = {t,,;}: with t,,,t = 0 and 

r ,#.I + 1 
), a’=B,..., 

I ,,,I 

e regular sampling esign points divide the area enclosed by h (equal to 
one) into n - 1 subregions each with area I/( n - 1). 
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Conditions on the covariance function 

We consider centered random processes N(t) with no quadratic mean derivative, 
such as Wiener and Ornstein-Uhlenbeck processes, and need the following technical 

assumptions on their covariance function. 

tio ). The centered process X(t) - m(t) = N(t) has no quadratic mean 

derivative (i.e., R I-‘( t, s) does not exist at the diagonal) but its covariance function 

R( t, s) has continuous and bounded mixed derivatives up to order two off the 

diagonal, at the diagonal the limits Rp*q(~, uk) = lim,,,,,,,,,,,, Rpqy( t, s) from below 

(t > s) and from above (t < s) exist t’or 0~ p + q s 2 and are continuous functions 

of u E [0, 11, and the continuous jump function 

c;11( t) = RO*‘( t, t-) - RO*‘( t, t+) 

is nonnegative and not identically zero on [0, 11. Also the matrix R,, = 

( R( fn,i, tn,j))nxrt is invertible for every T,3 = { t,l,i}; . 

(C2). For each t E [0, I], the function R’*‘( l , t) belongs to WKHS( R), 
the reproducing kernel Hilbert space of R( l , l ), and its RKWS norm 11 R’*‘( l , t)ll R 

is bounded over [0, I]. 

Assumption (Cl) contains the usual regularity conditions needed in the asymptotic 

analysis of sampling design problems (Cambanis, 1985; Sacks and Ylvisaker, 1966). 
Assumption (C2) simplifies the proofs of Lemma 2 and Theorem 2 in the next 

section, but as Sacks and Ylvisaker (1966) point out, it is a rather restrictive 

assumption in the presence of (Cl) and it is not clear whether it is necessary for 

our results. 

The simplest examples of zero mean processes which satisfy Assumptions (Cl) 

and (C2) are Wiener process with R( t, s) = (T’ min( t, s), for which cw( t) = u2 and 

Roq2( 0, t) = 0; tF I rpocess with triangular covariance function R( t, s) = 1 - PI t - SI 

if lt-slsl/p and ( t, s) = 0, otherwise, for which (x(t) = 2~ and RO*‘( l , t) = 0; 
and Ornstein-Uhlenbeck process with R( t, s) = a2 e-pl’-sl, for which cy( t) = 2p(rz 

and 0.2( t, s) = &/ e-PIM - - p’R( t, s). SGL and Ylvisaker (1966) discuss some 
further interesting classes of examples. 

(1) Zero mean (m = 0) 

ere, the mean square error contains only the variance term VT,, ( t) and the minimum 

y,: , which minimize VT,,(t) 

(l-5) 
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where the superscript ‘8’ indicates the zero mean model. The corresponding 

and IMSE are 

I 
I 

IMSE;,8( W) = {R(t, t) - rk,Z(t)R+r,,(t))W(t) dt. (13 
0 

We have the following results. 

Theorem I, When m = 0 and Assumptions (Cl) and (C2) hold, the following are true. 
(i) If the function (a! W)1’2 is Riemann integrable, then 

lim n inf IMSEt,l( W) 
n+cc Ir,,l-n 

where the in$%mum is taken over all sampling designs of size n. 
(ii) If the function a! W/ h is Riemann integrable, then 

1 
lim n IMSE$,,(,,,( W) =; 
n+oo I 

’ 4t) 
- W(t) dt. 

0 h(t) 
(1.8) 

(iii) 77re regular sequence of sampling designs { T, (h,)}: determined by the density 
function 

/I 
1 

h,(t)={cx(t) W(t)}“’ (o(u) W(u))‘l’du 
0 

is asymptotically optimal, provided (a! W)Ii2 is Riemann integrable. 

When W(t) = 1 and the process is stationary, the asymptotically optimal sampling 

design is uniform, as one would have expected. 

(2) Semiparametric (regression) model 

Here, the mean m(t) is specified as follows. For some finite integer q, 

m(r) = 2 P;.m, 
i=l 

(1.9) 

where the pi’s bre unknown coefficients and the known (regression) functions J;- are 
of the form 

f(t) i 
= R(t,s)#i(s)ds, tE[O,l], i=l,..., q, (1.10) 

where each +i( l ) is a continuous function on [O, 11. Then the of (0 is 

w-,,,(t) = {r’,,,(t) -v%,, ;‘r,,(tj - F(t)]‘(F’,,,R~,~F,,)-‘F~“}R~,~X,,, 
,) 

(1.11) 
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where 

and 

F~,,={J;(j~,i)}~~~~:::~~=(~,~,,,~-~~~,*,,)=(F(t~*),.~‘~ F(ttl?l))’ . , 

(see Stein, 1989). The error can be written as 

X(t)- (IT,,(f) = [N(t) - r’,,(t)&,; f+JT,,l 
+ [ F;- 8: I?;,‘+ II ,2 (t) - F( t)]‘( F’,,RGt; F7;,)-’ F;,,R;,; NT,,. 

(1.12) 

Note that the first term in brackets is the same as the estimation error in case (1) 

NT,, is the projection of N(t) onto the linear space of A!,,. Thus, the 

two terms in (1.12) are orthogonal. It then follows that the MSE of X+,,(t) is 

SE’:,,(t) = %[X( t) -X;,,(r)]* = MSEO,,,( t) + G7;,( I) 

G- ,I (t) = 1%,,R;,fe,,W - F(t)l’(F~,,R~,~F~,,)-‘[F’,,R~,~r,,(t) -WI, 

and its IMSE is 

I%-,,,( W> = IMSE?-,,( W) + G-,,( W) (1.13) 

where I “7 ( W) is given in (1.7) and :I 

G,,(O W(j) dt, (1.14) 

We will show that for regular sampling designs T,(h), the term c7;,& W) 

converg 0 zero ate n? Thus, asymptotically, IMSE$,,( W) is the dominant 

term of SE”, ( ,, ore specifically, we have the following results. 

en the mean m(t) is as in (1.9)-( 1.10) and Assumptions (Cl)-(C2) 

ii) in Theorem 1 remain valid for the estimator X fi,,( t). 
is Riemann integrable, then 

(1.15) 
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where 4’(t) = (4,(t), . . . ,4,(t)) and S = (sr.i)yxy is 

Sij = 4i( t)R( ty S)&i(S) dt dS, i, j = 

a process 

a q X q matrix with elements 

f qe 9 l l - 9 

53 I 

mark 1. The results in Theorem 2 can be extended to more general (regression) 

ctions than those specified by (l.IO), namely of the form 

J, 

f(t) - i - R(t,s)+i(s)ds+ C b,R(t,a,), i=l,...,q, (1.10)’ 
j=l 

where the bid’s are known coefficients and the aij’s are known points in [0, I]. 

the model (l.IO)‘, the results in The em 2 still hold for the estimator XT,,( t 

in (1.11) with the sampling points mented by the set of points {aid; i = 

1 9 l ’ l 9 4; j= 1,. . . , Ji}. 

From (a) of Theorem 2, it follows that even though the mean structure (1.9) enters 
prominently in the expression (1.11) of the estimator XyT,,,( t), asymptotically it has 

no contribution to its performance. This suggests exploring what happens if we use 

the simpler estimator X:,,(t), which is the best linear unbiased estimator of X(t) 
for the zero mean model, that is, if we proceed as if m(t) = 0. 

Here, X%,,(t) is biased in the presence of the mean as in (1.9). In view of (1.5) 

and ( 1 .l l), we can write 

Xy7,,( t) = XoT,,( 0 + JC,,( t) 

where the term due to the mean is 

W,,(t) = -[F)T;,G,;~T,,(~)- F(t)l’(F;;IR-,fF~,,)-‘F;;lR,‘X,,. ,, 

It is straightforward to verify that Ikly,)( t) is orthogonal to (0 -X”,,(t): 
%‘[(X( t) - Xt,,( t))M%,it)] = 0. It follows that the MSE of X+,,(t) can be written as 

follows: 

MSE;,,(t) = %[X(t)-X$,,(t)]‘= qx(tj--x$,,(t)]*+ %[ 

Hence, even though Xt,,( t) is a biased estimator of X( t) it nevertheless has smaller 

LUE Xy,;,( t). Its SE, by direct computation, is 

where the double superscr 
e model (1.9)-(1. 

(1.6) an 

(1.18) 
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) is as in (1.7) and 

or this setup, we 

a ssumptions (Cl) and (C2), if the estimator X”, I, ( t) is used in the 

model (1.9)-( l.lO), then the following are true. 
(a j The resu&s (i), (ii) and (iii) in Theorem 1 remain oakid. 

(b) If the function c? mann integrable, then 

and when h = h,, the asynzptotic constant is 

(a(t) W(t))“* dt 

(1.19) 

( 1.20) 

hus, asymptotically, up to first order term, the simpler biased estimator Xr,,( t) 

has the same performance as the BLUE estimator X;,,(t). 

(3) Nonparametric mean 

Here no specific knowledge about the mean is assumed except for its general form 

which is as in (1.9). Specifically, for some unknown continuous function $(t) on 

S=h#i(t), tE 

(1.21) 

of the covariance 
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where $, ==-j:, $( t)e,( t) dt, C,’ , &‘<a, and the series converges in L-JO, 11 as we1 

as for all t E [O, I]. functions .fi( t) = h,“‘e,( t), i = 1,2, . . . , form a complete 

orthonormal set in S(R) and putting /I; = 4iA II” we ASO have 

m(t)= i Pi..L(z), (1.22) 
i=l 

where the series converges in RK S(R) and for all t in [0, 11, and CTZI pf&’ < 00. 

Note that e(t) =Cr , Pih ;“2 ei( f) where the series converges in LJO, I]. As in (1.22) 
the functions {J;(t)}: are known based on the covariance function (else some other 

complete set in RKHS( R) could be used) and the coefficients {pi};” are unknown, 

this nonparametric case can be viewed as an extension of the semiparametric case 

to q=oo. 

As examples, we list the eigenvalues and eigenfunstions for Wiener process, the 

process with triangular covariance function and Ornstein-Uhlenbeck process. For 

the Wiener process with R( t, s) = min( t, s), 

ei( t) = Jz sin( i -f)nt, hi = [(i 4)n]-*, i=l,2,... . 

For the process with triangular covariance function R( t, s) = 1 -It - .si if It - sl< 1 

and R( t, s) = 0, otherwise, 

1 
ei(t)=-(2 sin Yit + Vi CQS Vi!), A, = 2/ Uf , 

l/i 

where vi solves the following equation: 

tan(fVi)=2/Vi, Vi E [(i-$)T, (i+$r], i=O,l,... 

(see Kailath, 1966). The eigenfunctioLqc and eigenvalues of the Ornstein-Uhlenbeck 

process with R( t9 s) = e-I’-.‘I are 

2 ( > 
l/2 

t?,(t)= - 
uf+3 

{sin Uit + Ui COS Uit}, hi = 2/(1+ Uf), 

where ui solves the following equation: 

tan Ui =2Ui/(Uf-1), UiE[(i-$)*, (i+j)n], i=OJ,... 

(see Hawkins, 1989). 
For the model (1.22) with an ite number of paramet 

er of observations; 

instead, for sample size we estimate a finite number 

as 

cients C,,(t), write t 
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Then, minimizing the variance Vr,,( t) subject to the constraints CrT,,(l)hVT,, =J;( t), 

i=l,..., q, yields, as in the derivation of the BLUE for the model (1.9), the same 

estimator XT,,(t) as in (1.1 l), except that here X$,(t) is not an unbiased estimator 
of X(t). In order to emphasize that this estimator is applied here to the case where 

(1.9) is replaced by ( 1.22), i.e., the number of parameters is q = 00 in (1.22), we 
denote its IMSE as IMSET;“’ which can be written as 

IMSE;;“( W) = IMSE;,,( W) + GT,,( W) + QT,,( W) (1.23) 

where IMSEF,, is given by (%.7), GT,,( W) by (11.14) and 

QT,, ( W = Pi[~‘r.,(t)~,7,,-fi’(t)l 

where &-( t) are the coefficients of X+,,(t) (cf. (I .11)). For the above setup, we 

have the following results. 

Under Assumptions (C 1) and (C2), if the estimator X ‘:,,( t ) is used in the 

model ( 1.21)-( 1.22), then the resu Its (i), (ii) and (iii) in Theorem 1 hold. Furthermore, 

if the function a.* W’/ h4 is Riemann integrable, then for q = 1,2, . . . , 

lim n4{IMSE?,;&d W) - IM~E?-,,(A~( WI 
njoc7 

$(t)- t lQk&“‘ek(t) 
2 

C Ak’ei(t)+ I) W’(t) dr, 
h-l 

( I .24) 

and when h = h,, the asymptotic constant is 

(a!(t)W(t))“‘dt i Ai’+ f, P;h,’ 
k=l k=y+l 

(1.25) 

Letting q = 0 in (I.25), i.e., using the simpler estimator XT,,(,,,,,( t) in the model 

(1.22), yields the following asymptotic constant: 

(t))“*dt 4 ‘i: ~fh;‘. 
i-l 

By comparing this with (1.25), one can see that if Cy=, Pfh,’ <cp=, Ai*, then 

X0,, T (h ,( t) has a better asymptotic performdIkze than XY, (I1 ,( t), while if the reverse 
inequality holds, XyT;,(I,,,)( t) is better than X” I ,,# ,( 1:. fherefore, when the mean 
function m is n,f the form (1.21) for some (unkbwn) continuous function $, i.e. 

m E Range(R), the simpler estimator ‘i,,( ;) is recommended since there may not 
be any benefit from using the more co ligated estimator XyT,,,(,, ,( t), which requires 

evaluation of the eigenvalues and eigenfunctions of R( t, $1 

it is not clear whet 

ere, 7;,( t ) and letting 
qn increase appropriately as the sample size n tends to infinity, we show that for a 
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certain class of mean functions belonging to an infinite dimensional subset of 

RKHS(R), the estimator X:;,(t) is asymptotically optimal. Note that m E RKHS(R) 
iff it is of the form (2.22) with C’,“_, pf < m. 

esrem 5. Under Assumptions (Cl) and (C2) and for the class of mean functions 

given by (1.22) with xF=, l&l < 06, if the estimator X$;,(t) is used and q,, tends to 
infinity in such a way that q,jn remains bounded and 

4,: 

lim nA3 C Ai’=O, 
n+or, i=l 

(1.26) 

then the results (i) and (iii) in Theorem 1 hold. Furthermore, ifthefunction (cy W/ h2)( t) 

is bounded on 10, i], then (ii) in Theorem f also holds. 

Condition (1.26) provides a constraint on the number of parameters qn to be 
estimated on the basis of n observations. For Wiener process, 

4 

CA -’ = i {(i-f)~}2-fn2q”, 
i 

i=l i=l 

and thus, the constraint (1.26) is equivalent to ne3qi + 0, i.e., q,, = o(n). Similarly, 
one can justify that for a process with triangular covariance function and an 

Brnstein-Uhlenbeck process, (1.26) is equivalent to q,, = o(n). 

Linear interpolation 

The BLUE’s, considered so far, involve the evaluation of the inverse of a covariance 

matrix and more significantly, require the precise knowledge of the covariance 
function. This leads us to try a simpler nonparametric estimator. Here we consider 

the sample function of the stochastic process as a real valued function and we 

estimate its values in between consecutive samples by linear interpolation, i.e. 

estimate X(t) over each interval [ t,,,k, t,l,k+ ,I, k = 1, . . . , n - 1, by 

x(7;,(l) = {(tn k+, . - wwn,k)+(f - t,,.r,)X(fn,k+l)}l(fn,ktl - fn.k)* (1.27) 

It turns out that this procedure has an asymptotically optimal performance when 

the regular sampling designs zI( h,) are used! This happens, even though for each 

fixed n the linear interpolator X$,,(t) is generally different from the MUE. 
Here, we do not assume a specific form for the mean structure as in (1.21). Instead, 

we assume the mean function m(t) satisfies a older condition 

Im(t)--m(s)lSclt-slP, t,sE[O, 11, (1.28) 

where p E ($, 1) and 0 < C < 00. For this setup, we have the following results. 

Assumption 

If the mean m(t) satisjes (1.28), the covariance function R( t, s) satisfies 

(Cl) and cy W/ h is Riemann integrable, then for the linear interpolator 
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JcpT,,(a,w as in (1.27) we have 

lim n IMSE,,,,,,( W) = 
?I +op 

W(O dt, (1,29) 

anaf clearb X ‘T,, ( h,, ,( t ) is usymproticcally optimal. 

Theorem 6 implies that, when the centered process N is not quadratic-mean 

differentiable, a linear interpolator as in ( 1.27) has the same asymptotic performance 

as the BLUE with the same sampling density. In particular, when the centered 

process is stationary, the asymptotically optimal estimator X&J t) is entirely 

nonparametric, namely, completely independent of the covariance function R. 

For the linear interpolator it is possible to identify the higher order terms 

of the IMSE under additional smoothness assumptions. (This is rather complex for 

the BLUE’s.) For instance the second order term can be identified, and is in fact 

shown to vanish, when is dddition to the assumptions made in Theorem 6, the 

functions m( t), a(t), h( t) are continuously differentiable and the functions ah” ‘h -‘, 
( CY/~)” %-’ are Riemann integrable; namely as n + 00 we have 

I~f%,,~d W) = 
1 

6(n 4) 
- W(t) dt+o(n-2), (1.29)’ 

i.e. the coefficient of the term (n - 1)-2 always vanishes. The higher order terms 

(n - I)-‘, etc. (under appropriate additional smoothness assumptions) generally do 

not vanish, as is seen in Example 3 (equation (1.46)). 

Examples 

We first consider an example with mean m = 0, triangular covariance and weight 

function W(t) = 1. Here, for certain values of the parameter p in the covariance 

function, we are able to compute numerically the optimal design for every finite 

sample size n. For other values of the parameter p, the MSE is worse near the edges 

of the interval, and we will show how to select a weight function to reduce this 

discrepancy in the MSE of approximation between the edges and the middle of the 
interval. 

Zero mean process with triangular covariance. We consider the model 

triangular covariance function R( t, s) = ‘I - p.1 t - SI if 1 t - SI s l/p and 

R ( t, 5) = 0, otherwise, where p is a positike y 

When p s 1, for any sampling designs TQ = {t, i}y .+ ahe BLUE estimator , X”, ,I ( t j is 

fn.k+l - h,k 

9 
ifOG ts tnl, . 

if b,k s ts t,,k+,, 

k=I,...,n-1, 
(1.30) 
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and clearly, it is a linear interpolation of observations between successive sampling 

points except for t in the two end intervals. When the weight function W(t) = 1, 
for every fixed sample size n (22) the optimal sampling designs are Tz = {t”, i}; with * 

c,, = 1 - t”,., =i[l-(n-l)p,], 

I$ = t$-t(i-l)p,, i=2 ,..., n-l, 
(1.31) 

where pn E (l/n, l/(n - 1)) satisfies the following equation: 

4n(n-1)‘~2p~-(n-1){3(p+6)n-(2+3~)~& 

+4{3(p+2)n -(2+3p))p, -p2+6~ -24=0, 
(1.32) 

i.e. the points t”,,, , . . . . t”,,, are periodicaIly spaced with period pn, while the equal 

edges ti, l, 1 - t”,,, have length smaher than $p,. 

Since both the weight function W(b) and the jump function cc(t) here are constant, 

the regular sampling designs determined by the asymptotically optimal sampling 
density (h, = 1) are uniform including the end points, i.e., T,( h,) = {(i - l)/( n - 1));. 

5, the corresponding 
points and dots the 

MSE of X”,:(t) is 

To see the difference between TE and T,,( II,), we plot for n = 
points in Figure 1, with X’S denoting the regular sampling 
optimal sampling points, which are tabulated in Table 1. The 

2PKJ --t)[2-~(t~~,-t)l/[2-bL(n-l~P,l, 

MSEs( t) = wt - t$xtOn,k+l- t)lpil, 

wt- ton,rl)[2-~0- C,,1M2-P(n - OPJ, 

if t”,,, SE&+,, 

k=l,..., n-1, 

if t”,,, <t<l 

‘(1 33) 0 

and its IMSE is 

IMSE$( 1) = 
P 

612~An - OPnl 
{-2n(n - l)“ppz 

+[3p(n-1)+6n-2](n-l)p~-12(n-l)p,,+6-p). (1.34) 

” ” 
n m 

Fig. 1. Optimal ( - ) and regular (x) samphg design of size 5. 

K 

Table 1 

Uniform 

sampling points 

Optimal 

sampling points 

8.00 0.075 

0.25 0.288 

0.50 0.500 

0.75 0.712 

1.00 0.925 
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regulw sampling design T,,( h,) and its I 

WI f[l--k+(n-l)t] 

k-la(n-l)tsk, k=l:...,n--1, (1.35) 

(1.36) 

(I), denoted by SE(opt), and the I SEt,,,I,,,,(l), denoted by 

ure 2(a) for sample size up to 20 and for b_~ = 1. It should be 

pointed out that all values of p in (0,l j produce a similar picture to the one in 

Figure 2(a). From this figure, one can see that PMSE(reg) approaches IMSE(opt) 

quickly. To achieve the same IMSE error (lo-‘, lO_‘, lo-‘), the sample sizes needed 

for the optimal sampling design and for the regular design are listed in Table 2. 

hen p > 1, it is more complicated to obtain the optimal sampling points TE for 

fixed sample size n. Thus, in this case we use the regular sampling designs T,,(h,), 

i.e. uniform sampling with period I/( n - 1). For the sampling design T,&,) and 
fixed parameter p9 if there is an integer k satisfying 

kl(n -- 1) = l/P, (1.37) 

then the BLUE Xr,,t,,c,,( t) = r$,,tll,,j( t) R&,,,jXT,,(I?,,j takes a much simpler form. 
Indeed, if (1.37) holds, then the elements of the vector T~;,(~~,,)( t> are either 0 or linear 
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functions of t, and, as a result, the coefficients Y>,,(~,,,,( t) 

either 0 or linear functions of 1. y the uniqueness of the linear interiolation 
satisfying the conditions Xl+,,, ,,,,)( t,,J = X( t,l,i ), i = 1, . . . , n, it fol9ows that 

X;,,~,,,J(t) = (a - l){[ilC~ - 1)- mw- U/b - VI 

+[t-(i-l)/(n-l)]X[i/(n-l)]), 

when i-l+n-1 s i, i = I, . . . , n - 1, namely, X’i,,,, ,,,, (t) is a linear inter 

of observations of (t) between adjacent sampling points. As expected, the pattern 

of MS~?-,,u,,,,( 0 is of the same form in each subinterval [(i - I)/( n - I), i/( n - 1)]5. 

i=l V***‘) n-l. 

To see the pattern of MSE”,, ,, T (II ,( t) when (1.37) is not satisfied, we plotted it for 

p = 4.56, which makes the MSE relatively larger, and for a variety of sample sizes 
n. We found that the plots of (/, ,( t) display some variability. When the 
condition (1.37) is approximately satisfied:’ i.e. (n - 1)/4.56 is very close to an integer, 
the variability in the pattern of MSE’:,I,,,,,,( t) is not significant; for instance when 

n = 15, (n - 1)/4.56 = 3.07 = 3 and the pattern of MSE(&,,J t) is close to periodic 

as shown in Figure 2(b); and likewise when n = 6 for which ( n - 1)/4.56 = 1.096 =r 1 

and when n = 24 for which (n - 1)/4.56 = 5.043 ==: 5, etc. We also plotted in Figure 

2(c) the MSE for n = 12 for which (n - 1)/4.56 = 2.412. One can see that the peaks 
of the MSE over the two intervals near the end points are about 12% higher than 

the peaks over the middle intervals. The corresponding IMSE is 0.1048. 

Fig. 2(b). MISE vs. time with regular sampling design (n = 15). 

entire interval 
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0 
r*1 

d 

(D 

0 

0 
3 

0 0.0 02 04 C6 0.8 19 

Samp!inq Time5 

Fig. 2(c). MSE vs. time with regular sampling design (n = 12). 

\ 
\ 

Fig. 2(d). MSE vs. time with regular sampling design [n = 12). 

gives y in terms of x: y = I J 11-5x). We plotted the corresponding MSE( t) for 
several values qf x and found that when x is close to 1.062, the high and low peaks 

SE are only about 5% higher than the 

64 is shown in Figure 2(d). The p 

e low peak< :~e higher but the corresponding 

ear regressim i iener noise. ere, we are 
he optimal sampling design for every sample size n when the 
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or any sampling design T!,, the BLUE of X(t) is 

x ( f,,,J ) + t - at1J t n,k+ I 

_t {X(t,,,+,)-X(t,,,)}, if ;“‘i ts tn;y; 
l&h = 

1)-‘-Y I) 

-!- Jwn A 
t l 

if tn.,, stsl 
9 

n.n 

(1.38) 

which is a linear interpolation over (0, t,,,,,), and the corresponding MSE and I 

are, with tn.o = 0, 

if fnks ts f,lk+i9 

k’=O, I,...+-1, (1.39) 

if ttt,n stsl, 

IMSE;,,il) =ii --z- itn,k+, - h,k )’ +bt,fl(2 + ttl.,l )( 1 - ttl,,l )‘- ( 1.40) 
k ~0 

For every sample size n, the optimal sampling design is Tz = (fx,k};, with 

t~k=k(n’(n+l)}-I”, k=l,...,n. . (1.41) 

Replacing T,, by Tz in (1.40), yields 

When W(t) = 1, then h,(t) z 1, and hence the regular sampling design generated 
by h,, is peridodic T,,(h,)=((k-l)/(n-1));. By (1.40) we obtain 

which implies that 

For u = 5, the optimal sampling points and the regular sampling points are plotted 

in Figure 3 as dots and X’S, respectively. The MSE esponding to TP, is a perio 

function of t except for the last interval and the E of T,,( h,) is periodic over 

[0, l] as expected. They are plotted in Figure 4(a) and (b), respectively, and their 

I[MSE’s are 0.0147 and 0.0167. 

one can see t 

x ” ” u 
n n 

Fig. 3. Optimal ( - ) and regirlar (x) sampling design of size 5. 

K 
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;f 
0 

s: 
6 

8 
000 02 04 0.6 0.8 10 

Samoling Times 

Fig. 4(a). MSE vs. time with optimal sampling design (n = 10). 

Sampling Times 

Fig. 4(b). MSE vs. time with regular sampling design (n = 10). 

.-7.,-r ’ 
__J b +_ _ 1.. . C’ 

Fig. 4(c). IMSE vs. sample size. 
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Table 3 

IMSE n WI n 
w3 

10-l 2 3 
1O-2 17 18 
1O-3 167 158 

needed for the optimal design is n opt(~Z) = l/[( I +2~~)~ - I] and the sample size 
needed for the regular sampling design is nreg(E2) = I + I/(6e2). For some values sf 
E’, these sample sizes are listed in Table 3, which show how efficient the equidistant 

regular sampling design is in this ease. 

To see the impact on the sampling designs of the mean function, we take f( t) = 0 

here. Then, the IMSE is 

If - 1 

IMSE;,,(l)=: c (tnk+l-InI\)Zf~(l-f~~1)2, 
k=O * 

. . 

and the corresponding optimal sampling design is T”, = { fz,k};l with 

t* n.k=3k/(3n+1), k=l,..., n. 

Note that for k=l,...,n, 

fY7.k - t& = k{[(n + 1)n2]-“3 - 3/(3n + 1)) 

=k l-r,- l 2 I+1 1 
---+O(n-3) 

n 3n’ Bn’-ii 3n’ 9n’ I 

so that a linear mean function perturbs the kth optimal sampling points by k9-‘n-” + 
o( nw3). 

xample 3. Random processes wirh stable-type covariance. We consider a random 

process with covariance function R( t, s) = e-P”-‘l”, with parameters p > 0 and 

0 c v c 2. When v = 1, it is an Ornstein-IJhlen&eck process. The asym 

optimal regular sampling desi hash,4,namely T,,(h,)={(i-l)/(n-I)};1,when 

tted it for a. variety of values of v and p and foun 
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* 0.0 02 04 06 

S;lmpling Times 

Fig. 5(a). MSE vs. time with regu!ar sampling design 

02 0.4 06 0.8 10 

Scmpling Times 

Fig. 5(b). MSE vs. time with regular sampling design (n = lo), u = 1.82, ,u = 1.5. 

p = 1.5 and P’ ;o qhows the near periodicity except for the two end intervals where 

caked; here the magnitude of MSE($;,(I,C,,( t) is negligible, i.e. less 
than I.2 x IO? 

use of Ornstein-Uhlenbeck covariance 

an unknown comtant Tean m(t) = p, which is of the 



erformance when the asymptotically o timal (unifGrm) sampling 
design T,,(h,)={(i-l)/(n-I))‘,‘is used. 

The estimator Xt,,,lp,,,( t) is given for t E [z,~,~, f,l,l\ +‘I9 k = 1, . . . $ n - 1, by 

X~,Jh‘,,W = 
(e’ 1r.A t I --I -e- (‘K~ +I-“)X( t,,,A) + (e’-‘d - e-ripr,,.!~ J) 

e ‘/‘(,I-i b -e -‘/(tI-i’ 9 

and its IMSE is 

where 

V r,, ( h,,) = ( e 7/01-‘)fl)/(el/‘“-“_ l)_(n _ l), 

B2T,,L II,,) 
_((4_3n) eY!n-!!_j_4el/‘“- “+3n _2}/( 1 +,‘/(fI-‘y 

. 

The BLUE X’,, T.( II ,( f ) is given by ( 1 .l l), and can be simplified for t E [f+ 

k=l,...,n-1,;s 

t,, c, + ,I, . 

c e ‘u.1, + 1 
--I 

xi-,,,,I,,)(~) = x~,,ch,.,w - 
-e-(‘,,.l+l-rl+e’-‘,,.:. _~-“-‘u.A’ 

e l/(11-I) -e -‘/(n-l J -1 
\ 1 

Wh)+U -e- “+‘)) c;:,l X(t,J + X( t,,.,,) 
(n-2)(1 -ep”“1p”)+-2 

where Xr,*( h,,)( t) is as in (1.42), and its WISE is 

l+e ‘/(!?-I) 

IMW-,,,hJW = b,Jlr,,)+ 2+ ,(e’/‘“-“- 1) BIT,,t II,,) 

1 
=-- 3 1 

1 1 1 
-+ n-l A- (n-1) 5(n-l)3 -+qn-“) 1 , 

(1.44) 

(1.45) 

where VT,,( h,,j and B;,,, ,J,,j are as in ( 1.43). 

Here the linear interpolator given by (1.27) is also unbiased, and through some 

straightforward calculations, its WISE is 

IMSE’ :, T,,(ll ,(1)=${6(3-2n)+[12(n-l)‘-l](l-e-’;’”-9) 

1 1 

i 

1 =- -- I 
3 n-l 

--+O(,n-“) . 
15(n-1)’ J 

we plotted their I 

responding to p = 25 is in Figure 5(d). 
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SGmpIing Size 

Fig. 5(c). IMSE vs. sample size ((beta=3.5) 

-2 4 6 8 10 '2 14 16 18 

Sampiing Size 

Fig. S(d). IMSE vs. sample size (beta = 25). 

So far, we have considered examples with covariances having constant jump 

function a(t). In the following example, we consider an error process with a 
non-constant jL.0; Tmction in order to illustrate the difference in performance 

e uniform sam ling &sign and the regular design determined by the 

timal sampling density. 

prsce55 wit-h indepen increments and non-constasa t 

covariance function 

mint I.\) 

(b, s) = sQ( 

convarlance 
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Clearly, when g(u) = I, X( O) is the Wiener process discussed in 
(2, s) = min( t, 5). 

t is straightforward to obtain the jump function 

a(t)=g(t), fE[O, 11. 

For simplicity, we choose g(t) = tP where p > 0 is a constant, in which case 

R( t9 s) = {min( t, s)}“+‘l(p + 1). 

For any sampling design T,,, the corresponding LUE of X(t) is 

@+I 0 ’ X$,,(t) = Ll.?+’ - tp+‘Pwn.k) + (tP+’ - t~~;‘)wtn,k+,) 
p+1 - ty 

9 

r&k t I , 

(1.47) 

if t,,@ tS tnqk+,, . k=O,l,...,n-l,wheret,,,=O,andXO,(t)=X(t,,),ift,.~t~ 

1. This is (p + I)-power interpolation: linear interpolation when p ‘= 0, quadratic 

interpolation when p = 1, etc. Here, the asymptotically optimal sampling density 

function is h,C t) = (1 + p/2) tp” and the regular sampling designs determined by h, 

are T,,(h,) = { tn,k};l with 

t,k={(k-l)/(n-l)}““+P), k=l,...,n. * 

To compare the performance of the uniform design T,( 1) and the regular design 

T,J II,), we plotted the IMSE of Xt,$(, ) (t), denoted by IMSE(unif), and the I 

of x0 ,, T (h ,( t), denoted by IMSE(reg), versus the sample size n for values up to 20 

and for a variety of values of the parameter /L We found that the larger p, the more 

significant the improvement of T,l ( II,)) over Tn( 1) is, which is intuitively clear because 

when p is small the regular design 7&‘2,) is close to uniform. For p = 2, the plots 

are shown in Figure 6, from which one can see the considerable improvement of 

T,(kJ over T,(l). 

2 4 6 8 10 :2 14 16 18 20 

Sampling Size 

Fig. 6. IMSE vs. sample size. 
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For any positive weight function (t j and random process (t) in (La), the 

random process Y(t) = as a mean function m(t) and centered 

rified that the BLUE of k’(t) is AV(ij times 

SE of the BLUE of X(t) with 

(t) equals the u SE of the BLUE of Y(t) (i.e. 

hus, without loss of generality, we carr take W(t) = 1 in the 

following proofs. For notational s~m~licity we will write IMSE for I~SE(~) 

throughout the proofs. 

efore turning to the proofs of the theorems, we establish the following lemmas. 

of. Write 

.f( ) t = R( t, s) ds = %‘N( t) N(s) ds. 

Then it follows from the Cauchy-Schwarz inequality that 

(t, s) dt ds 

(*, t,Js i = I,. . . , va}. 
establishes (2.1). •1 
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Let fi,-,,( t) be the projection of N(t) onto span{ (2 ,,,, ), i = 1,. . . , n) an 

VW,, ,), * * l , . M a,,.,, 1). Then 

where &(t) = (c,(f), . . . , e,,(t)) = &(tjRT,j. 
Define 

Then, (1.7) can be written as 

IMSE;,, = i 
I 
,I., t I I. [p(t) -pT,,W] dt. 

a’ -z 1 I,, , 

Since A,,( t,J = N( t,l,i), we have 

(2.2) 

and since each @r) is a linear combination of R( t,l,i9 t), i = 1, . . . , n, it follows that 

fij( t) is piecewise continuously differentiable up to order two with knots tn.;, 

i= 1,. . . , n. 
Moreover, it i’diows from gT,,( t,J = N( t,J and the invertibility of R,, that 

cjtt*i)= 

I, when j=i, 
. 0, otherwise, 

i, j=l,..., n. (2.4) 

Note that for each t E [O, I), 

p’“(t+)=!~~cj{R(t+At, t+At)- R(t, t)}/At 

= lim 
R(t+At, ?+A?)-R(t+At, t)+R(t+At, t)-R(t? t) 

Jr LO At t 

= R”*‘( t, t-) + R’-‘( t+, t) = RO*‘(t, t-)+ R’*‘( t, :+) 

where the third equality follows from Assumption (Cl) and the last one from t 

symmetry of R ( b: s). Likewise, for each t E (0, I], we find 

p”‘( t-) = hn, ( 

Thus, p(t) is differentiable at each t E (0,1) an 

‘“‘(t) = 

ave, 



42 Y. Su, S. Cambanis / Sampling a process 

and by (2.4), 

ThUS, 

pytfJ - p’:,pfl,i+9 = o%?,i, w-) - ow*,i9 t,,i+) = aJ- 

The second derivative of pT,,( t) is expressed in t&e following lemma. 

(2.6) 

. Lhder Assumptions (Cl) and (C2), it? have, fbr any t E (tn,i, tn,i+l), 

p~,'(r)=2a(t*,i)/(t,~,i+*-t~,j)+8(1), i= 1,. l 0, n-1, WJ 

where O(l) is uniformly bounded in t and n. 

* For convenience, we denote t,i by ti. NON that for t E ( ti, ti+ I), 

pF;(t) = 2d[~~,,(t)r~,!(t)lldt 

~2 i ~~“(t)R”*‘(tj, t)+2 i ej(t)R’*‘(tj, t). 
j=l j= 1 

For the first term, using the Taylor expansions 

R($, tij= R(tj, t)+ R’*‘(tj, t)(ti-t)+ ’ (ti-U)R’*‘(ri, U) dts, 
1 

(2.8) 

I 
I+1 

($9 ti+l)= R(ti, t)+RO*‘(tj, t)(ti+,-t)+ (t. f+l - u)R”*~(Q, u) du, 
t 

we have 

I 

‘+’ (ti, ti+l)- R(qi, ti)}- (tit, - u) Rov2( tj, U) du 

0v2(ti, U) du 9 (2.5)) 
I 

I 
,+I I 

I 

- 

Cti+l - (ti-U)e:?'(U) dt4 
I 
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y Cauchy-Schwarz inequality, for f E ( ti, ti, i j, s E [O, 11, 

I 
t 
t+l 

s Ct. I+1 -u){r~,“(u)RT,~r~,)(ld) l P’T,,(s)Ra;f~~,,(s)}“‘du 
I 

I 
f 
t+I 

s Ct. r+l - u)I( Roq2( 0, u)llR du l R”‘(r, S) 
I 

s$ sup IIR’*‘(m,t)llR. sup R”‘(s,s).(r,+,-t)‘~const.d;, (2.1 a) 
OSfSl OC=SZIl 

where the second and the third ineqlualities follow from the fact that I$‘,“( I) R +,: $‘,)( t) 
is the norm of the projection of R”*“( 0, t) onto span{ R(ti, l ), i = 1, . . . , n}, v = 0,2, 

and the last one from the continuity of R( l , l ) and Assumption (C2). Likewise, for 

all de (ti, C+A s E 10, 11, 

I I 
i ’ (ti-U)RO*Z(tj, U) due C++(s) c const. df , 

j=l I, 

a - u)@‘(u) du l R($, s) sconst. df, (2.12) 

I I 
a 

i ( 
h 

a-u)R’*“(& U) due (6 - v)ej’)( v) du s const. d:, 
j=1 I 

where a, b = ti or fi+l. By (2.8), (2.9)-(2.12) and (2.4), 

p’:;,‘( u)df = 2 i diei”( u) . di O*‘(ti, u)+2df i &‘(u)RO*‘(t,, U) 
i-1 j=l 

~2 i {Ci(ti+,)-L’i(ti)}(R(t,, ti+l)- 
j=l 

Using Taylor expansions and Assumption (@2) repeate 

(‘v’( tip ti+)di + df 
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Therefore, 
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from which (2.7) follows. q 

The IMSE is given by (2.2). By Taylor expansion, (2.3) and 

p(t)-pr (t)=(P(l)(ti)-p(:,((ti+)}(t-ti)+ ‘(1_u)lp”‘(~)-p~~(u)J du ,I 
I 1, 

I I 

I 

=a(ti)(t-ti)+ ‘(t-u)p’“(u)du- (t-u)pF,‘(u)du. 
I, 1, 

roceeding as in the derivation of (2.5), we can show that p( 0) has a second 

derivative at each t E (0, 1) given by 

p”‘(t) = RoVz( I, t-) + 2R l*‘( I--, t+) i- P( t, t+). (2.13) 

By (2.13), the boundness assumption in (C2) and Lemma 2, we obtain 

which yields 

I 
I+1 

[p(t) -p7;,Wl dt = $Q(ti)df-~a(ti)d;?+dfO(l)=$~(ti)df+dfO(l) 
I 

and then by (2.2), 

0 

7;t =k i Q(ti)dTf i dfO(I), (2.14) 
i 21 i-=1 

uniformly in n and t. iilder’s inequality, for large n, 

I 

n a\ti)df 2 
i ._ 1 

a 
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which provides the asymptotic lower bound of n IMSE;,,. 

follows from (1.4) and the mean value theorem of integrals tha 

where wi E [ ti, ti+l], i = 1, . . . , n - 1. By (2.14, we can write 

IMSE;,,(/,, = 
1 *-’ 0 di _t*(n-‘j. 

c 
6(n--1) i=i h(wi) 

Then, by the Riemann integrability of the function (a/h)( a), we have 

1 a(t) - dt. 
1 h(t) 

Hence, (ii) holds. 

Replacing h by h,, then clearly, 

1 
lim n IMSE&,l,,l = -6 
II --, Jc\ 

(2.16) 

The results (i) and (iii) follow from (2.15) and (2.16). Cl 

By (l.13), since G,, 2 3, we have the following inequality 

and thus using Theorem 1 and taking h = h,, we obtain 

Therefore, to show Theorem 2, it suffices to show (1.15). 

Note that the (i, j) element of the matrix Fk,,Rfij FT,, is f:,-r,,R~,~&,, and as n + 00, 
it tends to sii = 1:) 1:) +iR+i as follows from 

s Ilf i- f II ,i R I- k--n-l \ J o J o / 

where the last inequality follows fro Lemma 3.P 

(2.17) 

I -I 
i. T,, ( h ) T,,C II 1 f j,T,,C h 1 - 

) is ce rate is n-‘. 
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By using the inequality 11 -‘- B-‘II 6 liA-‘ii’iiA- Biiil +O(!i 
s and ii 9 /I denotes the usual 
= (a,,), and (2.18) we can conclude that the matrix 

s to the matrix (s,J ’ = S’ elementwise, as n + cx). 

milar to the derivation of (3.43) in Sacks and 

Ylvisaker (1966), we have, for every k = I,. . . , n - 1, i = 1,. . . , q and t E et,, tk+l), 

2.0 ( ai,k,s)#i(s) ds dk(t-tkJ 

I 
I 

- R'*'(Ti,k, S)+i(S) dS 
0 

(2.19) 

where ai,k, 7i.k E ( tk, t) and depend continuously on t. Since for every t E [0, I], 
y O, t) E S(R), there is a random variable 8, E spz~{ N(s), 0s .; G 1; such that 

R’!*‘( - , t) = ZGV( l )& and 11 R”*‘( l , t>l$ = 86:. Then by using Cauchy-Schwarz’s 

inquality, Assumptions (Cl)-(C2) and Lemma 3.1 in Sacks and Ylvisaker (1966), 

we have, for each t e ( tk, tA+,), 

1 

f 
I 

i, T;, 7;; r’;;,‘i 0 - R’*“( t, s)4i(s) ds 

I 

N(s)4i(s) ds )I 

where the coast. is ind I is as in (2.17). From (2.19) and 

) i=l,..., 

.T,,( 0 = -~((Y~i)(ai.k)dk(f-tk) 

+i( f s 9 (2.21) 
1. j- ri-l 

0) is in ent of i, k and t. T 
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‘.+I f 

I -&$j)(a;*,,)d~(t- r,)+&!t#l;)(r,,~)(t - tjo2+Q(l)qd~ sup L& 
15 I-n-1 I 

. 
-~(~?i)(aj,k)dk(t-t,)+~(~~i)(~i,k)(t-tk)2+Q(l)~d~ SUP d, dt 

Is/sn-] I 

-t~(CY~i)(ri,k)(LY&i)(?j,k)+O(l) SUP d,’ 

1 
dk 

I:;l~~-l f14h4( WA) 

and by the Riemann integrability of the function a-)4i&jh-4, 

1 
+ a’( t)+i( t)+j( t){&-h-h+&} -dt 

h4W 

1 

s 

i at’(t) 

=- 120 
- diitt)+jCt) dt- 

o h4(t) 

Finally, writing S-’ = ( Vii )yxy, yields 

n”G 
1 

T,,(h)+ t i? ‘.-- 
i=l j=l ” 120 

and (1.15) follows. Cl 

(2.22) 

(2.23) 

T,,(t) = (&,, 
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which is of the same form as GT,,( t) except that here the matrix A is constant (i.e. 

does not depend on n). Thus, (1.19) follows immediately from (2.23). Cl 

f we can show that 

1 
lim ~1~ GT,,,,,) =- 
n-m 120 

and 

1 
lim n4 QT,,M, =E 
n+oo 

t)(t) - i Pkhi”2ek( t) 2 dt, 
k=l 

(2.24) 

(2.25) 

then (1.24) follows. Indeed for the regular sampling design 7J h), by Theorem I, 

(1.23) and (2.24)-(2.25), we have 

n+oo 
SE:,,,,,,,, = lim n inf IMSE:,, G lim n inf IMSE’;;Y 

n+or IT,,I-n II-rK p-,,I=,1 

fI4c-c SE(:,,c,,,+ lim nGT,,(,,,+ lim nQT,,(,,, 
n-+m n+w 

which implies that (i) in Theorem 1 holds for the estimator XT,,(t). The results (ii) 

and (iii) follow from ( 1.23) and (2.24)-(2.25). Therefore, it remains to show (2.24) 

and (2.25). 

using 

e orthonormality of the A’s in the S(R), we have, for 

3 .fj)R = sij3 an d moreover, by putting 4i(t) = A,“‘e,(t) in (2.18) and 

SUP I$‘i( I)] = A i_‘l, SUP IAiei( f)l 
0. I’ I o- I’ I 

I 

M(s)e,(s) ds 

I/Z 

s -.3/2 
I S I’$, I\ =const.Ai’, 

o- I’ I 

f 
I B 
i, T,, ( h ) -F,, ( II ) 

at 

(2.26) 
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oofof (2.25). y the unbiasedness constraints on the parameters pi, i = I, . . . , q, 

and the form of CT,,{,, ,(I) as in (1.1 1), we can write 

A 
Q T,,(h) = {C 

I 
r,, ( h 1 (0 m r,, ( h 1 - m(r)}’ dt 

= 

J 

I 

{ r~,,,l,,(t)R~,~~,~~mT,?(lr)- m(t)Y dt 
0 

I 

7;fdw,,m- m(t)1 
) 

I . 
-F T,,(k~~~,~(IIIYT,,(I,)(l) - mw 

I . 
(F T,,l/I)R7,1,111F~,,,/~,)- 'F:,,(h,R~,~t}l)m~,,t/tr dt 

J 
I 

+ {(F 
I 
~,,~G'w~T ,I ,I m(t)- UN 

0 

9 (F~,,,,,,RT,t(,r~F7;,t,l,)-'F;,,t,l,RT.jth)m~,,lh,)2 dt 

AD 1,7,,(h)+ &,T,,m+ 47-,,w 

For the first term Dl,T,,(l,), by using (2.22) with 4i = $, we have 

n4D 
1 ’ cc(t) 

l.T,,(w+--- 120 J - @I(t) dt. 
0 h4(t) 

For the second term D1, I;,(A), note that by the orthonormality of J’s, as n + a, 

F’,,, 11 1 R ;,j f /t 1 m T,, ( /I 1 + (pi, . . . , &)’ elementwise, 

and then from (2.22) and (2.27) with 4i = (I, and & = h;“‘ei, 

Likewise, 

II4 
1 

t.T,,c /I 1 + - 120 J 1 (: $$ i &Q”eJt) 
h m- I I 

‘dt. 

Therefore, 

r analysis as at t 

at to show 

Ei T,, ( II ) = 0. 
II-WX 
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y the orthonormality of J’s and the following inequaiity, 

If I 
i, T,, ( 11 1 T,f(,,,~.T,,(hil s {f :.T,,(hl ;,~(,,,JJ,,(,,, ‘f;.T,,(h, 

wehavefori,j=l,... rq,asn+oo, 

f :. r,, ( It ) 
-1 
T,, ( h 1 f .i, S,, ( h 1 = S;j +0(l), (2.30) 

where o( 1) is uniform in i and j. By (2.30) and straightforward computations, it is 

verified that 

(F I T,,(hJG,~(IlJ=T (J’ = 
II 

(I+o(l)W’)-‘= P-{o(l)/[l+o(l)q,,]}UU’, 

where U = (1, _ . . , 1)‘. Thus, Gr,,rR) can be written as 

which together with (2.24) and the boundedness of a2/h4, imply that for large n, 

n -3 Y,, 

nG T,,(h) = - CA 12Oi=l ” 

+o(f)n+ 

thus (2.28) foilows from (1.26). 

By use of (2.30) and the matrix inversion formula above, we have for i = q + 1, . . . , 

*I c T,, ( 11 ) (Of r,T,,(h 1 - i f(t) 
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can be written as 

+241) f P; 
i=y,,+l 

Far the first term EI,T,,(hj, we use the inequality 

to produce 

asn + 00, since CT=, Ipi1 < 00. Using the Cauchy-Schwarz inequality and 1 ~,T,(h~( t)l s 

{ IWE:,,& t)}“’ we obtain 
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will ~~~1~~ if we show that ra C;f*: f ET:, I;1 V, Vi is bounded. From (2.21 f-(2.22) it 

follows that 

and since q s Const. h k -‘/’ and a/h’ is bounded we have 

V,VjSn3_hwt. 2 h~1+o(rC4) 
k-1 

The first term tends to 0 by (1.26), and the second is upper 

o(K4)q,, c;Y_l Ail, which also tends to zero by (1.26). Similar to the 

(2.28), it is shown that 

n&J,& h I-+ 0. 

Thus (2.29) holds. 0 

bounded by 

derivation of 

of eorem 6 an For k=l,...,n- 1, introduce the notation 

Then the linear interpolator (1.27) can be written as 

X’,,(r)=X(t,)+a,(t){X(tl,+,)-X(t,)}, tG, &+,I9 

its MSE is 

-+{R(tr, 
Y t,)-2R(t, t,<)+l?(r, 01 

+{fw, e, I) 4-H ) -2R(t,, ?A+,)+ R(t/i, th))&(t) 

bit; 1,‘ = (2.31) 

e bias term, usin ( 1.28), we haye 

h+l 

i- c-ct’,( I)(&+, - th)“} dt 

I!%+1 
a;(t) dt 

fL 
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which yields 

83 

-+;c2 - as n+m. 

Since 2p > 1, 

nA r,,chr”O as n+oo* (2.32) 

Moreover, if m(t) is continuously differentiable, simple calculations show that 

We will establish Remark 2 (instead of the simpler Theorem 6). 

For the terms involving the covariance function R, we Taylor-expand around the 

point tk. Then, for t E [ tk, tk+,], we have 

R( tk, t) = R( tk, tk) -I- R”*‘( tk, tk+)( t - tk) +;R’**( tk, uk( t))( t - tk)’ (2.34) 

and using Taylor expansion twice and (2.34), we obtain 

R(t, tk+,) = R( tk, tk)+ R”*‘( tk, t,+)d, + R”*‘(tk, tk-)(t - tc,) 

+;R’**( tk, wk)d; + R’-‘( tk--, t,+)d,( t - fk) 

+;R’*‘(vk(t), tk+,)(t-tk)‘, (2.35) 

where tk<uk(t), vc;(t)<t and tk<wk<t- k+, and both uk( t) and vk(f) depend 

continuously on t. Also, for t E [ tk, tk+,], 

R(t, t) =p(t)=p(tk)+p(“(tk)(t-?tk)+fp0)(})’k(t))(t-t~)2, (2.36) 

where tk < yk( t) < t depends continuously on t and p" I, p”’ are given in (2.5) and 

(2.13) respectively. 

In light of (2.34)-(2.36), we have 

B,,T,,(t) = &)(t - tl,)+;{p(2’(y~(t))-2R0*‘(tli, uk(t))}it- TV)‘, (2.37) 

B2,7;,(t)/[2ak( t)] = --a( tk)( t - tk) - R’*‘( tk---, fk+)ddt - td 

+${ y tk, Uk( t)) - ‘qvdt).? tk+,Mt- t& (2.38) 

= cu(tk)dk f;{p’2’(yli(tk+,))-2 

,‘$$&t+o(n-‘). 
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If h is differentiable, then 

h( tk) + k”‘(int.)( t - tk), which 

S. Cambanis / Sampling a process 1 / 

Taylor expansion at the point tk gives h(t) = 

together with the definition of regular designs yield 

2 
h”‘(int.)d~ +2h(t&& -n-W= 

Solving this equation, we have 

1 I 
~kz------- 

h”‘(int.) 1 

h(tk) n-l 2h”(tk) (n-1)’ 
+O[(n - l)-‘1. (2.41) 

Now we derive the asymptotics for Bj,T,, 9 j = 1,2,3. Emnloying (2.37) and the mean 

value theoFern of integrals, yields, for any sampling design T,,, 

n-l fl, tl 
B ITT,, = z{ (1 CY fk (t-tk)dt 

k=l 

2 

5 

II, + I 

2 IL 

[pi’)(yk( t)) -ZR”*‘( tk, u,( t))]( t - QZ dt 
I 

If- I 
= z {;a( t&i; +i[ p(“(yk) -2R0*‘( t,_ uk)]d;} 

k=l 

and then using (2.42), yields, 

II - I 

& 

(I) in 
l,T,,(h) =I(n-l)-‘~~~~d~-~(n-1)’ C a(tk) hh3~r~~‘) 

k=l h 
n- 1 

+d(n-l)-’ C [p’2’(yk)-2R0*‘(tk, uk+)] 4 -+o(n-‘). 
k=l h2( tk) 

Finally, by iemann integrability of the functions or/h, ah”‘/h3, p”‘/h’ and 
R”*“( . , . +)/h’( 0) and putting g = a/h in (2.40), we have, for large n, 

B 
‘a 

1, r,, ( 11) =;(n-1)’ , h(t)dt--i(n-I)- ’ J1: $j(s)“‘(r, dt 

ewise, by (2.38 
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and by (2.39)-(2.41), 
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1 ‘CY 
=$2-l)- ,(t)dt-&z-1)’ 

* 0 

-i(n-l)-* a(t)$$dt 
I 

! 

0 

(1) 

(0 dt 

I 

+i(n -I)-’ {p(*)(t)-2R"**(t, t+)} j-j$j+o(n-‘). (2.44) 

Therefore, by (2.42)-(2.44) and (2.13), we find 

+(n - l)-’ 
ho(t) dr 

a(t) - 
h-y t) 

I 
I 

+&(n - I)-’ 
0 

{P(t, t-)-I?“*‘(?, t+)}j-$+o(n-‘), 

I 
I 

=i(n-I)-’ o f(t) dt+o(n-‘), 

which together with (2.31)-(2.32) yield (1.29). Cl 

(2.45) 

roof of ( )-(1.34). It is straightforward to verify that the kverse of the 

covariance matrix R,, is RF,: = (a& x,1 with 

sL (l/d, + lIdi+!), aii 21u 
i=2,...,n-1, 

ai,i- 1 = ai-1.i - --ll(pdi), i=2,. . . , n, 

Laii = 0, all other i, j, 

where di = ti - ti- 1, i = 2, . o a z M in b,, =2/p -(t,, - t,). at for i ‘Py 

functions f and g, 

f I 7;, {f(ri+,)-.f(ti))Cg~ri,-*)-P(ti)}l(ti+l- ?iJ 

+~~f(tii+S(tn)){gitl?+g4tli))! 

Letting for fixed t, f(s) = R( t, s) and g(s) = (s) in (2.46), yields (1.30). 
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For fixed t, takingJ(s) = g(s) = R( t, s) in (2.46), xe obtain the MSE for the BLUE 

XDT.,( t), 

MSE$( t) = 

i 

2&W-- fk)(fk+, - N(G+, - fk), 
if t& ts tk+l, 

k=l 9**-9 n-l, 

c 2p(t-t,,)[2-p(t-t,)]/[2-&,,-t,)], if 1”,,< El, 

(2.47) 

which gives the WISE with the uniform weight function W(t) = 1, 

II - I 

IMSE;,(I) = 1 -;p(t, - t,)+$ c (ti+, - t# 
i=l 

-$y4t. - t,Nl +/a,, - t,)) 

+2--Y 
cI4[*+(1 -k4'l-6P2(frf,A 

+3p2(tl + ttl)‘llP-P(tn - Ml* (2.48) 

To find the minimizer of IMSE,,( l), set a IMSEt,,( l)/ati = 0, i = 2,. . . , n - 1, 

which yield the following equations: 

d2 ==. . =d,Ap,,, or tj=$(ti-l+tj+l), i=2,...,n-1, (2.49) 

and one-step more calculation gives d’ IMSEt,,( l)/& = 4> 0. Thus, IMSE$( 1) 

achieves its minimum in the region 0 s t, < t2 < l l l < t,, s 1. Using (2.48)~(2.49), we 

have 

IMSEO, (1) 
,I 

= 1 -$<n - l)p,Sl +,A -G l I2-/-4n - l)P,,Hl +ru(n - 1hJ 

2-+4[p+(l -~)‘]-6~2[2t,+(n-l)p,,]+3~~[2t,+(n-l)p,,]’ 

G- 2-r_Lb- Op,, 
. 

To determine t, and pII, let d IMSE’:,(l)/~t, =0 and a IMSEt,,(l)/dp,, =Q, which 

together with (2.48) and t,, s 1 lead to t, = 1 -- t,, = i[ 1 - (n - 1 )p,,] and the following 
equation 

(2.50) 

SEt,,( 1) with respect 
to t is positive everywhere and with respect to p,, is positive at the point specified 
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by t,=$l-(n- l)p,J The uniqueness of the solution to the eq. (2.50) is justified 
by the following arguments. Denote the cubic polynomial in pn in (2.50) by G(p,). 
Then G( l/n) = -(2-p)[2n(l--p)+p]I/n’<O and G(l/(n-l))=+-2)‘>0, 
which implies that there is a solution to the equation in (l/n, l/(n - 1 j). Moreover, 

the equation G’ ’ ‘(p,,) = 0 has two distinct roots and the smaller one is [3n(p + 2) - 

(2+3/$WWn(n - l)], which is greater than l/(n - 1). Thus, G”‘(P,~) is positive 
in (1 jn, ll(n - 1)) and G(p,,) is strictly increasing in (l/n, l/( n - l)), which guaran- 
tees (2.50) has a unique solution. Thus, for any 0 < p s 1 and every sample size n 

(22), the optimal sampling designs are specified by (1.31)-( 1.32). 

The expression (1.33) follows from (2.47) and (1.31), and (1.34) follows from 

(2.48) and (1.31). 0 

Proof of (1.38)-(1.41). It is known that for any functions u and v and any sampling 

designs T,, , 

u k,, R ;,; VT,, = 
u(tMtJ +‘E’[U(tk+l)-U(fk)l[v(fk+*)-v(tX:)l -_ . 

t1 
(2.51) 

k=l fk + 1 - fk 

Taking u(t) = v(t) =f( t) = t in (2.51), we obtainf5;,RG,‘fT,, = t,,, and taking for fixed 
t9 u(s)= R(s, t) and v(s)=s, we have r>,,(t)R,ff,,=min(t,,, t). By using these 

results, (1.11) and (2.51) with u(s) = R(s, t) for fixed t, v(s) =X(s), we obtain 

(1.38). Similarly, (1.39) can be obtained, and by direct integration (1.40) follows. 
To find the optimal design, set 8 IMSE ;,,/a& = 0, bc = 1,. . . , n. This yields 

2trc-(tk_1+tk+,)=0, k=l,..., n-l, and 2t,-I,‘--t,,_,=O, 

where to = 0. Qne more calculation yields 8’ IMSE\,,/& = 2 > 0, k = I, . . . , n - 1 and 

d’ IMSE :,,/a; =2+t,‘>O, wh’ h IC imply that IMSE’,,l achieves its minimum in the 

regionO<t,<t,<= l l < t,, s 1 and the minimizer of IMSE;,, is given by the solution 

to the above equations. By solving these equations, we obtain (1.41). Cl 

Proof of (1.42)-(1.46). Here, it is known (see Anderson, 1965) that for any functions 

u and v and any sampling design T,, = { ti}; , 

u iT,, R ;,j UT,, = 
u(tMt,) + ~(t,,)v(fIl) 

1 _e- 2 Z(f -1,) 1 -e-2(‘,t-‘,t 1) 

n-1 

+c 
u( t;)v( ti)[l -e-‘(rf+lC’~-i)] 

i=-J II1 -e -2(1,-r,_,) _e-7(1,*,-f,J 111 1 

_‘E( [U(tj)V(ti+l)+U(ti+l)V(ti)] e(‘ltI-‘f’ 

1 _ e-“‘t+l-‘t’ 
. 

i-1 

(2.52) 

For fixed t, put;ing u(s)= R(s, t) and v(s) =X(s) in (2.52) and through some 

straightforward calculations, X(:,,(& t) can be simplified as in (1.42). 
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By direct calculations, the SE of X$O,(I,,,,( t) is 

SG-,,,h<,d t) = 
eL/(r~-l)+ 1 _e2/(,1-l,(e-~ff~+~-“+e-2”~~‘~‘) 

e 
2/fn-1, -1 

i-P2 
{ 

p/I,+,- _,-(‘I,+, -f)+ef-r, _e-'f-'"' 2 

-1 9 
e I/in--l) -e -l/(tl-I) 

I 
(2.53) 

if ?,S ?S tk+.*, w hich yields (1.43). 

By (2.52), we have for f(?) = 1, 

e’I,+I-’ -e -(f~+,-‘) 

6,,wGyT,, - 1 =. 
+ e'-'k _ e-(r-‘,) 

e I/(n-1) -e -'/(n--l) -1, (2.54) 

and putting u(t) = v(t) = f( t) = 1, in (2.52), yields 

f;,,R~,~f,, ={2+(n -2)(1 -e--‘/“*-l’)}/(l +e-‘/‘“-‘I). (2.55) 

utting u(t) = f (t) = 1 and v(t) = X(t) in (2.52), gives 

f IT,,G#f&,, = 
X(t,)+(l -e-““I-I’) CyZi X(ti)+X(t,,) 

l+e- l/(,1--I) . (2.56) 

Then, (1.44) follows from (1.11) and (2.54)-(2-56). By using (1.44) and through 

some straightforward calculations, (1.45) fohows. 

Through direct calculation, we obtain for k = 1, . . . , n - 1 and t E [ tk, tk+ J, 

tk+i-t 
fk + 1 - tk ) 

2 2 

(1 _e-(‘-‘,I)+ t-th (1 _e-(‘,+,-‘)) ( ) ?A-+ I - fk 

+ 
fk+l- t t - tk _ e-"-fk 1 

fkt-, - tc, tk+I - tk > 
(1 -e-(‘~+~-‘)+e-(‘r+l-‘r)), 

which yields (1.46). 0 

t can be verified that for any functions u and v and any sampling 
={?& with ?,>O, 

4W(t,) +‘i’ -bh t,)-~(tk~}{v(fk+l)-~(tl,)} - 
p+1 . 

I k=l tcz: h 
- t”” 

(s), we obtain ( 
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