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In De Gunst (1989) a stochastic model was developed for the growth of a batch culture of plant cells. 

In this paper the mathematical properties of the model are considered. We investigate the asymptotic 

behaviour of the population growth as predicted by the model when the initial cell number of population 

members tends to infinity. In particular it is shown that the total cell number, which is a non-Markovian 

counting process, converges almost surely, uniformly on the real line to a non-random function and the 

rate of convergence is established. Moreover, a central limit theorem is proved. Computer simulations 

illustrate the behaviour of the process. The model is graphically compared with experimental data. 
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1. Introduction 

Studies of the growth of plant cell cultures in liquid medium raised several questions 

which could not be answered by means of the available techniques. This led to the 

formulation of a stochastic model for plant cell population growth (De Gunst, 1989). 

The model arises naturally from hypotheses concerning the underlying biological 

mechanisms, i.e. it starts with a mathematical description of the individual cell 
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behaviour based on present biological knowledge. The model has turned out to give 

a good description of actual plant cell population growth and to predict some 

interesting features concerning the growth which were unknown before. 

In this paper we consider the mathematical properties of the model. In particular 

we investigate the asymptotic behaviour of the population growth as predicted by 

the model when the initial number of population members tends to infinity. A 

detailed description of the biological background, experimental procedures, and 

statistical analysis of the data can be found in De Gunst (1989) and De Gunst et al. 

(1990). 

Although this type of model is not necessarily restricted to a description of plant 

cell population growth, but may be used to describe population behaviour when 

the growth process is bounded and shows a non-Markovian behaviour in general, 

to fix our thoughts we prefer to formulate the model in the context of this example. 

In Section 2 we give a brief description of the biological phenomenon. The model 

is formulated in Section 3. The next two sections deal with the asymptotic population 

behaviour: in Section 4 it is shown that the total cell number converges almost 

surely uniformly on the whole real (half-)line to a non-random function and the 

rate of convergence is derived; in Section 5 a central limit theorem is proved. In a 

companion paper (De Gunst and Van Zwet, to appear) we investigate the tail 

behaviour and duration of the growth process. 

To see what the predicted cell number looks like for the proposed stochastic 

process and its limit function, we have simulated the stochastic growth curve and 

computed the limit function numerically for several sets of parameter values. The 

resulting curves are shown in Section 6, as well as the results of one of the experiments 

which were performed in order to compare the model with real data. 

2. Biological background 

The phenomenon of interest is the growth of a so-called batch culture of plant cells. 

A batch culture is a culture of isolated plant cells or very small cell aggregates which 

remain dispersed as they grow in a liquid medium. Usually the cells grow in an 

Erlenmeyer flask which is continuously shaken or in a fermentor which is con- 

tinuously stirred. In contrast to a continuous culture, a batch culture neither has 

an inflow of fresh medium nor an outflow of culture (Street, 1973). 

At some time, which will be called time t =O, the cells, say n in number, are 

transferred to a fresh medium of known composition. After a certain time period, 

the so-called lag phase, the first cell divisions are observed. The number of cells is 

seen to increase until the population seems to have stopped growing, probably 

because some components in the medium have run low. When the cells are transferred 

to a fresh medium again, this growth pattern repeats itself. 

The cultures considered seem to consist of two types of cells: type-A cells, which 

are actively cycling and finally divide, and type-B cells, which are ‘resting’ or 
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differentiating and don’t divide. At time t = 0, i.e. just after the transfer to a fresh 

medium, the population is assumed to consist of type-A cells only. Since cell death 

other than division does not seem to play a substantial role during the growth 

process of the population, it is neglected in the sequel. 

The time between birth and division of type-A cells living under equal external 

circumstances is observed to be of variable duration (see for example King and 

Street, 1973). It is believed that a random time after its birth a type-A cell receives 

an endogenous stimulus which starts some biochemical processes and that an 

approximately constant time (c) is needed for these processes to produce the cell’s 

division. Thus the A-cells can be divided into two classes, to wit A”-cells which are 

waiting for a stimulus, and A’-cells which have already received a stimulus, but 

have not yet divided. In general the total number of cells in a culture can be 

experimentally established, but there is no way yet to distinguish A-cells from B-cells 

unambiguously, so that no quantitative data are available for the different cell types. 

At least two components in the medium are observed to play a role in the regulation 

of cell division: sugar, which is the main substrate for building up new cell material, 

and hormone. The length of the time period between birth and receipt of stimulus 

is thought to depend on the substrate concentration in the medium: the higher the 

concentration, the shorter the mean length. It is assumed that a fixed amount (y,‘) 

of substrate is consumed when a cell receives a stimulus, and as a result this mean 

length becomes longer when time progresses. When all substrate is used up, no 

further stimuli will be received, so that there will be no more divisions. 

The amount of hormone in the medium seems to influence (future) cell division. 

For that reason its concentration is assumed to determine whether a cell just being 

born will be a cycling A-cell or will differentiate. The higher the hormone concentra- 

tion, the more A-cells will be born. Also the amount of hormone is supposed to 

decrease with fixed amounts (yh’), but now at each time a division takes place. 

When the hormone has run out, only B-cells are born. 

These are the main biological features on which the model as described in the 

next section is based. 

3. The model 

For n = 1,2, . . . we consider a model starting with N,,(O) = N+,,,(O) = n cells in the 

A-state. The total number of cells at time t and the number of type-A cells at time 

t are denoted by N,(t) and NAn (t), respectively. In practice the cell numbers are 

usually very large (105-lo6 ml-‘). For this reason we investigate the population 

behaviour as the number of individuals tends to infinity. The obvious quantity to 

which the number of individuals is related is the initial cell number n, which is also 

usually very large in practice. Hence we shall commit ourselves to asymptotics in 

n. This is why all random variables in the model are given the index n. Note that 

in this context a quantity being fixed or constant means that it does not depend on 
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n; it may of course depend on the type of plant cells used for the experiments 

and/or be unknown in practice. 

The growth of the whole cell population in the model is determined by the 

behaviour of the individual cells, which is assumed to be ruled by the following 

regime. 

Fix c, independent of n, and define the time of the ith division by 

7,,=inf{t: N,(t)=n+i}, i=1,2 ,.,.. (3.1) 

A cell dividing at time T,, has started its mitotic cycle at time r,, -c, because it 

received a stimulus at this time. A type-A cell receives this stimulus at the time of 

the first event in a counting process starting at the birth of the cell and having a 

variable, random rate on(f). For different cells the processes are coupled through 

this rate, but otherwise independent. 

In providing a stimulus a fixed quantity J);’ of substrate is used up. The amount 

of substrate S,,(t) at time t is given by 

sl(O) = nbsy,’ , Odt<T,n-C, 

S,(t)= S,(O)-il’~‘=(nb,-i)L’;‘, I Ti,,-C4t<r,+,n-C, 

i=1,2 )...) nan-1, 
(3.2) 

0, t s ~n,Jt - c, 

where b, is fixed and n,, = nb,. Note that for convenience we have assumed that 

nb, E N. Although this is not necessarily true in practice, all proofs are easily extended 

to include the case nb,gN too (see De Gunst, 1989). 

It is assumed that the rate Q,,(t) depends on S,,(t) in the following way. 

On(t) = 
S,(f) 

d(S,(t)+nk)’ 
t 2 0, 

4 
d(nb, + nk,yJ 

=QOn=QQO, Ost<T,,,-cc, 

nb,-i 
z Qin, 

Twl -cst<r,+,.-c, 

d ( nb, + nb, - 9 i=1,2 ,..., n,,--1, 
(3.3) 

O= Qm, 
t 22 Tn,,,n - c, 
i=nsn,nqn+l ,..., 

where d and k, are constants. This means that the total number of stimuli is never 

larger than nsn, since Q,,(t) = 0 for t 2 T,,,~~ - c. 

In the model the amount of hormone is given by 

K (0) = n&K’, i= 1, 

H,(O)-(i-l)y,‘=(nb,-i+l)y,‘, i=2,3,...,nh,, 

0, i=nh,+l,nh,+2,..., 

(3.4) 



M.C.M. de Gunst, W.R. van Zwet / Asymptotics of non-Markouian population growth 301 

where y, and b, are independent of n, nh,, = nb, and again we have assumed without 

loss of generality that nb, E hd. 

The two cells originating at time T,,, independently become type-A cells with 

probability Pi, and type-B cells with probability 1 - Pi,,, where Pin depends on the 

amount of hormone present: 

Pi, = 
Hn(Tin) 

He(Tin)+nkh’ 
i-1,2,..., 

nb,-i-t1 

nb,+nk,y,-i+l’ 
i =I, 2,. . . , nh,,, 

0, 

(3.5) 

where k, is fixed. Note that the processes may continue after nhn divisions, even 

though Pnh,,+k,n = 0, k = 1,2, . . . . Then only type-B cells are produced. Finally, we 

should point out that the way we have assumed the substrate and the hormone to 

act (cf. (3.3) and (3.5)) is derived from the well-known Monod kinetics (see for 

example Roels, 1983). 

Having formulated the model on the individual level, we now consider what this 

means for the total population behaviour. 

Let t 2 c. Before or at time t - c, N,, ( t - c) - n type-A cells have divided. Therefore 

the number of type-A cells at time t - c is given by 

N,T(t~c)-n 

N*n(f-C)=2n-Nn(t-c)+ c zi,, (3.6) 
i=l 

where Z,, is the number of newly born A-cells at the ith division. Thus Zr,,, Z,,, . . . 

are independent random variables and Z,, has a binomial distribution with param- 

eters 2 and P,,, i = 1, 2, . . . . Since P,,, = 0 for i > nhn, z;, = 0 as. for i > nhn. We 

shall find it convenient to write 

2 = (Zrn, Z,,, . . .) , 
NVE(l)mn 

zn(t)z C zin. 
i=l 

Let the number of type-A cells waiting for a stimulus at time t, i.e. the type-A 

cells which have not received a stimulus before t, be denoted by N:“(f). Then, 

since at time t - c there are N,(t) - N,, ( t - c) A-cells which have received a stimulus 

and have not yet divided, 

N~n(t-c)=2n-N,(t)+Z,(t-c). (3.7) 

Since at time r-c all of these Ni,(t - c) cells are waiting for stimuli arriving 

independently with rate Q,,( t - c), and a cell divides time c after receiving a stimulus, 

the process N,,(t) grows at a variable random rate Ni,,( t - c)Q,,( t - c). The two 

factors entering into this rate are given by (3.3) and (3.7). Note that the observed 

process N,,(t) together with the observed random vector 2” determine all other 

random quantities discussed so far. 
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The process N,,(t) stops at the first time when either NAn( t) = 0 or N,(t) = n + nsn. 

Note that Ni,( t - c) = 0 is not sufficient for N, to stop growing at time t, since new 

A-cells may be born between time t-c and t. Thus from (3.6) we see that the process 

stops at the random time T, defined by 

T,=inf t: 1 
1 

N,<(I) in 

(&-1)=-n 
I 

r,inf{r: N,,(t)=n+n,,}, (3.8) 
i--l 

where a A b means the smaller of a and b. The random level which N,,(t) has 

reached by then is 

N,,(T,,)=n+inf m: f (.&,-1)=-n in,,,, 
1 I 

(3.9) 
,=I 

and we see that given z,,, this final level is a non-random quantity. 

In what follows we assume that {N,(t)},so and & for n = 1,2, . . . are defined on 

a single probability space (Q YI, 9) such that Z,,,, Z,,, . . . are independent and Zi, 

has a binomial distribution with parameters 2 and P,,, given by (3.5), and condi- 

tionally on &, {N,(t)-n} ,_,) is distributed under Y as a stopped non-Markovian 

counting process with intensity process A,,(t) given by the left-continuous version 

of 

= Nfl\n(f - C)QN,,(r)-n,nl,~,~c)(t) 

={2n-N,(t)+Z,(r-c)}Q~,,,,,-,,ll,:,,(t). 
The process stops at time T,, given by (3.8) and (3.9) or equivalently by 

(3.10) 

t: N,,(t)=n+inf m: f (Z,,-1)=-n 
I=, 

which is clearly a stopping time with respect to the a-algebra generated by { N,,(s)},,~ 

and 2. 

Let A,,(t) be the integrated intensity process of N,,(t) - n given .&,, i.e. 

A,,(t) = 
I’ 

A,,(s) ds. 
0 

Define the inverse process A,-,’ by 

(3.11) 

A;.,‘(u) = 
i 

inf{t~c:Az,(t)~u}, O~u~A,,(T,), 

a, u>AmCTn), 
(3.12) 

and the process Nz by 

1 

N,(&,l(u)) -n, 

N’(u)= r;r,(u-AZ,,(T,))+N,,(T,)-n, 

OS us Az,(T,), 

u>A;,(Tn), 
(3.13) 

where ZI, is a Poisson process with intensity 1 defined on [0, CO), independent of 
N,, and AZ,,. Then given ,?,,, Nz is a Poisson process with intensity 1 on [0, a). It 

follows that unconditionally Nz is also a unit Poisson process which is independent 



M.C.M. de Gunst, W.R. van Zwet / As_vnptotics qf non-Markovian population growth 303 

of Z,,. Note that the stopping time T,,, however, is a function of 2. For a detailed 

discussion on counting processes and other concepts mentioned above see for 

instance Jacobsen (1982). 

In the following sections we investigate the behaviour of N,, for n tending to 

infinity. We note that some of the results derived can be arrived at by using known 

theory for population processes, which can be found in Kurtz (1981, 1983) or Ethier 

and Kurtz (1986). To apply the theory directly to our counting process N,, as defined 

above, we need an explicit expression in terms of {N,,(S)},,, for its unconditional 

intensity process A,,(t) = EZ(Az,( t)). However, such an expression is not available 

in a manageable form. One way to overcome this problem is to consider a trivariate 

counting process g,,(t) which has as components the number of stimuli before or 

at time t resulting in two A-cells, one A-cell and one B-cell, and two B-cells, 

respectively, as is done in De Gunst (1989). The intensity process for this trivariate 

process is easily available. Apart from a constant time shift, the process N, is the 

sum of the components of sn, and N, inherits some of the asymptotic properties 

of & 

The approach adopted in this paper is to consider the process N,, conditionally 

on the sequence Z,, = (Z,,,, Z,,,, . . .). The conditional intensity process of N,, has a 

structure very similar to the unconditional intensity of the trivariate process. This 

is why the uniform convergence of n-‘( N,, -n) can be shown here in essentially 

the same manner as that of the trivariate process. Also the proofs of the central 

limit theorem in both approaches are similar. However, the representation of the 

limit distribution in terms of two independent Wiener processes as derived below 

(( 5.8) and (5.9)), and its covariance structure are almost impossible to guess without 

going into the special structure of the underlying process as is done in Lemma 5.2. 

To obtain further asymptotic properties of N,, the special character of the process 

must play a crucial role. For instance, the uniform convergence of n-‘( N, - n) on 

[0, 00) appears to depend heavily on the boundedness of n-‘( N, - n). 

4. The asymptotic behaviour of N,, 

In this section we prove several probability inequalities which enable us to derive 

an exponential bound for the probability that suprzo In-‘( N,( t) - n) -X( t)l exceeds 

some value x. Here X is a non-random differentiable function of t, which will be 

defined later. Uniform convergence of n-‘( N,, - n) to X and the rate of convergence 

are then easily established. 
Let us first state two more general results, which will be needed below. For their 

proofs we refer to De Gunst (1989). 

Lemma 4.1. Ifn(t), tZ0 is a unit Poisson process, then 

P ( sup In(t)-ildx)Q:lexp{-x’/(32u)}, OSxG2a. 0 (4.1) 
{t: rr(t)Sa) 
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Lemma 4.2. If X, , X2, . . . are independent, bounded random variables, 0 G X, c a, 

j=l,2,..., then for all M E N and every x 2 0, 

9 <4exp{-2x2/(9a2M)}. 0 (4.2) 

From now on we write 

x,(t)=K’(N,(t)-n). 

We have: 

Lemma4.3. Forn=1,2 ,... and Ocxs26,, 

9 sup (X,(t) - n-‘Az,I( t)lz x s $! exp{-x2n/(32b,)}. 
f>C > 

(4.3) 

Proof. Since X,,(t) s nm’nsn = b,, we see that 

sup/X,,(t)-n-‘A,,(t)l~ sup n ~‘lN$(u) - UI, 
I ‘< {u: N;(u)--nh,) 

where Nz is the unit Poisson process defined in (3.13). The lemma now follows 

from Lemma 4.1. 0 

Define 

1 

flX,,(l-c) 

A,,(t) = 2n - N,(t)+2 c P,, Q,,.~,,(r),nllr.s)(t), 
I ,=I 

(4.4) 

and note that A,,,, is obtained from Azn in (3.10) by replacing the Z,,, by their 

expected values 2P,,,, so that: 

Lemma 4.4. For n = 1,2,. . . and x 2 0, 

9 sup n~‘IilZn(t)-A~n(t)l~x 
> 

~4exp{-d’(l+b~‘k,y,)“x2n/(18b,)}. 
IAC 

(4.6) 

Proof. Zln, Z,,, . . . are independent and Z,, has a binomial distribution with par- 

ameters 2 and Pi,, i = 1,2,. . . ; for i > q,,,, Pii, = 0 and Z,, = 0 a.s. Since nhn = nb,, 

we may invoke Lemma 4.2 to obtain (4.5). 

Furthermore, we see from definitions (3.10), (4.4) and (3.3) that for t 3 c, 

Inze(t)-An,n(t)l= ~nx~~~~‘izi.-2P.,,)O~X~,~,~,..J 

s(d(l+ b;‘k,y,))-’ max : (Z, -2P,,) . 
I--m-;nh,t r--l 

Hence we get (4.6) from (4.5). 0 
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Let Q, P and p : [0, ~0) + [0, 00) be defined by 

bs - (u A 6s) (4.7a) 

P(u) = 
h-(u A h,) 

b,+k,y,-(uAb,J’ 
(4.7b) 

P(u) = P(s) ds = (u A b,,) - k,y,, log 
b,, + kt,yh 

b,+k,y,-(uA&) 

(4.7c) 

and define F : [0, co) x D[O, co) + R! by 

F(t, x) =I1 -X(t)+2P(x(t-c))}Q(x(f))l~,,,(t), (4.8) 

where D[O, 00) is the space of right-continuous, R-valued functions on [0, ~0) with 

left-hand limits everywhere. Obviously, for t z 0 and continuous functions x and y 

on [O,a), we have 

sup IF(.s, x,1+ 
( 

1 +sup Ix(s)1 
) 

(4.9) 
.5 s , P’, 

and since the partial derivatives of F with respect to x(t) and x( t - c) are bounded, 

J~(~,x)-~(~,Y)l~Clx(~)-Y~~)l+C'lx(~-c)-Y(~-c)l 

s c* sup /x(s) - y(s)1 (4.10) 
CS, 

for positive constants C, C’ an C”. Note that 

Q N,,(r)kn.n = Qnx,,(r~n = Q(X(t)), (4.11) 

P N,,(r)kn,n = PKxJ,),fl = P(X,(f))+O(l;n), (4.12) 

so that F(t, X,) may be expected to approximate K’A,,,(t). In fact, we have: 

Lemma 4.5. For n = 1,2, . . . , 

max f P,, - nP( m/ n) s P(0) = (1 + b;‘khyJ’, 
m i=l 

~~p~~-‘n,,(t)-F(r,X,)~~2(d(l+b~‘k,y,)n)~’. 
,>c 

(4.13) 

(4.14) 

Proof. From (4.7) it is easy to see that 

OG E P,, -nP(m/n)G 
m”“h,E 

c (P((i-1)/n)-P(iln))~P(O), 
i=* i = 1 

so that (4.13) follows immediately. Next, we recall that (cf. (3.3)) 

sup QPLW s Ml + K’kyJ~’ 
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and in view of (4.4), (4.8) and (4.13) we conclude that for t B c, 

In-‘il,,(t)-F(t,X,,)I=2 n-’ ““‘;-” p,, - P(X,(t- c))( Q(Xn(t)) 
r=l 

s 2(d( 1+ b,‘k,y,)( 1+ b,‘k,y,)n))’ 

s2(d(l +b,‘k,y,)n))‘. El 

Consider the system 

I 

F(s, x) ds, tz c, 

t < c, 

(4.15) 

with x E L)[O, 00) and F as defined in (4.8). Then it is easy to prove (see De Gunst, 

1989) that (4.9) and (4.10) are the conditions for a unique solution X E D[O, 00) of 

(4.15) to exist, and that X is continuous on (0,~). Since X’(t) = F(t, X) on (c, ~0) 

and F(t, X) = 0 if X(t) > b,, we see that X is bounded on (0,~) and differentiable 

on (c, ~0) with a continuous and bounded derivative. 

Having made these preparations, we can prove the following result. 

Theorem 4.1. Let X be the unique solution of (4.15) and let M 2 0. Then there exist 

positive numbers A and (Y depending on M such that for n = 1,2, . . and x 3 0, 

(4.16) 

Proof. Fix M 2 c, let C” be as in (4.10), C =66, exp{C*(M - c)} and 

6(M-c) exp{C*(M-c)}(d(l+b,‘k,y,)n)-’ s x G C. Note that C 2 6b,. Also, for 

every n-1,2,..., it follows from Lemmas 4.3, 4.4, 4.5 and inequality (4.10) that, 

except on a set of probability not larger than 

f exp{-x2n/[288b, exp{2C*( M -c)}]} 

t4 exp{-d*( 1 + aJ2x2n/[ 162br,( M - c)’ exp{2C*( M - c)}]}, 

the following holds for all c s t s M: 

(X,,(t)-X(t)lslX,,(t)-n-‘A,,,(t)l+K ’ In;, -&(s)( ds 
< 

+ ‘In-‘A,,,(s)-F(s,X,,)/ds+ 
J‘ I 

<; IF(s, X,) - F(s, X)t ds 
<’ 

<3;exp{-C*(M-c)}+C* 

sxexp{-C*(M-c)}exp{C*(t-c)}sx, 

where the third inequality follows from a version of Gronwall’s lemma (see De 

Gunst, 1989). 
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Obviously, A can be chosen sufficiently large for (4.16) to hold for 0~ x < 

6(M-~)exp{C*(M-~)}(d(l+b~‘k,y,)n)-’andsinceX,(t)~b,andX(t)~b,for 

all t 2 c, (4.16) is trivially satisfied for x > C 3 6,. By definition X,(t) = X(t) = 0 for 

0 4 f < c and all n, and the theorem follows. 0 

In order to obtain a probability inequality like (4.16) for the supremum over all 

t, we first investigate what happens when f + 00. Since X’(t) can be proved to be 

positive for t > c (De Gunst, 1989) and X”(f) is easily seen to be bounded for t > 2c, 

it follows that X’( t) tends to zero as t tends to infinity. Writing x(00) for lim,,, X(t), 

we find that lim ,+- X’(t) = (1 -X(~~)+~P(X(NJ)))Q(X(CQ)) = 0, andsincefor t> c, 

(l-X(t)+2P(X(t)))Q(X(t))ZX’(t)>O, we see 

limX(t)=inf{zE[W:2P(z)-zc-l}r\b,. (4.17) 
I-u7 

Recall (cf. (3.9)) that 

limX,(t)=K’inf 
,-‘c i 

m: z (Z,,-1)=-n Ab,, 
r=, 1 

(4.18) 

so that (4.5) and (4.13) suggest that lim,,, X,,(t) approaches X(a) as n tends to 

infinity. Indeed, a comparison of both the right-hand side of (4.17) and (4.18) with 

K’ inf {m: Cy=, (2Pi,, - 1)~ --PI} A 6, yields: 

Lemma 4.6. lf X is the solution of (4.15) on [0, CO), then there exist positive numbers 

Aandc~such thatforn=1,2,... andxa0, 

P 
(I 

limX,(t)-limX(t) sAexp(-ax2n). 
l-r ,+zc 

(4.19) 

Proof. Clearly, for any A, (Y and B such that A> exp{4aB2} the lemma holds for 

OSx<2Bn-‘. Hence, in view of (4.17) and (4.18) it suffices to prove that there exist 

positive constants A, CY and B such that for n = 1,2, . . . and x Z= 0, 

(i) P(n-‘i(n+inf{m:i,(Z.,-I)=-n}nn,.) 

- n+inf m: f (2Pi,-1) 
( { I=, 

S-n}..,,)(Bx) 

GA exp{-ax2n}, 

(ii) (n-‘(n+inf{m: fJ,(2P,,-I)=S--n]nn,.) 

-(l+inf{zE[W:2P(z)-zs-l}r,b,) 6Bn-‘. 

To prove (i) first note that \ar\c-bAcl4\a-b(. M oreover, since (i) is trivially 

true for 0 s nx S 1 for an appropriate choice of (Y, we may assume without loss of 
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generality that nx is a positive integer. Similarly, we allow ourselves in the proof 

of(i) to bound the probability of strict inequality. Hence we have to prove that for 

some a>O, n=l,2 ,..., x=2/n, 3/n ,..., 

C? 
( I 1 

n-l inf m: f (Z,-1)=--n -inf m: E (2fi,-l)<-n >x 
I=* I i i=l >I > 

GA exp{-cux2n}. 

Let m,=inf{m:CE, (2Pi,-l)s-n}. Then 

n-l T (2P,,-l)G--1, 

m,-I 
n-l C (2P,-l)>-1. 

i=* i=, 

Since Pi, decreases in i and m, s 2nhn + n = O(n), for some y > 0, 

2Prion -1s -n/m,<-y<O, 

??I”’ nx 

n -’ C (2Pi,-l)G-l-yx forx=c,i,.... 
r=, 

Using this and (4.5), we get 

( 
WI,,+ n.x Wl(]+IZX 

=Y C’ 1 (Zi,-2Pi,)>-l+n-’ 2 (l-2P,,) 
i=l r=l > 

( 
Wl”+Fl.X 

<sP n-’ C (zin-2~~)~Yx 
i=, > 

~4exp{-y2x’n/(18bJ}. 

On the other hand, because I,“_, (2Pip,, - 1) is a concave function of m which vanishes 

for m = 0, rn-’ C:l, (2Pim - 1) is a decreasing one. Since 

ml,- 1 
-n< 1 (2P,,--l)s-n+lsO, 

i=, 

if follows that for some positive S and 1~ k G m, - 1 - nx, x = 2/n, 3/n, . . . , 

n-l $ (2Pi,-l)ak( 

mo-l 
m,- I)-In-’ 1 (2P,, - 1) 

i=l i=l 

m”- I 
s(m,-l-nx)(m,-l))‘n-’ C (25,-l) 

i=* 

s--(l-nx(2n,,+n)-‘)*-1+6x, 
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provided m,, - 1 - nx 3 0. But this and (4.5) imply 

m 

PP m: 1 (Zi,-1)=-n <n-‘m,-X 
r=, 

min f: (Z,,-l)G-1 
k=m,,-nx-1 i=l 

SC?? n-’ ( min i (Z,, -2Piin) G -6x 
ksq-*.x--l ;=I > 

64 exp{-62x’n/(18b,,)}. 

For m,- 1 - nx 6 0 the first probability equals zero and the inequality is trivially 

correct. This proves (i). 

The proof of (ii) is essentially similar, except that (4.13) is used instead of (4.5). 0 

Having proved the probability bounds (4.16) and (4.19) for bounded t and f + 03, 

respectively, we can now derive a similar result which holds uniformly for all t 2 0. 

For convenience we introduce a shorter notation for the quantities associated 

with the newly born A-cells. Let Y,, and Y be defined by 

nX,I(o 
Y,(t) = n -‘Z,(t)= n-’ 1 Z,,, (4.20a) 

x(r) f 
Y(t)=2P(X(t))=2 I P(u) du = 2 I P(X(s))X’(s) ds. (4.20b) 

0 0 

We also write 

Xi,(t-c)=l-XXn(f)+Y,,(t-c)>O, a,=n-‘AZ,,, (4.21a) 

Xi(t-c)=l-X(t)+ Y(t-c)zO, (4.21b) 

p=P(x(co))~o, q=Q(X(co))>O, q’=Q’(X(oo))<O. (4.21~) 

Recall that for t> c, we have (cf. (4.8), (4.15), (3.10), (3.11) and (4.11)) 

X’(r)=F(r,X)=XO,(t-c)Q(X(t)), 

a~(t)=n~'Al,(t)=XOA,(t-c)Q(X,(t)), 

where CI: denotes the derivative of (Y, except on 

Also, note that for 0~ u d X(a), 

(4.22a) 

(4.22b) 

a countable set of jumps of X,. 

02 P’(u)> -(khyh)-‘, 0 z= P”(u) > -2( k,,yJ’, (4.23a) 

O> Q’(u)> -(dk,yJ’, 0 z= Q”(u) > -2L’( k,yJ”. (4.23b) 

We need the following lemma. 
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Lemma 4.7. Suppose that F > 0 and de$ne 

to = inf{ t 2 c: X(00) - X( t - c) C $&Y~}. (4.24) 

Then there exist positive numbers A,, A,, a,, and CY, depending on F, such that for 

n = 1,2, . . . and x 2 0, 

8 supIX(co)-X,(t-c)lzek,~~ 
( I2 1” > 

sA,exp{-a,+}, (4.25) 

B(sup[~Y,(t-c)- Y(t-c)J2(p+e)~xJt-c)-X(t-c)~,~x) 
,a C(] 

G A, exp{-a,x2n}. (4.26) 

Proof. Since X, is monotone, we have for t 3 t,, 

(X(~)-X,(t-c)J~JX(~)-X,(~,)IvIX(~)-X,(to--c)l 

~~x,(T,)-X(~)(+~X,(t,-c~-X~t,-c)J+~~k,y, 

and in view of Lemma 4.6 and Theorem 4.1, 

sup/X(~)-X,(t-c)l~EkhYh 
I 2 f,) 

~~(]X,(T,)-X(co)~~~~k~~~)+~(~Xn(t”-c)-X(t”-c)]~~ek~~i~) 

G A,, exp{ -agn} 

for positive A,, a,, depending on E. This proves (4.25). 

For 0~ x < 8/n, (4.26) trivially holds for an appropriate choice of A, and aI. 

Since Y,,(t) c 2X,,(t) 4 2b, and Y(t) c 2X(t) s 2b, for all t, (4.26) is also satisfied 

for x > 4b,. Assume therefore that 8/n < x G 46,. By Lemma 4.4, 
nX,,(,-c) 

for positive constants A, and CY~. From (4.13) we know that with probability 1, 
fIX,,(l-c) 

2 n-’ 1 P,,-P(X,(t-c)) + for all t 2 c. 
,=I 

Finally, since P(X(m)) =p and lP’(u)l< (k,,yJ’ for all u, we find that if t > to and 

IX(oo)-X,(t-c)l<&khyh, 

[2P(X,(t-c))- Y(t-c)( 

=2(F(X,(t-c))-P(X(t-c))( 

~2[p+(k,y,)-‘{(X(~)-X(t-c))v(X(~)-X,(t-c)l}l 

XIX&-C)-X(t-CC)] 

~2(p+F)(X,(t-c)-x(t-c)~. 

_ .-^--” 
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Hence, in view of (4.24) and (4.25), and since +x > 4/n, 

9 
( 

sup[lY,(t-c)- Y(t-c)~-2(p+&)~X,(t-C)-X(t-C)Il~X 
lZ,o > 

S P sup n-’ 
( [ I 

nXrvC~-C) 
c (-5, -2P,ti) 

rat0 i=l 

+2/n’nX~~~c)P,..-li(X.,(I-c))/]~tx) 

+9 sup[)2P(X,(t-c))- Y(t-c)l 
t = to 

<A, exp{-a,x2n} + CF’ sup IX(m) -X,( t - c)la &khyh 
I 3 1” 

<A, exp{-a2x2n}+ A, exp{-a,n} 

<A, exp{-cU2x2n}+Ao exp{-a0x2n/(46J2}s A, exp{-a,x2n} 

for appropriate positive A, and (Ye depending on F. q 

Now we are ready to prove the main result of this section. 

Theorem 4.2. Let X be the solution of (4.15). Then there exist positive numbers A and 

(Y such that for n = 1,2, . . . and x 2 0, 

supI&(X(t)l~x 
> 

~Aexp{-cux2n). (4.27) 
,a” 

Proof. Let T, be the time X, stops as defined by (3.8). Since X is monotone, we have 

sup lX(f)-Wf)l~ sup IX,(t)-X(t)l+ X,(T,,-limX(t) . 

I=0 0-c ,s T,,, I-S 

Therefore, in view of Lemma 4.6 it suffices to show that 

9 
( 

sup IX,(t)-X(t)\2x ~Aexp{-ax2n}. 
> 

(4.28) 
OSIGT,, 

The proof consists of two parts. First suppose that the following assumption holds. 

(A) There exist t,,a c, positive constants A, (Y and C?, and non-negative functions 

M,,, U,,, V, with 

L’,,(t)+V,,(t)-M,,(t)<O, t,<t~T,,, 

suchthatforn=1,2 ,..., andO<xcc, 

9 supla,(t)-X(t)l>x 
( 

S.iexp{-Gx’n}, 
,S1” 1 

(4.29) 
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a;(t)-X’(t)=-M,(t){cu,(t)-X(t)}+R,(r), to<tdTn, 

with R, such that 

(4.30a) 

.%k(+ U,(t)x+ v,(t)la,(t-c)-X(t-c)( 

for some t E (to, Tn]) c 2 exp{-&x*n}. (4.30b) 

Fix n and x E (0, c]. Suppose that there exists t, E (to, Tn] such that [an(f) - 

X(t)(tx for t<t, and (cY,(~,)-X(f,)(=x, and that 

IR,,(t,)j< u,(t,)x+ v,(f,)(a,,(t,-c)-X(t,-c)I. 

Then 

IR,(r,)j< Un(fr)x+ v,(t,)l(~,(t,-c)-X(t,-~)( 

s(Un(t,)+ V,(t,))la,(t,)-X(t,)l. 

Hence 

which contradicts the assumption that t, is the first time when a,,(t) - X( t) = ix. 

It follows from (4.29) and (4.30) that for x E (0, 61, 

P( sup IdM~)l=q 
0-s , -s i-,, 

s!? supla&-X(t)lzx ( f c to > 

+P(IR,,(+= U,,(t)x+ v,(t)l~~,(t-CC)--X(j--C)I 

for some t E (to, T,,]) G 2A exp{-Lu”x’n}. 

Combining this with Lemma 4.3 we obtain (4.28) for x E (0, C] for some positive 

C. If A 2 1, then (4.28) continues to hold for x = 0. Since IX,,(t) - X(t)1 s 26, for 

all t, we see that for x> C, the left-hand side of (4.28) is bounded by 

A exp{-ax2nC2/(2bJ2}. Thus the theorem is proved under assumption (A). 

We now turn to the proof of assumption (A). We shall distinguish two cases. 

Case (i). p cf. Choose F =&(l -2~) and let t,, be as in (4.24). From Lemma 4.3, 

Theorem 4.1 and Lemma 4.7 it follows that there exist positive numbers A, C; and 

c depending on F, such that for n = 1,2,. . . and 0s x s e, 

P sup/a,(t)-XX,(t)lZex 
( > 

s$exp{-Gx*n}, (4.31a) 
,>” 

P(m~ la.,(t)-X(f)l~x) S&4 exp{-&x”n}, (4.3 lb) 

P 
( 

sup[/Y,(t-c)- Y(t-c)/-2(p+F)/X,,(t-cC)-x(t-cC)~l~FX 
I -- r. > 

C&4 exp{-Gx’n}. (4.31c) 
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For c < t G T,, we have a:(t) = X”,,( r - c)Q(X,,( t)) (cf. (4.22)). Hence, except on a 

set of probability not larger than A exp{-Gx2n}, we have for all t E (t,, Tn], 

a;(f)-X’(f)=-Q(X(f)){X(f)-X(f)) 

+XO,n(t - c){Q(X,(j)) - Q(x(j))> 

+{ yn(t - c) - Y(j - c)lQ(x(t)) 

=-Ml(f){xl(j) -X(t)>+ k(f), 
where M,(t)> Q(X(t))>O and 

~~,(~)~~{&x+~(P+E)(X,(~--C)--X(~--C)~}Q(X(~)). 

This follows from (4.31) and because 

Q(X,(t)) - Q(x(j)) = Q’(ex(j)+(l- ~)Xt(t))(X,(t)-x(j)), 

for some 8 E (0, l), and Q’(x) < 0 for all x <(X(t) v X,,(t)) and t s T,. But then 

a:(r) -X’(r) = -M,(t){%(r) -X(r)>+ RI(r), 

where, 

IR?(r)l= IWAf){%(r) -X??(f))+k(r)l 

<A4,(t)&X+{&X+2(~+&)&X 

+2(p+414-c)-X(f-c)l)Q(X(t)) 

~{~M,(j)+2~Q(X(t))}x+2(p+&)Q(X(j))lcu,(j--)--(j--)l 

-u,(t)x+V,(1)~(Y,(f-c)-x(t-c)~, 

for all t E (to, T,,], except on a set of probability at most A exp{-cix2n}. Note that 

U,,(t) and V,,(t) are positive. Moreover, we have 

u,(t)+V,(t)--M,(t)=-(l-~)M,!t)+(4~+2p)Q(X(t)) 

<(SF+~P-l)Q(X(t))=(-;+p)Q(X(t))<O. 

Case (ii). p 2 4. This implies that 

X”,(m) = 1 -X(a)+ Y(c0) > 1+ X(co)(2p - 1) 2 1, 

so that we must have Q(X(a)) = 0 and hence X(W) = b,. Let to* > c be so large that 

Q(X(t$-c))s1/(2c). Since for t-cssst, 

X’(s)~{l-X(t-c)+2P(X(t-c))}Q(X(t-c)), 

we have for t 3 tt , 

X(t)-X(t-c)s;{l-X(t-c)+2P(X(t-c))}. 

Hence, for t 2 to*, 

X”,(t-c)=l-X(t)+2P(X(t-c)) 

Sf{l-X(t-c)S-2P(X(t-c))} 

~~{l+x(t-c)(2p-l)}?=~. (4.32) 
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By (4.23) we know that q’ = Q’( b,) < 0. Take 0 s E c i so small that Q( b, - U&J+,) < 

k/q’1 and 2~k~~~/d(k~y~)~<~Iq’l. Define t, as in (4.24) and F,= t,v t$. It follows 

from Lemma 4.3, Theorem 4.1 and Lemma 4.7 that there exist positive numbers A”, 

15 and C? depending on F, such that for n = 1,2, . . . and 0 c x s ?, 

.9 sup lc~,(t)-X~(f)l~~x aiAlexp{-&x2n}, (4.33a) 
rzn 

P(sup In,(r)-X(r)lax) <$A exp{-Gx”n}, 
,i l,, 

(4.33b) 

9 supJX(oo)-X,(j-c)(~&k,y, 
( - > 

G+Aexp{-&x2n}, 
I? ,c, 

(4.33c) 

B(suF,Jy,,(i-c)- Y(t-c)l-2(pfE)~x&-c)-X(1-c)/]~lx) 
, = I<) 

S &A exp{ -Gx2n}. (4.33d) 

Then, except on a set C? of probability not larger than A exp{-Gx’n}, we have for 

t;,< TV T,,, 

Q:,(t)-X’(f) = -O(Xn(t)){X,,(r)-X(t)} 

+xi(t - c){Q(Xn(t)) - ax(f))} 

+{Yn(t-c)- v-c)x?(-%t(t)) 

=-M,(t){X,(f)-X(t)}+~,(f), 

where M,(t)=Q(X,(f))-Q’(BX,,(t)+(l-B)X(t))XO,(t-c)~~lq’l>O, and 

i~,(~)l~~~X+2(p+~)JX,(~-c)-XX(~--)I~Q(X,*(~)) 

&jq’)x+&(q’(IX,(t-c)-X(r-c)]. 

This follows from (4.32), (4.33) and because (cf. (4.23) and (4.33)) 

Q’(X,,(~))=q’+Q”(nX,,(~)+(I-Tl)X(~)){X,,(~)-X(~)1 

c -lq’1+2~~hYhl~(~s~~)2~ -$lq’l. 

But then, except on @ we have for 6, < t s T,,, 

(r~(j)-X’(j)=--M,(j){(LY,,(j)--X(f)}+tR,(j), 

where 

lR,(j)l=I~,(f){~,(t)-X,(j)}+~,(j)l 
~~~,,(~)+~l4’l+t~ls’l>~~+~l~‘ll~,(~-~)+~(~-~)I 
GU,(t)x+ V&)la,(f-CC)-X(t-c)l 

with U,,(t)=fM,,(t), V,,(r)=~M,,(f). Hence U,,(r)+ V,,(t)-M,,(t)<O. This proves 

assumption (A) and the proof of the theorem is complete. 0 
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Note that, when p (i, then A and CY in Theorem 4.2 depend on p; in case p 3 4, 

these numbers depend on q’. 

Corollary 4.1. There existpositive numbers A and a such thatfor n = 1,2, . . . andx 2 0, 

9(;~~\YN(t)-Y(t)~*x)~Aexp{-~x2n}. 
> 

(4.34) 

Proof. From (4.20) it can be seen that combination of (4.5), (4.13), the boundedness 

of P and Theorem 4.2 yields the desired result. 0 

Having performed the preliminary work, we can now easily prove the uniform 

convergence of X,,(t) to the solution X(t) of (4.15) for all t 30, and determine its 

rate. 

Theorem 4.3. 

sup(X,(t)-X(t)l=0,(n-“2), 
,S” 

(4.35) 

supIX,(t)-X(t)l=O((nP’logn)1’2) a.s. 
120 

(4.36) 

Proof. The choice of x = Bn-‘j2 in Theorem 4.2, where B is a sufficiently large 

positive constant, immediately proves (4.35). 

When, again in Theorem 4.2, x = B(n-’ log n)“2, B positive and large enough, 

is taken, then application of the Borel-Cantelli lemma yields (4.36). 0 

In view of Corollary 4.1 we can prove similar results for Y,, and Y: 

Corollary 4.2. 

sup (Y,(t)- Y(t)l=0,(np1’2), 
,%Cl 

(4.37) 

sup (Y,(t)- Y(t)\=O((n-‘log n)“‘) a.s. Cl (4.38) 
,=cl 

Finally we can say something about the value of X(c0). Recall that X(cc) = 

inf{z: 2P(z) - 2~ -1) A b, (see (4.17)) and that 

I 
z 

P(z) = P(s) ds = (z A bh) - k,y, log br, + kr,Y,, 

0 > b,+kr,y,-(z~b,) ’ 

But 2P(z) - z is a concave function of z, which equals zero for z = 0. Hence, if 

1 + b,, - 2k,,y, log( 1 + b,,( khyh)-‘) < 0, then for some z0 < b,, 

l+z,-2khyhlog((k,y,+b,)l(k,y,+b,-z,))=O. 
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If not, then 

inf{z: 2p(z) -zc -l} = 1 +2bh-2kh~,, log(l+ bh(khyh)-‘) 2 b,,. 

Therefore we conclude: 

Lemma 4.8. (i) If I+ b, - 2k,,y,, log( 1 + bh( k,,yJ’) < 0 or b, < b,, , then 

p = P(X(c0)) > 0. 

(ii) If 1 + b,, - 2k,,y, log( 1 + bh( khyh)-‘) < 0, then 

x(00) = inf z: 1 + z -2k,y, log 
b+, + bh 

k,y,+b,-2 

if l+b,,-2khyhlog(1+b,(k,y,)-‘)sO, then 

X(oo)={1+2b,-2k,,y,log(l+b,(k,y,)-’)}Ab,~b,r\b,. 0 

5. A central limit theorem 

This section is devoted to the derivation of a central limit theorem for the deviation 

of X, from X. Because of the results in the foregoing section, we guess that n”’ 

should be the appropriate scaling factor. We introduce the following notation. 

For ts0, 

V,(t) = n “‘(X”(f)-X(t)), Vf(r) = n”2(cu,(t) -X(t)), 

u,(t)=n”2(Yn(t)- Y(t)), 

where (Y, = C’A,,, as before. In this section convergence in distribution is in D[O, 00) 

with respect to the Skorohod metric. 

Lemma 5.1. 

n”2(Xn(t)-acu,(t))~ W,(X(t)), as n+co, 

where W, is a standard Wiener process. 

(5.1) 

Proof. Since Nz in (3.13) is a unit Poisson process, we have 

n-““(N;(nu)-nu)% W,(u), (5.2) 

where W, is a standard Wiener process. Let u, = n-IA,,(t) = a,(t), then 

n -“‘(N;(nu,)-nu,) = n-“2(N,,(A;;(nun))-n -nu,) 

=n -“‘(N,,(t)-n-AZ,(t)) 

=n “2(X,(t) -a,(t)). 

Moreover, since with probability 1, U, + X(t), as n + ~0, the continuity of the paths 

of W, guarantees (5.1). 0 
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Lemma 5.2. 

(V,(t)- v:(t), ul(t)-2JYX(t))Vn(t)) 

( (s 

x(r) 

4 wdx(t)), w 2 P(s)(l-P(s))ds , asn+oo, (5.3) 
c 

where W, and W, are independent standard Wiener processes. 

Proof. Since V,,(t) - Vf( t) = n”*(X,( t) - a,(t)), the weak convergence of the first 

component was established in Lemma 5.1. 

Consider S,(u) = n-“2CiZU,] (Z,, -2P,,) for u E [0, b,,] and n = 1,2,. . . . 

Analogously to (4.13) we can prove 

max f Pi,(l-Pi,)-n 
m/n 

P(s)(l -P(s)) ds $A 
m i=, 5 0 

for some positive constant A. Hence, it follows from the extension of Donsker’s 

Theorem to sums of independent but not identically distributed random variables 

(cf. Prohorov, 1956) that 

(I 

U 
S,(U)% w, 2 P(s)(l-P(s))ds , as n+co, 

) 
(5.4) 

0 

where W, is a standard Wiener process. In view of (4.13) this means that 

n -I/*( ‘,!,I (Z,, -2nP(u))) 2 W,( 2 I: P(s)(l -P(s)) ds). 

Since Y,,(t) = n-’ Cyz;(” Z,,, SUP,,~ (X,,(t) -X(t)1 = O(n-‘(log n)“*)) as., and X,, s 

b, for all n, the continuity of the sample paths of W, ensures that 

U 

X(I) 
n”*(Y,(t)-2P(X,(t)))z W, 2 P(s)(l -P(s)) ds . 

0 > 

Now Y(t) =2P(X(t)), P’(u)= P(u), U,(t)=n”*(Y,(t)-Y(t)), V,(t)= 

n”‘(X,(t)-X(t)). I n view of (4.23) and Theorem 4.2 this implies 

(1 

X(f) 
u,(t)-2P(X(t))V,(t)~ w, 2 P(s)(l-P(s))ds , as n+oo, 

c > 

(5.5) 

which proves the convergence of the second component in (5.3). 

As we pointed out below (3.13), the processes NE and S, are independent, so 

that we have joint convergence in (5.2) and (5.4) and hence in (5.3) if W, and W, 

are chosen to be independent. 0 

Lemma 5.3. 

supK’(t)-[V,(t){-Q(X(r))+XO,(t-c)Q’(X(t))] 

+ Un(t - c)Q(X(t))ll 

=0(l) a.s. as n+co. 
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Proof. In view of (4.23), (4.36) and (4.38), we have as n +CO with probability 1, 

uniformly in t 3 c, 

VZ’( t) = n “2(-(X,(t)-X(f))+ Y,(t-c)- Y(t-c))Q(X(r)) 

+fl”“(l-x??(t)+ Y,(t-c))(Q(K(t))-Q(X(f))) 

=-v,,(t)Q(x(t))+ K(t-c)Q(X(t)) 

+(1-X(r)+ Y,(f-c))Q’(X(t))V,(t)+o(l) 

=-Vn(t)O(X(t))+ U?(t-c)Q(X(t)) 

+(1-X(t)+ Y(t-c))Q’(X(t))V,(t)+o(l) 

= V,(t){-Q(X(t))+XO,(t--)Q’(X(t))} 

+u,(t-c)Q(X(t))+o(l). q (5.6) 

Lemma 5.4. The sequence V,, is tight and every weak limit point is in C[O, 00) a.s. 

Proof. In view of Lemma 5.1, we only have to show that Vz is tight and that every 

weak limit point of Vz is in C[O, ~0) as. From (5.6) and the boundedness of Q’ it 

follows that 

supIV,X'(r)~~A{sup~V,(r)J+su~~1/,,(~)~) 
,=< ,=< faC 

for some positive constant A. Therefore, we see from Theorem 4.2 and Corollary 

4.1 that positive A and & exist such that 

Hence, for E > 0, r] > 0 and 6 = (&en’E/A)“‘, 

P(sup{l v:(t) - VX(s)l: c~s<t,~t-s/~6}~r]) 

In view of Pollard (1984, p. 131), this ensures that Vz is tight in D[O, ~0) with respect 
to the Skorohod metric. It also implies, however, that Vz is tight in C[O, 00) with 

respect to the supremum norm on bounded intervals (cf. Whitt, 1970). The standard 

subsequence argument shows that every weak limit point of Vz is in C[O, ~0) a.s. 0 

Suppose that V and q are weak limit points of V,,. Assuming our probability 

space to be sufficiently rich, Lemmas 5.2, 5.3 and a Skorohod construction allow 
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us to redefine V,,, V: , U,,, V, ?, W, and W, such that for some subsequences {nk} 

and {Sk}, and all t, 

lim V,,(t) = V(f), 
k+a, 

lim Vfik( t) = q(t), 
k-cc 

(5.7a) 

lim (V,(f) - E(t)) = Wo(X(f)), (5.7b) 
n-x 

(I 

X(0 
lim (U,(t)-22P(X(t))V,(t))= W, 2 P(s)(l -J’(s)) ds , 

> 
(5.7c) 

n-x 0 

lim V:(r) - ’ [V,(S){-Q(X(S))+XOA(S - c)Q’(X(s))l 
n+m ( 5 < 

+ U,,(s - c)Q(X(s))] ds 
> 

=O, (5.7d) 

with probability 1. Here we have used the continuity of the sample paths of 

Wo, WI, V, 9 (cf. Lemma 5.4) to conclude that almost sure convergence of V,,,, V,, 

and (V,, - Vz) in the Skorohod metric ensures almost sure convergence in the 

supremum metric on finite intervals, and hence for all t as. Therefore, 

V(f)= W,,(X(t))+lim V$(t) 
k + x 

I 

I 

= w,,(X(t)) + V(s){-Q(X(s))+X#(s - c)Q’(X(s))l ds 

I 

IF u 

X(\m<) 
+ W, P(u)(l- P(u)) du 

< 0 > 

+2P(X(s-c))V(s-c) Q(X(s))ds 1 
with probability 1, and the same holds with nk replaced by fir and V replaced by 

v throughout. Here the integrals are defined to be zero for 0~ t < c. 

Consider F” : [0, ~0) x D[O, ~0) + R defined by 

(I 

X(rFr) 
F”(t, v)= w, 2 P(s)(l -P(s)) ds Q(X(t)) 

c > 

+u(t){-Q(x(t)+X&(r-c)Q’(X(t))j 

+24j -C)fYX(~ - c))Q(X(t)), (5.8) 

and the system 

v(r) = 
W”(X(f)) + I’ F*(s, v) ds, t ac, 

‘ 

0, t < c. 
(5.9) 

Then V and ? are solutions of (5.9) almost surely. Since for all t, X (1) c b, , P-almost 

every realization of W,(X( t)) and W,(2 jt”’ P(s)( 1 - P(s)) ds) are bounded. - 
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Therefore, because of the boundedness of X, P, p, Q and Q’, and the continuity of 

the sample paths of W, and W, , the system (5.9) satisfies the conditions needed to 

have, with probability 1, a unique solution on [0, ~0) (see De Gunst, 1989). Hence 

V= e as. Since V, is tight, it follows that V, s V, where V is the unique solution 

of (5.9) and W, and W, are independent. 

Finally, let G(t) be defined by 

G(t) = ’ Q(X(s))W 
I 

X(r-c) 
2 P(u)(l- P(u)) du ds. (5.10) 

< (I <’ > 

Obviously, G is a Gaussian process, independent of W,, with mean zero and 

covariance 

Cov(G(t), G(r)) 
,nr 

5 1 I 

X(.\+L.) 
=2 t&s r)+ Q(s, r)lQ(X(s)) P(u)(l- P(u)) du ds, 

< 0 I 

where 

Q(.s, t) = 
J-, 

’ Q(X(u)) du. 

Moreover, let H(t), A(t) and B(t) be defined by 

H(r) = w,(X(t))+ G(t), 

A(t)=-Q(X(t))+X~(t-c)Q’(X(t)), 

B(t)=2Q(X(t+c))P(X(t)). 

Then V(t) can be written as 

(5.11a) 

(5.11b) 

(5.11c) 

V(t)=H(t)+ 
I 

I 
A(s) V(s) ds+ 

‘ I 

I-‘ 
B(s) V(s) ds. (5.12) 

< 

Repeated substitution of this expression for V on the right-hand side of (5.12) yields 

V(t)= f J J . . . 
k-” 

[ J 
‘i 

x H(h)+ 
< 

A(j)H(r)exp{/s’*A(.)du}ds]dt,-.-dtk, 

(5.13) 

where m denotes the integer part of (t - c)/ c. By defining 

cc.% t) = c ,‘I,, I_..J i,(tl(r,)cxp(- J,:‘A(u)du~)dt,.-.dli; 

..-._ .__“l__- ._-_ 
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where C(s, t) = 1 for k = 0, and integrating the term between square brackets in 

(5.13) by parts, we can modify this expression to get 

V(t)= 
I 

f 

c 
C(s, t) exp( IT’ A(u) du} dH(s). 

Hence V is also a Gaussian process with mean zero. It follows from (5.10), (5.11) 

and the fact that W, and W, are independent standard Wiener processes that the 

covariance of V is given by 

,hT 

Cov( V(t), V(r)) = J [ K(s, t)K(s, r)X’(s) 
c 

+XK(s, t)E(s, r)+ K(s, r)E(s, t)lQ(X(s)) 

X(c-C) 
X r P(u)(l-P(u)) du ds, 1 (5.14) 

where 

and 

K(s, t) = C(s, t) exp 
c {J 

I 

J 
I 

K(s, t) = K(u, t)C?(X ( 
, 

Jo J 

u)) du. 

Thus we have proved: 

Theorem 5.1. Let W, and W, be independent standard Wiener processes, let F* be 

dejined by (5.8), and let V be the unique solution of (5.9). Then V is a Gaussian 

process with mean zero, covariance given by (5.14) and 

V,S V, as n+c0, 

where the convergence is in the sense of the Skorohod metric. 0 

6. Illustrations 

To give the reader an idea what the predicted and actual cell numbers look like, 

we conclude with some illustrations. 
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7.0 - 

6.0 - 

5.0 - 

t 4.0- 

x’ 

3.0- 

2.0- 

l.O- .._..I 
0 6.0 12.0 18.0 24.0 30.0 

Time -b 

Fig. 1. Four simulations of the stochastic growth process X,, with the same parameter values: n = 100, 

c=5, d=l, b,=lO, k,y,=&l,h,=4, k,,y,,=O.S. 

0.0 6.0 16.0 24.0 32.0 40.0 

Time + 

Fig. 2. Three pairs of curves. The dotted curves are computer simulations of X,,; the solid ones 
are numerically computed simulations of (4.15). Curves of a pair have the same parameter values: 

(a) n = 100, c = 2.4 d ~0.6, h,= 20, k,y,=O.Ol, 

1+2h,,-2k,?,,log(l+b,,(k,,?,,,)~’). (b) n= 100, 

h,, = 10, kh.vh = 1. Note that X(W) = 

c=5,d=1,h,=10,k,y,=0.1,h,=4,k,~,=8.Notethat 
P(O)~~andX(~)~h,.(c)b=l~0,c=2,d=1,b,=2,k,~,=0.1,b,,=4,k,,~,=0.1.NotethatX(~)=b~. 
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1.60- 

0.60- 

I I 1 I I I I I I 

0 20 40 60 80 100 120 140 160 

Time (hours) + 

Fig. 3. Experimental data of the growth of a batch culture of tobacco cells (dots). The curve through 

the data was fitted using numerical solutions of (4.15). The parameter values are n = 1.625 X 10xI~‘, 

c=26h, d =4h, h,=29.9, k,=2.2~10~‘~ mol, y,=5.4x lO”‘mol~‘, h,,=4.7, k,,=9.7~10 “mol. 
yh = 3.4x 10” mol-‘. 

We have simulated the stochastic growth curve and computed the solution of 

(4.15) numerically for several sets of parameter values. In Figure 1 four computer 

simulations of the stochastic process X, are shown. The parameter values were 

taken the same for all curves. In Figure 2 three pairs of curves are shown. For the 

two curves of a pair the same parameter values were used. The dotted curve of a 

pair was obtained by computer simulation of the stochastic process; the solid one 

is a numerically computed solution of (4.15). In all cases the initial cell number 

was 100. 

Figures 1 and 2 indicate that under the model with biologically plausible para- 

meters the initial divisions occur synchronously and that this synchrony dies out 

gradually in time. These features could not be discovered from the available data 

on population growth of plant cells in batch culture: in order to compare the 

predictions of the model with experimental data more detailed information was 

needed. For this reason in the Botanical Laboratory of the University of Leiden a 

set of experiments was performed in which the increase in cell number of tobacco 

cells in batch culture was followed in time. The results of one of the experiments 

are shown in Figure 3. The curve through the data points is a numerical solution 

of (4.15) where the parameter values were obtained by a least squares method. A 

statistical test based on a statistical model for the sampling procedure as used in 
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the experiments showed that on the ground of these results there is no reason to 

reject our model. 

For a detailed description of the computational and experimental procedures and 

of the statistical analysis see De Gunst (1989) and De Gunst et al. (1990). 
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