
Stochastic Processes and their Applications 38 (1991) 157-165 

North-Holland 

157 

Asymptotic optimality of the least-squares 
cross-validation bandwidth for kernel 
estimates of intensity functions 

Maria Mori Brooks and J. Stephen Marron” 
Department of Statistics, University of North Carolina, Chapel Hill, NC 27599-3260, USA 

Received 12 November 1989 

Revised 25 July 1990 and 21 August 1990 

In this paper, kernel function methods are considered for estimating the intensity function of a non- 

homogeneous Poisson process. A least-squares cross-validation bandwidth for the kernel intensity 

estimator is introduced, and it is proven that this bandwidth is asymptotically optimal for kernel intensity 

estimation. 
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1. Introduction 

Let X,, X2,. . . , XN be ordered observations on the interval [0, T] from a non- 

stationary Poisson process with intensity function A(x). In this paper, we consider 

the estimation of A(x). N, the number of observations that occur in the interval 

[0, T], has a Poisson distribution with E[ N] = jl A(U) du. See Cox and Isham 

(1980) and Diggle (1983) for further information regarding point processes. 

A natural kernel estimator for A(x) is: 

iih(X)= f Kh(X-Xi), XE[Op T], 
i=* 

(1.1) 

where &(x) = h-‘K(x/h). The kernel function, K (. ), is assumed here to be a 

probability density function, and the smoothing parameter, h, also known as the 

bandwidth, quantifies the smoothness of Ah(x) (see, for example, Silverman, 1986). 

The kernel intensity estimator differs from the typical kernel density estimator in 

two ways. First, i,,(x) doesn’t include a normalization factor, K’, since ji A(x) is 
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the expected number rather than the expected proportion of observations between 

s and t. Second, N, the number of observations, is a random variable in the intensity 

estimation setting. Theoretical properties of the kernel intensity estimator have been 

developed by Leadbetter and Weld (1983), Ramlau-Hansen (1983) and Diggle 

(1985). 

It is accepted that the choice of the smoothing parameter is usually far more 

important than the choice of the kernel function for kernel estimators. The tradeoff 

between smaller and larger values of h can be seen in the mean square error (MSE) 

of i,(x). Rosenblatt (1971) showed that a small value of h results in high variance; 

i,,(x) is affected by individual observations and hence is more variable. On the 

other hand, a large value of h results in high bias; i,,(x) is very smooth but does 

not include minor features of the true intensity function. Thus, it is desirable to find 

a data-based bandwidth that balances the effects of the bias and the variance of the 

estimate. 

We use a simple multiplicative intensity model to put a mathematical structure 

on this problem. The general multiplicative intensity model, introduced by Aalen 

(1978), is frequently used to model counting processes. See Anderson and Borgan 

(1985) for an overview of these models. 

For the related setting of kernel density estimation, Hall (1983), Burman (1985), 

and Stone (1984) have proven that the least-squares cross-validation bandwidth is 

asymptotically optimal. Hall (1983) showed that this bandwidth is optimal in 

probability by using asymptotic expansions of the cross-validation score function 

and the integrated square error (ISE) of the kernel estimator. This method requires 

the density function to have two continuous bounded derivatives. Burman (1985) 

used methods from Shibata (1980) to prove that the cross-validation bandwidth is 

optimal in probability. In his proof, there are few restrictions on the kernel function, 

and the density is a bounded L2 function. By assuming that the kernel function is 

compactly supported and Holder continuous, Stone (1984) was able to show using 

Poissonization methods that the cross-validation bandwidth is optimal almost surely 

for a continuous set of bandwidths. This was the first paper to show that the 

optimality result applied to all bounded density functions. 

In this paper, we show that the least-squares cross-validation method is asymptoti- 

cally optimal almost surely for intensity estimation. The additional difficulty in the 

intensity setting is that the number of observations is now a random variable. The 

intensity function is required to have two continuous bounded derivatives. Moreover, 

the kernel function is a bounded compactly supported probability density function. 

We use arguments similar to the martingale methods employed by Hardle, Marron 

and Wand (1990) to prove the asymptotic optimality of density derivatives. This 

method is based on a martingale inequality given by Burkholder (1973). 

In Section 2, we discuss the mathematical model for the intensity function. 

Section 3 contains the main result regarding the asymptotic optimality of the 

least-squares cross-validation bandwidth. Finally, the proof of the theorem is 

presented in Section 4. 
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2. The simple multiplicative intensity model 

The simple multiplicative intensity model is a specific form of Aalen’s (1978) 

multiplicative intensity model. Suppose that X, , X2, . . . , XN are observations from 

a nonhomogeneous Poisson process with intensity 

h,.(x) = c(Y(x), XE [O, 7-1, (2.1) 

where c is a positive constant, and cr(x) is an unknown nonnegative deterministic 

function with Ic a(x) dx = 1. Given N, the occurrence times, X, , X2, . . . , XN, have 

the same distribution as the order statistics corresponding to N independent random 

variables with probability density function Q(X) on the interval [0, T]. The kernel 

estimate of h,(x) is given in (1.1). Under this model, N is a Poisson random variable 

that has expected value equal to c. In order to avoid boundary effects, we assume 

a circular design such that A,(O) = h,(T), A’,(O) = A:.( T) and A:‘(O) = A:( T). 

Asymptotic analysis provides a powerful tool for understanding the behavior of 

the kernel intensity estimator. Letting T + 00 is not appropriate since this results in 

all of the new observations occurring at the right endpoint. In the simple multiplica- 

tive intensity model, letting c + ~0 has the desirable effect of adding observations 

everywhere on the interval [0, T] and not changing the relative shape of the target 

function A,(x) in the limiting process. In other words, c-‘A,(x) is a fixed function 

as c+co. 

Since we will consider convergence properties for sequences of random variables, 

we require the values of c to come from the sequence of positive real numbers 

{c,}T=, such that c,/s+ r for some constant T> 0 as S+CO. Thus, for the sequence 

of intensity functions A,,(x) = C,CY(X) indexed by s, we construct a corresponding 

sequence of kernel estimators i;;(x). For these kernel estimators, the bandwidth h 

is dependent on s. It follows from Ramlau-Hansen (1983) that ii(x) is uniformly 

consistent and asymptotically normal as c,, + CO, h + 0 and hc, + co. 

3. Asymptotic optimality of the cross-validation bandwidth 

We are interested in finding a data based bandwidth that approximately minimizes 

the integrated square error (ISE) of ih where 

I 

T 
ISE,(h) = [l,,(x)-A(x)12dx 

0 

ZZ 
i 

7- 

I 

T 
x,,(x)’ dx -2 i,,(x)A(x) dx+ 

0 0 I 

T 
A(x)’ dx. (3.1) 

0 

For kernel density estimates, Rudemo (1982) and Bowman (1984) suggested using 

the method of least-squares cross-validation for selecting the bandwidth. In the 

intensity estimation setting, the cross-validation score function is defined as: 

CV*(h) = 
I 

7- 
xh(x)’ dx -2 ; ihr(Xi) (3.2) 

0 i=l 
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where ahi is the leave-one-out estimator, 

ihi( i Kh(X-XJ). (3.3) 
j=l 

j#i 

Since CL, A,i(Xi) is a method of moments estimator of jl ih(x dx, and 

,,’ Am dx is independent of h, CV,(h) is a reasonable unbiased estimate of the 

terms in ISE, (h) that depend on h. Therefore, the bandwidth that minimizes CV, (h) 

should be close to the bandwidth that minimizes ISE,(h). 

Let & be any bandwidth that minimizes ISE,(h) and &, any bandwidth that 

minimizes CV,(h) (these minima always exist since ISE,(h) and CV,(h) are 

continuous and bounded functions). Assume that: 

(a) The kernel function, K ( -), is a bounded compactly supported probability 

density function. 

(b) The true intensity function, A ( * ), has two continuous bounded derivatives. 

(c) The bandwidths under consideration come from a set H, where for each s 

and some constants p, 6 > 0, 

#(H,) = {the number of elements in H,} s cf , 

and for h E H,, cJltS s h s CL”. 

(d) For some constant T>O, c,/s+ r as s+cc. 

Assumption (b) is a common technical assumption on A(x) which allows Taylor 

expansion methods to be used. With this assumption, the true intensity function 

can have any amount of underlying smoothness. Assumption (c) can be weakened 

so that H, is a continuous interval by using a continuity argument found in Hardle 

and Marron (1985). This set of possible bandwidths nearly covers the range of 

consistent bandwidths. 

Under these assumptions, the ISE obtained with the cross-validation bandwidth 

converges almost surely to the minimum ISE. In this sense, the least-squares 

cross-validation bandwidth is asymptotically optimal for kernel intensity estimation 

under the simple multiplicative intensity model. This result is stated in Theorem 1. 

Theorem 1. If assumptions (a), (b), (c) and (d) hold, then, under the simple muftiplica- 

tive intensity model, 

I=, Ckv, 
IsE,o+ l a.s. ass+m. (3.4) 

The mean integrated square error (MISE), 

[S 

7 
MISE,(h) = E (~,,(x)-~(x))~ dx , (3.5) 

0 1 
is another error criterion that is used to evaluate bandwidth selection procedures. 

Let h, be the bandwidth that minimizes MISE,(h). By Lemma 1 in Section 4, the 

ISE and MISE are essentially the same for large s. As a result of Theorem 1, icy is 
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also asymptotically optimal with respect to MISE in the sense that 

MISE&) --, 1 
MISE,(h,) a’s’ as s+co’ 

Details of the proof of Theorem 1 are presented in Section 4. 

(3.6) 

4. Proof of Theorem 1 

In this section, we outline the proof of Theorem 1. 

The mean integrated square error (MISE) of ih can be decomposed into a variance 

term and a squared bias term. Using Taylor expansion methods similar to those in 

Silverman (1986, pp. 39-40), it is straightforward to show that the MISE of ih is 

MISE,(h)=h-ir(j X.)+h4c:[:lu’K]21:,~f~(x)12+o(h-1c,+hlci) (4.1) 

as h + 0, c, +KJ and hc, + ~0. Thus, the asymptotic mean integrated square error 

(AMISE) is 

AMISE,(h)=h’c.(j K2)+h4ci[:Iu’K]iI:[o”(x)l’. (4.2) 

The two lemmas below are used to prove statement (3.4). 

Lemma 1. 

sup 
BE,(h)-AMISE,(h) ~0 

AMISE, (h) 
a.s. ass+co. 

htH, 

Lemma 2. 

sup 
CV,(b)-ISE,(h)+[CV,(b)-ISE,(b)l -,. 

AMISE, (h) + AMISE, (b) 
a.s. ass+m. 

h,bt H, 

Lemma 1 says that the ISE and the AMISE of ih(X) are asymptotically equivalent, 

and the two lemmas together imply that 

sup 
cv,(h)-ISE,(h)-[CV,(b)-ISE,(b)l -,. 

a.s. as s+co. 
h,bt H, ISE,(h)+ISE,(b) 

(4.3) 

Since ISE(&) 5 ISE(c_) and CV(&,) s CV(&), Theorem 1 follows for the simple 

multiplicative intensity model. 

Now, we must prove Lemma 1 and Lemma 2. The details of the proof of Lemma 

2 are given below; Lemma 1 is proven using similar martingale methods. 

Proof of Lemma 2. Let g( 1,2,. . . , IV) + (1,2, . . . , IV) be a random permutation of 

the numbers 1, 2,. . . , N. Define Y, = XgciJ. Essentially, the Y’s are the ‘unordered’ 

Xi’s. Since the Xi’s are observations from a nonhomogeneous Poisson process with 

intensity h(x), then given AJ, the Y(‘s are i.i.d. random variables with density 
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(Y(x)~~~,~,(x). As a result, kernel density methods developed by Hardle, Marron and 

Wand (1990) can be used to study a(x). Define: 

&h(X) = c,‘x,(x), 

&hi(X) = C,‘i,i(X), 

CV,(b) = 
I 

7- 
a*,(X)’ dX-2cy’ ; &hi(X,) = c12CV,(h). 

0 i=l 

Hence, ISE,( h) = cJ2 ISE,( b), and MISE, (b) = cl2 MISE, (b). It is not difficult to 

show that 

CV,(h)-ISE,(b)-[CV,(b)-ISE,(b)] 
sup 

h,bc H, AMISE,(h)+AMISE,(b) 

= sup 
CV,(b)-ISE,(h)-[CV,(b)-ISE,(b)] 

h,be H, AMISE,(b)+AMISE,(b) 

s2 sup 
c~‘CE~ a*,,(Xi)-jl &ha-G 

hsH, AMISE,(h) 

where G=[~(N-~)/c,-~]c~‘C,N_~ ~(Xi)-[N(N-l)/cf]S,T(y2. 

Thus, it suffices to prove the following: 

sup 
CL’C,“=, a*hr(Xi)-.IoT(I*ha-G +. as ass-,co 

AMISE,(h) 
. . 

hEH, 
(4.4) 

Define: 

I I 

7 
&j(h)=K,(Y,-Y,)- &(y-y)a(y)dy-(Y(I/;)+ a’(y) dy, 

0 

x(h)=E(UGI Yi) 

= &(x-.J’b’(J’)dY- 
I II 

&(Y -Z)a(y)a(Z) dy dz-(Y(Y) 

+ 

l 

T 

a’(y) dy, 
0 

WV(h)= u,- v, 

=&(yi-y)- 
I 

&,(y-Y;)~(y)dy- Kh(y-yk(y)dy 
I 

+ 

1s 
&(Y -z)a(y)a(z) dy da, 

Ri(b)=[(N-1)/c,-l] 2 &(Y-y)a(y)dy 
[5 

- 
Kh(Y-Z)cu(y)a(z) dy dz 
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Note that E( V, 1 N) = 0 and E( W, 1 yI, N) = E( Wl, ( q, N) = 0 for i,j = 1, 2,. . . , N. 

For sums over i=l, 2,..., N, Yi (the unordered observation) can be replaced 

by Xi (the ordered observation) in the summand. Thus, 

Hence, statement (4.4) holds when (4.5), (4.6) and (4.7) hold. 

ccl”=, V,(h) +. 
h”t”r: AMISE,( h) 

a.s. as s+co, 

sup 
c,*CIN_I Cjfi Wjth) +O as 

hEH, AMISE,(h) 
. . ass+co, 

C.;’ I;“=, K(h) ~ o 

f:,$), AMISE, (h) 
a.s. as s+co. 

(4.5) 

(4.6) 

(4.7) 

Therefore, in order to prove Lemma 2, it is sufficient to prove statements (4.5), (4.6) 

and (4.7). 

Conditional on N, {CF=, Vi},“=, and {CF=, C,:: Wti}kN=I are martingales with respect 

to the o-fields generated by {Y,, Y2,. . . , Yk}. Burkholder’s (1973, p. 40) inequality 

implies that for some constant A: 

E [(kyfNj, g2m~N]~AE[(,~*E[V:JNl)mIN] , / 

+A f HI K12”7 Nl, 
i=l 

(4.8) 

(4.9) 

Since N is a Poisson random variable with mean c,, E[ N”] s A,&’ where A,,, is 

constant for each m. Hence, 

c cy2m E[A,Nmh4”‘+A,N] (by (4.8)) 

s Am(c,mh4m + c;‘~+‘) 
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and 

1 
2m 

s c;4”E[A,N2mh~m +A,Nm+2h-2m] (by (4.9)) 

s A,(c;2mh~m + ~;~~+~h-~“‘). 

As a result, for h E H,, m sufficiently large and some y > 0, 

E 
cTlCfv=, K 1 2m ~A,(c,mh4m+c;2m+‘) 

AMISE,(h) (c;‘h-‘+ h4)2m 
s A,[h” + csh2”‘] s A,p,c,““. (4.10) 

Using Chebychev’s theorem, 

sup I’[ I&, v;l >c;“‘AMISE,(h)] sA,,,c;(Y’2)m. 
htH, 

(4.11) 

Recall that #(H,) s ct, and choose m such that rn > 2(p +2)/y. By assumption (d), 

one can show that for the sequence {c,}, 

Thus, the Borel-Cantelli Lemma implies that 

c3’C,N,, K +. 
;:;, AMISE,(h) 

a.s. as s+a. (4.12) 

This proves (4.5). Following a similar procedure, statement (4.6) can be verified. 

Finally, consider (4.7). Since N is Poisson(c,s), it is known that [(N - c,)/&] is 

asymptotically normal. Using this fact and a Taylor expansion of Ri, one can show 

that for any O< E <$, 

Hence, for each m, there exists a constant c, such that whenever c, > c,, 

I 

2m ~ &~T’h4m-2Fm ~ A,hc,-2e.,m < A -?,,, 

(c,‘h-‘+ h4)2m . ms (4.13) 

for h E H, and some y > 0. (4.7) follows from (4.13) as seen above. Therefore, we 

have proven Lemma 2. 0 
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