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Aspects of estimation of the (marginal) probability density for a stationary sequence or 

continuous parameter process, are considered in this paper. Consistency and asymptotic distribu- 

tional results are obtained using a class of smoothed function estimators including those of kernel 

type, under various decay of dependence conditions for the process. Some of the consistency 

results contain convergence rates which appear to be more delicate than those previously available, 

even for i.i.d. sequences. 

density estimation * stationary processes * stochastic processes 

1. Introduction 

For very many years there has been a great deal of interest in the problem of 

estimating the underlying probability density function (p.d.f.) from an i.i.d. sample 

XI,. . . , X, (cf. [3, 111 for reviews of this literature). More recently some attention 

has been given to estimating the marginal p.d.f. in dependent (and especially Markov) 

contexts (e.g. [S, 61). The present paper is concerned with the case of stationary 

sequences and continuous parameter processes - a topic considered also in [ 51 but 

with somewhat different objectives and assumptions. 

The estimators to be used are of ‘smoothing function type’, which may be of 

kernel form or may be based on the somewhat more general ‘S-sequences’ and 

‘S-families satisfying appropriate axiom schemes. A perhaps more important point 

concerns the nature of the assumed dependence structure in the sequence or process. 

Here we use a ‘dependence index’ (developing a condition used in [S]), based 

simply on the differences between bivariate p.d.f. and product of univariate p.d.f.‘s, 

in order to obtain consistency results. This is of course much easier to verify than 

the stronger mixing conditions (used, e.g., in [5]) and seems more likely to hold in 

practical cases (even though it is certainly possible for, e.g., a strongly mixing process 

to have no bivariate densities). An (array) form of the strong mixing assumptions 

will be used in connection with asymptotic distributional results where a stronger 

restriction is clearly needed. 
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Preliminary results given in Section 2 are of a standard type and used in developing 

pointwise consistency for estimators in the case of sequences, in Section 3. These 

results mainly generalize familiar i.i.d. theorems in an obvious way but a sharpened 

form of variance convergence appears to be new even for i.i.d. cases. Section 4 

concerns asymptotic normality in the sequence case. Finally, in Section 5, corre- 

sponding results are developed for continuous parameter processes observed in an 

interval (0, T). Perhaps the most significant points of interest in this are the greater 

consistency rates arising from continuous sampling - a ‘full rate l/T’ of conver- 

gence of the variance to zero even being achieved for certain processes. 

As noted, this paper concerns consistency and asymptotic distributional results 

for stationary sequences and continuous parameter processes. Further related results 

(involving global error measures and a.s. consistency) may be found in the thesis 

ill or PI. 

2. Notation and preliminary results 

The following notation and assumptions will be used without comment in Sections 

2-4. As noted {X,; j = 1,2, . . .} will be a stationary sequence with marginal probability 

density f(x). It will be assumed when relevant that the bivariate distributions of 

the sequence are absolutely continuous, writing 5(x, y) for the joint density of X, 

and Xitj, j = 1,2,. . . (assumed finite for each j, x, y). 

The primary measure of dependence of the sequence {Xj} will be through the 

quantities (cf. [S]) 

Pn = sxuJ ii, If;(x, Y) -f(Xlf(Y)l, (2.1) 

which is finite for each n. We refer to {/3,,; n 3 1) as the dependence index sequence 

for the process {X,; j = 1,. . . }. Clearly for i.i.d. sequences /3,, =O for all n, for 

sequences with high long range dependence Pn may tend to infinity, and in between 

Pn may converge to a finite limit at various rates. The following example illustrates 

the behavior of & in the particular case of certain stationary normal sequences. 

Example. Let {X,; i = 1,2,. . .} be a stationary normal sequence with zero means, 

unit variances, and correlations V, = E(X,X,,). If Jr,] < 6 for all j # 0, and some 

6 < 1, then 

PnGK t lril (2.2) 
i=l 

for some constant K. This may be readily checked by writing 4,(x, y) for the standard 

bivariate normal density with correlation r and, regarding 4r as a function r, using 

the mean value theorem to show that ]4r(x, y) - &(x, y)] s Klrl. 
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As noted, the marginal density f(x) is to be estimated from the first n values 

X,, X*, f . . , X,, by the smoothed estimator 

where 

axiom 

(i) 
(ii) 

(iii) 

(iv) 

the smoothing functions (6,; n 2 1) are required to satisfy the following 

scheme (cf. [4, lo]): 

I 16, (x) 1 dx < A, all n, some fixed A. 

~S,(x)dx=l,alln~l. 

6, (x) + 0 uniformly in ]xI> A, for any fixed A > 0. 

J,x,a, l&(x)1 dx+O, as n + 00, for any fixed A > 0. 

A sequence of functions {6,(x); n 2 1) satisfying these axioms will be called 

simply a S-sequence. An example of such a sequence is provided by the commonly 

used ‘smoothing kernels’ for which 

S,(x) = A,‘k(A,‘x) (2.4) 

where k is a bounded probability density on the real line such that xk(x)+O as 

x + 00 and A,, > 0, A, + 0 as n + co. The basic use of S-sequences is through commonly 

used results of the following type. 

Lemma 2.1. Ifg(x) is continuous at x = 0, j Ig(x)l dx < 03, and if {6,(x); n 2 1) is 

a S-sequence, then 5 g(x)&(x) dx + g(0) as n + 00. 

The result holds without &axiom (iii) if g is bounded (but not necessarily in L,). 

Lemma 2.2. Zf { 6, (x); n z 1) is a &sequence and ifa, = j 6:(x) dx < 03, then a, + ~0, 

as n + ~0. Further, the functions 6:(x) = 6~(x)/cy, dejne a S-sequence. 

Lemma 2.3. Let g( u, u) be a bounded measurable function which is continuous at the 

point (x, y), and let {6,(x); n 2 1) be a S-sequence. Then 

II 
&(u-x)&(v-y)g(u,v)dudu-+g(x,y) asn+co. 

Many variants of the axiom scheme and of these results are possible but those 

stated will be convenient for our purposes here. The proofs of Lemmas 2.1-2.3 are 

straightforward (cf. [4, 10, 11) and will therefore be omitted. 

3. Pointwise consistency 

It is trivial to show that the estimator E(x) is asymptotically unbiased, precisely 

as for i.i.d. sequences. Specifically the following elementary result holds. 

Theorem 3.1. Zf the density f is continuous at the point x, then E[j‘,(x)] +f(x), as 

n+co. 
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Proof. This follows immediately since clearly 

E[j,(x)]= 
I 

6,(x-u)f(u)du= &(u)f(x-u)du 
I 

(3.1) 

which converges to f(x) by Lemma 2.1 (with g(u) =f(x- u)). 0 

A discussion of the variance of j,,(x) relies on the following simple lemma. 

Lemma 3.2. If the stationary sequence {Xi; i = 1,2, . . .} has dependence index sequence 

ML; n 3 1) then, for any fixed real x, y, 

i ICov(%(x-XI), UY -X,+J)l = W”). (3.2) 
i=L 

Proof. The left hand side of (3.2) clearly does not exceed 

n 

c II 
l&(x - u)&,(Y - v)l. Ku, v) -f(u)f(~~)l du dv 

i=l 

s Pn 
Is 

16,(x-u)S,(y-v)l du dvsA2/3,, 

where A is as in S-axiom (i). 0 

The first result for the asymptotic form of the variance now follows. 

Theorem 3.3. Let the S-sequence { 6,; n 3 1) be such that a, = j 6:(x) dx < cc fo,r each 

n. If the stationary sequence {X,; j > 1) has dependence index sequence {&; n Z= 1) 

and ifp,, =o(cr,) as n+co, then 

n~~,‘Var[j~(x)]+f(x) asn+cO 

for any continuity point x 0fJ: 

Proof. Clearly 

n~y,‘Var[_&(x)]=n~‘cu,‘Var i$,S.,(x-Xi) 
[ 1 =cz;‘Var[s,(x-Xi)] 

n-l 
+2a,’ 

I( -4 
1 ’ COV[G,(X-Xi), 8,(X-X,+,)]. 

I=, n 

(3.3) 

The first term on the right may be written as 

> 

2 

62,(x-u)f(u)du-a;’ 6,(x - u)f(u) du 

= 6:(x-u)f(u)du-cr,‘(f(x)+o(1))2 
I 
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using Lemma 2.1 and writing 6:(u)= S~(U)/(Y,. By Lemmas 2.2 and 2.1, this 

converges to f(x), as n + 00. On the other hand the modulus of the second term on 

the right of (3.3) is no greater than 

2cUi’ j., ICOV(~n(X-xl)~ ~~(x~x~+i))l~o(P~lcu~) (3.4) 

by Lemma 3.2 and this tends to zero since /I,, = o((Y,). 0 

Theorem 3.3 shows that the variance of the estimator behaves much the same 

way in the dependent case as when the variables are i.i.d. 

It may also be noted that for kernel estimators the condition Pn = o((Y,) may be 

interpreted as requiring that the product (window size) x (dependence index) tends 

to zero. 

Theorems 3.1 and 3.3 demonstrate that the bias and variance of j;(x) tend to 

zero provided LY, = o( n) and hence that the estimator is then mean square consistent. 

However, Theorem 3.3 gives a rate of convergence of the variance whereas Theorem 

3.1 merely shows convergence of the bias to zero. It is possible by making further 

general assumptions about the density and b-sequence to obtain a rate of convergence 

for the bias (and hence for the mean square error). This was shown first by Parzen 

[7] for i.i.d. sequences and as we have noted, the bias is in no way altered by the 

introduction of dependence. Further, an extension of this method gives a conver- 

gence result for the variance which is yet more precise than that of Theorem 3.3, 

and which appears to be new even for i.i.d sequences. We show this, since it is very 

simple, in the important case when the density f has a bounded second derivative. 

More general cases (e.g. involving the existence of a ‘characteristic coefficient’ as 

used in [7] or similar assumptions of subsequent literature, e.g. [5]) may be similarly 

considered. The bias result of Parzen involved smoothing functions of kernel form, 

but may be stated in this present context as follows. 

Theorem 3.4. Let the density f have a continuous, bounded second derivative y. Let 

. n 2 1) be a non-negative a-sequence such that for each n, 6,(x) is even, en = 

;:‘8 (x) d x <a and 0,’ j{,x,>h) x’&,(x) dx + 0 for each A > 0. Then the bias 

b[jn;x)] = E[jn(x)] -f(x) satisfies 

b[j‘,(x)]=&J”(x)+o(8,) asn+a. 

Proof. This follows simply from (3.1) and Lemma 2.1 by writing 

f(x-U)=f(X)--Uf)(X)+~U2fl)(X--9u), I%l<U, 

and noting that 0~‘u26,(u) satisfies (i), (ii), and (iv) of the S-axioms. 0 

The sharper form of Theorem 3.3 may now be obtained. In this the error rate is 

more precisely defined (even for i.i.d. sequences) and the effect of dependence is 

made clear. 
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Theorem 3.5. Let the density f have a bounded second derivativey. Let { 6, (x); n 2 1) 

be a non-negative &sequence with each 6, even, and such that a,, = 5 6:(x) dx < co, 

0~=~x26~(x) dx<m (where ~~(x)=~~(x)/cu,) and 0E-l ~~lxl,h~x26~(x) dx+O for 

each h > 0. Then 

~~artS,(x)l=f(x)+t~*f’(x)(l+o(l))-a,lf*(x)(l+o(l))+~(~,ln.,). 

(3.5) 

where {pn; n b 1) is the dependence index sequence for the process {X,; j 2 1). 

Proof. As in Theorem 3.3 we obtain 

na;‘Var[jn(x)]= sf(x-u)f(u)du-(Y,‘f2(x)(1+o(l))+O(Pn/cr,). 
I 

(3.6) 

The first term in (3.6) is just the expected value of an estimator k(x) of f(x) based 

on 8: rather than on 6 and hence by Theorem 3.4 is just 

f(x)+%Y(x)(l+o(l)) 

giving (3.5). 0 

Note that the relative magnitude of 0:, cu,’ and P,,/(Y” determine which terms 

should be kept in (3.5). In the i.i.d. case (when & = 0) the final term drops out 

giving a sharper result than is usually stated in that case. For dependent cases where 

/.?” # 0 the term a,‘f2(x)( 1+0(l)) should be omitted since it is no larger than the 

final term. Also the conditions of the theorem are readily checked for (non-negative, 

even) kernel functions k satisfying j x*k(x) dx < 00. 

The final result of this section gives a rate of convergence to zero for the covariance 

between j,,(x) and fn(y) when x # y. Since the methods involve similar calculations 

to those above, the proof will be sketched only. 

Theorem 3.6. Let {Xi; j 2 l} be a stationary sequence, with dependence index sequence 

{Pn; n 3 1). Then ifx and y are distinct continuity points of the probability density 

function 1 

n COVLL(X),.L(Y)I = -f(x)f(y)(l +o(l))+O(/&) 

where the term O(&) does not exceed 2A2P,, A being the constant in S-axiom (i). 

Proof. It is readily seen that 

n Cov[.fnb),_t,(~)l = n-’ i COV[~n(X-xi), ~n(Yexi)l 
i=, 

+ nP1 C COV[fS,(X-Xi), S,(y -Xj)] 
iicj 

(3.7) 
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The first term on the right of (3.7) is 

I 
6,(x-u)S,(y-u)f(u)du- 6,(x-u)f(u)du &(y-v)j-(v)du. 

I I 

(3.8) 

By splitting the range of integration of the first term in (3.8) into the parts {Ix - UI c A}, 

{Ix - ul > A, IY - UI s A), and {Ix - uj > A, jy - uI > A} and applying the &axioms, it 

is seen that this term tends to zero and hence (3.8) converges to the same limit as 

its second term, viz. -f(x)f(y). That is the first term on the right of (3.7) converges 

to -fb).f(Y). 
The last term in (3.7) is the sum of 

n-1 1 E( -3 1 Cov[&(x -X1), &(Y - X1+i)l 
r=, n (3.9) 

and the corresponding sum formed by interchanging x and y. The sum in (3.9) does 

not exceed, in absolute value, 

n 

c II I&k- u)&(Y - u)l . Mu, ~1 -f(ulf(u)l du du 
i=l 

s Pn I&,(x-u)&(y-u)( du du<A’P,. 

Since the same is true when x and y are interchanged the second term in (3.7) does 

not exceed 2A2P, in absolute value, from which the desired result follows. q 

Note that for i.i.d. sequences /3,, =0 and this result reduces to a standard result 

in the i.i.d. case, with ‘full’ convergence rate n-‘. The introduction of dependence 

does not change the rate unless Pn *cc and then the covariance converges to zero 

at least as fast as /3,/n. 

4. Asymptotic normality 

In order to derive the asymptotic normality of the estimator, j,,, a slight 

modification to an ‘array form’ of the strong mixing condition due to Rosenblatt 

will be used, requiring the following definition. 

Definition 4.1. Let {X,; ks 1) be a stationary sequence and let & denote the 

o-algebra of events generated by {X,; i < k ~j}. Then 

(yrl,I = max sup n IP(A f~ B) - KW’(WI 
l~irn-IA~_41U,,BtA(,+, 

for 1 G 1 G n - 1. The array of positive constants a,, (defined for 1 s 1 G n - 1) will 

be called the strong mixing coefficients. 
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The following lemma due to Volkonskii and Rozanov [9] will be used in what 

follows. 

Lemma 4.2. Let vl, Q, . . . , qm be random variables measurable with respect to 

Juj;, Juj:, . . . , Al<;, respectively, where 0 < i, <j, <j, < * * . < i, <j, G n, ik+, -j, 2 1~ 

1 and lvklS1, k-l,2 ,..., m. Then 

I[ 1 E is/c - j?, E[d s 16( m - l)a,,l 
k=l 

where a,,, is the strong mixing coeficient. 

Theorem 4.3. Let {6,(x); n 3 1) be a s-sequence such that a, = J 6;(x) dx = o(n) and 

such that for some constant K,, 16,(x)] G i&o,, for all x E R and all n > 1. Assume that 

the stationary sequence {xk; k 2 l} has a dependence index sequence {/?“; n 3 1) which 

satisfies /3,, = o( a,,) as n + ~0. Suppose there exists a sequence of integers {k,; n 2 1) 

for which (no,,)“*&,& + 0 and k, = o( n/a,)“* as n + Co. If u is a continuity point 

of the probability density f, with f(u) # 0, ‘then 

n”‘(fn(u) -Hfn(u)l)/(oJ(u))“* 

has the standard normal limiting distribution. 

Proof. Clearly there exist constants A, +CO such that A,k, = o(n/a,)“2 and 

An(n(Y,)i’*Lu,,,” +O. Define integers r, T’ (depending on n) by T = [A;‘(n/a,)“*]([ +] 

denoting integer part), r’= k,. It follows at once that 

(i) T = o(n/a,)“*, (ii) 7’=0(7), (iii) la,,,.+O. (4.1) 
7 

Write also k = T-t- T’, m = [n/k], and divide the integer set A, (1, . . , n) into 

subsets of alternate ‘length’ T, T’, writing 

A,,=((i-l)k+l,(i-l)k+2,...(i-l)k+r), 

Ai,,=((i-l)k+r+l,(i-l)k+r+2,...ik) 

for1~i~m,andA,+,,,=(mk+1,mk+2,...n).Thenclearly 

(%(u) - E~~(u))l(Var~~(u))“2= J?, Xn,i 

where 

(4.2) 

n-l 

aZ,=Var[&(u-X,)1+2 C Cov[S,(u-X,),&(u-X,+j)]. 
j=I 
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For any set of integers A, let q,(A) =cjed Xn,j SO that (4.2) may be written as 

(4.3) 

The remainder of the proof will be accomplished in two lemmas. 

Lemma 4.4. The variances of the second and third terms on the right of (4.3) tend to 

zero, and I:=‘_, Var n,(&) + 1 as n -+a. 

Proof. The variance of the second term on the right of (4.3) is 

+ s k{, Icov[‘%(u -XI), %,(u -Xl+k)li. 

n 

(4.4) 

The first term on the right of (4.4) tends to zero since mr’/n - r’/r + 0 and CT’, = 

n Var fn (u) - af( U) (Theorem 3.3), whereas Var 6, (U - X,) - CIJ( u) as in the proof 

of Theorem 3.3. By (3.4) the second term on the right of (4.4) may be written as 

(~~‘/n~Zn)O(P,)=O(~‘I~)(P,I~,)~O as n+co. Hence both terms on the right of 

(4.4) tend to zero so that the variance of the second term on the right of (4.3) tends 

to zero as asserted. A similar (and even simpler) calculation gives the same result 

for the third term. 

The final assertion also follows since again similar calculations give (using (3.4) 

again) 

ii! varIa,(Ak,,)}=~Vars,(u-X~)+~O(p,) 
k=l n n 

=l+o(l)+O(~n/crn)+l asn+co 

as required. 0 

Since the variances of the second and third terms in (4.3) tend to zero, as n + CO, 

the asymptotic distribution of ~~(d,,) is the same as that for {,(A,) = C,“=, T,,(A~,~), 

if it exists. 

Lemma 4.5. The asymptotic distribution of the sum &,(A,), If it exists, is the same as 

if the summands q,(Ak.n) were independent. Further, the Lindeberg condition holds, viz. 

f E{q2,(Ak,,)I(177,(A~,n)l~&)}~0 foreache>O. 
k=l 

(4.5) 
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Proof. For the first assertion note that, from Lemma 4.2, 

E[exp(itSn(4))l - fi E(exp(h(4,n))l 
k=l 

is bounded by 

16(m - l)c+- 16 ; c++O 
0 

by (4.1), (iii). Hence the first statement follows. 

To verify the Lindeberg condition (4.5) note that IX,,il s K(a,/n)“’ for some 

constant K since p” -f(u), u’, - (~,f( u) and 16,(x)1 c &a, for all x. Hence 

for all sufficiently large n by (4.1)(i), so that P{lq,(A,,n)( > F} = 0 for all sufficiently 

large n, from which (4.5) follows trivially. q 

It follows from Lemma 4.5 and the last statement of Lemma 4.4 that I;=‘_, 77,(&n) 

has the standard normal limiting distribution and hence so does vn(A,) by the 

remark prior to Lemma 4.5, concluding the proof of the theorem. 0 

5. Continuous parameter processes 

In this section we consider a (strictly) stationary (measurable) stochastic process 

{X,; ta0) with absolutely continuous marginal distribution function F, and corre- 

sponding density f: The density f is to be estimated from knowledge of the process 

X, up to time T, by an estimator of the form 

(5.1) 

where {6,(x); T > 0} is a family of smoothing functions defined for each T > 0 (here 

called a s-family) satisfying the same axioms as in Section 2 for S-sequences with 

‘n’ and ‘rr 2 1’ replaced by ‘T' and ‘T > 0' respectively. 

Lemmas 2.1-2.3 then have immediate analogues obtained by simply replacing n 

by T in all cases. Further Theorem 3.1 also has an obvious analogue-showing 

asymptotic unbiasedness of f=(x) exactly as for sequences, i.e. giving 

Theorem 5.1. If {6,(x); T> 0) is a s-family, and the density f is continuous at the 
1 

point x, then E[fT(x)]-+f(x) as T+m. 
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The bias of the estimator clearly does not involve the dependence structure of 

the process in any way. Hence the obvious continuous parameter analogue of 

Theorem 3.4 holds, giving the rate of bias convergence. Moreover, the bias off= 

(which is based on all observations X, for 0~ t s T) is just the same as would be 

obtained by using the sequence estimator (with 6, = ST for T = n) for the sequence 

obtained by sampling the process X, at t = 1,2,3,. . . . Hence, in a sense, the 

continuous measurement of X, brings no improvement in the rate of convergence 

of the bias. The situation for the variance and covariances can be radically different, 

however, leading to significantly faster convergence for continuous measurement, 

as one would expect, and as we see next. 

Our first result shows that if the local dependence of X, and X, is sufficiently 

restricted when s # t, then it is possible to obtain a ‘full rate’ l/T of convergence 

of the variance to zero. This contrasts sharply with the sequence case where 

(n/a,) Var[j”(x)] typically converges to a non-zero limit, and may be explained 

intuitively by the fact that the sampling collects a whole continuum of ‘somewhat 

independent’ random variables. Further comments will be given in the specific 

example following the theorem. In the following specific result (and subsequently) 

fs(x, y) will denote the joint density of X0 and X,, assumed to exist for all s # 0. 

Theorem 5.2. Let If5(u, v)--f(u)f(v)I~ !P(s)E L,((O,a)), for all u, v. If fs is con- 

tinuous at (x, x) and f is continuous at x, then 

T Var[jT(x)] + 2 (5.2) 

as n-+03. 

Proof. It is readily checked that 

T Var[f=(x)] = 2 

x M(u, ~)-f(ulf(u)l ds du du 

The inner integral is bounded above in absolute value by J,” q(s) ds for all u, u 

and differs from Jr [ fs( u, v)-f(u)f(u)] ds by no more than JT(s/T)q(s) ds+ 

JT q(s) ds which converges to zero by dominated convergence and the fact that 

P E L,. This convergence is trivially uniform in (u, u) and hence it follows simply that 

T Var[fT(x)] = 2 
il 

6,(x - u)&(x - v) 
I 

OD 

LL(n, V)-f(UIf(v)I ds du dv+o(l) 
0 

as T + co. But the function g( u, u) = JT [fs( u, u) -f (u)f (v)] ds is continuous at (x, x) 

since if (u,, v,) is any sequence converging to (x, x), g( u,, v,) + g(x, y) by dominated 
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convergence, using continuity off, and J: Hence (5.2) follows at once from the 

continuous version of Lemma 2.3. 0 

Note that a discrete analogue of the condition q(s) E L, would be that Pn converge 

to a finite limit-a stronger assumption than made in Theorem 3.3. However, the 

main restriction in the assumption V?(s) E L, is a strong dependence limitation 

between X, and X,,, when s -f 0, a feature that does not have a discrete time analogue. 

Some insight into the applicability of the above result may be obtained by looking 

at a class of stationary normal processes for which it holds. Specifically let {X,; f 3 0) 

be a stationary normal process with zero mean and covariance function 

r(7) = 1- C[T~” +0(17(~) as 7+0 

with 0 < cr < 2. Let f,( x, y) denote the bivariate normal density with correlation r(s). 

It then follows that f,(x, y) G KS -* in any neighborhood of s = 0, for some constant 

K (depending on the neighborhood). Hence Ih(x, y) -f(x)_/(y)1 G 1 + KS-“/~ on 

such a neighborhood of s = 0. On the other hand, if the covariance r(T) is bounded 

away from 1 outside some neighborhood of T = 0 and integrable, then I&(x, y) - 

f(x)f(~)I s K’lr(s)l ( as noted in Section 2) for some constant K’, and the function 

W(s) which is l+ KS-“/~ in a neighborhood of s = 0 and K’lr(s)l outside that 

neighborhood, satisfies the condition of the theorem. 

Normal processes with ry < 2 in (5.3) have ‘irregular’ sample paths in contrast to 

the more regular case (Y = 2. The irregular nature of the paths corresponds to less 

correlation and hence ‘more information’ in the measurement of X, leading to the 

maximal rate of convergence of the variance to zero. It should be noted that the 

class with cr < 2 does contain interesting cases-such as the Ornstein-Uhlenbeck 

process (cr = 1). 

One might expect in more regular cases that the variance of f7 would converge 

to zero at the rate aT/T (aT =I S+(x) dx) by analogy with the sequence rate. 

However, faster convergence is possible, and even typical up to, of course, the ‘full 

rate’ l/T which applies to the irregular case above. 

The previous result provided an exact rate of convergence of the variance to zero 

for the class of processes considered. It seems likely that a convenient result giving 

exact (but slower) rates could be obtained for more general classes. However, here 

we give a result which provides lower bounds for the convergence rate. To obtain 

this it is convenient to define a continuous parameter analogue of the dependence 

index sequence. Specifically if again fs(x, y) denotes the joint density of X0 and X,, 

the dependence index function will be defined to be the function of T > y > 0 given 

by 

PAY)= sup 
I 

T lf,(x, Y) -fblf(~)I ds 
(X.YkR2 y 

(5.4) 

assumed finite for all T > y > 0. The following lemma provides the basic calculations 

needed. 
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Lemma 5.3. Let {S,(x); T > 0) be a &family and a7 = j S$( u) du < 00 for each T 

Then lyT + 00 as T + 00, and 

a;’ Var[Mx - &)I +f(x), (5.9 

as T + 00, at each continuity point x of J: Further, for 0 < y < T, 

I 
T ICov[Mx -XC,), &(x-X,)11 ds e AZ/My) (5.6) 
Y 

where A is the constant in the jirst b-axiom. 

Proof. The fact that (Y= + ~0, as T + 03, and that (5.5) holds may be shown as in the 

discrete case (Lemma 2.2 and the proof of Theorem 3.3), writing Var[&(x - X0)] = 

aFj 6+(x-u)f(u) du-(I 8,(x-u)f(u) du)* with 6*,(u)= (uT.‘S’,(u). 

To prove (5.6), note that the left hand side does not exceed 

T 

111 
l~,(x-~)~~(x-~)l~Ifs(~, V)-f(u)f(U)l du dv ds 

Y 

from which the result follows by the definition of P=(Y) and the first b-axiom. q 

The following result gives an ‘intermediate’ convergence rate between T-’ and 

aT/ T in cases where local dependence is greater than that required in Theorem 5.2. 

Theorem 5.4. Let {S,(x); T 2 0) be a s-family with cyT = j S$( u) du < 00. Let 

{ yT; T 2 0) bepositive constants with yT + 0, as T -+ a, and suppose that the dependence 

index function &( y) for the stationary process {X,; t 2 0) satisjes 

YT’PAYT) = o(+) as T+ co. (5.7) 

Then ifx is a continuity point 0fJ 

liT+szp Ty;‘czfi Var[fAx)] C2f(x). (5.8) 

Proof. It follows in an obvious way from the first two lines of the proof of Theorem 

5.2 (splitting the integration range (0, T) into (0, -yT) and ( yT, T), that 

TVa6fAx)l~‘J~~ var[s,(x-x,)l+2A2PT(yT) 

from which the result follows simply by Lemma 5.3. 0 

It may be seen also from this proof that the requirement o(cy7) in (5.7) may be 

replaced by O((Y~), and then the right hand side of (5.8) is replaced by some finite 

constant K. 
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By way of example consider again a stationary normal process with zero mean 

and covariance r(T) as in (5.3), but now with (Y = 2 (the ‘regular’ case). Let 

{&(x); Ta 0) be a s-family with (Ye = j 6$(u) du, such that ji Ir(s)l ds =o((Y~) 

(which will hold trivially if r is integrable). Let { YT; T 2 0} be a family of constants 

tending to zero, as T + 00, satisfying 

(i) r;’ = o(+/log(+)) 
(5.9) 

(ii) 
I 

0T Ir(s)l ds = o(+Y,) 

as T+ CO. (Note that if r is integrable (ii) is no restriction since it then follows from 

(i).) It is readily checked that (5.7) holds (provided Ir(s)l is bounded away from 1 

in say IsI 2 1) by writing 

1 

PAY) 4 (l-r*(s)))“*ds+l+K 
Y I 

,r Ids)1 ds (5.10) 

for some constant K (again using the bound of the example in Section 2). The first 

term on the right of (5.10) does not exceed -K’ log(y) for some K’ by (5.3) so that 

MYT) s -log(y,) + 1+ O((YT.YT) 

from which (5.7) follows at once by (5.9)(i). 

It thus follows that (5.8) holds, so that the variance converges to zero at least as 

fast as y7cyT./ T. If r(s) is integrable yT. can be chosen from (5.9)(i) which requires 

that yflT tend to infinity faster than log(a,). Thus the convergence rate y~cy~/ T 

may be chosen to be any rate slower than (log(a,))/ T. For example, if (Ye = TP, 

for 0 < p < 1, then a convergence rate slower than (log( T))/ T is achieved. Thus, 

while the full rate l/T of the irregular case is not attained, a rate close to it can be 

achieved. 

Convergence results can also be obtained for covariances of the estimates jT(x) 

and fT(y) when x # y. For example, under the conditions of Theorem 5.2 it may be 

shown that 

UC T Cov&x), &Y)I -+ 2 
i 

M(x, Y) -f(x)f(~)l ds 
0 

whereas under the conditions of Theorem 5.4 we have the obvious corollary 

lim s,“p TY;‘~,’ Cov[_?T(x),_&~)l s ‘Xf(xlf(~))“’ 

though it seems likely that a sharper form of this latter inequality may be possible. 

Finally we note that asymptotic distributional results may be obtained along 

similar lines to Theorem 4.3. For example, the following result may be shown. 

The notation developed above is used in this statement and (T$ is written for 

Var 5: S,( u - X,) ds, ( a7 = J 6%(x) dx). 
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Theorem 5.5. Let the stationary, measurable stochastic process {X,: t 3 0) have strong 

mixing function {(Ye,*: T> s > 0} Suppose that there exists a function {k,: TZ 0) such 

that T&Y,,~, + 0 and a$kT/ T112 + 0 as T + 00. Also suppose that the dependence 

indexfunction f3,( T) = o(aT) for each y > 0, and let the &family be such that 16,(x)1 s 

K0oT for some constant &, all T 3 0, x. Then 

has an asymptotic standard normal distribution at all points u such that 

lim infT,, T-lo+> 0. 0 

This result may be proved along similar lines to Theorem 4.3, using corresponding 

interval lengths T, T’ given by 7’ = k, T = O,k, where t$ is chosen so that cxT = o( e,), 

TcY-&Y~~, + 0, and a&k,-/ T112 +O. Also previous calculations may be used to 

determine the asymptotic form of uT in some cases. 
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